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Ab.rfra(:t- We suggest that satisfactory statistical performance guaran-

tees for streaming flows can be fulfilled when their packets recei~e expe-

dited forwarding in non-preemptive priority queues. This relies on the con-

jecture that jitter remains negligible in the network such that performance
measures can be bounded by assuming flows constitute Poisson arrival pro-

cesses of MTU sized packets. We provide analytical and simulation evidence
in support of this conjecture and show how it leads to simple engineering

rules for both constant and variable rate streaming traffic.

I. INTRODUCTION

In this paper we consider the possibility of providing statisti-

cal performance guarantees suitable for audio and video stream-

ing applications in the Internet. Such guarantees are formulated

in terms of packet loss probabilities and packet delay bounds

which are only exceeded with a certain small probability. They

generally allow higher link utilization than deterministic guar-

antees and can also result in simpler traffic management proce-

dures.

Streaming flows can have differing QoS requirements. In this

paper, however, we assume that a single class of service is pro-

vided offering quality of service suitable for the most exigent

application. A particularly demanding application is telephone

quality voice over 1P (VOIP) for which, it is argued in [6], packet

queuing delay in the backbone should not exceed 10 ms.

We envisage that streaming flows are handled in network

nodes as an aggregate using the expedited forwarding (EF) per-

hop behaviour of the Diffserv model [ 10]. More precisely, we

assume EF is realized using non-preemptive priority queuing

with streaming packets having highest priority and being han-

dled in a FIFO queue. We mainly consider the multiplexing of

constant rate flows manifested by an initially periodic stream

of constant size packets. However, the analysis carries over to

variable rate flows on assuming admission control is employed

to ensure that, with sufficiently high probability, the combined

input rate is less than the service rate. The packet size of any

flow is bounded by the maximum transfer unit, MTU. An essen-

tial assumption is that all flows are statistically independent at

the network ingress.

Evaluating delays is complicated by the phenomenon of jit-

ter. The exact periodicity of constant rate flows is lost as soon as

these are multiplexed in a common queue and jitter accumulates

as ilows advance in the network. Worst case scenarios identi-

fied in the context of deterministic guarantees suggest that max-

imum delays can be unbounded, even when all flows are initially

shaped to their nominal rate. To derive useful statistical perfor-

mance bounds, it is important to understand how jitter impacts
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traffic management functions like admission control, buffer siz-

ing and traffic shaping.

It proves difficult to adequately quantify the jitter phe-

nomenon. Parameters relating to the packet inter-arrival time

distribution or to the difference in delay of successive packets,

in particular, are of little practical use for the purpose of net-

work engineering. The approach developed in the present paper

is simply to characterize the jitter affecting a fiow by specifying

when we can ignore it for the purposes of traffic management.

By ignoring jitter we mean that the same engineering rules apply

independently of whether the flows are perfectly periodic, as at

the ingress, or have suffered variable delay at prior multiplexing

stages.

A worst case assumption for computing delay in a FIFO

queue offered a superposition of independent periodic flows is

to assume the latter constitute a Poisson process of packets of

size MTU (see Section IV below). This allows the computation

of performance bounds on loss and delay enabling buffer siz-

ing and the definition of limiting load levels without the need

to specify individual flow characteristics. We adopt this as the

basis of traffic management rules and define jitter as being “neg-

ligible” if the same rules can be applied at any network node. In

other words, a flow has “negligible jitter” if it is better than a

Poisson stream of MTU-sized packets in the sense that perfor-

mance in a stable FIFO queue would be worse if that flow were

replaced by the Poisson/MTU stream. The usefulness of this

notion depends on the following conjecture holding true:

The NJ conjecture: If the network realizes EF using priority

queuing, if $ows eligible for EF have negligible ,jitter at the

ingress with respect to the Poisson/MTU reference process and

if at every multiplexing stage within the network the sum of in-

put rates is less than the service rate, then the flows retain the

negligible jitter property throughout the network.

The NJ conjecture is essentially based on intuition. The main

contribution of this paper is to present analytical and simulation

results to support this intuition. We also show how assuming

the NJ conjecture allows the definition of simple traffic man-

agement rules leading to acceptable performance guarantees for

streaming applications.

In the next section we discuss related literature. We then con-

trast the traffic management rules necessary to ensure determin-

istic and statistical performance guarantees, respectively, and

show how the latter lead to acceptable end-to-end performance

even for the most demanding streaming applications. In Sec-

tion IV we discuss the difficult question of comparing stochastic
processes, introducing a number of orders and illustrating their

application. Section V is devoted to a study of how jitter prop-
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agates in the network. Most of the analysis is concerned with a

simple tandem network representing the path of a test flow but

we also derive an asymptotic NJ result for general feed forward

networks. Finally, in Section VI, we indicate how the negligible

jitter conjecture can also be applied to variable rate flows.

II. RELATED WORK

A number of previous papers are particularly relevant to the

present work. Our approach is largely inspired by the definition

of negligible cell delay variation (CDV) in ATM networks and

its analysis by Brichet et al [2] and Massouli6 [11]. The concept

of negligible CDV has been incorporated in ITU Recommenda-

tions on B-ISDN traffic engineering [9]. In the present paper

we generalize the results of [2] and [11] to the case of variable

packet size 1P networks.

