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Symbolic Quantitative Robustness Analysis of Timed Automata

We study the robust safety problem for timed automata under guard imprecisions which consists in computing an imprecision parameter under which a safety specification holds. We give a symbolic semi-algorithm for the problem based on a parametric data structure, and evaluate its performance in comparison with a recently published one, and with a binary search on enlargement values.

Introduction

Timed automata [START_REF] Alur | A theory of timed automata[END_REF] are a well-established formal model for real-time systems. They can be used to model systems as finite automata, while using, in addition, a finite number of clocks to impose timing constraints on the transitions. Efficient model checking algorithms have been developed and implemented in tools such as Uppaal [START_REF] Behrmann | UPPAAL 4.0[END_REF], IF [START_REF] Bozga | If-2.0: A validation environment for componentbased real-time systems[END_REF]. Timed automata are, however, abstract models, and therefore make idealistic assumptions on timings, such as perfect continuity of clocks, infinite-precision time measures and instantaneous reaction times.

As for any abstract formalism, once desired properties of a system are proven on the model, a crucial question that remains is the robustness of these properties against the assumptions that have been made. What is the extent to which the assumptions behind the model can be relaxed while a given property still holds?

In this work, we are interested in the robustness against timing imprecisions. An important amount of work has been done in the timed automata literature to endow timed automata with a realistic semantics, and take imprecisions into account, e.g. [START_REF] Gupta | Robust timed automata[END_REF][START_REF] De Wulf | Almost ASAP semantics: From timed models to timed implementations[END_REF][START_REF] Altisen | Implementation of timed automata: An issue of semantics or modeling?[END_REF]. The works [START_REF] Puri | Dynamical properties of timed automata[END_REF] and [START_REF] De Wulf | Robust safety of timed automata[END_REF] showed that perturbations on clocks, i.e. imprecisions or clock drifts, regardless of how small they are, may drastically change the behavior in some models. These observations mean that there is a need for verification tools to check the robustness of timed automata, that is, whether the behavior of a given timed automaton is preserved in the presence of perturbations, and to compute safe bounds on such perturbations.

We consider the robustness of timed automata for safety properties under timing imprecisions modeled by guard enlargement, consisting in relaxing each guard of the form x ∈ [a, b] to x ∈ [a -δ, b + δ] where δ is a parameter. Our goal is to decide if for some δ > 0, the enlarged timed automaton satisfies its specification (Problem 1), and if this is the case, compute a safe upper bound on δ (Problem 2). We insist on the importance of both problems: while the first one decides the robustness of the model, the second one quantifies it by actually giving a bound under which the model is correct. This would allow one for instance to choose an appropriate hardware to implement the model [START_REF] De Wulf | Almost ASAP semantics: From timed models to timed implementations[END_REF][START_REF] Altisen | Implementation of timed automata: An issue of semantics or modeling?[END_REF].

Background The formulation of Problem 1 has been studied starting with [START_REF] Puri | Dynamical properties of timed automata[END_REF][START_REF] De Wulf | Robust safety of timed automata[END_REF] for safety properties, and extended to LTL and richer specifications, e.g. [START_REF] Bouyer | Robust model-checking of linear-time properties in timed automata[END_REF][START_REF] Bouyer | Robust analysis of timed automata via channel machines[END_REF] using region-based techniques which cannot be applied efficiently. A symbolic zone-based algorithm was given in [START_REF] Daws | Symbolic robustness analysis of timed automata[END_REF] for flat timed automata, that is, without nested cycles by applying acceleration on its cycles. Problem 2 has been answered in [START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF] for flat timed automata, where the given algorithm computes the largest upper bound on δ satisfying the specification. The flatness is a rather restrictive hypothesis since, for instance, it is easily violated when the system is obtained by composition of timed automata that contain cycles. Recently, a zone-based algorithm and a tool to solve Problem 1 for general timed automata was given [START_REF] Kordy | A symbolic algorithm for the analysis of robust timed automata[END_REF]; but the algorithm does not compute any bound on δ. The latter algorithm is based, roughly, on extending the standard forward exploration of the state space augmented with the acceleration of all cycles encountered during the search, with some tricks to optimize the computations. In [START_REF] Larsen | Robust specification of real time components[END_REF], refinements between interfaces are studied in a game-based framework including syntactic enlargement to account for imprecisions. In [START_REF] Swaminathan | A symbolic decision procedure for robust safety of timed systems[END_REF][START_REF] Swaminathan | The surprising robustness of (closed) timed automata against clock-drift[END_REF] the authors use the fact that replacing all guards by closed ones allow one to verify finite paths (and the case of a periodic external synchronization) but this does not help in the analysis of the accumulation of imprecisions, nor can it allow one to compute a bound on δ.

Results

In this paper, we present a symbolic procedure to simultaneously solve Problems 1 and 2 for general timed automata; if the given model is robust, a safe upper bound on δ (which may not be the largest one) is output. The procedure is a semi-algorithm since we do not know whether it terminates although it did terminate on most of our experiments. It consists in a state-space exploration with an efficient parametric data structure which treats the enlargement δ as an unknown parameter, combined with an acceleration procedure for some of the cycles. We do not systematically accelerate cycles, but rather adopt a "lazy" approach: during the exploration, when the accumulated imprecisions go beyond a threshold, we accelerate some cycles that may be responsible for this accumulation. This greatly reduces the computation overhead compared to a systematic acceleration. We also adapt several abstraction operations such as LU abstraction [START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF], and closure inclusion [START_REF] Herbreteau | Using non-convex approximations for efficient analysis of timed automata[END_REF] to the parametric setting to reduce the state space. We ran experiments to evaluate the performance of our procedure. Compared to [START_REF] Kordy | A symbolic algorithm for the analysis of robust timed automata[END_REF], ours terminated faster in most cases, and sometimes with several orders of magnitude. To truly evaluate the gain of a parametric analysis, we also compared with a binary search on the values of δ using an exact model checker. Our procedure was often faster except against a low precision binary search (i.e. with few iterations). Section 6 contains a more detailed discussion.

Definitions

Given a finite set of clock C, we call valuations the elements of

R C ≥0 . For R ⊆ C and a valuation v, v[R ← 0] is the valuation defined by v[R ← 0](x) = v(x) for x ∈ C \ R and v[R ← 0](x) = 0 for x ∈ R. Given d ∈ R ≥0 and a valuation v, v + d is defined by (v + d)(x) = v(x) + d for all x ∈ C.
We extend these operations to sets of valuations in the obvious way. We write 0 for the valuation that assigns 0 to every clock. An atomic guard is a formula of the form k ≤ x or x ≤ l where x, y ∈ C, k, l ∈ Q. A guard is a conjunction of atomic guards. A valuation v satisfies a guard g, denoted v |= g, if all atomic guards are satisfied when each x ∈ C is replaced by v(x). We write Φ C for the set of guards built on C.

A timed automaton A is a tuple (L, Inv, 0 , C, E), where L is a finite set of locations, Inv : L → Φ C the invariants, C is a finite set of clocks, E ⊆ L×Φ C ×2 C ×L is a set of edges, and 0 ∈ L is the initial location. An edge e = ( , g, R, ) is also written as g,R --→ . For any location , let E( ) denote the set of edges leaving . Following the literature on robustness in timed automata (e.g. [START_REF] Puri | Dynamical properties of timed automata[END_REF][START_REF] De Wulf | Robust safety of timed automata[END_REF]) we only consider timed automata with closed and rectangular guards (that is, we do not allow constraints of the form x -y ≤ k). We also assume that all invariants contain an upper bound for all clocks.

