Zhiqiang Gao 
  
Quansheng Liu 
email: quansheng.liu@uinv-ubs.fr
  
SECOND-ORDER ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF PARTICLES IN A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME

Keywords: January 4, 2016. 2010 Mathematics Subject Classification. Preliminary 60K37, 60J10, 60F05, 60J80 branching random walk, supercritical branching process, asymptotic expansions, central limit theorems

We consider a branching random walk in which offspring distribution and moving laws both depend on an independent and identically distributed environment indexed by the time. For A ⊂ R , let Z n (A) be the number of particles of generation n located in A. We give the second-order asymptotic expansion for the counting measure Z n (•) with appropriate normalization.

INTRODUCTION

The branching random walks (BRW) has been widely studied by many people. It consists of two main ingredients: branching processes and random walks. The model is of great importance and is closely related to many fields such as multiplicative cascades, infinite particle systems, Quicksort algorithms, random fractals, and Gaussian free fields (see e.g. [START_REF] Liu | Fixed points of a generalized smoothing transformation and applications to branching processes[END_REF][START_REF] Liu | On generalized multiplicative cascades[END_REF][START_REF] Zeitouni | Branching random walks and Gaussian fields[END_REF]).

In this article, we aim to develop the asymptotic expansions in the central limit theorem for a branching random walk with a time-dependent random environment. The goal is twofold. On the one hand, although central limit theorems for branching random walks have been well studied and and the asymptotic expansions for lattice BRW were considered recently by [START_REF] Grübel | Asymptotic expansions for profiles of lattice branching random walks[END_REF], the asymptotic expansions (even second order) in central limit theorems for nonlattice BRW are unknown. On the other hand, we will perform our research in a more general framework, i.e. for a branching random walk with a random environment in time, which is a natural generalization of classical BRW formulated in Harris [START_REF] Harris | The theory of branching processes[END_REF].

The central limit theorem for branching random walks has been studied since 1963 by Harris([20, Chapter III. §16]), who initiated the question and conjectured the theorem; then this conjecture was proved in various forms and for various models in [2, 7, 17, 24-26, 31, 37, 38]. Later for branching Wiener processes (also for branching random motion with simple symmetric walk), Révész (1994, [33]) investigated the speed of above convergence and conjectured the exact convergence rate, which was confirmed by Chen(2001, [START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF])(see also [START_REF] Kabluchko | Distribution of levels in high-dimensional random landscapes[END_REF] for another proof) and was extended to a general strong non-lattice case including non-Gaussian displacements by Gao and Liu(2014,[16]). Révész, Rosen and Shi (2005, [START_REF] Révész | Large-time asymptotics for the density of a branching Wiener process[END_REF]) gave large time asymptotic expansion in local limit theorem of branching Winer processes. The exact convergence rate obtained in [START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF][START_REF] Gao | Exact convergence rate in the central limit theorem for a branching random walk with a random environment in time[END_REF] can be viewed as the first order asymptotic expansion in the central limit theorem for the models therein. Inspired by those work, a natural question is what about the second asymptotic expansion( or bigger order).

In this article, we obtain the second asymptotic expansion for a branching random walk with a random environment in time. This model first appeared in Biggins (2004, [8]) as a particular case of a general framework, and some related limit theorems were surveyed in Liu (2007, [30]). The reader may refer to [6, 9, 11-13, 19, 21, 31, 38] for other models of branching random walks in random environments. For the model presented here, Gao, Liu and Wang (2014, [START_REF] Gao | Central limit theorems for a branching random walk with a random environment in time[END_REF]) showed central limit theorems on this model and further Gao and Liu (2014, [START_REF] Gao | Exact convergence rate in the central limit theorem for a branching random walk with a random environment in time[END_REF]) figured out the first order asymptotic expansion. The study is a continuation of that in [START_REF] Gao | Exact convergence rate in the central limit theorem for a branching random walk with a random environment in time[END_REF][START_REF] Gao | Central limit theorems for a branching random walk with a random environment in time[END_REF].

The article is organized as follows. In Section 2, we recall the model branching random walk with a random environment in time and introduce the basic assumptions and notation, then we give the second-order asymptotic expansion for the distribution of particles for the model in Theorem 2.1. We give the proof of Theorem 2.1 in Section 3 2. SECOND-ORDER ASYMPTOTIC FOR BRWRE 2.1. Description of the model. The model so called a branching random walk with a random environment in time can be formulated as follows [START_REF] Gao | Exact convergence rate in the central limit theorem for a branching random walk with a random environment in time[END_REF][START_REF] Gao | Central limit theorems for a branching random walk with a random environment in time[END_REF]. Let (Θ, Ô) be a probability space, and (Θ N , Ô ⊗N ) = (Ω, τ ) be the corresponding product space. Let θ be the usual shift transformation on Ω. For a sequence ξ ∈ Ω, we denote ξ = (ξ 1 , ξ 2 , • • • ), where ξ k are the k-th coordinate function on Ω. Then ξ = (ξ n ) will serve as an independent and identically distributed environment. Let θ be the usual shift transformation on

Θ N : θ(ξ 0 , ξ 1 , • • • ) = (ξ 1 , ξ 2 , • • • ). Each realization of ξ n corresponds to two probability distri- butions: the offspring distribution p(ξ n ) = (p 0 (ξ n ), p 1 (ξ n ), • • • ) on N = {0, 1, • • • }, and the moving distribution G(ξ n ) on R.
Given the environment ξ = (ξ n ), the process is a branching random walk in varying environment, which evolves according to the following rules:

• At time 0, an initial particle ∅ of generation 0 is located at the origin S ∅ = 0; • At time 1, ∅ is replace by N = N ∅ new particles of generation 1, and for 1 ≤ i ≤ N, each particle ∅i moves to S ∅i = S ∅ + L i , where N, L 1 , L 2 , • • • are mutually independent, N has the law p(ξ 0 ), and each L i has the law G(ξ 0 ). By definition, given the environment ξ, the random variables N u and L u , indexed by all the finite sequences u of positive integers, are independent of each other. For each realization ξ ∈ Θ N of the environment sequence, let (Γ, G, P ξ ) be the probability space under which the process is defined (when the environment ξ is fixed to the given realization).

