
HAL Id: hal-01244766
https://hal.science/hal-01244766

Submitted on 16 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic Quantitative Robustness Analysis of Timed
Automata
Ocan Sankur

To cite this version:
Ocan Sankur. Symbolic Quantitative Robustness Analysis of Timed Automata. Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2015), Apr 2015, London, United Kingdom.
�10.1007/978-3-662-46681-0_48�. �hal-01244766�

https://hal.science/hal-01244766
https://hal.archives-ouvertes.fr

Symbolic Quantitative Robustness Analysis of
Timed Automata

Ocan Sankur

Université Libre de Bruxelles, Brussels, Belgium

Abstract. We study the robust safety problem for timed automata
under guard imprecisions which consists in computing an imprecision
parameter under which a safety specification holds. We give a symbolic
semi-algorithm for the problem based on a parametric data structure,
and evaluate its performance in comparison with a recently published
one, and with a binary search on enlargement values.

1 Introduction

Timed automata [2] are a well-established formal model for real-time systems.
They can be used to model systems as finite automata, while using, in addition, a
finite number of clocks to impose timing constraints on the transitions. Efficient
model checking algorithms have been developed and implemented in tools such as
Uppaal [6], IF [12]. Timed automata are, however, abstract models, and therefore
make idealistic assumptions on timings, such as perfect continuity of clocks,
infinite-precision time measures and instantaneous reaction times.

As for any abstract formalism, once desired properties of a system are proven
on the model, a crucial question that remains is the robustness of these properties
against the assumptions that have been made. What is the extent to which the
assumptions behind the model can be relaxed while a given property still holds?

In this work, we are interested in the robustness against timing imprecisions.
An important amount of work has been done in the timed automata literature
to endow timed automata with a realistic semantics, and take imprecisions into
account, e.g. [18,15,1]. The works [24] and [14] showed that perturbations on
clocks, i.e. imprecisions or clock drifts, regardless of how small they are, may
drastically change the behavior in some models. These observations mean that
there is a need for verification tools to check the robustness of timed automata,
that is, whether the behavior of a given timed automaton is preserved in the
presence of perturbations, and to compute safe bounds on such perturbations.

We consider the robustness of timed automata for safety properties under
timing imprecisions modeled by guard enlargement, consisting in relaxing each
guard of the form x ∈ [a, b] to x ∈ [a − δ, b + δ] where δ is a parameter. Our
goal is to decide if for some δ > 0, the enlarged timed automaton satisfies its
specification (Problem 1), and if this is the case, compute a safe upper bound

Supported by the ERC starting grant inVEST (FP7-279499)

on δ (Problem 2). We insist on the importance of both problems: while the
first one decides the robustness of the model, the second one quantifies it by
actually giving a bound under which the model is correct. This would allow one
for instance to choose an appropriate hardware to implement the model [15,1].

Background The formulation of Problem 1 has been studied starting with
[24,14] for safety properties, and extended to LTL and richer specifications,
e.g. [9,10] using region-based techniques which cannot be applied efficiently. A
symbolic zone-based algorithm was given in [13] for flat timed automata, that is,
without nested cycles by applying acceleration on its cycles. Problem 2 has been
answered in [20] for flat timed automata, where the given algorithm computes
the largest upper bound on δ satisfying the specification. The flatness is a rather
restrictive hypothesis since, for instance, it is easily violated when the system
is obtained by composition of timed automata that contain cycles. Recently, a
zone-based algorithm and a tool to solve Problem 1 for general timed automata
was given [21]; but the algorithm does not compute any bound on δ. The latter
algorithm is based, roughly, on extending the standard forward exploration of
the state space augmented with the acceleration of all cycles encountered during
the search, with some tricks to optimize the computations. In [22], refinements
between interfaces are studied in a game-based framework including syntactic
enlargement to account for imprecisions. In [25,26] the authors use the fact that
replacing all guards by closed ones allow one to verify finite paths (and the case
of a periodic external synchronization) but this does not help in the analysis of
the accumulation of imprecisions, nor can it allow one to compute a bound on δ.

Results In this paper, we present a symbolic procedure to simultaneously
solve Problems 1 and 2 for general timed automata; if the given model is robust, a
safe upper bound on δ (which may not be the largest one) is output. The procedure
is a semi-algorithm since we do not know whether it terminates although it did
terminate on most of our experiments. It consists in a state-space exploration
with an efficient parametric data structure which treats the enlargement δ as
an unknown parameter, combined with an acceleration procedure for some
of the cycles. We do not systematically accelerate cycles, but rather adopt a
“lazy” approach: during the exploration, when the accumulated imprecisions go
beyond a threshold, we accelerate some cycles that may be responsible for this
accumulation. This greatly reduces the computation overhead compared to a
systematic acceleration. We also adapt several abstraction operations such as LU
abstraction [5], and closure inclusion [19] to the parametric setting to reduce the
state space. We ran experiments to evaluate the performance of our procedure.
Compared to [21], ours terminated faster in most cases, and sometimes with
several orders of magnitude. To truly evaluate the gain of a parametric analysis,
we also compared with a binary search on the values of δ using an exact model
checker. Our procedure was often faster except against a low precision binary
search (i.e. with few iterations). Section 6 contains a more detailed discussion.

2 Definitions

Given a finite set of clock C, we call valuations the elements of RC≥0. For R ⊆ C
and a valuation v, v[R← 0] is the valuation defined by v[R← 0](x) = v(x) for
x ∈ C \R and v[R← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation v, v+d
is defined by (v + d)(x) = v(x) + d for all x ∈ C. We extend these operations to
sets of valuations in the obvious way. We write 0 for the valuation that assigns 0
to every clock. An atomic guard is a formula of the form k ≤ x or x ≤ l where
x, y ∈ C, k, l ∈ Q. A guard is a conjunction of atomic guards. A valuation v
satisfies a guard g, denoted v |= g, if all atomic guards are satisfied when each
x ∈ C is replaced by v(x). We write ΦC for the set of guards built on C.

A timed automaton A is a tuple (L, Inv, `0, C, E), where L is a finite set of
locations, Inv : L → ΦC the invariants, C is a finite set of clocks, E ⊆ L×ΦC×2C×L
is a set of edges, and `0 ∈ L is the initial location. An edge e = (`, g, R, `′) is also

written as `
g,R−−→ `′. For any location `, let E(`) denote the set of edges leaving `.

Following the literature on robustness in timed automata (e.g. [24,14]) we only
consider timed automata with closed and rectangular guards (that is, we do not
allow constraints of the form x − y ≤ k). We also assume that all invariants
contain an upper bound for all clocks.

A run of A is a sequence q1e1q2e2 . . . qn where qi ∈ L × RC≥0, and writing
qi = (`, v), we have v ∈ Inv(`), and either ei ∈ R>0, in which case qi+1 = (`, v+ei),
or ei = (`, g, R, `′) ∈ E, in which case v |= g and qi+1 = (`′, v[R ← 0]). We say
that the run r is along e1e2 . . . en−1. A path is a sequence of edges whose endpoint
locations are equal. Given a path ρ = e1e2 . . . en−1 and states q, q′, we write

q
ρ−→ q′ if there is a run from q to q′ along e1e2 . . . en−1. We write q ⇒ q′ if there

is a path ρ with q
ρ−→ q′. We also note q

ρ+−−→ q′ if there is a run from q to q′ along
an arbitrary (positive) number of repetitions of ρ. A cycle of a timed automaton
is a path that ends in the location it starts. As in [24,14], we assume that all
cycles of considered timed automata reset all clocks at least once. Such cycles
are called progress cycles.