The study of CBR service in ATM networks by Grossglauser

and Keshav [7] considers jitter through the phenomenon called

“bunching”. The authors demonstrate by simulation that bunch-

ing has no significant impact on end-to-end delays. They con-

clude that FIFO service is adequate for CBR traffic and per-flow

re-shaping at intermediate nodes is unnecessary. They derive a

number of analytical heuristics for comparing processes based

essentially on the second moment of the inter-arrival time and

the index of dispersion for intervals (IDI). Our approach uses

more general tools for comparing stochastic processes laying a

sounder foundation for the analysis of “better than” orderings.

Sahni et al in [14] revisit the simulation experiments reported

in [7] and generalize the traffic model to account for variable

packet sizes. They reconfirm the adequacy of FIFO for constant

size packets but suggest this may not be the case when packet

sizes are very different from flow to flow. In particular, they

observe that FIFO can result in considerably greater delay and

delay variation for the smaller packets than per-flow weighted

fair queuing. They take this observation as evidence that simple

FIFO queuing may not be adequate in a network with widely

different packet sizes. Our results and the NJ conjecture are not

in contradiction with these results since we only claim packet

delays are bounded by the delays that would be obtained if all

packets had the maximum size MTU. We differ in the conclu-

sion that this delay is prohibitive for the streaming flows of in-

terest.

Additional simulation experiments are reported by Goyal et

al [6]. These are tailored to the study of VOIP and incorpo-

rate background data traffic served either with lower priority

or according to assigned weights in a class based fair queuing

scheduler. They observe that priority queuing yields lower de-

lays for the voice packets and that performance is considerably

affected by the larger packets in the background traffic. In our

study, bounds on end to end performance are calculated assum-

ing worst case characteristics for the background traffic (MTU

sized packets always present).

Finally, Gu&in and Pla consider how jitter acquired in a net-

work path affects the conformity of a flow with respect to its

initial token bucket parameters [8]. They show that a limited

amount of re-shaping is necessary to restore conformance at net-

work boundaries. Our approach is quite different in that we do

not consider conformance to one or several token buckets to be

a useful characterization of jitter.
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III. STATISTICAL OR DETERMINISTIC PERFORMANCE

BOUNDS

Guaranteed service in the Intserv model is based on deter-

ministic performance bounds and generally relies on per-flow

scheduling in network nodes. In this section we discuss the dif-

ficulty of providing similar deterministic performance guaran-

tees in the Diffserv model where individual flows are not dis-

tinguished. We then contrast this approach with the traffic en-

gineering rules possible if we can alternatively rely on the NJ

conjecture to derive statistical performance bounds.

A. Deterministic bounds

Deterministic bounds on performance are derived by making

worst case assumptions with respect to the simultaneity of ar-

rivals from different flows and with respect to the accumulation

of bursts of packets as the flows progress through the network.

To illustrate how these worst case assumptions can be really pes-

simistic, we consider the simple network configuration depicted

in Figure 1 consisting of a sequence of multiplexing stages re-

alized by FIFO queues. Flows enter the network on the left and

proceed through one queue in each stage before leaving at the

right,

Assume N flows initially consisting of perfectly periodic

streams of constant size packets are offered to the first stage

queue, For a particular test flow, the worst case delay occurs

when all flows emit a packet just ahead of its own packet and

is equal to N — 1 packet times. Worst case jitter occurs when

one packet is delayed like this while its successor suffers zero

delay. This can occur if the flows having delayed the first packet

suddenly stop sending before the second packet arrives. If the

next packet is maximally delayed, the fourth minimally delayed

and so on, the output process offered to a second stage queue is

a periodic flow with packets arriving two by two.

A further worst case assumption for this network is that flows

offered to a particular second stage queue have all been maxi-

mally jittered by the above process. Applying a similar worst

case analysis accounting for simultaneous arrivals and alternat-

ing activity patterns shows that flows can acquire additional jit-

ter at every stage. Worst case delay increases exponentially from

stage to stage at a rate depending on how close the packets can
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get (a function of iV and the queue load).

In practice, even the first queue in the path of one flow will

receive other flows which have already been jittered in previ-

ous multiplexing stages. The identification of worst case sce-

narios in this case becomes very complicated. Charny and Le

Boudec [31, derive a general bound on end-to-end delay valid

in a network where all flows conform on ingress to the same

token bucket parameters and no flow follows a path including

more than h queuing stages. This bound is derived more el-

egantly than in the above discussion but implicitly makes the

same worst case assumptions. A consequence is that the delay

bound increases rapidly with path length and link utilization.

For a given path length, there is a limit utilization a’ beyond

which the delay bound becomes infinite, The limit utilization is

as low as O* = l/(h, – 1) if we do not take account of input rate

limits. Clearly, allowed utilization becomes extremely small in

large networks, It is also noteworthy that, even when finite, the

delay bound increases linearly with the number of flows in the

network.