• At time n+1, each particle u = u 1 u 2 • • • u n of generation n is replaced by N u new particles of generation n+ 1, with displacements L u1 , L u2 , • • • , L uNu . That means for 1 ≤ i ≤ N u ,
The probability P ξ is usually called quenched law. The total probability space can be formulated as the product space (Θ N × Γ, E N ⊗ G, P), where P = E(δ ξ ⊗ P ξ ) with δ ξ the Dirac measure at ξ and E the expectation with respect to the random variable ξ, so that for all measurable and positive g defined on Θ N × Γ, we have

Θ N ×Γ g(x, y)dP(x, y) = E Γ g(ξ, y)dP ξ (y).
The total probability P is usually called annealed law. The quenched law P ξ may be considered to be the conditional probability of P given ξ. The expectation with respect to P will still be denoted by E; there will be no confusion for reason of consistence. The expectation with respect to P ξ will be denoted by E ξ .

Let T be the genealogical tree with {N u } as defining elements. By definition, we have:

(a) ∅ ∈ T; (b) ui ∈ T implies u ∈ T; (c) if u ∈ T, then ui ∈ T if and only if 1 ≤ i ≤ N u .
Let T n = {u ∈ T : |u| = n} be the set of particles of generation n, where |u| denotes the length of the sequence u and represents the number of generation to which u belongs.

2.2. The main results. Let Z n (•) be the counting measure of particles of generation n:

for B ⊂ R, Z n (B) = u∈Tn 1 B (S u ).
Then {Z n (R)} constitutes a branching process in a random environment (see e.g. [START_REF] Athreya | On branching processes with random environments. I. Extinction probabilities[END_REF][START_REF] Athreya | Branching processes with random environments. II. Limit theorems[END_REF][START_REF] Smith | On branching processes in random environments[END_REF]). For n ≥ 0, let N n (resp. L n ) be a random variable with distribution p(ξ n ) (resp. G(ξ n )) under the law P ξ , and define

m n = m(ξ n ) = E ξ N n , Π n = m 0 • • • m n-1 , Π 0 = 1.
Throughout the paper, we shall always assume the following conditions:

E ln m 0 > 0 and E 1 m 0 N 0 ln + N 0 1+λ < ∞, (2.1) 
where the value of λ > 0 will be specified in the hypothesis of the theorem. Under these conditions, the underlying branching process is supercritical and the number of the particles tends to infinity with positive probability( [START_REF] Tanny | A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means[END_REF]). Moreover, it is well known that in supercritical case, the normalized sequence

W n = Π -1 n Z n (R)
, n ≥ 1 constitutes a martingale with respect to the filtration F n defined by:

F 0 = {∅, Ω}, F n = σ(ξ, N u : |u| < n), for n ≥ 1.
Under (2.1), the limit W = lim n W n exists a.s. with EW = 1 (see for example [START_REF] Athreya | Branching processes with random environments. II. Limit theorems[END_REF]); W > 0 almost surely (a.s.) on the explosion event {Z n (R) → ∞} ( [START_REF] Tanny | A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means[END_REF]).

For n ≥ 0, define

l n = E ξ L n , σ (ν) n = E ξ L n -l n ν , for ν ≥ 2; ℓ n = n-1 k=0 l k , s (ν) n = n-1 k=0 σ (ν) k , for ν ≥ 2, s n = s (2) n 1/2 .
We will need the following conditions on the motion of particles:

P lim sup |t|→∞ E ξ e it L 0 < 1 > 0 and E | L 0 | η < ∞, (2.2) 
where the value of η > 1 is to be specified in the hypothesis of the theorems. The first hypothesis means that Cramér's condition about the characteristic function of L 0 holds with positive probability.

Let {N 1,n } and {N 2,n } be two sequences of random variables, defined respectively by

N 1,n = 1 Π n u∈Tn (S u -ℓ n ) and N 2,n = 1 Π n u∈Tn (S u -ℓ n ) 2 -s 2 n .
Due to [16, Proposition 2.1 and 2.2], they are martingales with respect to the filtration (D n ) defined by

D 0 = {∅, Ω}, D n = σ(ξ, N u , L ui : i ≥ 1, |u| < n), for n ≥ 1;
and if the conditions (2.1) and (2.2) hold for λ > 2, η > 4, then these two martingales converges a.s. :

V 1 := lim n→∞ N 1,n and V 2 := lim n→∞ N 2,n exist a.s. in R. (2.3) Set Z n (t) = Z n ((-∞, t]), φ(t) = 1 √ 2π e -t 2 /2 , Φ(t) = t -∞ φ(x)dx, t ∈ R.
as usual, we denote by H m (•) the Chebyshev-Hermite polynomial of degree m, that is

H m (x) = m! ⌊ m 2 ⌋ k=0 (-1) k x m-2k k!(m -2k)!2 k .
More precisely, we need the following polynomials:

H 0 (x) = 1, H 1 (x) = x, H 2 (x) = x 2 -1, H 3 (x) = x 3 -3x, H 4 (x) = x 4 -6x 2 + 3, H 5 (x) = x 5 -10x 3 + 15x.
Then we can state our main result as follows:

Theorem 2.1. Assume (2.1) for λ > 18, (2.2) for η > 24 and Em -δ 0 < ∞ for some δ > 0.

Then for t ∈ R, as n → ∞ , 1 Π n Z n (ℓ n + s n t) = Φ(t)W - s (3) n 6s 3 n H 2 (t)φ(t)W - 1 s n φ(t)V 1 + 1 n R n (t) + o 1 n a.s. , (2.4) 
where

R n (t) = n - 1 2s 2 n H 1 (t)φ(t)V 2 - s (3) n 6s 4 n H 3 (t)φ(t)V 1 - (s (3) n ) 2 72s 6 n H 5 (t) + n j=1 σ (4) j -3 σ (2) j 2 24s 4 n H 3 (t) φ(t)W . (2.5)
When we assume Θ is singleton (i.e. the constant environment) and we take the distribution of L as N (0, 1) , the model becomes the branching Wiener process studied in [START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF] and we get a generalization of Chen's work. Note in this case, the condition (2.2) is automatically always valid for any η > 0.