Regions The first decidability results on timed automata relied on a finite
partition of the state space to so called regions, which can be defined using simple
constraints on clocks [2]. We say that 1

η is the granularity of a timed automaton A,

if η is the smallest integer such that all constants of A are multiples of 1
η . We

generalize the definition of regions to arbitrary granularities. Let us denote
Nη = 1

ηN. Consider a timed automaton A, with granularity 1
η , and consider a

bound function α : C → Nη mapping each clock to a bound. An α, η-region is
defined by choosing

– for each clock x ∈ C, a constraint among {x = k | k ∈ Nη, k ≤ α(x)}∪{k− 1
η <

x < k | k ∈ Nη, 1η ≤ k ≤ α(x)} ∪ {x > α(x)}.
– for each pair x, y ∈ C for which we chose the constraints k − 1

η < x < k,

and l − 1
η < y < l, choose one constraint among frac(x) < frac(y), frac(x) =

frac(y), or frac(x) > frac(y), where frac(·) denotes the fractional part.

It can be shown that α, η-regions finitely partition the state space RC . For η = 1,
this is the usual definition of regions. Given timed automata with rational
constants, one often rescales the constants to work with integers. In the context
of enlargement, however, it will be more convenient to work directly with rationals.

Difference-Bound Matrices Because the number of regions is exponential in the
input size, the region-based algorithms are not practical. Symbolic algorithms
were rather given as an efficient solution based on zones which are convex subsets
of the state space definable by clock constraints. Formally, a zone Z is a convex
subset of RC definable by a conjunction of constraints of the form x ≤ k, l ≤ x,
and x − y ≤ m where x, y ∈ C, k, l ∈ Q≥0 and m ∈ Q. Note that because all
guards of the timed automata we consider are closed, all zones that appear during
a state-space exploration are closed. Hence, we do not need to distinguish strict
and non-strict inequalities as done for general timed automata.

We recall a few basic operations defined on zones. Let Post≥0(Z) denote
the zone describing the time-successors of Z, i.e., Post≥0(Z) = {v ∈ RC≥0 |
∃t ≥ 0, v − t ∈ Z}; and similarly Pre≥0(Z) = {v ∈ RC≥0 | ∃t ≥ 0, v + t ∈ Z}.
Given R ⊆ C, we let ResetR(Z) be the zone {v ∈ RC≥0 | ∃v′ ∈ Z, v = v′[R← 0]},
and FreeR(Z) = {v ∈ RC≥0 | ∃v′ ∈ Z, v′ = v[R ← 0]}. Intersection is denoted
Z ∩ Z ′. Zones can be represented by difference-bound matrices (DBM) which are
|C0| × |C0|-matrices with values in Q [16]. Let us define C0 = C ∪ {0}, where 0 is
seen as a clock whose value is always 0. Intuitively, each component (x, y) ∈ C20
of a DBM stores a bound on the difference x − y. For any DBM M , let JMK
denote the zone it defines. DBMs admit reduced forms (a.k.a. normal form),
and successor computation can be done efficiently (in O(|C|3)). We refer the
reader to [7] for details. All of the above operations can be computed with DBMs.
By a slight abuse of notation, we will use the same operations for DBMs as
for zones, for instance, we will write M ′ = Post≥0(M) where M and M ′ are
reduced DBMs such that JM ′K = Post≥0JMK. We define an extended zone as a
pair (`, Z) where ` is a location and Z a zone. Given an edge e = (`, g, R, `′), and
an extended zone (`, Z), we define Poste

(
(`, Z)

)
= Inv(`′)∩Post≥0(g∩ResetR(Z)),

and Pree
(
(`, Z)

)
= Pre≥0(g ∩ FreeR(Inv(`′) ∩ Z)). For a path ρ = e1e2 . . . en, we

define Postρ and Preρ by iteratively applying Postei and Preei respectively.

Enlargement We model timing imprecisions in timed automata by the enlarge-
ments of the guards and invariants of by rational values ν > 0. The enlargement
of an atomic guard k ≤ x (resp. x ≤ l) is denoted (k ≤ x)ν = k − ν ≤ x (resp.
(x ≤ l)ν = x ≤ l + ν). The enlargement of a guard g, denoted (g)ν is obtained
by enlarging all its conjuncts. We denote by Aν the timed automaton obtained
from A by enlarging all its guards and invariants by ν.

If ν is known, one could analyze Aν with known techniques, since this is still
a timed automaton (with a possibly different granularity). Here, we are rather
interesting in a parametric analysis. We thus consider a symbolic parameter δ.
The parametric enlargement of a guard g, denoted (g)δ is defined by replacing ν by
the symbol δ in the above definition. We will always denote rational enlargement

`1

x, y ≤ 1

`2

x, y ≤ 1

err

x = 1, x := 0

e1 x = 1, x := 0

e3

y = 1, y := 0

e2

Fig. 1. A timed automaton representing the two processes P1 and P2 instantiated with
period p = 1, and a buffer size of 1. The guard under the locations are the invariants. The
edge e1 represents the arrival of a token in the buffer (period of 1) while e2 represents
process P2 reading a token from the buffer. The error state is reached via e3 if two
tokens are pushed to the buffer without any read in between.
Without enlargement, any reachable state at location `2 satisfies x = 0 ∧ y = 1,
so the error state is not reachable. Under enlargement by ν = 1

10
, after the first

transition, location `2 is reached by the set of states 1− ν ≤ y ≤ 1 + ν ∧ 0 ≤ x ≤ 2ν
due to the enlargement of the guards and invariants. A simple calculation shows
that the set of reachable states at location `2 after k cycles is 1 − (2k + 1)ν ≤ y ≤
1 + ν ∧ 0 ≤ x ≤ 2kν ∧ 1 − (2k + 1)ν ≤ y − x ≤ 1 + ν. Thus, for k = 5, we get
y ≤ 1 + ν ∧ x ≤ 1 ∧ −ν ≤ y − x ≤ 1 + ν, and x = 1 ∧ y = 1 is in this set, from which
the error state is reachable.

values by ν, and the parameter symbol by δ. Similarly, parametrically enlarged
timed automata are denoted Aδ. For ν > 0, the instantiation of a parametrically
enlarged guard (g)δ by ν is denoted (g)δ[δ ← ν] which is (g)ν .

Accumulation of Imprecisions In some timed automata even the smallest enlarge-
ment can lead to drastically different behaviors due to the accumulation of the
imprecisions over long runs [24]. As an example, consider the following simple
problem. Two processes P1, P2 execute on different machines and communicate
via a finite buffer. Every p time units, Process P1 finishes a computation and
pushes a token to the buffer; while P2 reads a token from the buffer with the
same period. We assume P2 has an offset of p. The buffer will clearly not overflow
in this system. However, assuming the slightest delay in the execution of P2, or
the slightest decrease in the execution time of P1 leads to a buffer overflow since
the delays will accumulate indefinitely. Figure 1 represents this system.

3 Accelerating Cycles

The original robust reachability algorithm of [24,14] consists in an exploration
of the region graph, augmented with the addition of the images of all cycles
neighboring reachable states. The idea is that when the guards are enlarged,
these neighboring cycles become reachable, and they precisely capture all states
that become reachable in the timed automaton for all values of δ. Thus, this
algorithm computes the set ∩ν>0Reach(Aν), where Reach(Aν) denotes the states
that are reachable in Aν . A symbolic algorithm for this problem was given in [13]
for flat timed automata, i.e. without nested cycles, and later improved in [20].

In this section, we summarize some of these results from [24,14,13,20] that we
use in the rest of the paper. Let us fix a timed automaton (L, Inv, `0, C, E), and
a cycle ρ. The following lemma shows the effect of repeating cycles in enlarged
timed automata, formalizing our observations on Fig. 1.

Lemma 1 ([20]). Consider any extended zone (`, Z), and a progress cycle ρ of A
that starts in `. If Pre∗ρ(>) ∩ Z 6= ∅, then starting from any state of Pre∗ρ(>) ∩ Z,
for any ν > 0, all states of Post∗(ρ)ν (>) are reachable in Aν , by repeating ρ.