A run of A is a sequence q 1 e 1 q 2 e 2 . . . q n where q i ∈ L × R C ≥0 , and writing q i = ( , v), we have v ∈ Inv( ), and either e i ∈ R >0 , in which case q i+1 = ( , v+e i ), or e i = ( , g, R, ) ∈ E, in which case v |= g and q i+1 = ( , v[R ← 0]). We say that the run r is along e 1 e 2 . . . e n-1 . A path is a sequence of edges whose endpoint locations are equal. Given a path ρ = e 1 e 2 . . . e n-1 and states q, q , we write q ρ -→ q if there is a run from q to q along e 1 e 2 . . . e n-1 . We write q ⇒ q if there is a path ρ with q ρ -→ q . We also note q ρ + --→ q if there is a run from q to q along an arbitrary (positive) number of repetitions of ρ. A cycle of a timed automaton is a path that ends in the location it starts. As in [START_REF] Puri | Dynamical properties of timed automata[END_REF][START_REF] De Wulf | Robust safety of timed automata[END_REF], we assume that all cycles of considered timed automata reset all clocks at least once. Such cycles are called progress cycles.

Regions The first decidability results on timed automata relied on a finite partition of the state space to so called regions, which can be defined using simple constraints on clocks [START_REF] Alur | A theory of timed automata[END_REF]. We say that 1 η is the granularity of a timed automaton A, if η is the smallest integer such that all constants of A are multiples of 1 η . We generalize the definition of regions to arbitrary granularities. Let us denote N η = 1 η N. Consider a timed automaton A, with granularity 1 η , and consider a bound function α : C → N η mapping each clock to a bound. An α, η-region is defined by choosing

-for each clock x ∈ C, a constraint among {x = k | k ∈ N η , k ≤ α(x)}∪{k-1 η < x < k | k ∈ N η , 1 η ≤ k ≤ α(x)} ∪ {x > α(x)}.
for each pair x, y ∈ C for which we chose the constraints k -1 η < x < k, and l -1 η < y < l, choose one constraint among frac(x) < frac(y), frac(x) = frac(y), or frac(x) > frac(y), where frac(•) denotes the fractional part.

It can be shown that α, η-regions finitely partition the state space R C . For η = 1, this is the usual definition of regions. Given timed automata with rational constants, one often rescales the constants to work with integers. In the context of enlargement, however, it will be more convenient to work directly with rationals.

Difference-Bound Matrices Because the number of regions is exponential in the input size, the region-based algorithms are not practical. Symbolic algorithms were rather given as an efficient solution based on zones which are convex subsets of the state space definable by clock constraints. Formally, a zone Z is a convex subset of R C definable by a conjunction of constraints of the form x ≤ k, l ≤ x, and x -y ≤ m where x, y ∈ C, k, l ∈ Q ≥0 and m ∈ Q. Note that because all guards of the timed automata we consider are closed, all zones that appear during a state-space exploration are closed. Hence, we do not need to distinguish strict and non-strict inequalities as done for general timed automata.

We recall a few basic operations defined on zones. Let Post ≥0 (Z) denote the zone describing the time-successors of Z, i.e., Post

≥0 (Z) = {v ∈ R C ≥0 | ∃t ≥ 0, v -t ∈ Z}; and similarly Pre ≥0 (Z) = {v ∈ R C ≥0 | ∃t ≥ 0, v + t ∈ Z}. Given R ⊆ C, we let Reset R (Z) be the zone {v ∈ R C ≥0 | ∃v ∈ Z, v = v [R ← 0]}, and Free R (Z) = {v ∈ R C ≥0 | ∃v ∈ Z, v = v[R ← 0]}. Intersection is denoted Z ∩ Z . Zones can be represented by difference-bound matrices (DBM) which are |C 0 | × |C 0 |-matrices with values in Q [16]. Let us define C 0 = C ∪ {0}
, where 0 is seen as a clock whose value is always 0. Intuitively, each component (x, y) ∈ C 2 0 of a DBM stores a bound on the difference x -y. For any DBM M , let M denote the zone it defines. DBMs admit reduced forms (a.k.a. normal form), and successor computation can be done efficiently (in O(|C| 3 )). We refer the reader to [START_REF] Bengtsson | Timed automata: Semantics, algorithms and tools[END_REF] for details. All of the above operations can be computed with DBMs. By a slight abuse of notation, we will use the same operations for DBMs as for zones, for instance, we will write M = Post ≥0 (M ) where M and M are reduced DBMs such that M = Post ≥0 M . We define an extended zone as a pair ( , Z) where is a location and Z a zone. Given an edge e = ( , g, R, ), and an extended zone ( , Z), we define Post e ( , Z) = Inv( )∩Post ≥0 (g ∩Reset R (Z)), and Pre e ( , Z) = Pre ≥0 (g ∩ Free R (Inv( ) ∩ Z)). For a path ρ = e 1 e 2 . . . e n , we define Post ρ and Pre ρ by iteratively applying Post ei and Pre ei respectively.

Enlargement We model timing imprecisions in timed automata by the enlargements of the guards and invariants of by rational values ν > 0. The enlargement of an atomic guard k

≤ x (resp. x ≤ l) is denoted (k ≤ x) ν = k -ν ≤ x (resp. (x ≤ l) ν = x ≤ l + ν).
The enlargement of a guard g, denoted (g) ν is obtained by enlarging all its conjuncts. We denote by A ν the timed automaton obtained from A by enlarging all its guards and invariants by ν.

If ν is known, one could analyze A ν with known techniques, since this is still a timed automaton (with a possibly different granularity). Here, we are rather interesting in a parametric analysis. We thus consider a symbolic parameter δ. The parametric enlargement of a guard g, denoted (g) δ is defined by replacing ν by the symbol δ in the above definition. We will always denote rational enlargement

x, y ≤ 1 2 x, y ≤ 1 err x = 1, x := 0 e1 x = 1, x := 0 e3 y = 1, y := 0 e2
Fig. 1. A timed automaton representing the two processes P1 and P2 instantiated with period p = 1, and a buffer size of 1. The guard under the locations are the invariants. The edge e1 represents the arrival of a token in the buffer (period of 1) while e2 represents process P2 reading a token from the buffer. The error state is reached via e3 if two tokens are pushed to the buffer without any read in between. Without enlargement, any reachable state at location 2 satisfies x = 0 ∧ y = 1, so the error state is not reachable. Under enlargement by ν = 1 10 , after the first transition, location 2 is reached by the set of states 1 -ν ≤ y ≤ 1 + ν ∧ 0 ≤ x ≤ 2ν due to the enlargement of the guards and invariants. A simple calculation shows that the set of reachable states at location 2 after k cycles is 1

-(2k + 1)ν ≤ y ≤ 1 + ν ∧ 0 ≤ x ≤ 2kν ∧ 1 -(2k + 1)ν ≤ y -x ≤ 1 + ν. Thus, for k = 5, we get y ≤ 1 + ν ∧ x ≤ 1 ∧ -ν ≤ y -x ≤ 1 + ν, and x = 1 ∧ y = 1 is in this set, from which the error state is reachable.
values by ν, and the parameter symbol by δ. Similarly, parametrically enlarged timed automata are denoted A δ . For ν > 0, the instantiation of a parametrically enlarged guard (g)

δ by ν is denoted (g) δ [δ ← ν] which is (g) ν .
Accumulation of Imprecisions In some timed automata even the smallest enlargement can lead to drastically different behaviors due to the accumulation of the imprecisions over long runs [START_REF] Puri | Dynamical properties of timed automata[END_REF]. As an example, consider the following simple problem. Two processes P 1 , P 2 execute on different machines and communicate via a finite buffer. Every p time units, Process P 1 finishes a computation and pushes a token to the buffer; while P 2 reads a token from the buffer with the same period. We assume P 2 has an offset of p. The buffer will clearly not overflow in this system. However, assuming the slightest delay in the execution of P 2 , or the slightest decrease in the execution time of P 1 leads to a buffer overflow since the delays will accumulate indefinitely. Figure 1 represents this system.