Corollary 2.2. For branching Wiener process, assume (2.1) for λ > 18. Then for t ∈ R,

as n → ∞ , 1 m n Z n ( √ nt) = Φ(t)W - 1 √ n φ(t)V 1 - 1 2n H 1 (t)φ(t)V 2 + o 1 n a.s.
Remark 2.3. This corollary gives the second order asymptotic expansion of the central limit theorem for a supercritical branching Wiener process, and it generalizes Chen's result [START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF] which may be viewed as the first order expansion.

For simplicity and without loss of generality, hereafter we will always assume that l n = 0 (otherwise, we only need to replace L ui by L uil n ) and hence ℓ n = 0. In the following, we will use K ξ as a constant depending on the environment, which may change from line to line.

PROOF OF THE MAIN THEOREM

3.1. Notation and A key decomposition. We first introduce some notation which will be used in the sequel.

In addition to the σ-fields F n and D n , the following σ-fields will also be used:

I 0 = {∅, Ω}, I n = σ(ξ k , N u , L ui : k < n, i ≥ 1, |u| < n) for n ≥ 1.
For conditional probabilities and expectations, we write:

P ξ,n (•) = P ξ (•|D n ), E ξ,n (•) = E ξ (•|D n ); P n (•) = P(•|I n ), E n (•) = E(•|I n ); P ξ,Fn (•) = P ξ (•|F n ), E ξ,Fn (•) = E ξ (•|F n ).
As usual, we write

N * = {1, 2, 3, • • • } and denote by U = ∞ n=0 (N * ) n
the set of all finite sequences, where (N * ) 0 = {∅} contains the null sequence ∅.

For all u ∈ U, let T(u) be the shifted tree of T at u with defining elements {N uv }: we have 1)

∅ ∈ T(u), 2) vi ∈ T(u) ⇒ v ∈ T(u) and 3) if v ∈ T(u), then vi ∈ T(u) if and only if 1 ≤ i ≤ N uv . Define T n (u) = {v ∈ T(u) : |v| = n}. Then T = T(∅) and T n = T n (∅).
For u ∈ (N * ) k (k ≥ 0) and n ≥ 1, let S u be the position of u and write

Z n (u, B) = v∈Tn(u) 1 B (S uv -S u ), Z n (u, t) = Z n u, (-∞, t] .
Then the law of Z n (u, B) under P ξ is the same as that of Z n (B) under P θ k ξ . Define

W n (u, B) = Z n (u, B)/Π n (θ k ξ), W n (u, t) = W n (u, (-∞, t]), W n (B) = Z n (B)/Π n , W n (t) = W n ((-∞, t]).
By definition, we have

Π n (θ k ξ) = m k • • • m k+n-1 , Z n (B) = Z n (∅, B), W n (B) = W n (∅, B), W n = W n (R).
For each n, we choose an integer k n < n as follows. Let β be a real number such that

max { 3 λ , 4 η } < β < 1 6 and set k n = ⌊n β ⌋. Write X n (t) = 1 Π n Z n (s n t) -Φ(t)W + s (3) n 6s 3 n H 2 (t)φ(t)W + 1 s n φ(t)V 1 . (3.1) By virtue of Z n (s n t) = u∈T kn Z n-kn (u, s n t -S u ),
we have the following important decomposition:

X n (t) = A n + B n + C n , (3.2) 
with

A n = 1 Π kn u∈T kn [W n-kn (u, s n t -S u ) -E ξ,kn W n-kn (u, s n t -S u )] , B n = 1 Π kn u∈T kn E ξ,kn W n-kn (u, s n t -S u ) -Φ(t) + s (3) n 6s 3 n H 2 (t)φ(t) + 1 s n φ(t)S u , C n = Φ(t)(W kn -W ) - s (3) n 6s 3 n H 2 (t)φ(t)(W kn -W ) + 1 s n φ(t)(V 1 -N 1,kn ).

3.2.

The Edgeworth expansion for sums of independent random variables. We next present the Edgeworth expansion for sums of independent random variables, which is needed to prove the main theorem. Let us recall the theorem used in this paper obtained by Bai and Zhao(1986, [START_REF] Bai | Edgeworth expansions of distribution functions of independent random variables[END_REF]), that generalizing the case for i.i.d random variables (cf. [32, P.159, Theorem 1]).

Let {X j } be independent random variables, s atisfying for each j ≥ 1

EX j = 0, E|X j | k < ∞ with some integer k ≥ 3. (3.3)
We write B 2 n = n j=1 EX 2 j and only consider the nontrivial case B n > 0. Let γ νj be the ν-order cumulant of X j for each j ≥ 1. Write

λ ν,n = n (ν-2)/2 B -ν n n j=1 γ νj , ν = 3, 4 • • • , k; Q ν,n (x) = ′ (-1) ν+2s Φ (ν+2s) (x) ν m=1 1 k m ! λ m+2,n (m + 2)! km = -φ(x) ′ H ν+2s-1 (x) ν m=1 1 k m ! λ m+2,n (m + 2)! km ,
where the summation ′ is carried out over all nonnegative integer solutions (k 1 , . . . , k ν ) of the equations:

k 1 + • • • + k ν = s and k 1 + 2k 2 + • • • + νk ν = ν. For 1 ≤ j ≤ n and x ∈ R, define F n (x) = P B n -1 n j=1 X j ≤ x , v j (t) = Ee itX j ; Y nj = X j 1 {|X j |≤Bn} , Z (x) nj = X j 1 {|X j |≤Bn(1+|x|)} , W (x) nj = X j 1 {|X j |>Bn(1+|x|)} .
The Edgeworth expansion theorem can be stated as follows.

Lemma 3.1 ([5]). Let n ≥ 1 and X 1 , • • • , X n be a sequence of independent random variables satisfying (3.3) and B n > 0. Then for the integer k ≥ 3, |F n (x) -Φ(x) - k-2 ν=1 Q νn (x)n -1/2 | ≤ C(k) (1 + |x|) -k B -k n n j=1 E|W (x) nj | k + (1+|x|) -k-1 B -k-1 n n j=1 E|Z (x) nj | k+1 +(1+|x|) -k-1 n k(k+1)/2 sup |t|≥δn 1 n n j=1 |v j (t)|+ 1 2n n , where δ n = 1 12 B 2 n ( n j=1
E|Y nj | 3 ) -1 , C(k) > 0 is a constant depending only on k.