Reliance on such deterministic bounds is not only unduly pes-

simistic with respect to possible link utilization but also implies

the application of highly complex admission control and traf-

fic management rules (including being aware of the number and

rates of flows in multiple network paths). We note also that these

rules are not even available for general network topologies and

heterogeneous flow traffic parameters. It thus appears highly de-

sirable to develop an alternative statistically based traffic man-

agement, as discussed below.

B. Statistical bounds

In this section we assume the NJ conjecture is valid and dis-

cuss the traffic management procedures which follow. If all

flows have negligible jitter, the priority traffic at every node can

be assimilated to a Poisson arrival process of MTU-sized pack-

ets. To derive worst case bounds we assume that the intensity

of non-priority traffic is sufficiently high that whenever no high

priority packet is present, the link is immediately occupied for

the transmission of an MTU-sized lower priority packet.

B. 1 A single multiplexing stage

Analysis of this queuing system yields the following expres-

sion for the Laplace transform of the distribution of queue size

Q:

l–p 1 _ ~–MTU.s
E[exp –sQ] = —

p e–MTu.S + ~/~ _ 1

Rather than proceeding to invert this expression we apply the

technique described in [13], page 392 to derive the asymptotic

estimate:

Pr[Q > z] x k exp{–rw/MTu}

wherer satisfies: p(er–l)–r- = Oandk = (l–p)/(pze”– p).

Note that this approximation in fact provides an upper bound on

the true waiting time distribution;

{
Pr[Q > z] < 1’

if z < am~n

k eXP{–r%/MTU}, if z ~ z..~n.

where Z,,,,in, = –MTU/T log I/k. This yields accurate estimates

of the tail probabilities of interest for buffer sizing. Table I

load 0.4 0.4 0.9 0.9
pr[saturation] 10-3 10-o 10-3 10-6

buffer size 6 10 35 68

TABLE I

REQUIRED BUFFER SIZE IN PACKETS

hops 5 5 10 10

load 0.4 0.9 0.4 0.9
99% quantile 1.0 4.8 1.9 8.0

99.9% quantile 1.2 6.0 2.0 9.4

TABLE 11

QUANTILES OF END-TO-END DELAY (MS)

shows required buffer size in numbers of MTU packets for a

number of loads and target saturation probabilities.

B.2 End-to-end delay

The approximation can also be used to derive estimates of

the end-to-end delay in a network of h stages. We assume all

stages are identical, independent and of capacity C. The end-

to-end delay is thus bounded by the sum of h~min/C and a ran-

dom variable having an Erlang-h distribution of mean MTUh/T.

Quantiles of the end-to-end delay distribution are given in mil-

liseconds in Table II assuming 0C3 (155 Mbit/s) links and an

MTU of 1500 bytes. Clearly the delays are very small for high

speed links, even for long paths and high utilization.

The independence assumption is conservative since correla-

tion due to dependence tends to reduce rather than increase end-

to-end delays. We have verified this by simulation, see Figure

2.

x
A

1

0.1

0.01

0.001

0 5 10 15 20 25 30 35 40
x

Fig. 2. Simulation: end-to-end delay of a Poisson through traffic contributing a

load 0.1 passing through 4 queues in series with Poisson cross traffic at each
qnwre. Total load 0.8. Analysis: end-to-end delay assuming independence.

B.3 Shaping and reshaping

The NJ conjecture states that flows retain the negligible jit-

ter property if all flows have it at the network ingress. To en-

sure the latter condition is fulfilled it may be necessary to shape
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the individual flows to their nominal constant rate, as recom-

mended in the EF RFC [10], According to the conjecture, any

subsequent shaping beyond the ingress is superfluous if the net-

work provider is sure that multiplexing isperformed inthenec-

essary manner. Shaping may, however, benecessary at an inter-

network interface where the receiving provider does not trust the

sending network to only forward flows with negligible jitter.

The shaping of an aggregate flow does not appear to serve any

useful purpose. According to the conjecture, ifthe shaping rate

is greater than the sum of the nominal flow rates and the latter

have negligible jitter, the aggregate shaping does not introduce

non-negligible jitter. However, it does introduce unnecessary

delay (by emulating an additional heavily loaded link). It would

also tend to exacerbate the jitter present in any component flow

and cause any flow with non negligible jitter to “infect” the other

flows included in the same aggregate. It is indeed the jitter in the

component flows which impacts the performance of subsequent

network queues. If reshaping is required it must be performed

on flows or aggregates of flows which remain intact from ingress

to egress.

C. Accounting for variable rate jiows

A further advantage of applying statistical rather than deter-

ministic performance guarantees is that the former allows the

possibility of performing statistical multiplexing for variable

rate flows. Deterministic guarantees for variable rate flows ei-

ther require complex per-flow scheduling, as envisaged in the

Intserv model, or a rate allocation equal to the peak rate if ag-

gregate scheduling is imposed. Statistical delay bounds, on the

other hand, can be guaranteed by applying a simple extension

to the NJ conjecture, as discussed in Section VI. It is simply

necessary to perform admission control to ensure a sufficiently

small probability of the combined input rate exceeding the ser-

vice rate.

IV. COMPARING STATISTICAL DELAYS

The NJ conjecture relies on the comparison of stochastic pro-

cesses, In this section we review a number of results on the com-

parison of stationary marked point processes where the points

are arrival epochs and the marks correspond to packet size. For

the sake of simplicity, we do not take into account the effect of

non-priority traffic when comparing processes through their in-

duced queuing performance. We assume that if one process is

better than another with respect to a single class queue, it will

also lead to better performance in the priority queue.