Accelerating Cycles

The original robust reachability algorithm of [START_REF] Puri | Dynamical properties of timed automata[END_REF][START_REF] De Wulf | Robust safety of timed automata[END_REF] consists in an exploration of the region graph, augmented with the addition of the images of all cycles neighboring reachable states. The idea is that when the guards are enlarged, these neighboring cycles become reachable, and they precisely capture all states that become reachable in the timed automaton for all values of δ. Thus, this algorithm computes the set ∩ ν>0 Reach(A ν ), where Reach(A ν ) denotes the states that are reachable in A ν . A symbolic algorithm for this problem was given in [START_REF] Daws | Symbolic robustness analysis of timed automata[END_REF] for flat timed automata, i.e. without nested cycles, and later improved in [START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF].

In this section, we summarize some of these results from [START_REF] Puri | Dynamical properties of timed automata[END_REF][START_REF] De Wulf | Robust safety of timed automata[END_REF][START_REF] Daws | Symbolic robustness analysis of timed automata[END_REF][START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF] that we use in the rest of the paper. Let us fix a timed automaton (L, Inv, 0 , C, E), and a cycle ρ. The following lemma shows the effect of repeating cycles in enlarged timed automata, formalizing our observations on Fig. 1.

Lemma 1 ([20]

). Consider any extended zone ( , Z), and a progress cycle ρ of A that starts in . If Pre * ρ ( ) ∩ Z = ∅, then starting from any state of Pre * ρ ( ) ∩ Z, for any ν > 0, all states of Post * (ρ)ν ( ) are reachable in A ν , by repeating ρ.

As an example, consider Fig. 1. For the cycle ρ = e 2 e 1 that starts at 2 , we have

Pre * ρ ( ) = x, y ≤ 1 ∧ x -y ≤ 0, and Post * (ρ)ν ( ) = x, y ≤ 1 + ν ∧ x -y ≤ 0.
Since the point (0, 1) is reachable and belongs to Pre * ρ , all states of Post * (ρ)ν ( ) are reachable, and in particular (1, 1) from which the error state is reachable.

It is known that the above lemma does not hold for non-progress cycles; nevertheless, it was shown that in this case, Post * (ρ)ν ( ) is an over-approximation of the states reachable by repeating ρ under enlargement [START_REF] Bouyer | Robust model-checking of timed automata via pumping in channel machines[END_REF]. Thus, the algorithm of [START_REF] Puri | Dynamical properties of timed automata[END_REF][START_REF] De Wulf | Robust safety of timed automata[END_REF] may have false negatives (may answer "not robust" even though it is) but not false positives on timed automata with arbitrary cycles.

Conversely, it has been shown that any state that belongs to ∩ ν>0 Reach(A ν ) is reachable along an alternation of exact runs and repetitions of enlarged cycles.

Lemma 2 ([14]

). Assume that q -→ q in A ν for all ν > 0. There exists a path π 0 ρ 0 π 1 ρ 0 . . . π n of A and states q = q 0 , q 0 , q 1 , q 1 , . . . , q n = q , such that for all 0 ≤ i ≤ n-1, and any ν > 0, q i πi -→ q i , q i ∈ Pre * ρi ( ), and

q i+1 ∈ Post * (ρi)ν ( ).
Notice that the sequence of states q 0 , q 0 , . . . is independent of ν > 0 in the above lemma, and that the enlargement is only used in Post * ((ρ)i)ν ( ). The algorithms of [START_REF] Daws | Symbolic robustness analysis of timed automata[END_REF][START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF] consist in a usual forward exploration on zones augmented with the application of Lemma 1, by enumerating all cycles in a flat timed automaton. This cannot be extended to general timed automata since the cycles that appear in Lemma 2 are not necessarily simple. This has been a major obstacle against general robust safety algorithms for timed automata.

Infinitesimally Enlarged DBMs

We define infinitesimally enlarged DBMs (IEDBM), a parameterized extension of DBMs, which we will use to explore the state space of enlarged timed automata. These were first defined in [START_REF] De Wulf | Robust safety of timed automata[END_REF] to be used solely as a proof technique. Here, we extend this data structure with additional properties and explicit computations of the bounds on parameter δ, and show how it can be used to efficiently explore the state space.

We fix a clock set C 0 including the 0 clock. An infinitesimally enlarged DBM (IEDBM) is a pair (M, P ) 0,δ0 where M is a DBM and P is a |C 0 | × |C 0 | matrix over N, called the enlargement matrix. The value δ 0 ∈ (0, ∞) is an upper bound on the unknown parameter δ. Intuitively, an IEDBM (M, P ) 0,δ0 represents the set of DBMs M + νP where ν ∈ [0, δ 0 ). Figure 2 shows an example. We often see, abusively, an IEDBM as a matrix over pairs (m, p) ∈ Z × N. The component (x, y) is denoted by (M, P ) 0,δ0 [x, y]. For simplicity, we always consider the half-open intervals of the form [0, δ 0 ) even though ν can be chosen equal to δ 0 in some cases. This is not a loss of generality since we are interested in the small values of ν.

  0 x y 0 0 1 1 x 3 0 2 y 2 1 0   + δ   0 0 1 2 0 3 3 3 0   y x Fig. 2. An IEDBM (above) repre- senting the parametric set 1 ≤ x ≤ 3 + 2δ ∧ 1 -δ ≤ y ≤ 2 + 3δ. The set is represented (below) for δ = 0.15.
IEDBMs will allow us to reason on the parametric state space of enlarged timed automata "for small values of δ", which means that our computations on the data structure will hold for all ν ∈ [0, δ 0 ), where δ 0 > 0 is bound that is possibly updated to a smaller value after each operation. For instance, given sets Z 1 = 1 ≤ x ≤ 2 + 3ν and Z 2 = x ≤ 3, for unknown δ, and assume we want to compute their intersection. We will write Z 1 ∩ Z 2 = 1 ≤ x ≤ 2 + 3δ and chose δ 0 ≤ 1 3 . To make these simplifications, we need to compare pairs of IEDBM components in a similar spirit. For instance, to make the above simplification, we write (2, 3) 0, 1 3 ≤ (3, 0) 0, 1 3 , which means that 2 + 3ν ≤ 3 for all ν ∈ [0, 1 3 ). We formalize this in the next subsection. To ease reading, we may omit δ 0 from IEDBMs if it is clear from the context.

Operations on IEDBMs

We are now going to formalize the simplifications and the operations done on IEDBMs. In order to use our data structure for parametric exploration, we need to define basic operations on timed automata. Similar to DBMs, IEDBMs have reduced forms. To define the reduction operations, we define the + and min operations.