Proof of Main Theorem.

To prove the main theorem, by use of the Birkhoff ergodic Theorem, we will prove the following equivalent form:

nX n (t) n→∞ ---→ R(t) a.s. , (3.4) 
where

R(t) = lim n→∞ R n (t) with R(t) = - H 1 (t)φ(t)V 2 2Eσ (2) 0 - Eσ (3) 0 H 3 (t)φ(t)V 1 6(Eσ (2) 0 ) 2 - (Eσ (3) 0 ) 2 H 5 (t) 72(Eσ (2) 0 ) 3 + E(σ (4) 0 -3 σ (2) 0 2 )H 3 (t) 24(Eσ (2) 0 ) 2 φ(t)W.
On the basis of the decomposition (3.2), we divide the proof of (3.4) into three lemmas. Proof of Lemma 3.2. For ease of notation, we define for |u| = k n ,

X n,u = W n-kn (u, s n t -S u ) -E ξ,kn W n-kn (u, s n t -S u ), Xn,u = X n,u 1 {|Xn,u|<Π kn } , Ān = 1 Π kn u∈T kn Xn,u .
Then we see that |X n,u | ≤ W n-kn (u) + 1.

To prove Lemma 3.2, we will use the extended Borel-Cantelli Lemma. We can obtain the required result once we prove that ∀ε > 0,

∞ n=1 P kn (|nA n | > 2ε) < ∞. (3.8) 
Notice that

P kn (|A n | > 2ε n ) ≤ P kn (A n = Ān ) + P kn (| Ān -E ξ,kn Ān | > ε n ) + P kn (|E ξ,kn Ān | > ε n
).

We will proceed the proof in 3 steps.

Step 1 We first prove that

∞ n=1 P kn (A n = A n ) < ∞. (3.9) 
To this end, define

W * = sup n W n ,
and we need the following result : We observe that

P kn (A n = A n ) ≤ u∈T kn P kn (X n,u = X n,u ) = u∈T kn P kn (|X n,u | ≥ Π kn ) ≤ u∈T kn P kn (W n-kn (u) + 1 ≥ Π kn ) = W kn r n P(W n-kn + 1 ≥ r n ) rn=Π kn ≤ W kn E (W n-kn + 1)1 {W n-kn +1≥rn} rn=Π kn ≤ W kn E (W * + 1)1 {W * +1≥rn} rn=Π kn ≤ W * (ln Π kn ) -λ E(W * + 1)(ln(W * + 1)) λ ≤ K ξ W * n -λβ E(W * + 1)(ln(W * + 1)) λ ,
where the last inequality holds since

1 n ln Π n → E ln m 0 > 0 a.s. , (3.11) 
and k n ∼ n β . By the choice of β and Lemma 3.5, we obtain (3.9).

Step 2. We next prove that ∀ε > 0,

∞ n=1 P kn (|A n -E ξ,kn A n | > ε n ) < ∞. (3.12)
Take a constant b ∈ (1, e E ln m 0 ). Observe that ∀u ∈ T kn , n ≥ 1, Then we have that

E kn X2 n,u = ∞ 0 2xP kn (| Xn,u | > x)dx = 2 ∞ 0 xP kn (|X n,u |1 {|Xn,u|<Π kn } > x)dx ≤ 2 Π kn 0 xP kn (|W n-kn (u) + 1| > x)dx = 2 Π kn 0 xP(|W n-kn + 1| > x)dx ≤ 2 Π kn 0 xP(W * + 1 > x)dx
∞ n=1 P kn (|A n -E ξ,kn A n | > ε n ) = ∞ n=1 E kn P ξ,kn (|A n -E ξ,kn A n | > ε n ) ≤ ε -2 ∞ n=1 n 2 E kn   Π -2 kn u∈T kn E ξ,kn X 2 n,u   = ε -2 ∞ n=1 n 2   Π -2 kn u∈T kn E kn X 2 n,u   ≤ ε -2 ∞ n=1 n 2 W kn Π kn 2E(W * + 1)(ln(W * + 1) λ )(b kn + (Π kn -b kn )(k n ln b) -λ ) + 9 ≤ 2ε -2 W * E(W * + 1)(ln(W * + 1) λ ) ∞ n=1 n 2 Π kn b kn + ∞ n=1 n 2 (k n ln b) -λ + 9ε -2 W * ∞ n=1 n 2 Π kn .
By (3.11) and λβ > 3, the three series in the last expression above converge under our hypothesis and hence (3.12) is proved.

Step 3. Observe

P kn |E ξ,kn Ān | > ε n ≤ n ε E kn |E ξ,kn Ān | = n ε E kn 1 Π kn u∈T kn E ξ,kn Xn,u = n ε E kn 1 Π kn u∈T kn (-E ξ,kn X n,u 1 {|Xn,u|≥Π kn } ) ≤ n ε 1 Π kn u∈T kn E kn (W n-kn (u) + 1)1 {W n-kn (u)+1≥Π kn } = nW kn ε E(W n-kn + 1)1 {W n-kn +1≥rn} rn=Π kn ≤ W * ε n E(W * + 1)1 {W * +1≥rn} rn=Π kn ≤ W * ε n (ln Π kn ) λ E(W * + 1) ln λ (W * + 1) ≤ W * ε K ξ n 1-λβ E(W * + 1) ln λ (W * + 1).
Then by (3.11) and λβ > 2, it follows that

∞ n=1 P kn |E ξ,kn Ān | > ε n < ∞.
Combining Steps 1-3, we obtain (3.8). Hence the lemma is proved.

