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Abstrat

When end milling free-form surfaes using a torus milling utter, the notion of utter e�etive radius is

often used to address the proedure for removal of material from a purely geometrial perspetive. Using

an original analytial approah, the present study establishes a relation enabling the value of this e�etive

radius to be easily omputed. The limits of validity of this relation are then disussed and preisely

de�ned.

By way of an illustration, an example of how this relation an be used to generate a numerial tool for

analysis of the possibilities for mahining free-form surfaes on multi-axis mahine-tools is also presented.

Keywords: free-form surfae; CNC mahine-tool; end-mill; toroidal utter; e�etive tool radius; swept

urve
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1 Introdution

End milling of free-form surfaes is essentially used

to manufature moulds and dies where it is often ex-

tremely ostly in terms of prodution time onsumed.

From a purely geometrial standpoint, preise mod-

elling of the movements of the utter and its posi-

tioning in relation to the surfae are indispensable

to be able to propose improvements to boost pro-

dutivity. From this perspetive, an approah om-

monly adopted is based on notions of e�etive radius

and/or sweep urve. Indeed, good knowledge of these

geometrial entities paves the way for a preise anal-

ysis of the trae left by the utter in the workpiee

and through that, the quantity of material atually

removed.

1.1 Previous works on the e�etive ut-

ter radius

Tool path planning, optimisation of utter position-

ing and non-interferene issues are often the fous of

researh onduted in the �eld of free-form surfae

mahining on multi-axis mahine tools [1℄. Among

these works, many studies refer to the notion of ut-

ter e�etive radius. The �rst to introdue this on-

ept were Vikers and Quan in 1989. In [2℄, they

show how a �at-end mill tilted to the front an be

more produtive than a ball-end mill. To do so, they

introdue the notion of e�etive radius in the ase of

the �at-end mill:

Reff =
R

sin(φ)

where R is the utter radius and φ its tilt angle in

the plane formed by its feed diretion and axis of

rotation.

The relative e�ieny of �at-end mills and ball-

end mills is also analysed in [3℄, [4℄ and [5℄. These

works are also based on the e�etive radius onept

to show that, all other parameters being equal, �at-

end utters, when orretly used, produe a lower

sallop height than that produed by ball-end ut-

ters. In [4℄ and [5℄, the authors also show that �at

end mills leave pronouned marks in the feed dire-

tion leading to a greater roughness of the surfaes

obtained (for the same feed per tooth).

Following these works a number of authors have

argued in favour of using torus utters when milling

free-form surfaes. Indeed, torus mills allow a signif-

iant e�etive radius to be retained while avoiding

the sharp and unsightly marks left in the workpiee

by �at-end mills [6℄. Many studies arrive at the same

onlusions, whether they adopt a proedure to opti-

mise the utter position [7,8℄ or seek rather to elim-

inate interferene [9, 10℄.

Among the works that address the utter e�etive

radius onept, those most frequently enountered in

the literature utilise the envelope urve onept. For

a given utter position, the envelope urve materi-

alises the trae left by the utter in the material.

In [11℄, it is approximated, for a torus milling utter,

by the projetion of a irle in a plane normal to the

feed. In [12℄, it is given in the impliit form for an

APT utter.

Within the sope of mahining simulation [13℄,

many studies use this onept to determine the vol-

ume of swarf atually removed by the utter, but

most of these works [14�16℄ address this issue nu-

merially, whih does indeed allow the swept volume

to be omputed, but preludes an analytial study

of the e�etive utter radius. The sweep urve and

e�etive utter radius notions are also largely used

in works addressing onstant sallop height mahin-

ing planning. This toolpath planning tehnique was

initially introdued in [17℄ and [18℄ using a ball-end

utter. Subsequently it was adapted for a �at-end

mill [19, 20℄ and for the torus milling utter [21, 22℄,

tools for whih the e�etive radius assumes its full

signi�ane.

Analysis of the main studies published in the �eld

shows that most works overing the e�etive radius

of the torus milling utter rely on geometri approx-

imations (with non-negligible onsequenes) or use

a numerial approah that, ompared with an ana-

lytial approah, proves to be less �exible and muh

more time-onsuming in omputation.

1.2 The present artile's ontribution

The present artile will introdue a new study of the

torus milling utter e�etive radius. Its originality

lies in its totally analytial approah that neverthe-

less refrains from any geometri approximation. The

main result of this work is the de�nition of a relation

authorizing an analytial alulation of the e�etive

utter radius.