We define the sum as (m, p) 0,δ0 + (n, q) 0,δ1 = (m + n, p + q) 0,min(δ0,δ1) . As an example of this operation, assume that we have the constraints x -y ≤ 2 + 3δ, and y ≤ 1 + δ with the respective upper bounds δ 0 and δ 1 . Then, by summation, we may deduce x ≤ 3 + 4δ with the upper bound δ 2 = min(δ 0 , δ 1 ). Lemma 3. Given (m 1 , p 1 ) 0,δ1 , (m 2 , p 2 ) 0,δ2 , one can compute i ∈ {1, 2}, and δ 3 such that ∀ν ∈ [0, δ 3 ), m i + νp i = min(m 1 + νp 1 , m 2 + νp 2 ). We denote this by (m i , p i ) 0,δ3 = min((m 1 , p 1 ) 0,δ1 , (m 2 , p 2 ) 0,δ2 ).

We write (m 1 , p 1 ) 0,δ1 ≤ (m 2 , p 2 ) 0,δ2 iff min (m 1 , p 1 ) 0,δ1 , (m 2 , p 2 ) 0,δ2 = (m 1 , p 1 ) 0,δ3 for some δ 3 ; and (m 1 , p 1 )

0,δ1 < (m 2 , p 2 ) 0,δ2 if m 1 = m 2 ∨ p 1 = p 2 .
Intuitively, just like in regular DBMs, we will use the minimum operation to compute conjunctions of constraints. For instance, we already saw above that x ≤ 2 + 3ν ∧ x ≤ 3 is simplified to x ≤ 2 + 3ν given ν ∈ [0, 1 3 ). This will be written min (2, 3) 0,∞ , (3, 0) 0,∞ ) = (2, 3) 1 3 . It should be clear that for any Boolean combination Φ of inequalities written between elements of the form (m, p) 0,δ1 , one can compute, by Lemma 3, a bound δ 0 such that either Φ[δ ← ν] holds for all ν ∈ [0, δ 0 ), or ¬Φ[δ ← ν] holds for all ν ∈ [0, δ 0 ). If different upper bounds on δ are given for two elements to be compared, then we first update the bounds to the minimum of the two bounds. More generally, we assume that all components of an IEDBM have the same bound δ 0 .

We say that an IEDBM (M, P ) 0,δ0 is reduced if for all x, y, z ∈ C 0 , (M, P ) 0,δ0 [x, y] ≤ (M, P ) 0,δ0 [x, z] + (M, P ) 0,δ0 [z, y]. IEDBMs can be reduced by the usual Floyd-Warshall algorithm, using the above min and + operations: Lemma 4. Any IEDBM (M, P ) 0,δ0 can be reduced in time O(|C 0 | 3 ). Moreover, if (M, P ) 0,δ0 is reduced, then for all ν ∈ [0, δ 0 ), M + νP is a reduced DBM.

When we consider the complexity of minimization as in Lemma 3, we assume that operations on rationals are elementary operations (i.e. they can be performed in constant time). For a more precise analysis, one can incorporate the cost of these computations; for instance, the reduction operation in the previous lemma makes O(|C 0 | 3 ) minimization operations, so as many operations on rationals.

We define the parametric inclusion by (M, P ) 0,δ1 (N, Q) 0,δ2 if, and only if for all x, y ∈ C, (M, P )

[x, y] ≤ (N, Q)[x, y]. Lemma 5. One can compute, given (N 1 , Q 1 ) 0,δ1 , (N 2 , Q 2 ) 0,δ2 , and R ⊆ C, and in time O(|C| 3 ), -a reduced IEDBM (M, P ) 0,δ0 , written (N 1 , Q 1 ) 0,δ1 (N 2 , Q 2 ) 0,δ2
, such that M + νP = (N 1 + νQ 1 ) ∩ (N 2 + νQ 2 ) for all ν ∈ [0, δ 0 ), a reduced IEDBM (M, P ) 0,δ0 , written PReset R (N 1 , Q 1 ) 0,δ1 , such that M + νP = Reset R N 1 + νQ 1 for all ν ∈ [0, δ 0 ), a reduced IEDBM (M, P ) 0,δ0 , written PPost ≥0 (N 1 , Q 1 ) 0,δ2 , such that M + νP = Post ≥0 N 1 + νQ 1 for all ν ∈ [0, δ 0 ).

We are going to define the parametric post operation along an edge e. By a slight abuse of notation, we will see any (non-enlarged) guard g as the IEDBM (g, 0) 0,∞ . When we consider the enlargement (g) δ of a guard, this will also refer to the corresponding IEDBM with δ 0 = ∞. By combining these operations, for a given edge e, we define PPost e (M, P ) 0,δ0 = PPost ≥0 PReset R g (M, P ) 0,δ0 , where g is the guard of e, and R its reset set. By Lemma 5 this corresponds to Post e M + δP ) for sufficiently small δ.

We refer to pairs of locations and IEDBMs as symbolic states. We extend the parametric post operator to symbolic states by PPost e ( , Z) = ( , Z ) where e = ( , g, R, ), and Z = PPost e Z). Lemma 6. For any sequence of edges e 1 . . . e n , and symbolic state ( , Z), if PPost (e1) δ (e2) δ ...(en-1) δ (( , Z)) = ( , Z ), and ( , Z ) = ∅, then there exists δ 0 > 0 such that for all ν ∈ [0, δ 0 ), and state q ∈ ( , Z )[δ ← ν], there exist q ∈

( , Z)[δ ← ν] such that ( 1 , q) (e1)ν ...(en-1)ν ----------→ ( n , q ).
Let the width of (M, P ) 0,δ0 be defined as width(M, P ) = max x,y∈C0 P x,y .

Parametric Abstractions

We will first recall some abstractions applied on zones in a non-parametric setting, then generalize them to symbolic states described by IEDBMs.

Closures and LU-abstraction Let α : C → N be a bound function, and η a granularity. The α, η-closure of a zone Z is the union of the α, η-regions which intersects it. It is known that when α denotes the maximal constants to which each clock is compared in a timed automaton A, and η the granularity of A, a forward exploration based on α, η-closures is sound and complete [START_REF] Bouyer | Forward analysis of updatable timed automata[END_REF]. However because closures are not convex, other abstractions have been in use in practical tools; one of them is LU-abstraction, where the idea is to relax some of the facets of a zone taking into consideration the maximal constants that appear in the guards of the timed automaton. We will recall the formal definition of LUabstraction by adapting it to DBMs with only non-strict inequalities by a slight change. The correctness of the abstraction is preserved (proved in Lemma 7).

For a timed automaton A with granularity η, we define the two bound functions L, U : C → N η , called the LU-bounds where L(x) (resp. U (x)) is the largest constant c such that the constraint x ≥ c (resp. x ≤ c) appears in some guard or invariant. Given LU-bounds L, U , for any DBM M , we define M = Extra + LU (M ) as follows.

M x,y =        ∞ if M x,y > L(x), or -M 0,x > L(x) ∞ if -M 0,y > U (y), x = 0 -U (y) -1 if -M 0,y > U (y), x = 0 M x,y
otherwise.

(

) 1 
We recall the correctness of LU-abstractions and closures for reachability properties. Given LU-bounds L, U we write α = max(L, U ) for the function α(x) = max(L(x), U (x)) for all x ∈ C. Lemma 7. For any timed automaton A with granularity η, its LU-bounds L, U , and any path e 1 e 2 . . . e n and extended zone ( , Z), define q 0 = q 0 = q 0 = ( , Z), and let for 0 ≤ i < n, q i+1 = Post ei (q i ), q i+1 = Extra + LU (Post ei (q i )), and q i+1 = Closure α,η (Extra + LU (q i )). Then, q n = ∅ ⇔ q n = ∅ ⇔ q n = ∅.