As an example, consider Fig. 1. For the cycle ρ = e2e1 that starts at `2, we
have Pre∗ρ(>) = x, y ≤ 1 ∧ x− y ≤ 0, and Post∗(ρ)ν (>) = x, y ≤ 1 + ν ∧ x− y ≤ 0.
Since the point (0, 1) is reachable and belongs to Pre∗ρ, all states of Post∗(ρ)ν (>)
are reachable, and in particular (1, 1) from which the error state is reachable.

It is known that the above lemma does not hold for non-progress cycles;
nevertheless, it was shown that in this case, Post∗(ρ)ν (>) is an over-approximation
of the states reachable by repeating ρ under enlargement [11]. Thus, the algorithm
of [24,14] may have false negatives (may answer “not robust” even though it is)
but not false positives on timed automata with arbitrary cycles.

Conversely, it has been shown that any state that belongs to ∩ν>0Reach(Aν)
is reachable along an alternation of exact runs and repetitions of enlarged cycles.

Lemma 2 ([14]). Assume that q −→ q′ in Aν for all ν > 0. There exists a
path π0ρ0π1ρ0 . . . πn of A and states q = q0, q

′
0, q1, q

′
1, . . . , qn = q′, such that for

all 0 ≤ i ≤ n−1, and any ν > 0, qi
πi−→ q′i, q

′
i ∈ Pre∗ρi(>), and qi+1 ∈ Post∗(ρi)ν (>).

Notice that the sequence of states q0, q
′
0, . . . is independent of ν > 0 in the above

lemma, and that the enlargement is only used in Post∗((ρ)i)ν (>).
The algorithms of [13,20] consist in a usual forward exploration on zones

augmented with the application of Lemma 1, by enumerating all cycles in a flat
timed automaton. This cannot be extended to general timed automata since the
cycles that appear in Lemma 2 are not necessarily simple. This has been a major
obstacle against general robust safety algorithms for timed automata.

4 Infinitesimally Enlarged DBMs

We define infinitesimally enlarged DBMs (IEDBM), a parameterized extension of
DBMs, which we will use to explore the state space of enlarged timed automata.
These were first defined in [14] to be used solely as a proof technique. Here, we
extend this data structure with additional properties and explicit computations
of the bounds on parameter δ, and show how it can be used to efficiently explore
the state space.

We fix a clock set C0 including the 0 clock. An infinitesimally enlarged DBM
(IEDBM) is a pair (M,P)〈0,δ0〉 where M is a DBM and P is a |C0| × |C0| matrix
over N, called the enlargement matrix. The value δ0 ∈ (0,∞) is an upper bound
on the unknown parameter δ. Intuitively, an IEDBM (M,P)〈0,δ0〉 represents the
set of DBMs M + νP where ν ∈ [0, δ0). Figure 2 shows an example. We often see,

abusively, an IEDBM as a matrix over pairs (m, p) ∈ Z×N. The component (x, y)
is denoted by (M,P)〈0,δ0〉[x, y]. For simplicity, we always consider the half-open
intervals of the form [0, δ0) even though ν can be chosen equal to δ0 in some cases.
This is not a loss of generality since we are interested in the small values of ν.


0 x y

0 0 1 1
x 3 0 2
y 2 1 0

+ δ

 0 0 1
2 0 3
3 3 0


y

x

Fig. 2. An IEDBM (above) repre-
senting the parametric set 1 ≤ x ≤
3 + 2δ ∧ 1− δ ≤ y ≤ 2 + 3δ. The set
is represented (below) for δ = 0.15.

IEDBMs will allow us to reason on the
parametric state space of enlarged timed au-
tomata “for small values of δ”, which means
that our computations on the data struc-
ture will hold for all ν ∈ [0, δ0), where δ0 >
0 is bound that is possibly updated to a
smaller value after each operation. For in-
stance, given sets Z1 = 1 ≤ x ≤ 2 + 3ν
and Z2 = x ≤ 3, for unknown δ, and as-
sume we want to compute their intersec-
tion. We will write Z1∩Z2 = 1 ≤ x ≤ 2 + 3δ
and chose δ0 ≤ 1

3 . To make these simplifica-
tions, we need to compare pairs of IEDBM
components in a similar spirit. For instance,
to make the above simplification, we write
(2, 3)〈0, 13 〉 ≤ (3, 0)〈0, 13 〉, which means that

2 + 3ν ≤ 3 for all ν ∈ [0, 13). We formalize this in the next subsection. To
ease reading, we may omit δ0 from IEDBMs if it is clear from the context.

4.1 Operations on IEDBMs

We are now going to formalize the simplifications and the operations done on
IEDBMs. In order to use our data structure for parametric exploration, we need
to define basic operations on timed automata. Similar to DBMs, IEDBMs have
reduced forms. To define the reduction operations, we define the + and min
operations.

We define the sum as (m, p)〈0,δ0〉+ (n, q)〈0,δ1〉 = (m+n, p+ q)〈0,min(δ0,δ1)〉. As
an example of this operation, assume that we have the constraints x− y ≤ 2 + 3δ,
and y ≤ 1 + δ with the respective upper bounds δ0 and δ1. Then, by summation,
we may deduce x ≤ 3 + 4δ with the upper bound δ2 = min(δ0, δ1).

Lemma 3. Given (m1, p1)〈0,δ1〉, (m2, p2)〈0,δ2〉, one can compute i ∈ {1, 2}, and
δ3 such that ∀ν ∈ [0, δ3), mi + νpi = min(m1 + νp1,m2 + νp2). We denote this
by (mi, pi)〈0,δ3〉 = min((m1, p1)〈0,δ1〉, (m2, p2)〈0,δ2〉).

We write (m1, p1)〈0,δ1〉 ≤ (m2, p2)〈0,δ2〉 iff min
(
(m1, p1)〈0,δ1〉, (m2, p2)〈0,δ2〉

)
=

(m1, p1)〈0,δ3〉 for some δ3; and (m1, p1)〈0,δ1〉 < (m2, p2)〈0,δ2〉 if m1 6= m2∨p1 6= p2.
Intuitively, just like in regular DBMs, we will use the minimum operation to

compute conjunctions of constraints. For instance, we already saw above that
x ≤ 2+3ν∧x ≤ 3 is simplified to x ≤ 2+3ν given ν ∈ [0, 13). This will be written
min

(
(2, 3)〈0,∞〉, (3, 0)〈0,∞〉) = (2, 3) 1

3
. It should be clear that for any Boolean

combination Φ of inequalities written between elements of the form (m, p)〈0,δ1〉,
one can compute, by Lemma 3, a bound δ0 such that either Φ[δ ← ν] holds for
all ν ∈ [0, δ0), or ¬Φ[δ ← ν] holds for all ν ∈ [0, δ0).

If different upper bounds on δ are given for two elements to be compared, then
we first update the bounds to the minimum of the two bounds. More generally,
we assume that all components of an IEDBM have the same bound δ0.

We say that an IEDBM (M,P)〈0,δ0〉 is reduced if for all x, y, z ∈ C0,
(M,P)〈0,δ0〉[x, y] ≤ (M,P)〈0,δ0〉[x, z] + (M,P)〈0,δ0〉[z, y]. IEDBMs can be reduced
by the usual Floyd-Warshall algorithm, using the above min and + operations:

Lemma 4. Any IEDBM (M,P)〈0,δ0〉 can be reduced in time O(|C0|3). Moreover,
if (M,P)〈0,δ0〉 is reduced, then for all ν ∈ [0, δ0), M + νP is a reduced DBM.

When we consider the complexity of minimization as in Lemma 3, we assume that
operations on rationals are elementary operations (i.e. they can be performed
in constant time). For a more precise analysis, one can incorporate the cost of
these computations; for instance, the reduction operation in the previous lemma
makes O(|C0|3) minimization operations, so as many operations on rationals.

We define the parametric inclusion by (M,P)〈0,δ1〉 v (N,Q)〈0,δ2〉 if, and only
if for all x, y ∈ C, (M,P)[x, y] ≤ (N,Q)[x, y].