This study is also aompanied by an analysis of

this relation and its limits, thus allowing the sope

for its validity to be learly determined.

This is followed by an example in whih it is
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shown how this relation an be used to de�ne numer-

ial tools potentially useful within the sope of end

milling of free-form surfaes on multi-axis mahine

tools. The aim with this example is not to de�ne

a omplete proedure to plan tool paths, but sim-

ply to emphasise the possibilities o�ered by using an

analytial formula where numerial proedures are

usually applied.

The artile onludes with a reminder of the main

results obtained and some remarks on forthoming

works on this subjet.

2 Calulating the e�etive radius

2.1 Introdution

It will be shown how it is possible to alulate an-

alytially, at the point of utter/workpiee ontat,

the e�etive radius of a torus milling utter mahin-

ing a free-form surfae on a multi-axis NC mahine

tool. This alulation is based on two mathematial

demonstrations that will be introdued prior to the

omputation itself.

A torus milling utter de�ned by R and r, R
being the outer radius of that utter and r being its
torus radius, is onsidered. The trae left by that

utter in the material at a given instant is a urve

that will be referred to as the envelope urve. It is

the suession of suh envelope urves that forms the

envelope surfae generated by the utter movement

in the material. At eah instant, the envelope urve

is de�ned by Ft · n = 0, where Ft is a vetor in the

utter feed diretion and n a vetor normal to the

surfae of the utter.

In what follows in the present study, the vetor

Ft will be assumed to be onstant for all points of

the utter; this is equivalent to asserting that the

utter moves in translation, at least loally. More-

over, only the part of the envelope urve of the utter

ontained in the torus part of the utter will be on-

sidered. Indeed, the great majority of torus milling

utters used in industry are round insert utters and

only that part is ative. Also, studying the parts of

the envelope urve ontained in the ylindrial and

disoid portions of the utter is unproblemati and,

even in the ase of solid torus milling utters, these

parts of the utter are normally inative when re-

moving material, espeially when onduting �nish-

ing operations.

The two lemmas on whih the alulation is based

are as follows:

Lemma 1 Let P be the mathematial operation for

projetion along the feed diretion Ft in a plane nor-

mal to Ft. Let Tp(v), be the urve resulting from the

projetion along P of the utter envelope. Let E(t)
be the ellipse resulting from the projetion along P
of the utter entre-torus irle, and oE(t) an o�set

exterior to that ellipse with a value equal to the ra-

dius of the utter torus. Then the two urves Tp(v)
and oE(t) are oinident.

Lemma 2 The radius of urvature of a plane o�-

set urve is equal to the radius of urvature of the

original urve augmented by the o�set value.

It will thus be shown initially that the projetion

of the utter envelope urve in a plane normal to the

feed diretion Ft an be de�ned by an ellipse aug-

mented by an o�set equal to the utter torus radius

(setion 2.2).

It will then be shown that the radius of urvature

of an o�set to this ellipse is equal to the radius of

urvature of the original ellipse augmented by the

o�set value (setion 2.3).

Based on these results, it will then be possible

to alulate analytially the e�etive radius of the

utter Reff onsidering the radius of urvature of

the ellipse E(t) to whih is added the utter torus

radius the utter (setion 2.4).

All these alulations were veri�ed using the al-

gebrai omputation software Maxima [23℄.

2.2 Demonstration of lemma 1

2.2.1 Statement of the problem

Firstly the projetion of the utter envelope urve in

a plane normal to Ft is onsidered, then an o�set by

r of the ellipse de�ned by the projetion of the torus

major radius irle of the utter (entre of the torus

tube) in the same plane (Fig. 1 and 2).

The purpose of this demonstration is to show that

these two urves oinide.

2.2.2 De�nitions

Naming Rt the radius of the utter torus entre irle

(Rt = R − r), the toroid surfae de�ning the utter
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in its referene frame an be de�ned by:

T(u, v) =





(Rt + r cos(v)) cos(u)
(Rt + r cos(v)) sin(u)

r sin(v)





(1)

with u ∈ [0, 2π] and v ∈
[

−π
2 , 0
]

Let F, be a unit vetor in the mahining diretion

Ft:

F =
Ft

‖Ft‖
The trae left by the utter (envelope urve) an

then be de�ned by F · n = 0, where n is the normal

to the utter surfae.