One can thus explore the state space of a timed automaton while systematically applying LU-abstraction at each step. In practice, one does not apply closures since they do not yield convex sets. Nevertheless, a O(|C| 2 )-time algorithm was given in [START_REF] Herbreteau | Using non-convex approximations for efficient analysis of timed automata[END_REF] to decide whether M ⊆ Closure α (N ). Thus, when the regular inclusion test is replaced with the latter one, the exploration becomes equivalent to an exploration using closures [START_REF] Herbreteau | Using non-convex approximations for efficient analysis of timed automata[END_REF][START_REF] Bouyer | Forward analysis of updatable timed automata[END_REF].

Parametric Closures and LU-abstraction

We would like to use these abstractions in our parametric setting. We will show how these sets can be computed parametrically using IEDBMs. Observe that when we consider parametrically enlarged timed automata, the LU-bounds also depend on δ. Let us denote the parametric LU-bounds by L δ (x) (resp. U δ (x)) which is the maximum parametric constant, in the sense of Lemma 3, which appears in the guards of A δ as a lower bound (resp. upper bound) on x. We define the parametric LU-abstraction, for any IEDBM (M, P ) 0,δ0 by (M , P ) 0,δ1 = PExtra + L δ U δ ((M, P ) 0,δ0 ) obtained by applying [START_REF] Altisen | Implementation of timed automata: An issue of semantics or modeling?[END_REF] where M is replaced by (M, P ), L and U by L δ and U δ respectively. The new upper bound δ 1 is computed so that all comparisons in (1) hold. Lemma 8. Consider any enlarged timed automaton A δ and its parametric LUbounds L δ , U δ . For any (M, P ) 0,δ0 , if we write (M , P ) 0,δ1 = PExtra + L δ U δ ((M, P ) 0,δ0 ), then for all ν ∈ [0, δ 1 ), M + νP = Extra + LU (M + νP ). Thus, LU-abstractions of enlarged zones have uniform representations for small δ.

For an enlarged timed automaton A δ we define α δ = max(L δ , U δ ). For ν > 0, we will denote by α ν the function obtained from α δ by instantiating δ to ν. By a slight abuse of notation, we define the α ν -closure of a zone as its (α ν , η)-closure where η is the granularity of A ν . Here A will be clear from the context, so there will be no ambiguity. We now adapt the inclusion algorithm of [START_REF] Herbreteau | Using non-convex approximations for efficient analysis of timed automata[END_REF] to IEDBMs. Lemma 9. Given IEDBMs Z = (M, P ) 0,δ0 and Z = (N, Q) 0,δ0 , we have ∀δ 0 > 0, ∃ν ∈ [0, δ 0 ), M + νP ⊆ Closure αν (N + νQ), iff, writing Z = N + νQ, there exist x, y ∈ C such that 1. Z x,0 < Z x,0 and Z x,0 ≤ α δ (x) , or Z 0,x < Z 0,x and Z 0,x + α δ (x) ≥ 0 , 2. or Z 0,x + α δ (x) ≥ 0, and Z y,x < Z y,x , and Z y,x ≤ α δ (y) + Z 0,x . Moreover, if this condition doesn't hold, then one can compute δ 1 under which we do have the inclusion M + νP ⊆ Closure αν (N + νQ).

Notation 10

We denote the successor operation followed by LU-abstraction as ExPost(•) = Extra + LU (Post(•)). For the parametric version, we denote PExPost(•)

= PExtra + L δ U δ (PPost(•))
, where the bounds L δ , U δ are implicit. We furthermore denote by c the parametric inclusion check defined by Lemma 9.

We implicitly assume that when a parametric inclusion check c is performed, the upper bound δ 0 is globally updated to the new bound δ 1 given by Lemma 9.

Parametric Cycle Acceleration

In [START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF] a parametric data structure based on the parameterized DBMs of [START_REF] Annichini | Symbolic techniques for parametric reasoning about counter and clock systems[END_REF] was used to represent the state space under all values of δ rather than for small values. The corresponding algorithms are based on linear arithmetics of reals. This results in a more complicated data structure which is also more general. IEDBMs simplify this representation by storing the state space only for small values of δ, that is δ ∈ [0, δ 0 ). To compute cycle accelerations, we recall a result of [START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF] which bounds the number of iterations to compute pre and post fixpoints of a given cycle. Lemma 11 ([20]).

Let N = |C| 2 . For any cycle ρ, if PPost * (ρ) δ ( ) = ∅ then PPost * (ρ) δ ( ) = PPost N (ρ) δ ( ), and if PPre * ρ ( ) = ∅ then PPre * ρ ( ) = Pre N ρ ( ).
Data: Timed automaton A = (L, Inv, 0, C, E), and target location T . 1 Wait := {( 0, Z0) ∞ }, Passed := ∅, ( 0, Z0).K := K0; 2 while Wait = ∅ do Algorithm 1: Symbolic robust safety semi-algorithm. Here ( 0, is the initial state symbolic state, and K0 is a positive constant. We have two containers Wait and Passed storing symbolic states. The search tree is formed by assigning to each visited state ( , Z) a parent denoted ( , Z).parent (Line 16). We also associate to each symbolic state a bound K on width, denoted ( , Z).K.

Symbolic Robust Safety

Our semi-algorithm consists of a zone-based exploration with IEDBMs using the parametric LU-abstraction and the inclusion algorithm c of Lemma 9. It is easy to see that an exploration based on IEDBMs may not terminate in general (see e.g. Fig. 1). Nevertheless, we apply acceleration on well chosen cycles while it is exploring the state space, and it terminated in most of our experiments. To choose the cycles to accelerate, we adopt a lazy approach: we fix a bound K, and run the forward search using IEDBMs until the target is reached or some symbolic state has width greater than K. In the latter case, we examine the prefix of the current state, and accelerate its cycles by Lemma 1. If no new state is obtained, then we increment the bound K for the current branch and continue the exploration. We thus interpret a large width as the accumulation of imprecisions due to cycles. No cycle may be responsible for a large width, in which case we increase the width threshold and continue the exploration.

We establish the correctness of our semi-algorithm in the following lemma. When it answers Unsafe, it has found a path that ends in the target state, and the proof shows that such a run exists in all A ν for ν > 0. If it answers Safe, then it has terminated without visiting the target state. If δ 0 denotes the upper bound on δ after termination, the proof shows that for all ν ∈ [0, δ 0 ), an exact exploration applied on A ν would visit the same symbolic states as our algorithm when the IEDBMs are instantiated with δ ← ν. In other words, the exploration search tree uniformly represents all the search trees that would be generated by an exact algorithm applied on A ν for ν ∈ [0, δ 0 ). Lemma 12 (Correctness). For any timed automaton A and location T , if Algorithm 1 answers Unsafe then for all ν > 0, T is reachable in A ν from the initial state. If it answers Safe, then if δ 0 denotes the upper bound on δ after termination, then for all ν ∈ [0, δ 0 ), A ν does not visit T .