Lemma 5. One can compute, given (N1, Q1)〈0,δ1〉, (N2, Q2)〈0,δ2〉, and R ⊆ C,
and in time O(|C|3),

– a reduced IEDBM (M,P)〈0,δ0〉, written (N1, Q1)〈0,δ1〉 u (N2, Q2)〈0,δ2〉, such
that M + νP = (N1 + νQ1) ∩ (N2 + νQ2) for all ν ∈ [0, δ0),

– a reduced IEDBM (M,P)〈0,δ0〉, written PResetR
(
(N1, Q1)〈0,δ1〉

)
, such that

M + νP = ResetR
(
N1 + νQ1

)
for all ν ∈ [0, δ0),

– a reduced IEDBM (M,P)〈0,δ0〉, written PPost≥0
(
(N1, Q1)〈0,δ2〉

)
, such that

M + νP = Post≥0
(
N1 + νQ1

)
for all ν ∈ [0, δ0).

We are going to define the parametric post operation along an edge e. By a
slight abuse of notation, we will see any (non-enlarged) guard g as the IEDBM
(g,0)〈0,∞〉. When we consider the enlargement (g)δ of a guard, this will also
refer to the corresponding IEDBM with δ0 =∞. By combining these operations,
for a given edge e, we define PPoste

(
(M,P)〈0,δ0〉

)
= PPost≥0

(
PResetR

(
g u

(M,P)〈0,δ0〉
))

, where g is the guard of e, and R its reset set. By Lemma 5 this

corresponds to Poste
(
M + δP) for sufficiently small δ.

We refer to pairs of locations and IEDBMs as symbolic states. We extend
the parametric post operator to symbolic states by PPoste

(
(`, Z)

)
= (`′, Z ′)

where e = (`, g, R, `′), and Z ′ = PPoste
(
Z).

Lemma 6. For any sequence of edges e1 . . . en, and symbolic state (`, Z), if
PPost(e1)δ(e2)δ...(en−1)δ ((`, Z)) = (`′, Z ′), and (`′, Z ′) 6= ∅, then there exists δ0 > 0
such that for all ν ∈ [0, δ0), and state q′ ∈ (`′, Z ′)[δ ← ν], there exist q ∈
(`, Z)[δ ← ν] such that (`1, q)

(e1)ν ...(en−1)ν−−−−−−−−−−→ (`n, q
′).

Let the width of (M,P)〈0,δ0〉 be defined as width(M,P) = maxx,y∈C0 Px,y.

4.2 Parametric Abstractions

We will first recall some abstractions applied on zones in a non-parametric setting,
then generalize them to symbolic states described by IEDBMs.

Closures and LU-abstraction Let α : C → N be a bound function, and η a
granularity. The α, η-closure of a zone Z is the union of the α, η-regions which
intersects it. It is known that when α denotes the maximal constants to which
each clock is compared in a timed automaton A, and η the granularity of A, a
forward exploration based on α, η-closures is sound and complete [8]. However
because closures are not convex, other abstractions have been in use in practical
tools; one of them is LU-abstraction, where the idea is to relax some of the
facets of a zone taking into consideration the maximal constants that appear in
the guards of the timed automaton. We will recall the formal definition of LU-
abstraction by adapting it to DBMs with only non-strict inequalities by a slight
change. The correctness of the abstraction is preserved (proved in Lemma 7).

For a timed automaton A with granularity η, we define the two bound
functions L,U : C → Nη, called the LU-bounds where L(x) (resp. U(x)) is the
largest constant c such that the constraint x ≥ c (resp. x ≤ c) appears in
some guard or invariant. Given LU-bounds L,U , for any DBM M , we define
M ′ = Extra+LU (M) as follows.

M ′x,y =


∞ if Mx,y > L(x), or −M0,x > L(x)
∞ if −M0,y > U(y), x 6= 0
−U(y)− 1 if −M0,y > U(y), x = 0
Mx,y otherwise.

(1)

We recall the correctness of LU-abstractions and closures for reachability
properties. Given LU-bounds L,U we write α = max(L,U) for the function
α(x) = max(L(x), U(x)) for all x ∈ C.

Lemma 7. For any timed automaton A with granularity η, its LU-bounds L,U ,
and any path e1e2 . . . en and extended zone (`, Z), define q0 = q′0 = q′′0 = (`, Z),
and let for 0 ≤ i < n, qi+1 = Postei(qi), q

′
i+1 = Extra+LU (Postei(q

′
i)), and

q′′i+1 = Closureα,η(Extra+LU (q′′i)). Then, qn 6= ∅ ⇔ q′n 6= ∅ ⇔ q′′n 6= ∅.

One can thus explore the state space of a timed automaton while systematically
applying LU-abstraction at each step. In practice, one does not apply closures
since they do not yield convex sets. Nevertheless, a O(|C|2)-time algorithm was
given in [19] to decide whether M ⊆ Closureα(N). Thus, when the regular
inclusion test is replaced with the latter one, the exploration becomes equivalent
to an exploration using closures [19,8].

Parametric Closures and LU-abstraction We would like to use these abstractions
in our parametric setting. We will show how these sets can be computed paramet-
rically using IEDBMs. Observe that when we consider parametrically enlarged
timed automata, the LU-bounds also depend on δ. Let us denote the parametric

LU-bounds by Lδ(x) (resp. Uδ(x)) which is the maximum parametric constant,
in the sense of Lemma 3, which appears in the guards of Aδ as a lower bound
(resp. upper bound) on x. We define the parametric LU-abstraction, for any
IEDBM (M,P)〈0,δ0〉 by (M ′, P ′)〈0,δ1〉 = PExtra+LδUδ((M,P)〈0,δ0〉) obtained by
applying (1) where M is replaced by (M,P), L and U by Lδ and Uδ respectively.
The new upper bound δ1 is computed so that all comparisons in (1) hold.

Lemma 8. Consider any enlarged timed automaton Aδ and its parametric LU-
bounds Lδ, Uδ. For any (M,P)〈0,δ0〉, if we write (M ′, P ′)〈0,δ1〉 =

PExtra+LδUδ ((M,P)〈0,δ0〉), then for all ν ∈ [0, δ1), M ′+νP ′ = Extra+LU (M +νP).

Thus, LU-abstractions of enlarged zones have uniform representations for small δ.
For an enlarged timed automaton Aδ we define αδ = max(Lδ, Uδ). For ν > 0,

we will denote by αν the function obtained from αδ by instantiating δ to ν. By a
slight abuse of notation, we define the αν-closure of a zone as its (αν , η)-closure
where η is the granularity of Aν . Here A will be clear from the context, so there
will be no ambiguity. We now adapt the inclusion algorithm of [19] to IEDBMs.

Lemma 9. Given IEDBMs Z = (M,P)〈0,δ0〉 and Z ′ = (N,Q)〈0,δ0〉, we have
∀δ0 > 0,∃ν ∈ [0, δ0),M + νP 6⊆ Closureαν (N + νQ), iff, writing Z ′ = N + νQ,
there exist x, y ∈ C such that

1.
(
Z ′x,0 < Zx,0 and Z ′x,0 ≤ αδ(x)

)
, or

(
Z ′0,x < Z0,x and Z0,x + αδ(x) ≥ 0

)
,

2. or Z0,x + αδ(x) ≥ 0, and Z ′y,x < Zy,x, and Z ′y,x ≤ αδ(y) + Z0,x.

Moreover, if this condition doesn’t hold, then one can compute δ1 under which
we do have the inclusion M + νP ⊆ Closureαν (N + νQ).

Notation 10 We denote the successor operation followed by LU-abstraction as
ExPost(·) = Extra+LU (Post(·)). For the parametric version, we denote PExPost(·)
= PExtra+LδUδ(PPost(·)), where the bounds Lδ, Uδ are implicit. We furthermore
denote by vc the parametric inclusion check defined by Lemma 9.

We implicitly assume that when a parametric inclusion check vc is performed,
the upper bound δ0 is globally updated to the new bound δ1 given by Lemma 9.