Proof of Lemma 3.3. For ease of reference, we introduce some notation:

κ 1,n = 1 6 (s 2 n -s 2 kn ) -3/2 (s (3) n -s (3) kn ), D 1 (x) = -H 2 (x)φ(x), κ 2,n = 1 72 (s 2 n -s 2 kn ) -3 (s (3) n -s (3) kn ) 2 , D 2 (x) = -H 5 (x)φ(x), κ 3,n = 1 24 (s 2 n -s 2 kn ) -2 n-1 j=kn (σ (4) j -3 σ (2) j 2 ), D 3 (x) = -H 3 (x)φ(x).
By the properties of the Chebyshev-Hermite polynomials, we know that

D ′ 1 (x) = H 3 (x)φ(x). Observe that B n = B n1 + B n2 + B n3 + B n4 + B n5 + B n6 , (3.13) 
where

B n1 = 1 Π kn u∈T kn 1 {|Su|>kn} E ξ,kn W n-kn (u, s n t -S u ) -Φ(t)- s (3) n 6s 3 n (1 -t 2 )φ(t) + 1 s n φ(t)S u , B n2 = 1 Π kn u∈T kn 1 {|Su|≤kn} E ξ,kn W n-kn (u, s n t -S u ) -Φ s n t -S u (s 2 n -s 2 kn ) 1/2 - 3 ν=1 κ ν,n D ν s n t -S u (s 2 n -s 2 kn ) 1/2 , B n3 = 1 Π kn u∈T kn 1 {|Su|≤kn} Φ s n t -S u (s 2 n -s 2 kn ) 1/2 -Φ(t) + 1 s n φ(t)S u , B n4 = 1 Π kn u∈T kn 1 {|Su|≤kn} κ 1,n D 1 s n t -S u (s 2 n -s 2 kn ) 1/2 - s (3) n 6s 3 n D 1 (t) , B n5 = κ 2,n 1 Π kn u∈T kn 1 {|Su|≤kn} D 2 s n t -S u (s 2 n -s 2 kn ) 1/2 , B n6 = κ 3,n 1 Π kn u∈T kn 1 {|Su|≤kn} D 3 s n t -S u (s 2 n -s 2 kn ) 1/2 .
The lemma will be proved once we show that a.s.

nB n1 n→∞ ---→ 0, (3.14) nB n2 n→∞ ---→ 0, (3.15) nB n3 n→∞ ---→ - 1 2 (Eσ (2) 0 ) -1 tφ(t)V 2 , (3.16 
)

nB n4 n→∞ ---→ - 1 6 (Eσ (2) 0 ) -2 Eσ (3) 0 D ′ 1 (t)V 1 , (3.17 
)

nB n5 n→∞ ---→ 1 72 (Eσ (2) 0 ) -3 (Eσ (3) 0 ) 2 D 2 (t)W, (3.18 
)

nB n6 n→∞ ---→ 1 24 (Eσ (2) 0 ) -2 E(σ (4) 0 -3 σ (2) 0 2 )D 3 (t)W. (3.19)
We will prove these results subsequently.

We first prove (3.14). Since In order to prove (3.20), we first observe that

|B n1 | ≤ 1 Π kn u∈T kn 1 {|Su|>kn} 1 + Φ(t) + s (3) n 6s 3 n (1 -t 2 )φ(t) + 1 s n φ(t) 1 Π kn u∈T kn |S u |1 {|Su|>kn} , ( 3 
E   ∞ n=1 √ n 1 Π kn u∈T kn |S u |1 {|Su|>kn}   = ∞ n=1 √ nE| S kn |1 {| S kn |>kn} ≤ ∞ n=1 √ nk 1-η n E| S kn | η ≤ ∞ n=1 √ nk -η 2 n kn-1 j=0 E| L j | η = ∞ n=1 √ nk 1-η 2 n E| L 0 | η < ∞ n=1 nk -η 2 n E| L 0 | η , E   ∞ n=1 n 1 Π kn u∈T kn 1 {|Su|>kn}   = ∞ n=1 nE1 {| S kn |>kn} ≤ ∞ n=1 nk -η n E| S kn | η ≤ ∞ n=1 nk -η 2 -1 n kn-1 j=0 E| L j | η = ∞ n=1 nk -η 2 n E| L 0 | η .
By the choice of β and k n , nk

-η 2 n
< n -1 and hence the series in the right hand side of the above two expressions converge. So

∞ n=1 √ n 1 Π kn u∈T kn |S u |1 {|Su|>kn} < ∞, ∞ n=1 n 1 Π kn u∈T kn 1 {|Su|>kn} < ∞ a.s.,
which implies (3.20), and consequently (3.14) follows.

The proof of (3.15) will mainly be based on the following result about the asymptotic expansion of the distribution of the sum of random variables. Proposition 3.6. Under the hypothesis of Theorem 2.1, for a.e. ξ,

ε n = n sup x∈R P ξ n-1 k=kn L k (s 2 n -s 2 kn ) 1/2 ≤ x -Φ(x) - 3 ν=1 κ ν,n D ν (x) n→∞ ---→ 0. Proof. Let X k = 0 for 0 ≤ k ≤ k n -1 and X k = L k for k n ≤ k ≤ n -1. Then the random variables {X k } are independent under P ξ . Denote by v k (•) the characteristic function of X k : v k (t) := E ξ e itX k .
Combining the Markov inequality with Lemma 3.1, we obtain the following result:

sup x∈R P ξ n-1 k=kn L k (s 2 n -s 2 kn ) 1/2 ≤ x -Φ(x) - 3 ν=1 κ ν,n D ν (x) ≤K ξ (s 2 n -s 2 kn ) -5 2 n-1 j=kn E ξ | L j | 5 + n 5 sup |t|>T 1 n k n + n-1 j=kn |v j (t)| + 1 2n n .
By our conditions on the environment, we know that Then Ec 0 < 1. By the Birkhoff ergodic theorem, we have

lim n→∞ n 3 2 (s 2 n -s 2 kn ) -5 2 n-1 j=kn E ξ | L k | 5 = E| L 0 | 5 /(Eσ ( 
sup |t|>T 1 n n-1 j=kn |v j (t)| ≤ 1 n n-1 j=1 c j → Ec 0 < 1.
Then for n large enough,

sup |t|>T 1 n k n + n-1 j=kn |v j (t)| + 1 2n n = o(n -m ), ∀m > 0. (3.22) 
The proposition comes from (3.21) and (3.22).