Experimental Evaluation

In this section, we evaluate the performance of our semi-algorithm on several benchmarks from the literature; most of which are available from www.uppaal. org, and have been considered in [START_REF] Kordy | A symbolic algorithm for the analysis of robust timed automata[END_REF], with the exception of the scheduling tests (Sched *) which were constructed from the experiments of [START_REF] Geeraerts | Multiprocessor schedulability of arbitrary-deadline sporadic tasks: Complexity and antichain algorithm[END_REF]. We implemented Alg. 1 in OCaml in a tool called Symrob (symbolic robustness, available from www. ulb.ac.be/di/verif/sankur). We consider two other competing algorithms: the first one is the recently published tool Verifix [START_REF] Kordy | A symbolic algorithm for the analysis of robust timed automata[END_REF] which solves the infinitesimal robust safety problem but does not output any bound on δ. The second algorithm is our implementation of a binary search on the values of δ which iteratively calls an exact model checker until a given precision is reached.

The exact model checking algorithm is a forward exploration with DBMs using LU extrapolation and the inclusion test of [START_REF] Herbreteau | Using non-convex approximations for efficient analysis of timed automata[END_REF] implemented in Symrob. We do not use advanced tricks such as symmetry reduction, federations of zones, and clock decision diagrams; see e.g. [START_REF] Behrmann | Uppaal implementation secrets[END_REF]. The reason is that our goal here is to compare algorithms rather than software tools. These optimizations could be added to the exact model checker but also to our robust model checker (by adapting to IEDBMs), but we leave this for future work.

In Table 1, the number of visited symbolic states (as IEDBMs for Symrob and as DBMs for Verifix) and the running times are given. On most benchmarks Symrob terminated faster and visited less states. We also note that Symrob actually computed the largest δ below which safety holds for the benchmarks CSMA/CD and Fischer. One can indeed check that syntactically enlarging the guards by 1/3 (resp. 1/2) makes the respective classes of benchmarks unsafe (Recall that the upper bound δ 0 is always strict in IEDBMs). On one benchmark, Verifix wrongly classified the model as non-robust, which could be due to a bug or to the presence of non-progress cycles in the model (see [START_REF] Bouyer | Robust model-checking of timed automata via pumping in channel machines[END_REF]).

Table 2 shows the performance of the binary search for varying precision ∈ { 1 10 , 1 20 , 1 40 }. With precision 1 10 , the binary search was sometimes faster than Symrob (e.g. on CSMA/CD), and sometimes slower (e.g. Fischer); moreover, the computed value of δ was underestimated in some cases (e.g. CSMA/CD and Fischer benchmarks). With precision 1 20 , more precision was obtained on δ but at a cost of an execution time that is often worse than that of Symrob and Table 1. Comparison between Symrob (breadth-first search, instantiated with K0 = 10) and Verifix [START_REF] Kordy | A symbolic algorithm for the analysis of robust timed automata[END_REF]. The running time of the exact model checking implemented in Symrob is given for reference in the column "Exact" (the specification was satisfied without enlargement in all models). Note that the visited number of states is not always proportional to the running time due to additional operations performed for acceleration in both cases. The experiments were performed on an Intel Xeon 2.67 GHz machine.

Benchmark

Robust systematically more states to visit. Increasing the precision to 1 40 leads to even longer execution times. On non-robust models, a low precision analysis is often fast, but since the result is inconclusive, one rather increases the precision, leading to high execution times. The binary search can be made complete by choosing the precision exponentially small [START_REF] Bouyer | Robust model-checking of timed automata via pumping in channel machines[END_REF] but this is too costly in practice.

Conclusion

We presented a symbolic procedure to solve the quantitative robust safety problem for timed automata based on infinitesimally enlarged DBMs. A good performance is obtained thanks to the abstraction operators we lifted to the parametric setting, and to the lazy approach used to accelerate cycles. Although no termination guarantee is given, we were able to treat several case studies from the literature, demonstrating the feasability of robustness verification, and the running time was often comparable to that of exact model checking. Our experiments show that binary search is often fast if run with low precision; however, as precision is increased the gain of a parametric analysis becomes clear. Thus, both approaches might be considered depending on the given model.

An improvement over binary search for a problem of refinement in timed games is reported in [START_REF] Legay | Pyecdar: Towards open source implementation for timed systems[END_REF]; this might be extended to our problem as well. Both our tool and Verifix fail when a large number of cycles needs to be accelerated, and this is difficult to predict. An improvement could be obtained by combining our lazy acceleration technique using the combined computation of the cycles of [START_REF] Kordy | A symbolic algorithm for the analysis of robust timed automata[END_REF]. An extension to LTL objectives could be possible using [START_REF] Bouyer | Robust model-checking of linear-time properties in timed automata[END_REF].
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 371112141617 , Z) := pop(Wait), Add ( , Z) to Passed; 4 if = T then return Unsafe; 5 if width(Z) > ( , Z).K then 6 Let π denote the prefix that ends in ( , Z), along edges e1e2 . . . e |π|-1 ; cycle ρ = eiei+1 . . . ej do 8 if PPre * ρ ( ) ∩ πi = ∅ and ∀q ∈ Passed, PPost * (ρ) δ ( ) c q then 9 Add PPost * (ρ) δ ( ) as a successor to πj, and to Wait; 10 end no fixpoint was added then ( , Z).K = ( , Z).K + K0 ; 13 foreach e ∈ E( ) s.t. ∀q ∈ Passed, PExPoste δ (( , Z)) c q do , Z ) := PExPoste δ (( , Z); 15 Add ( , Z ) to Wait; , Z ).parent := ( , Z); , Z ).K := ( , Z).K; 18 end 19 end 20 return Safe;

Table 2 .

 2 Performance of binary search where the initial enlargement is 8, and the required precision is either 1/10, 1/20 or 1/40. Note that when the model is not robust, the binary search is inconclusive. Nonetheless, in these cases, we do know that the model is unsafe for the smallest δ for which we model-checked the model. In these experiments the choice of the initial condition (here, δ = 8) wasn't significant since the first iterations always took negligeable time compared to the case δ < 1.

				-δ	Visited States		Time
			Symrob	Verifix Symrob	Verifix Symrob Verifix Exact
	CSMA/CD 9	Yes -1/3	Yes 147,739 1,064,811	61s	294s 42s
	CSMA/CD 10 Yes -1/3	Yes 398,354 846,098	202s	276s 87s
	CSMA/CD 11 Yes -1/3	Yes 1,041,883 2,780,493 12m	26m	5m
	Fischer 7		Yes -1/2	Yes	35,029	81,600	11s	12s	6s
	Fischer 8		Yes -1/2	Yes 150,651 348,370	45s	240s 24s
	Fischer 9		Yes -1/2	Yes 627,199 1,447,313	4m	160m 2m20s
	MutEx 3		Yes -1000/11 Yes	37,369	984,305	3s	131s	3s
	MutEx 4		No		No	195,709 146,893	16s	41s	4s
	MutEx 4 fixed Yes -1/7	-	5,125,927	-	38m >24h 7m
	Lip Sync		-		No	-	29,647,533 >24h	14h	5s
	Sched A		Yes -1/4	No*	9,217	16,995	11s	248s	2s
	Sched B		No		-	50,383	-	105s >24h 40s
	Sched C		No		No	5,075	5,356	3s	29s	2s
	Sched D		No		No	15,075	928	2s	0.5s 0.5s
	Sched E		No		No	31,566	317	5s	0.5s 0.5s
	Benchmark		Robust -δ		Visited States		Time
			= 1/10	= 1/20	= 1/10 = 1/20 = 1/10 = 1/20 = 1/40
	CSMA/CD 9 Yes -1/4 Yes -5/16 151,366 301,754	43s	85s	123s
	CSMA/CD 10 Yes -1/4 Yes -5/16 399,359 797,914	142s	290s	428s
	CSMA/CD 11 Yes -1/4 Yes -5/16 1,043,098 2,085,224 8m20s	17m	26m
	Fischer 7	Yes -3/8 Yes -7/16 75,983 111,012	15s	21s	31s
	Fischer 8	Yes -3/8 Yes -7/16 311,512 462,163	53s	80s	129s
	Fischer 9	Yes -3/8 Yes -7/16 1,271,193 1,898,392	5m	7m30s	12m
	MutEx 3		Yes -8	Yes -8	37,369	37,369	2s	2s	2s
	MutEx 4		Inconclusive		1,369,963 1,565,572 1m5s	1m15s 1m30s
	MutEx 4 fix'd Yes -5/8 Yes -9/16 6,394,419 9,864,904 9m30s	17m	25m
	Lip Sync		Inconclusive		-	-	>24h	>24h	>24h
	Sched A	Yes -7/16 Yes -15/32 27,820	37,101	6s	9s	11s
	Sched B		Inconclusive		109,478 336,394	35s	140s	20m
	Sched C		Inconclusive		10,813	36,646	2s	6s	56s
	Sched D		Inconclusive		27,312 182,676	2s	9s	60s
	Sched E		Inconclusive		98,168 358,027	6s	17s	95s
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A Proofs of Section 3 (Accelerating Cycles)