4.3 Parametric Cycle Acceleration

In [20] a parametric data structure based on the parameterized DBMs of [3] was
used to represent the state space under all values of δ rather than for small
values. The corresponding algorithms are based on linear arithmetics of reals.
This results in a more complicated data structure which is also more general.
IEDBMs simplify this representation by storing the state space only for small
values of δ, that is δ ∈ [0, δ0). To compute cycle accelerations, we recall a result
of [20] which bounds the number of iterations to compute pre and post fixpoints
of a given cycle.

Lemma 11 ([20]). Let N = |C|2. For any cycle ρ, if PPost∗(ρ)δ(>) 6= ∅ then

PPost∗(ρ)δ(>) = PPostN(ρ)δ(>), and if PPre∗ρ(>) 6= ∅ then PPre∗ρ(>) = PreNρ (>).

Data: Timed automaton A = (L, Inv, `0, C, E), and target location `T .
1 Wait := {(`0, Z0)〈∞〉}, Passed := ∅, (`0, Z0).K := K0;
2 while Wait 6= ∅ do
3 (`, Z) := pop(Wait), Add (`, Z) to Passed;
4 if ` = `T then return Unsafe;
5 if width(Z) > (`, Z).K then
6 Let π denote the prefix that ends in (`, Z), along edges e1e2 . . . e|π|−1;
7 foreach cycle ρ = eiei+1 . . . ej do
8 if PPre∗ρ(>) ∩ πi 6= ∅ and ∀q ∈ Passed, PPost∗(ρ)δ (>) 6vc q then

9 Add PPost∗(ρ)δ (>) as a successor to πj , and to Wait;

10 end

11 end
12 if no fixpoint was added then (`, Z).K = (`, Z).K +K0 ;

13 foreach e ∈ E(`) s.t. ∀q ∈ Passed, PExPosteδ ((`, Z)) 6vc q do
14 (`′, Z′) := PExPosteδ ((`, Z);
15 Add (`′, Z′) to Wait;
16 (`′, Z′).parent := (`, Z);
17 (`′, Z′).K := (`, Z).K;

18 end

19 end
20 return Safe;
Algorithm 1: Symbolic robust safety semi-algorithm. Here (`0, Z0) is the initial

state symbolic state, and K0 is a positive constant. We have two containers Wait

and Passed storing symbolic states. The search tree is formed by assigning to each

visited state (`, Z) a parent denoted (`, Z).parent (Line 16). We also associate to each

symbolic state a bound K on width, denoted (`, Z).K.

5 Symbolic Robust Safety

Our semi-algorithm consists of a zone-based exploration with IEDBMs using the
parametric LU-abstraction and the inclusion algorithm vc of Lemma 9. It is easy
to see that an exploration based on IEDBMs may not terminate in general (see
e.g. Fig. 1). Nevertheless, we apply acceleration on well chosen cycles while it
is exploring the state space, and it terminated in most of our experiments. To
choose the cycles to accelerate, we adopt a lazy approach: we fix a bound K,
and run the forward search using IEDBMs until the target is reached or some
symbolic state has width greater than K. In the latter case, we examine the
prefix of the current state, and accelerate its cycles by Lemma 1. If no new
state is obtained, then we increment the bound K for the current branch and
continue the exploration. We thus interpret a large width as the accumulation
of imprecisions due to cycles. No cycle may be responsible for a large width, in
which case we increase the width threshold and continue the exploration.

We establish the correctness of our semi-algorithm in the following lemma.
When it answers Unsafe, it has found a path that ends in the target state, and
the proof shows that such a run exists in all Aν for ν > 0. If it answers Safe,
then it has terminated without visiting the target state. If δ0 denotes the upper

bound on δ after termination, the proof shows that for all ν ∈ [0, δ0), an exact
exploration applied on Aν would visit the same symbolic states as our algorithm
when the IEDBMs are instantiated with δ ← ν. In other words, the exploration
search tree uniformly represents all the search trees that would be generated by
an exact algorithm applied on Aν for ν ∈ [0, δ0).

Lemma 12 (Correctness). For any timed automaton A and location `T , if
Algorithm 1 answers Unsafe then for all ν > 0, `T is reachable in Aν from the
initial state. If it answers Safe, then if δ0 denotes the upper bound on δ after
termination, then for all ν ∈ [0, δ0), Aν does not visit `T .

6 Experimental Evaluation

In this section, we evaluate the performance of our semi-algorithm on several
benchmarks from the literature; most of which are available from www.uppaal.

org, and have been considered in [21], with the exception of the scheduling tests
(Sched *) which were constructed from the experiments of [17]. We implemented
Alg. 1 in OCaml in a tool called Symrob (symbolic robustness, available from www.

ulb.ac.be/di/verif/sankur). We consider two other competing algorithms: the
first one is the recently published tool Verifix [21] which solves the infinitesimal
robust safety problem but does not output any bound on δ. The second algorithm
is our implementation of a binary search on the values of δ which iteratively calls
an exact model checker until a given precision is reached.

The exact model checking algorithm is a forward exploration with DBMs
using LU extrapolation and the inclusion test of [19] implemented in Symrob. We
do not use advanced tricks such as symmetry reduction, federations of zones,
and clock decision diagrams; see e.g. [4]. The reason is that our goal here is
to compare algorithms rather than software tools. These optimizations could
be added to the exact model checker but also to our robust model checker (by
adapting to IEDBMs), but we leave this for future work.

In Table 1, the number of visited symbolic states (as IEDBMs for Symrob and
as DBMs for Verifix) and the running times are given. On most benchmarks
Symrob terminated faster and visited less states. We also note that Symrob

actually computed the largest δ below which safety holds for the benchmarks
CSMA/CD and Fischer. One can indeed check that syntactically enlarging the
guards by 1/3 (resp. 1/2) makes the respective classes of benchmarks unsafe
(Recall that the upper bound δ0 is always strict in IEDBMs). On one benchmark,
Verifix wrongly classified the model as non-robust, which could be due to a
bug or to the presence of non-progress cycles in the model (see [11]).

Table 2 shows the performance of the binary search for varying precision
ε ∈ { 1

10 ,
1
20 ,

1
40}. With precision 1

10 , the binary search was sometimes faster than
Symrob (e.g. on CSMA/CD), and sometimes slower (e.g. Fischer); moreover,
the computed value of δ was underestimated in some cases (e.g. CSMA/CD
and Fischer benchmarks). With precision 1

20 , more precision was obtained on δ
but at a cost of an execution time that is often worse than that of Symrob and

www.uppaal.org
www.uppaal.org
www.ulb.ac.be/di/verif/sankur
www.ulb.ac.be/di/verif/sankur

Table 1. Comparison between Symrob (breadth-first search, instantiated with K0 = 10)
and Verifix [21]. The running time of the exact model checking implemented in
Symrob is given for reference in the column “Exact” (the specification was satisfied
without enlargement in all models). Note that the visited number of states is not always
proportional to the running time due to additional operations performed for acceleration
in both cases. The experiments were performed on an Intel Xeon 2.67 GHz machine.

Benchmark Robust – δ Visited States Time

Symrob Verifix Symrob Verifix Symrob Verifix Exact

CSMA/CD 9 Yes – 1/3 Yes 147,739 1,064,811 61s 294s 42s

CSMA/CD 10 Yes – 1/3 Yes 398,354 846,098 202s 276s 87s

CSMA/CD 11 Yes – 1/3 Yes 1,041,883 2,780,493 12m 26m 5m

Fischer 7 Yes – 1/2 Yes 35,029 81,600 11s 12s 6s

Fischer 8 Yes – 1/2 Yes 150,651 348,370 45s 240s 24s

Fischer 9 Yes – 1/2 Yes 627,199 1,447,313 4m 160m 2m20s

MutEx 3 Yes – 1000/11 Yes 37,369 984,305 3s 131s 3s

MutEx 4 No No 195,709 146,893 16s 41s 4s

MutEx 4 fixed Yes – 1/7 – 5,125,927 – 38m >24h 7m

Lip Sync – No – 29,647,533 >24h 14h 5s

Sched A Yes – 1/4 No* 9,217 16,995 11s 248s 2s

Sched B No – 50,383 – 105s >24h 40s

Sched C No No 5,075 5,356 3s 29s 2s

Sched D No No 15,075 928 2s 0.5s 0.5s

Sched E No No 31,566 317 5s 0.5s 0.5s

Table 2. Performance of binary search where the initial enlargement is 8, and the
required precision ε is either 1/10, 1/20 or 1/40. Note that when the model is not
robust, the binary search is inconclusive. Nonetheless, in these cases, we do know that
the model is unsafe for the smallest δ for which we model-checked the model. In these
experiments the choice of the initial condition (here, δ = 8) wasn’t significant since the
first iterations always took negligeable time compared to the case δ < 1.