A. Stochastic orders

Let A = (N, X) denote a stationary marked point process

where N is the point process of packet arrival epochs and X is

the packet size. Let V (A, c) be the virtual waiting time in a

queue served at rate c and offered input process A. A(O, t] de-

notes the total amount of work arriving in an interval of length t

starting at the arbitrary point O, In the following we introduce a

number of stochastic orders, drawn from the literature or specif-

ically adapted to present purposes.

Since the objective is to compare processes with respect to
lhelr performance in a queue, it is natural to define an order as

follows.

Definition 1: Virtual waiting time ordering, We say A <Uwt
A’ if and only if Pr[V(A, c) > x] < Pr[V(A’, C) > x], for

x >0 and for any c such that the queues are stable.

Unfortunately, it generally proves very difficult to apply this

ordering in practice in view of the difficulty of calculating the

virtual waiting time distribution,

Definition 2: Virtual waiting time convex ordering. A < ~Cz

A’ if and only if for all increasing convex functions h we have,

J3[h(V(A, c))] < E[h(V(A’, c))], i.e., V(A, c) <i,z V(A’, C),
for any c such that the queues are stable,

It follows, in particular, that A <WCZ A’ implies all the

moments of V(A, c) are less than the respective moments of

V(A’, C).
Definition 3: Strong variability ordering. A <~uar A’

if and only if for all convex functions h, 13[h(A(0, t])] <

E[h(A’(0, t])], i.e., A(O, t] <,z A’(O, t], fort >0.

For the particular case of renewal processes with constant

marks (i.e., constant packet size), the strong variability order-

ing is satisfied if ~A <Cz ~A where ‘r denotes an inter-arrival

time [1], [2], If A <z _suflr A: for i = 1,2 then (Al + Az)
_suar (A\ + A)) (cf. Proposition 3 in [1 l]). Finally, by a clas-<

sical result from Large Deviations theory [11], [4], the strong

variability ordering implies the following weaker ordering based

on asymptotic queuing performance,

Definition 4: Effective bandwidth ordering. For random vari-

ables for which the following limit exists, let

@A(c) = – limZ+m ~ lnP(V(A, c) > x), and define

A <EB A’ if and only if ~A(c) ~ cYA,(c).

The inverse function ail is the effective bandwidth function

giving the rate c = cu~l (6) necessary to achieve an asymptotic

slope 6. A <EB A’ implies A has smaller effective bandwidth

than A’.

B. “Better than Poisson”

We first assume th’at packets have constant size so that we

simply compare point processes of equal intensity. This is the

context of the studies on cell delay variation in ATM networks

reported in [2], [11].

Consider the superposition of periodic streams. In this case

the performance measure in question is the virtual waiting time

distribution when a server is offered a superposition of periodic

streams of constant size packets where the phase of any stream is

chosen at random. When all streams have the same rate, the con-

sidered system is the N* D/D/l queue for which an exact expres-

sion is available for the virtual waiting time distribution (e.g.,

[ 13]). Evaluations of this expression reveal that Pr[V > x] is

an increasing function of N and tends in the limit to the corre-

sponding value of the virtual waiting time distribution for the

M/D/l queue (see Figure 3). In other words, the N* D/D process

is better than Poisson in the <Uut ordering. When each stream

has its own period, the corresponding system is the ~D2/D/l

queue for which there is an accurate approximation for the vir-

tual waiting time distribution [13]. Numerical evaluations reveal

that the M/D/l queue again provides an upper bound on perfor-

mance indicating that any superposition of independent periodic

streams is better than Poisson.
In fact, it can be .demonstrated that a periodic process of

constant size packets is better than Poisson in the strong vari-
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ability ordering (clearly, by Jensen’s inequality, h(l/A) <

~Omh(z)~e-~’dz for convex functions h showing that the de-

terministic renewal process is better than Poisson). The results

following Definition 3 allow us to conclude that this order ex-

tends to superpositions of periodic flows. In this case, the nu-

merical results of Figure 3 indicate that the strong variability

order implies the sought-for virtual waiting time order.

1

N=1OO —

N=500 ~~~~~~~

M -----

x
A
>
a
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n -.

0.001Y
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0.0001 ..\
..*

1e-05
o 20 40 60 80 100

x (in packets)

Fig. 3. Virtual waiting ti]medistribution of the N’FD/D/l queue. Load p = 0.95.

C. “Better titan PoisxonAWTU”

In the Internet, packets are of variable size bounded by the

maximum transfer unit MTU and, to compare the performance

of different types of flow, it is necessary to use results for marked

point processes.

The ~D~i /D/1 queue (a superposition of independent

streams of periodic arrivals of size Xi) models constant rate

flows where both the period and the packet size can be differ-

ent for each flow. In this case, it is again possible to derive a

close approximation for the delay distribution [13], Empirical

evidence supports the intuition that this queue leads to lower

virtual waiting times than an M/G/l queue where the service

time distribution is the same as that of an arbitrary customer in

the superposition. This is illustrated in Figure 4 for a particu-

lar traffic mix. As above we can further affirm that, in the strong

variability ordering, each flow is better than a Poisson process of

same size packets and that the superposition is therefore better

than the MIG process.