From this proposition, it follows that

n|B n2 | ≤ W kn ε n n→∞ ---→ 0. (3.23) 
Hence (3.15) is proved. Now we turn to the proof of (3.16). Observe

B n3 = B n31 + B n32 + B n33 + B n34 + B n35 , (3.24) 
with

B n31 = 1 Π kn u∈T kn 1 {|Su|≤kn} Φ s n t -S u (s 2 n -s 2 kn ) 1/2 -Φ(t) -φ(t) s n t -S u (s 2 n -s 2 kn ) 1/2 -t + 1 2 tφ(t) s n t -S u (s 2 n -s 2 kn ) 1/2 -t 2 , B n32 = 1 s n - 1 (s 2 n -s 2 kn ) 1/2 φ(t) 1 Π kn u∈T kn S u 1 {|Su|≤kn} , B n33 = tφ(t) 1 Π kn u∈T kn 1 {|Su|≤kn} s n (s 2 n -s 2 kn ) 1/2 -1 - 1 2 s n t -S u (s 2 n -s 2 kn ) 1/2 -t 2 + 1 2(s 2 n -s 2 kn ) S 2 u -s 2 kn , B n34 = 1 2(s 2 n -s 2 kn ) tφ(t) 1 Π kn u∈T kn S 2 u -s 2 kn 1 {|Su|>kn} , B n35 = - 1 2(s 2 n -s 2 kn ) tφ(t)N 2,kn .
We know that by the Birkhoff theorem, s n ∼ nEσ

0 . By Taylor' expansion and k n < n 1 6 ,

n|B n31 | ≤ 8W kn n |t| 3 s n (s 2 n -s 2 kn ) 1/2 -1 3 + k 3 n (s 2 n -s 2 kn ) 3/2 n→∞ ---→ 0 a.s. (3.25)
Also by elementary calculus and the fact s n ∼ nEσ

(2) 0 , we obtain that We prove (3.17) by using the following decomposition:

n|B n32 | ≤ φ(t) ns 2 kn k n W kn s n (s 2 n -s 2 kn ) 1/2 (s n + (s 2 n -s 2 kn ) 1/2 ) n→∞ ---→ 0 a.s. , (3.26) 
n|B n33 | ≤ |t|φ(t)W kn n 2(s 2 n -s 2 kn ) (1 + t 2 )s 4 kn (s n + (s 2 n -s 2 kn ) 1/2 ) 2 (3.27) 
+ 2k n s 2 kn t s n + (s 2 n -s 2 kn ) 1/2 n→∞ ---→ 0 a.s. , n|B n34 | n→∞ ---→ 0 a.
B n4 = B n41 + B n42 + B n43 + B n44 + B n45 , (3.30) 
with

B n41 = κ 1,n 1 Π kn u∈T kn 1 {|Su|≤kn} D 1 s n t -S u (s 2 n -s 2 kn ) 1/2 -D 1 (t) -D ′ 1 (t) s n t -S u (s 2 n -s 2 kn ) 1/2 -t , B n42 = tD ′ 1 (t)κ 1,n s n (s 2 n -s 2 kn ) 1/2 -1 1 Π kn u∈T kn 1 {|Su|≤kn} , B n43 = κ 1,n - s (3) n 6s 3 n D 1 (t) 1 Π kn u∈T kn 1 {|Su|≤kn} , B n44 = D ′ 1 (t) κ 1,n (s 2 n -s 2 kn ) 1/2 1 Π kn u∈T kn S u 1 {|Su|>kn} , B n45 = -D ′ 1 (t) κ 1,n (s 2 n -s 2 kn ) 1/2 N 1,n .
Using the Birkhoff ergodic theorem, we see that 

lim n→∞ n 1 2 κ 1,n = 1 6 (Eσ (2) 0 ) -3/2 Eσ (3) 0 a.s. ( 3 
nB n45 n→∞ ---→ - 1 6 (Eσ (2) 0 ) -2 Eσ (3) 0 D ′ 1 (t)V 1 a.s.
Hence (3.17) is proved.

To prove (3.18), we observe that

B n5 = B n51 + B n52 + B n53 , (3.33) 
with

B n51 = κ 2,n 1 Π kn u∈T kn 1 {|Su|≤kn} D 2 s n t -S u (s 2 n -s 2 kn ) 1/2 -D 2 (t) , B n52 = -κ 2,n D 2 (t) 1 Π kn u∈T kn 1 {|Su|>kn} , B n53 = κ 2,n D 2 (t)W kn .
The Birkhoff ergodic theorem gives that

lim n→∞ nκ 2,n = 1 72 (Eσ (2) 0 ) -3 (Eσ (3) 0 ) 2 . (3.34)
Then

n|B n51 | ≤ nκ 2,n W kn sup |y|≤kn D 2 s n t -y (s 2 n -s 2 kn ) 1/2 -D 2 (t) n→∞ ---→ 0 a.s. , nB n52 n→∞ ---→ 0 a.s. , ( by (3.20)) nB n53 n→∞ ---→ 1 72 (Eσ (2) 0 ) -3 (Eσ (3) 0 ) 2 D 2 (t)W,
and hence (3.18) follows.

The proof of (3.19) is similar to that of (3.18) and we omit the details. Now Lemma 3.3 has been proved.

The proof of Lemma 3.4 will be based on the following results. ) and E ln -m 0 1+λ < ∞ for some λ > 4, and

E | L 0 | η < ∞ for some η > 2. Then for each λ ′ < λ -1, N 1,n -V 1 = o(n -λ ′ ). (3.35)
Proof of Proposition 3.8. The argument is inspired by Asmussen(1976, [START_REF] Asmussen | Convergence rates for branching processes[END_REF]). The key idea is to find a proper truncation to show the convergence of the series n a n (N 

β n = o 1 α N .
Using this lemma, we will obtain (3.35) once we prove that the series

∞ n=1 n λ ′ (N 1,n+1 -N 1,n ) converges a.s. . (3.36) 
To this end, we shall use a truncating argument. We start by introducing some notation:

I 1,n := 1 Π n u∈Tn S u (N u /m n -1), I 1,n := 1 Π n u∈Tn S u (N u /m n -1)1 {Nu/mn≤n -λ ′ Πn} , I 2,n := 1 Π n u∈Tn Y u , I ′ 2,n = 1 Π n u∈Tn Y u 1 {|Yu|≤n -λ ′ Πn} with Y u = 1 m |u| Nu i=1 L ui .
For u ∈ T n , let N n be the generic random variable of N u , i.e. N n has the same distribution with N u .