Benchmark Robust – δ Visited States Time

ε = 1/10 ε = 1/20 ε = 1/10 ε = 1/20 ε = 1/10 ε = 1/20 ε = 1/40

CSMA/CD 9 Yes – 1/4 Yes – 5/16 151,366 301,754 43s 85s 123s

CSMA/CD 10 Yes – 1/4 Yes – 5/16 399,359 797,914 142s 290s 428s

CSMA/CD 11 Yes – 1/4 Yes – 5/16 1,043,098 2,085,224 8m20s 17m 26m

Fischer 7 Yes – 3/8 Yes – 7/16 75,983 111,012 15s 21s 31s

Fischer 8 Yes – 3/8 Yes – 7/16 311,512 462,163 53s 80s 129s

Fischer 9 Yes – 3/8 Yes – 7/16 1,271,193 1,898,392 5m 7m30s 12m

MutEx 3 Yes – 8 Yes – 8 37,369 37,369 2s 2s 2s

MutEx 4 Inconclusive 1,369,963 1,565,572 1m5s 1m15s 1m30s

MutEx 4 fix’d Yes – 5/8 Yes – 9/16 6,394,419 9,864,904 9m30s 17m 25m

Lip Sync Inconclusive – – >24h >24h >24h

Sched A Yes – 7/16 Yes – 15/32 27,820 37,101 6s 9s 11s

Sched B Inconclusive 109,478 336,394 35s 140s 20m

Sched C Inconclusive 10,813 36,646 2s 6s 56s

Sched D Inconclusive 27,312 182,676 2s 9s 60s

Sched E Inconclusive 98,168 358,027 6s 17s 95s

systematically more states to visit. Increasing the precision to 1
40 leads to even

longer execution times. On non-robust models, a low precision analysis is often
fast, but since the result is inconclusive, one rather increases the precision, leading
to high execution times. The binary search can be made complete by choosing
the precision exponentially small [11] but this is too costly in practice.

7 Conclusion

We presented a symbolic procedure to solve the quantitative robust safety problem
for timed automata based on infinitesimally enlarged DBMs. A good performance
is obtained thanks to the abstraction operators we lifted to the parametric setting,
and to the lazy approach used to accelerate cycles. Although no termination
guarantee is given, we were able to treat several case studies from the literature,
demonstrating the feasability of robustness verification, and the running time
was often comparable to that of exact model checking. Our experiments show
that binary search is often fast if run with low precision; however, as precision is
increased the gain of a parametric analysis becomes clear. Thus, both approaches
might be considered depending on the given model.

An improvement over binary search for a problem of refinement in timed
games is reported in [23]; this might be extended to our problem as well. Both
our tool and Verifix fail when a large number of cycles needs to be accelerated,
and this is difficult to predict. An improvement could be obtained by combining
our lazy acceleration technique using the combined computation of the cycles
of [21]. An extension to LTL objectives could be possible using [9].

References

1. K. Altisen and S. Tripakis. Implementation of timed automata: An issue of semantics
or modeling? In FORMATS’05, LNCS 3829, p. 273–288. Springer, 2005.

2. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for parametric
reasoning about counter and clock systems. In CAV’01, LNCS 1855, p. 419–434.
Springer, 2000.

4. G. Behrmann, J. Bengtsson, A. David, K. G. Larsen, P. Pettersson, and W. Yi.
Uppaal implementation secrets. In Formal Techniques in Real-Time and Fault-
Tolerant Systems, LNCS 2469, p. 3–22. Springer Berlin Heidelberg, 2002.

5. G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelanek. Lower and upper bounds
in zone-based abstractions of timed automata. Int. J. Softw. Tools Technol. Transf.,
8(3):204–215, 2006.

6. G. Behrmann, A. David, K. G. Larsen, J. H̊akansson, P. Pettersson, W. Yi, and
M. Hendriks. UPPAAL 4.0. In QEST’06, p. 125–126, 2006.

7. J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In
Lectures on Concurrency and Petri Nets, LNCS 2098, p. 87–124. Springer, 2004.

8. P. Bouyer. Forward analysis of updatable timed automata. Formal Methods in
System Design, 24(3):281–320, 2004.

9. P. Bouyer, N. Markey, and P.-A. Reynier. Robust model-checking of linear-time
properties in timed automata. In LATIN’06, LNCS 3887, p. 238–249. Springer,
2006.

10. P. Bouyer, N. Markey, and P.-A. Reynier. Robust analysis of timed automata via
channel machines. In FoSSaCS’08, LNCS 4962, p. 157–171. Springer, 2008.

11. P. Bouyer, N. Markey, and O. Sankur. Robust model-checking of timed automata via
pumping in channel machines. In FORMATS’11, LNCS 6919, p. 97–112, Aalborg,
Denmark, 2011. Springer.

12. M. Bozga, S. Graf, and L. Mounier. If-2.0: A validation environment for component-
based real-time systems. In CAV’04, LNCS 2404, p. 343–348. Springer, 2002.

13. C. Daws and P. Kordy. Symbolic robustness analysis of timed automata. In
FORMATS’06, LNCS 4202, p. 143–155. Springer, 2006.

14. M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robust safety of timed
automata. Formal Methods in System Design, 33(1-3):45–84, 2008.

15. M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From timed
models to timed implementations. Formal Aspects of Computing, 17(3):319–341,
2005.

16. D. L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In AVMFSS’89, LNCS 407, p. 197–212. Springer, 1990.

17. G. Geeraerts, J. Goossens, and M. Lindström. Multiprocessor schedulability of
arbitrary-deadline sporadic tasks: Complexity and antichain algorithm. Real-Time
Systems, The International Journal of Time-Critical Computing Systems, 48(2),
2013.

18. V. Gupta, Th. A. Henzinger, and R. Jagadeesan. Robust timed automata. In
HART’97, LNCS 1201, p. 331–345. Springer, 1997.

19. F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz. Using non-convex
approximations for efficient analysis of timed automata. In FSTTCS’11, p. 78–89,
2011.

20. R. Jaubert and P.-A. Reynier. Quantitative robustness analysis of flat timed
automata. In FOSSACS’11, LNCS 6604, p. 229–244. Springer, 2011.

21. P. Kordy, R. Langerak, S. Mauw, and J. W. Polderman. A symbolic algorithm for
the analysis of robust timed automata. In FM’14, LNCS 8442, p. 351–366. Springer,
2014.

22. K. G. Larsen, A. Legay, L.-M. Traonouez, and A. Wasowski. Robust specification
of real time components. In FORMATS’11, LNCS 6919, p. 129–144. Springer, 2011.

23. A. Legay and L.-M. Traonouez. Pyecdar: Towards open source implementation for
timed systems. In ATVA’13, LNCS 8172, p. 460–463. Springer, 2013.

24. A. Puri. Dynamical properties of timed automata. Discrete Event Dynamic Systems,
10(1-2):87–113, 2000.

25. M. Swaminathan and M. Franzle. A symbolic decision procedure for robust safety
of timed systems. In TIME’07, p. 192–192, 2007.

26. M. Swaminathan, M. Frnzle, and J.-P. Katoen. The surprising robustness of (closed)
timed automata against clock-drift. In IFIP TCS’08, p. 537–553. Springer, 2008.