A less precise bound is provided by assuming a Poisson ar-

rival process of maximum (MTU) sized packets. The virtual

waiting time distribution for the same load M/DMTu/l queue is

also shown in Figure 4. The bound is clearly not as tight as that

provided by M/G/1. However, it proves necessary to assume

maximum sized packets to obtain a robust result with respect to

the impact of jitter. Indeed, the NJ conjecture relies on the in-

tuition that transforming a process by increasing the packet size

(while maintaining other essential properties such as the mean

intensity) worsens performance thus leading to upper bounds on

performance.

Consider, therefore, the following transformation of’ a station-

ary point process of unit-sized packets denoted IV(l J: starting

from an arbitrarily chosen packet, remove the next m – 1 pack-

ets and replace the rn,t” by a “super-packet” of size m; continue

1

0,1

0.01

0.001

o 20 100
x (in f%its of h%.f/(1 O.&$

Fig. 4. VIrtnaI waiting time distribution of the ~D~l /D/I queue compared

with that of the corresponding M/G/1 and M/DMTu/ 1 queues. Load p =
0.8. Superpositions of N periodic sources with packets of size MTU/1 O and

N sources with MTU-sized packets, all sources contributing the same load.

thus for all subsequent groups of m arrivals creating the process
~(n’) Intuitively, jV(l) is better than jV(m) in the sense that it

produces smaller queues. It seems difficult, however, to prove

that this is true in the ideal virtual waiting time ordering. 11is

proved in the weaker waiting time convex ordering in [1], The-

orem 2.5.2, i.e., we have IV(l) <WC. IV(m) . This allows us to

state that the moments of the virtual waiting time process for
IV(m) are greater than those for IV(l). In addition we have the

following proposition:

Proposition 1: With the process IV(m) constructed from

a stationary process IV(l) as described above, we have:

N(l) <.,,., N(m)

Proof Let A$l) and A\m) be the work generated during

an arbitrary interval of length tby process N(lJ and lV(m), re-

spectively. Let Pr[A\l) = n] = Tn(t) and write n = qm + r

with O ~ r < m. If one of the first r arrival epochs of

IV(l) in the interval is also an arrival epoch for N(m), we have

A\n’) = (q+ l)m = n, – r + m. ~;:t~onarity, this occurs

with probability r/m. Otherwise, At — n – r. Thus, for a

convex function h,

E[h(A$”’))] = ~n>o {~h(n – r + m)

+ (f– ;)h(rt –r)}nn(t)

2 ZJZO X~)~n(~) = W&w)]”

■

The strong variability ordering extends naturally to superpo-

sitions, as noted in Definition 3, i.e., we have ill + N(L) <.ua,

ill + IV(m) for any independent process M. The following

proposition establishes that waiting time convex ordering is also

preserved in a superposition.

Proposition 2: With process N(n’) constructed from a sta-

tionary process N(l) as described above and M an arbitrary

stationary marked point process, we have: M + N(l) <WC.

M + ~(~)

Proof (outline) The proof is adapted from the proof that

N(l) <WC. iV(mJ given in [1], page 221. For the process

M’ + N(”’) we retain all the arrival epochs of M + N(l) with
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the mark <i associated with arrival epoch i being either the same

in both processes, if it corresponds to an arrival of M, or m,

with probability l/7n, and O, with probability (m – 1)/rn, if it

is an arrival of N[nz). It is first necessary to show that we have

convex ordering for the vector of marks (packet sizes) for n suc-

cessive arrivals in the superposed process, i.e., (~~m), ... ~~))

>~~ (t!’), .. . g!$) ), for n z 1. This follows directly from the
construction of process JVtm’) and, as in [1], allows the assertion

that the workload at arrival epochs satisfies the increasing con-

vex ordering. To extend this ordering to the stationary workload

process, we can apply result (4.3.8) in [1] (page 238). ■

The above propositions allow us to affirm that, if m unit-sized

packets constitute an MTU and if IV(n’) is better than Pois-

son/MTU, then IV(l) is also better than Poisson/MTU in the

waiting time convex and strong variability orderings.

V. ACCUMULATION OF JITTER

Constant rate streams lose their initial periodicity as they ac-

quire jitter in multiplexer queues. It is important to be able to

characterize this deformation and to evaluate its impact on queu-

ing at nodes within the network. To illustrate the way jitter ac-

cumulates and to assess its impact we first restrict attention to

the case of a simple tandem network with cross traffic. A test

stream of constant sized packets goes through a series of mul-

tiplexing stages where it is in competition in FIFO queues with

independent cross traffic (see Figure 5).

L
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L L
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– 33: m -32 —NI
\
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\

Fig. 5. Tandem queue with Crosstraffic

A. The saturated tandem

The tmdern queue model can be analyzed exactly in the fol-

lowing case. Cross traffic consists of Poisson arrivals of packets

of independent and identically distributed size and the intensity

of’ the process at each queue is such that the server load is 1.