In this section, we present the proof of Lemma 1.

Let us first recall two fundamental properties of cycles from [START_REF] Puri | Dynamical properties of timed automata[END_REF]. Define L ρ = {q | q ρ -→ q} the set of limit points of cycle ρ. The set of limit points play an important role in the analysis of enlarged timed automata; it was shown that for any ν > 0, there is a run between any pair of states of L ρ in A ν .

Lemma 13 ([24,14]). For any cycle ρ and ν > 0, and any q, q ∈ L ρ , q (ρ) + ν ---→ q . Now, before proving Lemma 1, we just need the following property on regions which states that L ρ is reachable and co-reachable from r1 , where r denotes a region from which there is a run along ρ.

Lemma 14 ([24,14]). Consider any cycle ρ and region r such that q ρ -→ q for some q, q ∈ r . Then, for any q ∈ r , there exist q 0 , q 1 ∈ L ρ such that q ρ + --→ q 0 , and q 1 ρ + --→ q.

Intuitively, the proof of Lemma 1 follows by the previous two lemmas: in fact, by repeating ρ one can reach any state of L ρ (Lemmas 14, 13), and that from some state of L ρ the desired target state is reachable (Lemma 14). This is the original proof idea of [START_REF] Puri | Dynamical properties of timed automata[END_REF]. Here we follow this idea to generalize it to zones given by the fixpoints Pre * (•) and Post * (•).

Proof (Lemma 1). Note first that both fixpoints converge since all clocks are bounded above so the number of zones in A and A ν is finite. Let q ∈ Pre * ρ ( ). By definitition of this fixpoint, for any n > 0, there exists a run in A 0 with q = q 1 ρ -→ . . . ρ -→ q n . So there exist i < j such that r = reg(q i ) = reg(q j ). Note that since the clocks are bounded r is compact. It follows that r ∩ L ρ = ∅. Moreover, we know by [START_REF] Puri | Dynamical properties of timed automata[END_REF] that the set L ρ is a union of regions. So there exists a region r ⊆ r such that r ⊆ L ρ . Now, because all guards are closed, if r is reachable by repeating ρ, r is also reachable along the same path. In other terms, q ρ + --→ q 0 for some q 0 ∈ L ρ . Now, similarly, for any q ∈ Post * (ρ)ν ( ), we consider a long run q 1 (ρ)ν ---→ . . .

(ρ)ν

---→ q n = q , so that some region is seen twice, and we deduce (as above) that L ρ q 1 (ρ) + ν ---→ q . Furthermore, by Lemma 13, we have

which proves the claim.

B Proofs of Section 4

B.1 Operations on IEDBMs

Proof (Lemma 3). We define the minimum as follows. min (m, p) 0,δ0 , (n, q) 0,δ0 =

1 Here, r denotes the topological closure of r.

If m ≤ n, p ≤ q, then clearly m + νp ≤ n + νq for all ν ≥ 0. In particular, this holds for ν ∈ [0, ν). If m < n and p > q, then m + νp ≤ n + νq ⇔ ν ≤ n-m p-q . The second line follows. The other two cases are symmetric.

Proof (Lemma 4). As for usual DBMs, we consider the Floyd-Warshall shortest path algorithm applied on the matrix (M, P ) seen as an adjacency matrix. We recall the algorithm:

Note that the validity of this reduction algorithm applied on usual DBMs -i.e. with P = 0, is well known (see [START_REF] Bengtsson | Timed automata: Semantics, algorithms and tools[END_REF]).

The algorithm terminates after performing |C 0 | 3 operations on the components of the matrix. Let (M , P ) 0,δ1 denote the result of the above algorithm applied on IEDBM (M, P ) 0,δ0 . For all ν ∈ [0, δ 1 ), let A ν = M + νP , and let A ν be the result of the above reduction algorithm applied on the DBM A ν . We know that all A ν are reduced for ν ∈ [0, δ 1 ). Now, by unraveling the computations of the algorithm, each component x, y of (M , P ) can be written as a finite expression (of depth O(|C 0 | 3 )) involving the components of (M, P ). Moreover, by definition of the operations on IEDBMs, this equality holds when we instantiate δ by any ν ∈ [0, δ 1 ). In particular, we must have A ν [x, y] = (M -νP )[x, y]. In fact, the algorithm applied on A ν performs the same operations in the same order, and the minima are resolved in favor of the same expression, because ν is assumed to be in [0, δ 1 ). It follows that each M -νP is a reduced DBM.

It is now easy to see that (M , P ) is a reduced IEDBM. In fact, assuming otherwise means that for some x, y, z ∈ C 0 , (M , P )

for some δ 2 > 0. This contradicts the fact that A ν is reduced.

Proof (Lemma 5).

Recall that all operations on classic DBMs consist in first modifying the components of the given DBM, and then reducing [START_REF] Bengtsson | Timed automata: Semantics, algorithms and tools[END_REF].

For the intersection of two DBMs N 1 + νQ 1 , N 2 + νQ 2 , one first assigns to each cell (x, y) the minimum of (N 1 + νQ 1 )[x, y] and (N 2 + νQ 2 )[x, y], and then reduces the resulting DBM. For IEDBMs, one similarly assigns the minimum to each cell according to Lemma 3. After this operation, all cells are equal to min((N 1 + νQ 1 ), (N 2 + νQ 2 )) for all ν ∈ [0, δ 1 ), where δ 1 is the bound on δ obtained after these updates. After reduction by Lemma 4, let δ 2 denote the new upper bound on δ. Then for all ν ∈ [0, δ 2 ), the obtained IEDBM is equal, when δ is instantiated to ν, to the reduced DBM (N 1 + νQ 1 ) ∩ (N 2 + νQ 2 ).

The reset operation requires one to free all constraints on the rows and column involving R (replacing them with ∞), and then setting each column x ∈ R to 0, and reducing. The time successors operation is defined by freeing the first column (that is, removing all upper bounds), and reducing. Similarly to the intersection case, because each operation only requires a finite number of steps, it is easily shown that when these operations are performed on IEDBM (M, P ), the resulting IEDBM represents the result of the corresponding operation applied on M -νP for small enough ν.