A Proofs of Section 3 (Accelerating Cycles)

In this section, we present the proof of Lemma 1.
Let us first recall two fundamental properties of cycles from [24]. Define Lρ =

{q | q ρ−→ q} the set of limit points of cycle ρ. The set of limit points play an

important role in the analysis of enlarged timed automata; it was shown that for
any ν > 0, there is a run between any pair of states of Lρ in Aν .

Lemma 13 ([24,14]). For any cycle ρ and ν > 0, and any q, q′ ∈ Lρ, q
(ρ)+ν−−−→ q′.

Now, before proving Lemma 1, we just need the following property on regions
which states that Lρ is reachable and co-reachable from r̄1, where r denotes a
region from which there is a run along ρ.

Lemma 14 ([24,14]). Consider any cycle ρ and region r such that q
ρ−→ q′ for

some q, q′ ∈ Jr̄K. Then, for any q ∈ Jr̄K, there exist q0, q1 ∈ Lρ such that q
ρ+−−→ q0,

and q1
ρ+−−→ q.

Intuitively, the proof of Lemma 1 follows by the previous two lemmas: in fact, by
repeating ρ one can reach any state of Lρ (Lemmas 14, 13), and that from some
state of Lρ the desired target state is reachable (Lemma 14). This is the original
proof idea of [24]. Here we follow this idea to generalize it to zones given by the
fixpoints Pre∗(·) and Post∗(·).

Proof (Lemma 1). Note first that both fixpoints converge since all clocks are
bounded above so the number of zones in A and Aν is finite. Let q ∈ Pre∗ρ(>).
By definitition of this fixpoint, for any n > 0, there exists a run in A0 with

q = q1
ρ−→ . . .

ρ−→ qn. So there exist i < j such that r = reg(qi) = reg(qj). Note
that since the clocks are bounded r̄ is compact. It follows that r̄ ∩ Lρ 6= ∅.
Moreover, we know by [24] that the set Lρ is a union of regions. So there exists
a region r′ ⊆ r̄ such that r′ ⊆ Lρ. Now, because all guards are closed, if r is
reachable by repeating ρ, r′ is also reachable along the same path. In other terms,

q
ρ+−−→ q0 for some q0 ∈ Lρ. Now, similarly, for any q′ ∈ Post∗(ρ)ν (>), we consider

a long run q′1
(ρ)ν−−−→ . . .

(ρ)ν−−−→ q′n = q′, so that some region is seen twice, and we

deduce (as above) that Lρ 3 q1
(ρ)+ν−−−→ q′. Furthermore, by Lemma 13, we have

q0
(ρ)+ν−−−→ q1, which proves the claim.

B Proofs of Section 4

B.1 Operations on IEDBMs

Proof (Lemma 3). We define the minimum as follows.

min
(
(m, p)〈0,δ0〉, (n, q)〈0,δ0〉

)
=


(m, p)〈0,δ0〉 if m ≤ n ∧ p ≤ q
(m, p)〈0,min(δ0,

n−m
p−q)〉 if m < n ∧ p > q

(n, q)〈0,δ0〉 if n ≤ m ∧ q ≤ p
(n, q)〈0,min(δ0,

m−n
q−p)〉 if n < m ∧ q > p

(2)

1 Here, r̄ denotes the topological closure of r.

If m ≤ n, p ≤ q, then clearly m+ νp ≤ n+ νq for all ν ≥ 0. In particular, this
holds for ν ∈ [0, ν). If m < n and p > q, then m+ νp ≤ n+ νq ⇔ ν ≤ n−m

p−q . The
second line follows. The other two cases are symmetric.

Proof (Lemma 4). As for usual DBMs, we consider the Floyd-Warshall shortest
path algorithm applied on the matrix (M,P) seen as an adjacency matrix. We
recall the algorithm:

1 for i ∈ C0 do
2 for j ∈ C0 do
3 for k ∈ C0 do
4 (M,P)[i, j] := min

(
(M,P)[i, j], (M,P)[i, k] + (M,P)[k, j]

)
;

5 end

6 end

7 end

Note that the validity of this reduction algorithm applied on usual DBMs
–i.e. with P = 0, is well known (see [7]).

The algorithm terminates after performing |C0|3 operations on the components
of the matrix. Let (M ′, P ′)〈0,δ1〉 denote the result of the above algorithm applied
on IEDBM (M,P)〈0,δ0〉. For all ν ∈ [0, δ1), let Aν = M + νP , and let A′ν be the
result of the above reduction algorithm applied on the DBM Aν . We know that
all A′ν are reduced for ν ∈ [0, δ1).

Now, by unraveling the computations of the algorithm, each component x, y
of (M ′, P ′) can be written as a finite expression (of depth O(|C0|3)) involving the
components of (M,P). Moreover, by definition of the operations on IEDBMs,
this equality holds when we instantiate δ by any ν ∈ [0, δ1). In particular, we
must have A′ν [x, y] = (M ′ − νP ′)[x, y]. In fact, the algorithm applied on Aν
performs the same operations in the same order, and the minima are resolved
in favor of the same expression, because ν is assumed to be in [0, δ1). It follows
that each M ′ − νP ′ is a reduced DBM.

It is now easy to see that (M ′, P ′) is a reduced IEDBM. In fact, assuming
otherwise means that for some x, y, z ∈ C0, (M ′, P ′)[x, z] + (M ′, P ′)[z, y] >
(M ′, P ′)[x, y], which implies that (M ′ − νP ′)[x, z] + (M ′ − νP ′)[z, y] > (M ′ −
νP ′)[x, y] for all ν ∈ [0, δ2) for some δ2 > 0. This contradicts the fact that A′ν is
reduced.

Proof (Lemma 5). Recall that all operations on classic DBMs consist in first
modifying the components of the given DBM, and then reducing [7].

For the intersection of two DBMs N1 + νQ1, N2 + νQ2, one first assigns to
each cell (x, y) the minimum of (N1 + νQ1)[x, y] and (N2 + νQ2)[x, y], and then
reduces the resulting DBM. For IEDBMs, one similarly assigns the minimum
to each cell according to Lemma 3. After this operation, all cells are equal to
min((N1 + νQ1), (N2 + νQ2)) for all ν ∈ [0, δ1), where δ1 is the bound on δ
obtained after these updates. After reduction by Lemma 4, let δ2 denote the new

upper bound on δ. Then for all ν ∈ [0, δ2), the obtained IEDBM is equal, when δ
is instantiated to ν, to the reduced DBM (N1 + νQ1) ∩ (N2 + νQ2).

The reset operation requires one to free all constraints on the rows and column
involving R (replacing them with ∞), and then setting each column x ∈ R to 0,
and reducing. The time successors operation is defined by freeing the first column
(that is, removing all upper bounds), and reducing. Similarly to the intersection
case, because each operation only requires a finite number of steps, it is easily
shown that when these operations are performed on IEDBM (M,P), the resulting
IEDBM represents the result of the corresponding operation applied on M − νP
for small enough ν.

In all cases one modifies each component at most one, and then reduces so
the overall complexity of each operation is O(|C0|3).

Proof (Lemma 6). Assume PPost(e1)δ(e2)δ...(en−1)δ((`, Z)) = (`′, Z ′)〈0,δ0〉, and
(`′, Z ′)〈0,δ0〉 6= ∅. By 5, it follows by a straightforward induction on the length
of the given path that Post(e1)ν ...(en−1)ν (`, Z[δ ← ν]) = (`′, Z ′[δ ← ν]) 6= ∅ for
all ν ∈ [0, δ0). Then the existence of the stated run follows from the properties of
the non-parametric zones and the Post(·) operation.

Proof (Lemma 7). For the originial definition of Extra+LU , these properties are
proven in [8,5]. However the original definition takes into account strict and
non-strict inequalities in DBMs, and the third case of (1) assigns (−Uy, <). Here,
we only need to prove that the modified operator is still sound and complete for
reachability.