This analysis generalizes the results derived for ATM traffic in

[12] and [ 13]. Since the links are saturated, it is not necessary

here to take explicit account of non-priority traffic.

Let the size of test flow packets be a and the mean inter-arrival

time be T. For simplicity, assume all queues in the tandem have

the same unit service rate and the same cross traffic process. The

latter is characterized by the arrival rate ~ and the distribution of

the packet size E. Since each queue is loaded to 1, we have:

a/T + M3[_X] = 1.

Let (~~ ),, ~Z denote the inter-arrival times of the test flow
at the kt” queue. Every r: for fixed n is Markovian in k and

evolves through the relation: -r#l = cr + A(r~), where A(t)

denotes the cross traffic arriving in an interval of length t.This

implies, as for ATM traffic [13], that if the test process is initially

a renewal process it remains so at every stage and that a gen-

eral test process converges to a renewal process as it progresses
through more and more stages. It is possible to derive the mo-

ments of the inter-arrival distribution at each stage. In particular,

13[T$] = T for all k and Var[~~+l] = X1’.E~~2] + (1 – cr/T)

Var[7~], It follows from the latter relation that the inter-arrival

time variance converges monotonically to Var_(~nm ), where

If the test flow is initially periodic, its variance increases stage

by stage towards this value. Given that E < MTU, the above

expression is maximal when Z is constant and equal to MTU.

In other words, the test flow acquires maximal jitter (as mea-

sured by the inter-arrival time variance) when the cross traffic is

Poisson/MTU. The squared coefficient of variation of the limit

inter-arrival time distribution is then:

CV2 =
1 – cT/T MTU

l–(l– CJ/T)2 T “

We see that, for a constant test flow load Q/T, CV2 increases

as a decreases, For small enough packets, the test flow is clei~ly

not better than Poisson. However, assume cr = MTU/m form an

integer and consider the squared coefficient of variation of the

interval between the first and last of m + 1 successive packets,

This is independent of m and equal to (1 – o/T)/(2 – a/T)
which varies between 1/2 and O as the proportion of end-to-end

traffic increases from O to 100%.

Now, by Propositions 1 and 2, this process is better, in the

waiting time convex and strong variability orderings, than a pro-

cess constructed by concentrating m successive packets on ev-

ery mth arrival epoch. The latter is a renewal process which has

exactly the same properties as the test flow in the tandem with

constant service time considered in [11]. We can thus conclude

from Propositions 3 and 4 in that paper that, if this process is ini-

tially better than Poisson/MTU in the strong variability ordering,

it remains so at each stage. By transitivity the initial flow of size

o packets is also better than Poisson/MTU in this ordering.

The same arguments can be applied when the servers in the

tandem queue have different rates and when some cross flows

remain in the tandem for more than one stage. The “better than

Poisson/MTU’ comparison still applies. It was shown above

that cross flow packets smaller than MTU induce less jitter in

the through flow. It also seems clear that a cross flow arrival

process which is better than Poisson would also reduce jitter in

the test flow.

B. Non-saturated networks

As for the case of ATM, to evaluate jitter accumulation in

a non-saturated network it is necessary to turn to simulation.

We have performed a number of experiments for the tandem

network of Figure 5 with server load less than 1. None of the

results obtained contradicts the NJ conjecture. Indeed, the evi-

dence confirms our intuition that jitter in the test flow is reduced

as load decreases.

Figures 6 and 7 relate to a tandem with Poisson/MTU cross

traffic and through traffic consisting of an initially periodic flow

of packets of size MTU/1 O contributing a load of 0.03 at each

stage. Note that in these simulations, when no EF packet is
present, the link is immediately occupied for the transmission

of non-priority packets of size MTU.
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Fig. 6. Squartd coefficient of variation of 10 successive intervals (u =

MTU/10).

Figure 6 shows the squared coefficient of variation of 10

successive inter-arrivals as a function of the number of stages

crossed for server loads of 1, 0.9, 0.7 and 0.4. Recall from

section IV-C that the original packet process is better than the

process formed by concentrating arrivals on every 10th packet.

The results in Figure 6 measure the deviation of the transformed

through traffic from a Poisson/MTU stream for which the co-

efficient of variation is 1. As shown in the previous section,

this coefficient increases from O to 0.5 with the number of links

crossed when the load of every link is equal to 1. The simula-

tion results confirm the intuition that variability is even less at

lower loads. The variance of the 10-packet interarrival time is

very small when load is less than 0.5.

The coefficient of variation is a satisfactory measure of bursti-

ness for the saturated tandem where the through traffic stream

is a renewal process. To further characterize this stream when

link loads are less (ban 1, we consider the correlation between

successive 10-packet intervals. Figure 7 shows the correlation

coefficient for loads 1, 0.9, 0.7 and 0.4. This coefficient is zero

for [he renewal process pertaining at load 1. The figure clearly

shows that correlation is negative and decreases with decreasing

load. Negative correlation implies that the arrival processes are

rather better than a renewal process with the same interarrival

tilme distribution. This is because any short interval leading to a

momentary queue is likely to be followed by a longer than aver-

age interval allowing this queue to be absorbed immediately.