Consider the projetion along the feed diretion

F in a plane P perpendiular to F. Naming a, b and
c the oordinates of F, the plane P is expressed by

equation :

a x+ b y + c z = d with d ∈ R

C(t)

Cp(t)

S(t, w)

P

x

y

z

F

Figure 1: Projetion of a parametri urve in a plane

Let C(t) be a urve de�ned in three dimensions

by:

C(t) =





Cx(t)
Cy(t)
Cz(t)





The urve Cp(t) resulting from the projetion of

C(t) in P along the diretion F is then de�ned by the

intersetion of the plane P and the surfae de�ned

by S(t, w) = C(t) + f(w)F where f(w) is a salar

funtion of the parameter w de�ned in [−∞,+∞]
(Fig. 1). This surfae is the ruled surfae de�ned

from C(t) and F. The projeted urve Cp(t) is thus
de�ned by the system:















a x+ b y + c z = d
x = Cx(t) + a f(w)
y = Cy(t) + b f(w)
z = Cz(t) + c f(w)

where x, y and z represent the three oordinates of

the urve Cp(t).
Resolving this system in relation to x, y, z and

f(w), the expression of these oordinates is obtained

as a funtion of t that will be referred to as Cpx(t),
Cpy(t) and Cpz(t):















Cpx(t) =
−a cCz(t)−a bCy(t)+c2 Cx(t)+b2 Cx(t)+a d

c2+b2+a2

Cpy(t) =
−b cCz(t)+c2 Cy(t)+a2 Cy(t)−a bCx(t)+b d

c2+b2+a2

Cpz(t) =
b2 Cz(t)+a2 Cz(t)+c (−bCy(t)−aCx(t))+c d

c2+b2+a2

as also

f(w) =
−cCz (t)− bCy (t)− aCx (t) + d

c2 + b2 + a2

Given that the vetor F is unitary, this gives a2+
b2 + c2 = 1, whene the equation for the projeted

urve:

Cp(t) =





−a cCz (t)− a bCy (t) + c2 Cx (t) + b2 Cx (t) + a d
−b cCz (t) + c2Cy (t) + a2Cy (t)− a bCx (t) + b d
b2Cz (t) + a2Cz (t) + c (−bCy (t)− aCx (t)) + c d





(2)

2.2.3 Contextualisation

Within the sope of the present study, the utter is

de�ned within its own referene frame, the axis o-

iniding with its axis of rotation. As the utter is

a surfae of revolution, whatever the movement of

translation driving it, the envelope urve resulting

from this movement, de�ned by F · n = 0, admits a
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plane of symmetry ontaining the axis z of the refer-
ene frame. Furthermore, a projetion P in a plane

normal to the feed F is onsidered. This projetion

thus orresponds to a vetor ontained within the

plane of symmetry of the envelope urve. The prob-

lem is thus axisymmetri. Consequently, the results

obtained in the ase of a partiular projetion (i.e. in

a given radial diretion) are true whatever the pro-

jetion P onsidered, meaning whatever translation

movement drives the utter. It an thus be onsid-

ered that the results obtained in the ase of a pro-

jetion along a vetor ontained in the plane x = 0
(or y = 0) an be extended to the general ase.

A projetion P is hosen whose diretion F is

ontained in the plane of equation x = 0, with o-

ordinate a of F thus being null. The plane P nor-

mal to this projetion will then have for equation

b y + c z = d and the oordinates of vetor F are:

F =





0
b
c





In what follows in the present demonstration, b 6=
0 and c 6= 0 will be onsidered. Indeed, instanes

where b = 0 and c = 0 orrespond to horizontal

or vertial utter paths that onstitute speial ases

that will be addressed in setion 3.2.

Furthermore, as vetor F is unitary, it an be

asserted that b2 + c2 = 1.
Also, in so far as the fous is on urves projeted

orthogonally in a plane normal to the milling dire-

tion, any plane normal to that diretion an be ho-

sen without impairing generality. To simplify om-

putation, a plane P passing through the origin is

hosen, that is a plane with equation b y + c z = 0.
This gives d = 0.

Taking these onsiderations into aount, the equa-

tion (2) for a urve transformed along projetion P
beomes:

Cp(t) =





Cx (t)
−b cCz (t) + c2 Cy (t)
b2 Cz (t)− b cCy (t)





(3)

In the following demonstration, will be onsid-

ered the projetion P, de�ned by equation (3) en-

abling a urve to be projeted in a plane P aording

to a vetor F, with plane P going through the origin

and being normal to the vetor F that is ontained

in the plane of equation x = 0.