We shall prove the convergence a.s. of (3.36) by showing that both of the series

∞ n=1 n λ ′ I 1,n and ∞ n=1 n λ ′ I 2,n converge a.s. (3.37)
We only need to show that the following series converges a.s.: for q = 1, 2,

∞ n=1 n λ ′ (I q,n -I ′ q,n ), ∞ n=1 n λ ′ (I ′ q,n -E ξ,Dn I ′ q,n ), and ∞ n=1 n λ ′ E ξ,Dn I ′ q,n .
For the first series ( q = 1), we observe that

E ξ n λ ′ |I 1,n -I ′ 1,n | = E ξ n λ ′ | 1 Π n u∈Tn S u ( N u m n -1)1 {Nu/mn>n -λ ′ Πn} | ≤ n λ ′ E ξ 1 Π n u∈Tn E ξ |S u |E ξ ( N u m n + 1)1 {Nu/mn>n -λ ′ Πn} ≤ K ξ n 1+λ ′ E ξ ( N n m n + 1)1 { Nn/mn>n -λ ′ Πn} ≤ K ξ n 1+λ ′ ln 1+λ (n -λ ′ (Π n + 1)) E ξ N n m n + 1 ln 1 + N n m n 1+λ ≤ K ξ n λ ′ -λ E ξ N n m n + 1 ln 1 + N n m n 1+λ .
We see that for λ > 1,

E ∞ n=1 n λ ′ -λ E ξ N n m n (ln + N n ) 1+λ + (ln -m n ) 1+λ = ∞ n=1 n λ ′ -λ E N 0 m 0 (ln + N 0 ) 1+λ + E(ln -m 0 ) 1+λ < ∞, which implies that ∞ n=1 n λ ′ -λ E ξ N n m n (ln + N n ) 1+λ + (ln -m n ) 1+λ < ∞ a.s. (3.38) Therefore E ξ | ∞ n=1 n λ ′ (I 1,n -I ′ 1,n )| ≤ ∞ n=1 n λ ′ E ξ |I 1,n -I ′ 1,n | < ∞, E ξ | ∞ n=1 n λ ′ E ξ,Dn I ′ 1,n | = E ξ | ∞ n=1 n λ ′ E ξ,Dn (I 1,n -I ′ 1,n )| ≤ ∞ n=1 n λ ′ E ξ |I 1,n -I ′ 1,n | < ∞. It follows that the series ∞ n=1 n λ ′ (I 1,n -I ′ 1,n ) and ∞ n=1 n λ ′ E ξ,Dn I ′ 1,n converge a.s. Observe that n k=1 n λ ′ (I ′ 1,k -E ξ,D k I ′ 1,k
) is a martingale w.r.t. {D n+1 }. By the a.s. convergence of an L 2 bounded martingale (see e.g. [14, P. 251, Ex. 4.9]), we prove the convergence a.s. of the series ∞

n=1 n λ ′ (I ′ 1,n -E ξ,Dn I ′ 1,n ) by showing that of the series ∞ n=1 n 2λ ′ E ξ (I ′ 1,n -E ξ,Dn I ′ 1,n ) 2 .
This immediately results from (3.38) and the following estimate:

E ξ n 2λ ′ (I ′ 1,n -E ξ,Dn I ′ 1,n ) 2 = n 2λ ′ E ξ 1 Π n u∈Tn S u ( N u m n -1)1 { Nu mn ≤ Πn n λ ′ } -E ξ,Dn ( N u m n -1)1 { Nu mn ≤ Πn n λ ′ } 2 = n 2λ ′ E ξ 1 Π 2 n u∈Tn S 2 u E ξ,Dn ( N u m n -1)1 { Nu mn ≤ Πn n λ ′ } -E ξ,Dn ( N u m n -1)1 { Nu mn ≤ Πn n λ ′ } 2 ≤ n 2λ ′ E ξ 1 Π 2 n u∈Tn S 2 u E ξ N u m n -1 2 1 { Nu mn ≤ Πn n λ ′ } ≤ n 2λ ′ E ξ 1 Π 2 n u∈Tn E ξ S 2 u E ξ N u m n 2 1 { Nu mn ≤ Πn n λ ′ } + 3 = n 2λ ′ s 2 n Π n E ξ N n m n 2 1 { Nn mn ≤ Πn n λ ′ } + 3s 2 n Π n = n 2λ ′ s 2 n Π n E ξ N n m n 2 1 { Nn mn ≤min(e 2λ , Πn n λ ′ )} + 1 {e 2λ < Nn mn ≤ Πn n λ ′ } + n 2λ ′ 3s 2 n Π n ≤ n 2λ ′ (3 + e 4λ ) s 2 n Π n + n 2λ ′ s 2 n Π n ( Π n n λ ′ + 1) ln -1-λ 1 + Π n n λ ′ E ξ N n m n 2 1 + N n m n ln -(1+λ) 1 + N n m n -1 ( because x(ln x) -1-λ is increasing for x > e 2λ ) ≤ (3 + e 4λ ) n 2λ ′ s 2 n Π n + K ξ n λ ′ s 2 n ln 1+λ 1 + Πn n λ ′ E ξ N n m n ln 1+λ 1 + N n m n ≤ K ξ n 2λ ′ +1 Π n + K ξ 1 n λ-λ ′ E ξ N n m n ln 1+λ 1 + N n m n .
Combining the above results, we see that the series I 1,n converges a.s.

Next we turn to the proof of the convergence a.s. of the series n λ ′ I 2,n .