Further simulations with cross traffic which is better than

Poisson/MTU (smaller packets, smoother arrival process) con-

firm the intuition that this is a worse case for creating test flow

jitter. In Figure 8 we show how the coefficient of variation of

the 10-packet interval varies with the number of links for three

different equal intensity cross traffics: Poisson/MTU, Poisson

arrivals of packets whose size is uniformly distributed between

MTU/ 10 and MTU, Erlang-2 arrivals (i.e., a renewal process

with interpacket intervals equal to the sum of two exponential

variables) of MTU sized packets. As postulated, the worst per-

formance is indeed obtained for Poisson/MTU cross traffic.

The results presented in this section clearly do not prove the

NJ conjecture. They do, however, constitute quite compelling

evidence for its validity demonstrating that the jitter is reduced
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Fig. 8. Squared coefficient of variation of 10 successive intervals with different

cross traffics: Poisson and Erlang-2 arrivals of MTU-sized packets, Poisson

arrivals of packets of size uniformly distributed between MTU/ 10 and MTU,

Load p = 0.5.

and performance enhanced as we deviate from the previously

analysed worst case saturated tandem.

C. The large deviations ordering

The sample path large deviations ordering introduced in [ I 1]

for constant packets can also be applied in the present case to

derive “better than” comparisons in a more general network set-

ting than that of the tandem queue. Instead of point processes,

we must focus on the amount of work generated by individual

flows. Let A(O, t] denote the amount of work generated in an

interval of length t,and define:

{

~A(0, nt]
An(t) =

ift~O,

–~A(nt, o] ift <0.

The function t t-+An(t) belongs to the space D (R, R) of right

continuous functions with left-hand limits. We say that the se-

quence An satisfies a sample path Large Deviations Principle

(sp-LDP) if it satisfies a Large Deviations Principle in the space

D(R, R) with a rate function 1A : D (~, ~) + ~. For instance,

for a Poisson process M of arrivals of unit-sized packets, the

sequence Aln satisfies an sp-LDP and the corresponding rate
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function is given by:

{

~~~ ~M(v’ (t))dt, if? is absolutely
IM (q’) = continuous and T(O) = O,

+co, otherwise

where

For details, see [ 1 1]. We define the LD ordering as follows.

Definition 5: Large deviations oydering. A <LD A’ if and

only if, ~A(T) ~ ~A, (~), for T ● D(R, R).

Theorem 1: Consider a feed-forward network of FIFO

queues as defined in [11]. Assume stability, i.e., at each

queue the load is strictly less than 1. If flows are better than

Poisson/MTU for the LD ordering at their origin, they retain

this property throughout the network. As a consequence, if

V ( {Poisson, MTU}, c) denotes the stationary workload of an

arbitrary server when the real traffic A is replaced by a Poisson

process of arrivals of MTU-sized packets, we have:

V(A, C) <,ZB v({~oissorq MTU}, c)

Proof The proof can be derived directly from that in [11]

on replacing the arrival point process N(0, t] by work process

A(0, t]. ■

This theorem constitutes a demonstration that the NJ conjec-

ture is true in an asymptotic regime, at least for the class of

feed-forward networks.

VI. ACCOUNTING FOR VARIABLE RATE FLOWS

Audio and video flows requiring the low transfer delays pro-

vided by EF are generally not CBR. Variable rate video coding

in particular produces extreme rate variations at multiple time

scales. Multiplexing such flows with statistical performance

guarantees can be performed with EF using so-called “rate en-

velope multiplexing”.

A. Rate envelope multiplexing

Assume for the moment that the rate of a flow i is a well

defined quantity AZ(t) which varies slowly except at the epochs

of a low intensity point process representing discontinuous rate

changes (e.g., a flow changing state from “on” to “off”). Rate

envelope multiplexing consists in ensuring that, for the set .F of

flows sharing a link of rate C, we have l%[~i=x ~i(t) > C] <

c, for some suitably small number e (see Fig. 9).

Rate envelope multiplexing is “bufferless” in a hypothetical

fluid system. Delay is then null and loss can be limited by ap-

plying admission control to guarantee a sufficiently small rate

overload probability t. Bufferless multiplexing is efficient when

the rate of any flow is never more than a small fraction of the

service rate C. The performance of bufferless multiplexing is

discussed in [ 13], Chapter 16, for instance. Performance of the

actual non-fluid system depends additionally on the dynamics of
the queue necessary to take account of coincident packet arrivals

from distinct flows.

Fig. 9. Rate envelope multiplexing: the combined instantaneous rate of multi-

plexed flows only exceeds the service rate C with smatl probability e

B. Negligible jitte~

Assume flows are shaped at the network ingress to their nomi-

nal peak rate pi, for i c 7. They may thus be considered to have

an onloff traffic pattern, an off-period beginning whenever the

inter-packet interval of the shaped stream exceeds Oi /pi, where

ai is the constant size of flow i packets. Figure 10 depicts the

imagined composition of on- and off-periods for three floIws.

Note that an isolated packet of size s (occurring when the actual

flow rate is less than the nominal rate p, for instance) gives rise

to an on-period of duration s/p. We consider the packets to re-

main in the same on-period throughout the network even though

the inter-packet spacing changes at each queuing stage.

Fig. 10. EF flows shaped to a common rate p. The figure shows three flows

with packets of different sizes represented by the black rectangles. The

on-periods are represented as a contiguous sequence of black and gray rect-

angles.

If the sum of the peak rates of active flows were to be always

less than the service rate, the NJ conjecture suggests that jitter

in the initially shaped flows remains negligible. In other words,

queuing delays can be bounded as in Section 111-B.2 by assum-

ing flows correspond to a Poisson/NITU process. In practice, it

must be ensured that the probability of exceeding the tolerable

utilization level derived from the M/D/l model is small enough.

It is additionally necessary to avoid the accumulation of delays

whenever rate overload does occur. A possible rule of thumb

would be to limit the queue length to the time to send an MTU

worth of data at the rate of the highest rate flow multiplied by

the service rate C’.

C. Admission control

An extensive literature exists on the subject of admission con-

trol for rate envelope multiplexing. The most satisfactory ap-
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preach is to rely on a minimal description of each flow coupled

with a measurement-based estimation of current traffic, as in

[5], for example. However, even if the only traffic descriptor is

the flow peak rate pi, the requirement to signal this rate and to

maintain per flow state for a potentially large number of stream-

ing flows may lead to scalability problems.

One possible approach we are currently exploring is to at-

tribute the same peak rate p* to all streaming flows. This rate de-

fines a maximum peak rate for any flow, i.e., p* ~ pi for i E .F.

In the interest of multiplexing efficiency, p* must be a small

fraction of the link rate (1%, say). Flows shaped to this com-

mon rate would appear to the network as onloff flows and, pro-

vided an adequate measurement-based admission control were

implemented, would conserve negligible jitter throughout the

network. We envisage that new flows would be identified on

the fly without signaling and rejected, if necessary, simply by

discarding their packets. The choice of a common rate avoids

the need for signaling and reduces required state to a list of flow

identifiers. This list is necessary to be able to recognize the ap-

pearance of packets from a new flow.

VII. CONCLUSION

Reliance on deterministic performance bounds for packet de-

lay within EF aggregates can be extremely pessimistic. It also

requires complex traffic management rules to ensure the set of

established flows within a network is admissible. On the other

hand, statistical bounds are clearly sufficient for streaming ap-

plications if it can be guaranteed that packet delay and loss are

small enough, It is our contention that such guarantees are fea-

sible when EF is realized using priority queuing, flows are inde-

pendent and their packets are spaced to a nominal peak rate at

the network ingress.

In this case, it is sufficient to estimate delays and buffer satu-

ration probabilities assuming EF traffic at any queue in the net-

work can be assimilated to a Poisson stream of MTU-sized pack-

ets. This is a necessary assumption if there is no limit on the

number of (low rate) flows admitted and no control on packet

size. Sufficiency relies on a conjecture that variable packet de-

lays accumulating in successive queuing stages do not cause in-

dividual flows to become more bursty than a Poisson process of

MTU packets. This is the negligible jitter (NJ) conjecture.

We have shown that, it’ the NJ conjecture is true, then bounds

on end-to-end delay can be evaluated simply as the sum of wait-

ing times in independent M/D/l queues. Under realistic network

assumptions, this bound is sufficiently small for real time inter-

active streaming applications. The M/D/ 1 model can also be

used for buffer sizing. If the NJ conjecture is true, the statisti-

cal bounds are rigorous and not an approximation. The major

contribution of the paper has been to investigate its validity by

analysis and by simulation,

Analytical results on the comparison of stochastic processes

show that the conjecture is true for the so-called strong vari-

ability ordering in the particular case of a quasi-saturated tan-

dem network where a test flow is subjected to interference from

Poisson cross traffic in successive stages. Further analytical

comparisons and simulation results confirm that the character-

istics of the test flow improve as the cross traffic assumptions

are relaxed: lower load, arrival process smoother than Poisson,

smaller packets, flows interfering for more than one stage. The

conjecture is also proved to be valid for “better than” compar-

isons in the asymptotic effective bandwidth ordering in the case

of more general feed forward networks. These results general-

ize the negligible CDV conjecture which has already been for-

mulated for ATM and used as the basis for B-ISDN traffic engi-

neering standards.

Statistical guarantees based on the NJ conjecture can be ap-

plied to both constant and variable rate streaming traffic. We

have outlined a possible approach to traffic management for

variable rate EF traffic using measurement-based admission

control which avoids the need to know individual flow traffic

parameters at routers beyond the network edge.

The NJ conjecture provides a framework for understanding

the results of previous simulation studies which demonstrated

the limited impact of jitter accumulation on packet delay. While

a complete formal proof of the conjecture appears beyond reach,

the evidence presented here strongly supports the intuition that

it is true. In the absence of any obvious counter examples, we

believe that the NJ conjecture and the engineering rules which

are derived from it can be used to provide practically useful sta-

tistical guarantees for streaming applications in the Internet.

POST SCRIPTUM It has recently been pointed out at the IETF

that the definition of EF behavior in [10] is flawed. This does

not invalidate the present analysis, however, which is basecl on

the common understanding that, whatever its eventual formal

definition, EF can be realized using priority queuing.
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