2.2.4 Demonstration

First of all, the projetion P is applied to the irle

C(t), the utter torus entre, de�ned by the equation

C(t) =





Rt cos(t)
Rt sin(t)

0





with t ∈ [0, 2π]

Using (3), the orthogonal projetion of that irle

an be de�ned in the plane of equation b y+ c z = 0.
This projetion is an ellipse that will be referred to

as E(t), and whose equation is:

E(t) =





Rt cos(t)
c2Rt sin(t)
−b cRt sin(t)





In what follows, only the lower part of the ellipse

E(t) will be onsidered, that is the part de�ned by

t ∈ [−π, 0] (Fig. 2).
The unit vetor nE(t) normal to E(t) and on-

tained in the plane P an then be de�ned by:

nE(t) =
dE(t)
dt × F

∥

∥

∥

dE(t)
dt × F

∥

∥

∥

that is

nE(t) =
1

√

b2 sin2 (t) + c2





c cos(t)
c sin(t)
−b sin(t)





(4)

Given the previously established restritions (c 6= 0
and b 6= 0), this expression is de�ned whatever t ∈
[−π, 0].

In the plane P , oE(t) is de�ned, an o�set with

value r to the ellipse E(t):

oE(t) = E(t) + rnE(t)

This urve is expressed as follows:

oE(t) =











cos(t)Rt +
c r cos(t)√
b2 sin2(t)+c2

c2 sin(t)Rt +
c r sin(t)√
b2 sin2(t)+c2

−b c sin(t)Rt − b r sin(t)√
b2 sin2(t)+c2











(5)

Seondly, the envelope urve is onsidered, that is

the trae left by the utter in the material at a given

instant. For a torus milling utter whose de�nition
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view on plane (y, z) z

y

r

R

Rt

P

Tr(v)

F

view on plane P

E(t)

oE(t)

Tp(v)

Figure 2: Projetion of the envelope urve and the torus entre irle in a plane normal to F

is given by the equation (1), this envelope urve is

de�ned by F · nT(u, v) = 0, where nT(u, v) is a

vetor normal to T(u, v).

nT(u, v) =
∂T(u, v)

∂u
× ∂T(u, v)

∂v
that is

nT(u, v) =





r cos(u) cos(v) (Rt + r cos(v))
r sin(u) cos(v) (Rt + r cos(v))

r sin(v) (Rt + r cos(v))





with u ∈ [0, π] and v ∈
[

−π
2 , 0
]

The equation F · nT(u, v) = 0 an then be ex-

pressed

r (c sin(v) + b sin(u) cos(v)) (Rt + r cos(v)) = 0
(6)

whene it an be dedued that

sin (u) = − c sin (v)

b cos (v)
(7)

for v ∈
]

−π
2 , 0
]

. Setion 3.2 adresses the ase where

v = −π
2 . In what follows in the demonstration, it

will be onsidered that −π
2 < v 6 0.

Using this relation (7) in the expression ofT(u, v)
� equation (1) � the equation of the envelope urve,

referred to as Tr(v), is obtained:

Tr(v) =









√

1− c2 sin2(v)
b2 cos2(v)

(Rt + r cos(v))

− c sin(v) (Rt+r cos(v))
b cos(v)

r sin(v)









for u ∈
[

0, π2
]

, and

Tr(v) =









−
√

1− c2 sin2(v)
b2 cos2(v)

(Rt + r cos(v))

− c sin(v) (Rt+r cos(v))
b cos(v)

r sin(v)









for u ∈
[

π
2 , π

]

. As the urve Tr(v) is symmetrial in
relation to the plane of equation x = 0 orresponding
to parameter u = π

2 , only the part de�ned by 0 6

u 6
π
2 will be onsidered in what follows, with the

same reasoning being appliable by symmetry for the

part de�ned by

π
2 6 u 6 π.