In all cases one modifies each component at most one, and then reduces so the overall complexity of each operation is O(|C 0 | 3 ).

Proof (Lemma 6). Assume PPost (e1) δ (e2) δ ...(en-1) δ (( , Z)) = ( , Z ) 0,δ0 , and ( , Z ) 0,δ0 = ∅. By 5, it follows by a straightforward induction on the length of the given path that

Then the existence of the stated run follows from the properties of the non-parametric zones and the Post(•) operation.

Proof (Lemma 7). For the originial definition of Extra + LU , these properties are proven in [START_REF] Bouyer | Forward analysis of updatable timed automata[END_REF][START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF]. However the original definition takes into account strict and non-strict inequalities in DBMs, and the third case of (1) assigns (-U y , <). Here, we only need to prove that the modified operator is still sound and complete for reachability.

If is sound and complete, it follows that Extra + LU is also sound and complete.

B.2 Parametric Abstractions

Proof (Lemma 8). The proof follows the same ideas for IEDBMs seen above. For fixed ν > 0, one computes Extra + LU (M + νP ) simply by replacing M by M + νP in (1), L by L ν , and U by U ν . But the definition of Extra + LU relies on a finite number of inequalities whose satisfactions are constant for computable small enough δ 0 . So the result follows from Lemma 3.

Before proving the correctness of the parametric inclusion test of Lemma 9, we recall the exact inclusion test of [START_REF] Herbreteau | Using non-convex approximations for efficient analysis of timed automata[END_REF] for DBMs.

Lemma 15 ([19]

). Given a timed automaton A, its LU-bounds L, U and α = max(L, U ), if M and N denote two DBMs, we have M ⊆ Closure α (N ) if, and only if there exist x, y ∈ C such that 1. N x,0 < M x,0 and N x,0 ≤ α(x), or 2. N 0,x < M 0,x and M 0,x + α(x) ≥ 0, or 3. M 0,x + α(x) ≥ 0, and N y,x < M y,x , and N y,x ≤ α(y) + M 0,x . Proof (Lemma 9). Let us recall the property to be tested:

Assume there exist x, y ∈ C satisfying one of the conditions, say Z x,0 < Z x,0 and Z x,0 ≤ α δ (x). For ν > 0, let us define Z ν = M + νP , and Z ν = N + νQ. Let δ 1 > 0 small enough so that

for all ν ∈ [0, δ 1 ). By Lemma 15, this implies that M + νP ⊆ Closure αν (N + νQ) for all ν ∈ [0, δ 1 ), so (3) holds.

Conversely, assume that none of the three conditions hold for no pair x, y ∈ C. If φ 1 (x, y), φ 2 (x, y), φ 3 (x, y) denote the three conditions written for a pair x, y ∈ C, then we have Φ = ∧ x,y∈C (¬φ 1 (x, y) ∧ ¬φ 2 (x, y) ∧ ¬φ 3 (x, y)). So let δ 1 > 0 be small enough such that Φ holds when when instantiated by any ν ∈ [0, δ 1 ) (that is, when written with Z ν instead of Z, and Z ν instead of Z ). By Lemma 15, this means that for all ν ∈ [0, δ 1 ), M + νP ⊆ Closure αν (N + νQ) which is the converse of (3).

C Proof of Lemma 12

Assume the algorithm returns Unsafe. We consider the path π of the search tree from the initial state to location T . Let ( 1 , Z 1 ) . . . ( n , Z n ) be the set of symbolic states visited by the path, and e 1 e 2 . . . e n-1 the transitions along the search tree. By construction, each e j is either a regular edge, in which case ( j+1 , Z j+1 ) = PExPost (ej ) δ ( j , Z j ), or it is a cycle ρ that starts at location j , such that PPre * ρ ( ) ( j , Z j ) = ∅ and ( j+1 , Z j+1 ) = PPost * (ρ) δ ( ). Note that the algorithm rather checks

, by definition of the PPre * ρ ( ) fixpoint. For all ν > 0, we construct a run from the initial state to T in A ν by induction on the number of accelerated cycles visited by π. Let us assume that ν ∈ (0, δ 0 ] where δ 0 is smaller than all upper bounds computed during the execution of the algorithm. We will construct a run for A ν for arbitrary ν ∈ (0, δ 0 ]. Moreover, since any such run is also a run of A ν for ν > δ 0 , the result will follow.

For the base case, assume that π is only made of regular edges. We have then

Assume now that π contains at least one accelerated cycle. Consider e i0 the last such accelerated cycle. By the base case, from some state q 1 in ( i0+1 , Z i0+1 )[δ ← ν], there is a run r 1 to ( n , Z n )[δ ← ν] along edges (e i0+1 ) ν . . . (e n-1 ) ν . Let us choose any state q 2 ∈ PPre * ρ ( ) ( i0 , Z i0 ) [δ ← ν]. By Lemma 1, there is a run r 2 from q 2 to q 1 . By induction, there is a run r 3 in A ν from the initial state to q 2 . Then, r 3 r 2 r 1 yields the desired run.

Assume the algorithm returns Safe. Let δ 0 denote the upper bound on δ after the termination of the algorithm. We are going to show that A ν is safe for all ν ∈ [0, δ 0 ). We define algorithm Alg ν from Algorithm 1 by instantiating the parameter δ by ν in IEDBMs. The resulting symbolic states are now written as M + νP which are simply DBMs. The new algorithm will work with DBMs, but we will still write the symbolic states in the form M + νP . This allows us to define the width in this case which is defined again as the maximal of the components of P . More precisely, Alg ν is defined by the following mofidications applied on Algorithm 1: All occurrences of δ are replaced by ν, and each parametric operation is replaced by its non-parametric counterpart, e.g. PPost(•) by Post(•). In other terms, given a timed automaton A, Alg ν simply explores the state space of the timed automaton A ν using DBMs and moreover applies acceleration on some cycles.

Let us first argue that if Alg ν answers Safe, then A ν is indeed safe. This is easy to see since if we ignore the acceleration phase, Alg ν is simply the standard forward exploration algorithm using DBMs and LU extrapolation, and the post operation is always applied on the guards enlarged by ν. This suffices to prove that when Alg ν answers Safe, A ν is safe. In fact, the acceleration phase can only add new states to explore, so any state ( , Z) visited in the basic forward exploration (without acceleration) will be still visited; more precisely, a state ( , Z ) with Z c Z will be visited by Alg ν . So if location T is reachable in A ν , Alg ν would visit a state at this location. (As a side note, observe that by Lemma 1, it is easy to see that the acceleration phase actually only yields states that are reachable in A ν . So Alg ν is sound and complete.)

Now, to finish the proof, we are going to show that if ( , Z) denotes the parametric symbolic state visited by Algorithm 1 at iteration i, then Alg ν visits the state ( , Z)[δ ← ν] at step i. In other terms, Alg ν constructs exactly the same search tree as Alg. 1 where δ is instantiated to ν. This follows immediately by the properties of the IEDBMs. Recall that by the choice of δ 0 all operations performed on IEDBMs during the execution of Alg. 1 hold when we instantiate the parameter δ to any value in [0, δ 0 ). In particular, for each parametric successor computation of Alg. 1, Alg ν performs the same computation where δ is replaced by ν, and the same inclusion tests. Now, if we assume, towards a contradiction, that Alg ν encounters location T in the search tree, this shows that the same prefix (where ν is replaced by parameter δ) is also explored by Alg. 1.