To begin with, we prove that 

≤ (??) K λ 1 m n E ξ Nu i=1 L ui 2 + 2 λ (ln -m n ) 1+λ 1 m n E ξ Nu i=1 L ui ≤ K λ 1 m n E ξ Nu i=1 E ξ |L ui | 2 + 2 λ (ln -m n ) 1+λ 1 m n E ξ Nu i=1 E ξ L ui ≤ K ξ n + K ξ n(ln -m n ) 1+λ .
Observe that

E ξ n λ ′ |I 2,n -I ′ 2,n | = n λ ′ E ξ | 1 Π n u∈Tn Y u 1 {|Yu|> Πn n λ ′ } | ≤ n λ ′ E ξ 1 Π n u∈Tn |Y u |1 {|Yu|> Πn n λ ′ } ≤ n λ ′ E ξ 1 Π n (ln Πn n λ ′ ) 1+λ u∈Tn E ξ |Y u |(ln + |Y u |) 1+λ ≤ (3.39) K ξ n + K ξ n(ln -m n ) 1+λ (ln Πn n λ ′ ) 1+λ ≤ K ξ n λ ′ -λ (1 + (ln -m n ) 1+λ )
By (3.38), the series n λ ′ -λ (1 + (ln -m n ) 1+λ ) converges a.s. Thus

E ξ | ∞ n=1 n λ ′ (I 2,n -I ′ 2,n )| ≤ ∞ n=1 n λ ′ E ξ |I 2,n -I ′ 2,n | < ∞, E ξ | ∞ n=1 n λ ′ E ξ,Dn I ′ 2,n | = E ξ | ∞ n=1 n λ ′ E ξ,Dn (I 2,n -I ′ 2,n )| ≤ ∞ n=1 n λ ′ E ξ |I 2,n -I ′ 2,n | < ∞.
This implies the convergence a.s. of the series ∞ n=1 n λ ′ (I 

Π n + K ξ n λ ′ -λ (1 + (ln -m n ) 1+λ ).
Combining the above results, we see that the series I 2,n converges a.s.

Therefore we have proved (3.37) and hence the proof of the Proposition is completed.

Proof of Lemma 3.4. Observe that nC n = n(W kn -W ) Φ(t) + s

(3) n

6s 3 n (1 -t 2 )φ(t) + √ n s n √ n(V 1 -N 1,kn )φ(t).
Since λβ > 1, 2β(λ -1) > 1, we can take λ ′ such that 1 2β < λ ′ < λ -1. Hence Lemma 3.4 follows from Propositions 3.7 and 3.8. Now the main theorem follows from (3.2) and Lemmas 3.2 -3.4.

  each particle ui moves to S ui = S u +L ui , where N u , L u1 , L u2 , • • • are mutually independent, N u has the law p(ξ n ), and each L ui has the same law G(ξ n ).

Lemma 3 . 2 . 6 ) 3 . 4 .

 32634 Under the hypothesis of Theorem 2.1, nA n n→∞ ---→ 0 a.s. (3.5) Lemma 3.3. Under the hypothesis of Theorem 2.1,nB n n→∞ ---→ R(t) a.s. (3.Lemma Under the hypothesis of Theorem 2.1,

Lemma 3 . 5 .

 35 [START_REF] Liang | Weighted moments of the limit of a branching process in a random environment[END_REF] Th. 1.2]) Assume (2.1) for some λ > 0 and Em -δ 0 < ∞ for some δ > 0. Then E(W * + 1)(ln(W * + 1)) λ < ∞.(3.10)

≤ 2 Π 9 ≤ 9 ≤

 299 kn e (ln x) -λ E(W * + 1)(ln(W * + 1)) λ dx + 2E(W * + 1)(ln(W * + 1)) λ b kn e (ln x) -λ dx + Π kn b kn (ln x) -λ dx + 2E(W * + 1)(ln(W * + 1)) λ (b kn + (Π knb kn )(k n ln b) -λ ) + 9.

  2), L n satisfies P lim sup |t|→∞ |v n (t)| < 1 > 0. So there exists a constant c n ≤ 1 depending on ξ n such that sup |t|>T |v n (t)| ≤ c n and P(c n < 1) > 0.

  s. , ( by similar arguments as in the proof of (325)-(3.29), we get (3.16).

Proposition 3 . 7 (Proposition 3 . 8 .

 3738 [START_REF] Huang | Convergence rates for a branching process in a random environment, Markov Process[END_REF]). Assume the condition (2.1). ThenW -W n = o(n -λ )a.s. Assume (2.1

E

  ξ |Y u |(ln + |Y u |) 1+λ ≤ K ξ n + K ξ n(ln -m n ) 1+λ . (3.39)This follows from the fact:E ξ |Y u |(ln + |Y u |) 1+λ ≤ E ξ -m n ) 1+λ

  1,n+1 -N 1,n ) with suitable a n , which gives the information on the convergence rate of V 1 -N 1,n . The proof relies on the following lemma. Lemma 3.9. ([1], Lemma 2). Let {α n , β n , n ≥ 1} be sequences of real numbers. If 0 < α n ր ∞, and the series ∞ n=1 α n β n converges, then

∞ n=N

  2,n -I ′ 2,n ) and ∞ n=1 n λ ′ E ξ,Dn I ′ 2,n . To prove the convergence a.s. of the series ∞ n=1 n λ ′ (I ′ 2,n -E ξ,Dn I ′ 2,n ), we only need to show the convergence of the series:∞ n=1 E ξ n 2λ ′ (I ′ 2,n -E ξ,Dn I ′ 2,n ) 2. This is implied by(3.38) the following observation:E ξ n 2λ ′ (I ′ 2,n -E ξ,Dn I ′ 2,n ) 2 = E ξ |Y u |1 {|Yu|≤ Πn n λ ′ } -E ξ |Y u |1 {|Yu|≤ Πn |Y u | 2 1 {|Yu|≤min(e 2λ , Πn n λ ′ )} + |Y u | 2 1 {e 2λ <|Yu|≤ Πn |Y u | 2 (|Y u |(ln + |Y u |) -1-λ ) -1 ( because x(ln x) -1-λ is increasing for x > e 2λ ) = e 4λ n 2λ ′ Π n + n λ ′ Π n (ln Πn n λ ′ ) 1+λ E ξ u∈Tn E ξ |Y u |(ln + |Y u |) 1+λ

			Π 2 n u∈Tn n 2λ ′	E ξ n λ ′ }	2
	≤ E ξ	n 2λ ′ Π 2 n u∈Tn	E ξ |Y u | 2 1 {|Yu|≤ Πn n λ ′ }
	≤ E ξ	n 2λ ′ Π 2 n u∈Tn	E ξ n λ ′ }
	≤ E ξ ≤ (3.39) e 4λ n 2λ ′ Π n + n 2λ ′ Π 2 n Π n n λ ′ (ln Π n n λ ′ ) -1-λ E ξ u∈Tn e 4λ n 2λ ′ Π n K ξ n 1+λ ′ (1 + (ln -m n ) 1+λ ) + (ln Πn n λ ′ ) 1+λ
	≤	e 4λ n 2λ ′
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