As previously, using (3) the projetion of that

urve an be de�ned in the plane P . Thus the urve
Tp(v) an be obtained:
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Tp(v) =









√

1− c2 sin2(v)
b2 cos2(v) (Rt + r cos(v))

− c3 sin(v) (Rt+r cos(v))
b cos(v) − b c r sin(v)

c2 sin(v) (Rt+r cos(v))
cos(v) + b2 r sin(v)









(8)

The problem posed an thus be redued to show-

ing that oE(t) = Tp(v).
By identifying the oordinates of these two urves

(equations 5 and 8) member by member, 3 equations

are obtained:

cos(t)Rt +
c r cos(t)

√

b2 sin2(t) + c2
=

√

1− c2 sin2(v)

b2 cos2(v)
(Rt + r cos(v)) (9)

c2 sin(t)Rt +
c r sin(t)

√

b2 sin2(t) + c2
= −c

3 sin(v) (Rt + r cos(v))

b cos(v)
− b c r sin(v) (10)

−b c sin(t)Rt −
b r sin(t)

√

b2 sin2(t) + c2
=
c2 sin(v) (Rt + r cos(v))

cos(v)
+ b2 r sin(v) (11)

Analysing these equations, it learly emerges that

the last two, (10) and (11), are equivalent. Indeed,

by multiplying eah term of equation (10) by −b/c,
equation (11) is obtained.

To show that the two urves are equal, all one

needs to do is �nd a hange in variable linking t and
v suh that the equation of one of the two urves an

be transformed into the equation of the other urve.

To do so, the terms on Rt and r between the �rst

equation (9) and one of the two others (for example

(10)) are identi�ed member by member.

From equation (9), identifying the terms on Rt,

the following is obtained:

cos(t) =

√

1− c2 sin2(v)

b2 cos2(v)
(12)

and identifying the terms on r, this gives:

c cos (t)
√

b2 sin2 (t) + c2
=

√

1− c2 sin2 (v)

b2 cos2 (v)
cos (v) (13)

whih, after simpli�ation (see 5), results in return-

ing to equation (5):

cos(t) =

√

1− c2 sin2(v)

b2 cos2(v)

From equation (10), identifying the terms on Rt,

the following is obtained:

c2 sin(t) = −c
3 sin(v)

b cos(v)

whene it an be dedued

sin(t) = − c sin(v)

b cos(v)

1− cos2(t) =
c2 sin2(v)

b2 cos2(v)

whih results in returning to equation (12):

cos(t) =

√

1− c2 sin2(v)

b2 cos2(v)

From this same equation (10), identifying the

terms on r, the following is obtained:

c sin(t)
√

b2 sin2(t) + c2
= −

(

c3

b
sin(v) + b c sin(v)

)

(14)

whih, after simpli�ation (see 5), again gives the

equation (12):

cos(t) =

√

1− c2 sin2(v)

b2 cos2(v)

Identi�ation of the terms on Rt and r for equa-
tions (9) and (10) thus leads to the same relation (12)

linking parameters t and v. Using this relation as a

hange in variable, it proves possible to pass from

equation (5) to equation (8). There is thus a hange

in variable to go from one urve to the other. This

leads to onluding that urves Tp(v) and oE(t) o-
inide.
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2.2.5 Conlusion

It was shown that in the ase of a projetion P in

a plane going through the origin and along a vetor

F ontained in the plane of equation x = 0, the two
urves Tp(v) and oE(t) oinide. As the problem

is axisymmetri, what is true in this instane is also

true whatever the plane of projetion, provided that

the projetion is made along a normal to that plane.

In the ase of a translation movement, the urve re-

sulting from the projetion plane of the trae left by

the utter thus oinides with the urve parallel to

the ellipse, loated at a distane r outside the lat-

ter that itself results from the projetion of the torus

entre irle.

2.3 Demonstration of lemma 2

This demonstration's objetive is to show that the

radius of urvature of a plane o�set urve is equal

to the radius of urvature of the original urve aug-

mented by the value of the o�set.

Let C be a plane urve whose parameters are set

by its urvilinear absissa s. Let Co be an o�set

urve derived from C:

Co = C+ r n

where r is the salar value of the o�set and n the unit

normal toC oriented towards the entre of urvature.

Deriving the previous expression in relation to

the urvilinear absissa s, the following is obtained:

dCo

ds
=

dC

ds
+ r

dn

ds

where

dC

ds
is the unit vetor t, tangent to C.

Calling so the urvilinear absissa of the urve

Co one obtains:

dCo

dso

dso
ds

= t+ r
dn

ds

Frenet formulae give:

dn

ds
= τ b− κ t

where κ is the urvature ofC at the point onsidered.