If Extra+LU
o

denotes the original definition, we therefore have Extra+LU (Z) ⊆
Extra+LU

o
(Z). Moreover, the condition −M0,y > Uy means that −M0,y ≥ Uy + 1,

so we also have Z ⊆ Extra+LU (Z) (since we have Z ⊆ Extra+LU
o
(Z) and other com-

ponents are identical in Extra+LU and Extra+LU
o
). Since the abstraction Extra+LU

o

is sound and complete, it follows that Extra+LU is also sound and complete.

B.2 Parametric Abstractions

Proof (Lemma 8). The proof follows the same ideas for IEDBMs seen above. For
fixed ν > 0, one computes Extra+LU (M + νP) simply by replacing M by M + νP
in (1), L by Lν , and U by Uν . But the definition of Extra+LU relies on a finite
number of inequalities whose satisfactions are constant for computable small
enough δ0. So the result follows from Lemma 3.

Before proving the correctness of the parametric inclusion test of Lemma 9,
we recall the exact inclusion test of [19] for DBMs.

Lemma 15 ([19]). Given a timed automaton A, its LU-bounds L,U and α =
max(L,U), if M and N denote two DBMs, we have M 6⊆ Closureα(N) if, and
only if there exist x, y ∈ C such that

1. Nx,0 < Mx,0 and Nx,0 ≤ α(x), or
2. N0,x < M0,x and M0,x + α(x) ≥ 0, or

3. M0,x + α(x) ≥ 0, and Ny,x < My,x, and Ny,x ≤ α(y) +M0,x.

Proof (Lemma 9). Let us recall the property to be tested:

∀δ0 > 0,∃ν ∈ [0, δ0),M + νP 6⊆ Closureαν (N + νQ). (3)

Assume there exist x, y ∈ C satisfying one of the conditions, say Z ′x,0 < Zx,0
and Z ′x,0 ≤ αδ(x). For ν > 0, let us define Zν = M + νP , and Z ′ν = N + νQ.
Let δ1 > 0 small enough so that

Z ′ν
+

[x, 0] < Zν [x, 0] and Z ′
+
ν [x, 0] ≤ αν(x)

for all ν ∈ [0, δ1). By Lemma 15, this implies that M + νP 6⊆ Closureαν (N + νQ)
for all ν ∈ [0, δ1), so (3) holds.

Conversely, assume that none of the three conditions hold for no pair x, y ∈ C.
If φ1(x, y), φ2(x, y), φ3(x, y) denote the three conditions written for a pair x, y ∈ C,
then we have Φ = ∧x,y∈C(¬φ1(x, y) ∧ ¬φ2(x, y) ∧ ¬φ3(x, y)). So let δ1 > 0 be
small enough such that Φ holds when when instantiated by any ν ∈ [0, δ1) (that
is, when written with Zν instead of Z, and Z ′ν instead of Z ′). By Lemma 15,
this means that for all ν ∈ [0, δ1), M + νP ⊆ Closureαν (N + νQ) which is the
converse of (3).

C Proof of Lemma 12

Assume the algorithm returns Unsafe.
We consider the path π of the search tree from the initial state to location `T .
Let (`1, Z1) . . . (`n, Zn) be the set of symbolic states visited by the path, and
e1e2 . . . en−1 the transitions along the search tree. By construction, each ej
is either a regular edge, in which case (`j+1, Zj+1) = PExPost(ej)δ(`j , Zj),
or it is a cycle ρ that starts at location `j , such that PPre∗ρ(>) u (`j , Zj) 6=
∅ and (`j+1, Zj+1) = PPost∗(ρ)δ(>). Note that the algorithm rather checks

PPre∗ρ(>) u (`i, Zi) 6= ∅ but this implies that PPre∗ρ(>) u (`j , Zj) 6= ∅, given
that (`j , Zj) = PPost(ρ)δ((`i, Zi)), by definition of the PPre∗ρ(>) fixpoint.

For all ν > 0, we construct a run from the initial state to `T in Aν by induction
on the number of accelerated cycles visited by π. Let us assume that ν ∈ (0, δ0]
where δ0 is smaller than all upper bounds computed during the execution of the
algorithm. We will construct a run for Aν for arbitrary ν ∈ (0, δ0]. Moreover,
since any such run is also a run of Aν′ for ν′ > δ0, the result will follow.

For the base case, assume that π is only made of regular edges. We have then
PExPost(e1)δ(e2)δ...(en−1)δ((`1, Z1)) = (`n, Zn). This means that
ExPost(e1)ν ...(en−1)ν ((`1, Z1)[δ ← ν]) = (`n, Zn)[δ ← ν]. By Lemma 7,
Post(e1)ν ...(en−1)ν ((`1, Z1)[δ ← ν]) 6= ∅, there exists a run from the initial state
which is in (`1, Z1)[δ ← ν] to a state in (`n, Zn)[δ ← ν] in Aν .

Assume now that π contains at least one accelerated cycle. Consider ei0 the last
such accelerated cycle. By the base case, from some state q1 in
(`i0+1, Zi0+1)[δ ← ν], there is a run r1 to (`n, Zn)[δ ← ν] along edges

(ei0+1)ν . . . (en−1)ν . Let us choose any state q2 ∈
(
PPre∗ρ(>) u (`i0 , Zi0)

)
[δ ← ν].

By Lemma 1, there is a run r2 from q2 to q1. By induction, there is a run r3
in Aν from the initial state to q2. Then, r3r2r1 yields the desired run.

Assume the algorithm returns Safe.
Let δ0 denote the upper bound on δ after the termination of the algorithm. We
are going to show that Aν is safe for all ν ∈ [0, δ0). We define algorithm Algν from
Algorithm 1 by instantiating the parameter δ by ν in IEDBMs. The resulting
symbolic states are now written as M + νP which are simply DBMs. The new
algorithm will work with DBMs, but we will still write the symbolic states in the
form M + νP . This allows us to define the width in this case which is defined
again as the maximal of the components of P . More precisely, Algν is defined
by the following mofidications applied on Algorithm 1: All occurrences of δ are
replaced by ν, and each parametric operation is replaced by its non-parametric
counterpart, e.g. PPost(·) by Post(·). In other terms, given a timed automaton A,
Algν simply explores the state space of the timed automaton Aν using DBMs
and moreover applies acceleration on some cycles.

Let us first argue that if Algν answers Safe, then Aν is indeed safe. This is
easy to see since if we ignore the acceleration phase, Algν is simply the standard
forward exploration algorithm using DBMs and LU extrapolation, and the post
operation is always applied on the guards enlarged by ν. This suffices to prove that
when Algν answers Safe, Aν is safe. In fact, the acceleration phase can only add
new states to explore, so any state (`, Z) visited in the basic forward exploration
(without acceleration) will be still visited; more precisely, a state (`, Z ′) with
Z vc Z ′ will be visited by Algν . So if location `T is reachable in Aν , Algν would
visit a state at this location. (As a side note, observe that by Lemma 1, it is easy
to see that the acceleration phase actually only yields states that are reachable
in Aν . So Algν is sound and complete.)

Now, to finish the proof, we are going to show that if (`, Z) denotes the
parametric symbolic state visited by Algorithm 1 at iteration i, then Algν visits
the state (`, Z)[δ ← ν] at step i. In other terms, Algν constructs exactly the same
search tree as Alg. 1 where δ is instantiated to ν. This follows immediately by
the properties of the IEDBMs. Recall that by the choice of δ0 all operations
performed on IEDBMs during the execution of Alg. 1 hold when we instantiate
the parameter δ to any value in [0, δ0). In particular, for each parametric successor
computation of Alg. 1, Algν performs the same computation where δ is replaced
by ν, and the same inclusion tests. Now, if we assume, towards a contradiction,
that Algν encounters location `T in the search tree, this shows that the same
prefix (where ν is replaced by parameter δ) is also explored by Alg. 1.

	Symbolic Quantitative Robustness Analysis of Timed Automata