As the urve C is plane, twisting τ is null and

thus:

dn

ds
= −κ t

giving:

dCo

dso

dso
ds

= t− r κ t = (1− r κ) t (15)

By de�nition

dCo

dso
is the unit vetor tangent to

Co. As the urve Co is the o�set of C, for a given

value of s, both urves have the same tangent. Thus

dCo

dso
= t

Whene, in (15) :

t
dso
ds

= (1− r κ) t

whih an be simpli�ed:

dso
ds

= 1− r κ (16)

Moreover, the Frenet formulae give:

dt

dso
= κo n

whene

dt

dso
=

dt

ds

ds

dso
or

dt

ds
= κn

and, aording to (16)

ds

dso
=

1

1− r κ

Thus

κo n = κn
1

1− r κ

Whene it an be dedued that:

κo =
κ

1− r κ
(17)

Let ρ be the radius of urvature of C and ρo the
radius of urvature of Co. These magnitudes are

related to urvatures κ and κo by:

ρ =
1

κ
et ρo =

1

κo

Whene, in (17) :

1

ρo
=

1
ρ

1− r
ρ

8



whih an be expressed:

1

ρo
=

1

ρ− r

and �nally:

ρo = ρ− r

In the ase of a plane urve C, the radius of ur-

vature of an o�set to C is equal to the radius of

urvature of C redued by the algebrai value of the

o�set. It an therefore be onluded that in the ase

of an o�set remoter from the entre of urvature than

the original urve, the radius of urvature of the o�-

set urve will be equal to the radius of urvature of

the initial urve inreased by the absolute value of

the o�set.

2.4 Calulating the e�etive radius

During milling (Fig. 3), the utter axis oinides

with the z-axis of the referene frame and the x and

y axes of the referene frame are set as previously (see
setion 2.2.3), i.e. the feed diretion Ft is ontained

in the plane x = 0.
Furthermore, let D be the unit vetor ontained

in the plane (x, y) that indiates the diretion of the

greatest slope at the utter/workpiee point of on-

tat (point Cc). The normal to the surfae at that

point (ncc) is then ontained in the plane (D, z).

O

z

D
r

R

Rt

v

ncc

Cc

S

Figure 3: De�ning angle S

S designates the slope of the surfae mahined

at the utter/workpiee point of ontat Cc. This

angle S is ontained in the plane (D, z). Only the

ase where S 6= 0 will be onsidered in the present

alulation. Indeed, milling in a diretion ontained

within the plane (x, y) onstitutes a speial ase that
will be addressed in setion 3.2. Thus S > 0.

This angle S is also that between the utter axis z
and the normal to the surfae at the point of ontat

ncc. The vetor ncc an be expressed in the form:

ncc = − sin(S)D+ cos(S) z (18)

α will designate the angle separating vetor D of

the y-axis. The following alulations will be limited
to the ase where −π

2 < α < π
2 . Where α = ±π

2 , the

diretion with the greatest slope D is perpendiular

to the feed diretion F. These values orrespond to

speial ases that will be studied in setion 3.2.

In the referene frame (O, x, y) the vetor D an

be expressed:

D = sin(α)x+ cos(α)y (19)

Thus, in the referene frame (O, x, y, z), the ve-
tor ncc an be expressed:

ncc =





− sin(S) sin(α)
− sin(S) cos(α)

cos(S)





(20)

Besides, for eah point Cc, the vetor F is deter-

mined suh that it belongs to the plane tangent to

the surfae at this point (Fig. 4). In the referene

frame (O, x, y, z), F an be expressed in the form :

F =





0
cos(ψ)
sin(ψ)





(21)

where ψ designates the angle formed by vetor F

and its projetion in the plane (x, y). This angle is

ontained in the plane made by vetors z and y.
To obtain a displaement of the utter tangent to

the surfae at the utter/workpiee point of ontat

(point Cc), the urve de�ned by the trae left by the

utter in the material, referred to as the envelope

urve, veri�es the equation F · ncc = 0. Using (20)

and (21) in this equation, the following is obtained:

− cos(ψ) sin(S) cos(α) + sin(ψ) cos(S) = 0

This gives, for eah utter ontat point

tan(ψ) = tan(S) cos(α) (22)
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view on plane P normal to F

y

x

O D

yz

Ft
F

ψ

xE

yE

Rt

Cc

Cc

Ecc

F

α

E(t)

Figure 4: De�nition of elements used to alulate the e�etive radius Reff

In further alulations, only the ases where 0 <
ψ < π

2 are onsidered. Cases where ψ = 0 and ψ = π
2

orrespond to speial instanes that will be studied

in setion 3.2 (indeed, for ψ = 0 the utter moves

horizontally and for ψ = π
2 , it moves vertially).

In its own referene (O;xE, yE), an ellipse is de-

�ned by the parametri equation:

E(t) =





µ cos(t)
η sin(t)

0





(23)

where values µ and η represent respetively the semi-
major axis and the semi-minor axis of the ellipse

E(t).
In the ase of the ellipse resulting from projetion

of the torus entre irle of radius Rt, in a plane

normal to F (Fig. 4), values µ and η are de�ned by:

{

µ = Rt

η = Rt sin(ψ)
(24)

Using the fat that:

sin(ψ) =
tan(ψ)

√

1 + tan2(ψ)

and equation (22) in equation (24), the value of the

semi-minor axis η an be expressed by:

η = Rt
tan(S) cos(α)

√

1 + tan2(S) cos2(α)
(25)

In its own plane, the ellipse E(t) is thus de�ned
by:

E(t) =







Rt cos(t)

Rt
tan(S) cos(α)√

1+tan2(S) cos2(α)
sin(t)

0






(26)

The radius of urvature of a parametri urve
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C(t) is de�ned by:

ρC =

∥

∥

∥

dC(t)
dt

∥

∥

∥

3

∥

∥

∥

dC(t)
dt × d2C(t)

dt2

∥

∥

∥

From equation (23), the following an be alulated:

dE(t)

dt
=





−µ sin(t)
η cos(t)

0





and

d2E(t)

dt2
=





−µ cos(t)
−η sin(t)

0





The radius of urvature of the ellipse E(t) is thus
equal to:

ρE =

(

µ2 sin2(t) + η2 cos2(t)
)3/2

η µ

and is only de�ned for η 6= 0 and µ 6= 0. Now,

aording to equations (24), µ = 0 implies Rt = 0,
whih annot be and η = 0 implies ψ = 0. The

ase where ψ is null orresponds to mahining in the

plane (x, y) (Fig. 4) whih is equivalent to saying

that S = 0 (Fig. 3) or α = ±π
2 (f. equation (22));

now, as has already been stated, these instanes will

be analysed in setion 3.2.

The radius of urvature of the ellipse is thus given

by:

ρE =

(

µ2
(

1− cos2(t)
)

+ η2 cos2(t)
)3/2

η µ

=
µ2

η

(

1− cos2(t) +
η2

µ2
cos2(t)

)3/2

=
µ2

η

(

1 + cos2(t)

(

η2

µ2
− 1

))3/2

(27)

Equation (27) an be used to alulate the radius

of urvature of the ellipse E(t) as a funtion of the pa-
rameter t of that urve. Let Ecc be the point of that

ellipse orresponding to the point of ontat Cc (Fig.

4). To determine the radius of urvature of E(t) at
point Ecc, the value of parameter t at that point

has to be known. To �nd it, equation (12) is used

again. In this equation b and c are the oordinates

of the unit feed vetor F and an be expressed by

c = sin(ψ) and b = cos(ψ) (see equation 21 and Fig.

4). In addition, at point Cc, the value of parameter

v is given by v = −π
2 + S (Fig. 3), whene it an be

dedued that sin(v) = − cos(S) and cos(v) = sin(S).
Applying these onsiderations to equation (12), the

following is obtained:

cos(t) =

√

1− sin2(ψ) cos2(S)

cos2(ψ) sin2(S)

whene it transpires naturally that:

cos(t) =

√

1− tan2(ψ)

tan2(S)

Now, aording to equation (22),

tan(ψ)

tan(S)
= cos(α)

It an therefore be on�rmed that at point Ecc,

there is cos(t) = sin(α). Using this result in equation
(27) giving the radius of urvature of the ellipse, the

radius of urvature ρE at that point an be expressed:

ρE =
µ2

η

(

1 + sin2(α)

(

η2

µ2
− 1

))3/2

Using expressions of µ and η established in equa-

tions (24) and (25), the expression of ρE beomes:

ρE =
R2

t
Rt tan(S) cos(α)√
1+tan2(S) cos2(α)











1 + sin2(α)











(

Rt tan(S) cos(α)√
1+tan2(S) cos2(α)

)2

R2
t

− 1





















3/2

=
Rt

√

1 + tan2(S) cos2(α)

tan(S) cos(α)

(

1 + sin2(α)

(

tan2(S) cos2(α)

1 + tan2(S) cos2(α)
− 1

))3/2
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ρE =
Rt

√

1 + tan2(S) cos2(α)

tan(S) cos(α)

(

1− sin2(α)

1 + tan2(S) cos2(α)

)3/2

=
Rt

tan(S) cos(α)

(

tan2(S) cos2(α) + cos2(α)
)3/2

1 + tan2(S) cos2(α)

=
Rt cos

2(α)
(

1 + tan2(S)
)3/2

tan(S) (1 + tan2(S) cos2(α))

Given that 1 + tan2(S) = 1
cos2(S)

, it an stated

that:

ρE =
Rt cos

2(α)

cos3(S) tan(S) (1 + tan2(S) cos2(α))

Also, given the restritions established on α and

S (that is −π
2 < α < π

2 and S 6= 0), this expression
an be simpli�ed as:

ρE =
Rt cos

2(α)

cos2(α) sin3(S) + cos2(S) sin(S)
(28)

or again:

ρE =
Rt cos

2(α)

sin(S)
(

1− sin2(α) sin2(S)
)

(29)

This expression allows the radius of urvature of

the ellipse E(t) resulting from the projetion of the

torus major radius irle of the utter in a plane nor-

mal to the feed diretion to be alulated, and this

for the torus entre point of that urve orresponding

to the point of ontat with the mahined surfae.

Based on lemma 2 applied to the ellipse, the ra-

dius of urvature Reff on Cc an be expressed by:

Reff =
(R − r) cos2(α)

sin(S)
(

1− sin2(α) sin2(S)
) + r (30)

This expression an be used to alulate the ef-

fetive radius of the utter at the utter/workpiee

point of ontat in the ase of end milling of a free-

form surfae with a torus milling utter moving in

translation on a multi-axis CNC mahine.

3 Disussion

3.1 Analysis of the expression of e�etive

radius

In relation (30), angle α, haraterising the mahin-

ing diretion projeted in the plane (x, y), only enters
into expressions cos2(α) and sin2(α). It an thus be

asserted that all other parameters being equal, the

value of the e�etive radius is the same for values α
and α + π. This is equivalent to saying that for a

given point, the values of the e�etive radius are the

same whether up milling or limb milling in a diamet-

rially opposite diretion. This result is unsurprising

in so far as the study of the e�etive radius is based

on a projetion in a plane normal to the mahining

diretion.

Moreover, analysis of the relation (30) shows that

for α = ±π
2 , Reff = r obtains, whih onstitutes

the minimum value of the e�etive radius for a torus

milling utter. Its maximum value, whih is theoret-

ially in�nite (horizontal mahining) is approahed

when α tends towards 0 and when S tends towards

0.

3.2 Study into limits of validity of the ex-

pression of the e�etive radius

Relation (30) a�ords an analytial alulation of the

e�etive radius of the utter at the utter/workpiee

point of ontat when mahining a free-form surfae

with a torus milling utter. It should, however, be

realled here what preisely is the framework of va-

lidity for this relation. Firstly, this relation is only

valid at the utter/workpiee point of ontat. In-

deed, many relations established during omputation

� (20) and following � are only valid at this point.
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The framework of validity of relation (30) is also

bounded by the hypotheses adopted during alu-

lation. The most restritive of these hypotheses is

that the feed vetor F is onstant at any point of the

utter. As stated previously, this means that loally

at least, the utter is moved by simple translation.

Appliation-wise, this is always true on 3-axis NC

mahines. For 4- and 5- axis NC mahines, this may

be true for portions of the paths but this relation

annot be used systematially. In partiular, when

the axes of rotation of the mahine are ativated,

the relative movement of the utter in relation to the

workpiee omprises a translation and a rotation. In

this ase, the feed rate annot be represented by the

same vetor F for all points of the utter.

During the demonstration, restritions were stated

as to the value of omponents b and c of the feed

vetor F (setion 2.2.3), on the value of parameter

v (setion 2.2.4) and the values of angles S, α and

ψ (setion 2.4). Thus, relation (30) is only demon-

strable if b 6= 0, c 6= 0, v 6= −π
2 , S 6= 0, α 6= ±π

2 ,

ψ 6= 0 and ψ 6= π
2 . Analysis of the mathematial

and tehnologial ontext shows that these di�er-

ent exeptional ases overlap. Indeed, these speial

ases orrespond to quite spei� mahining on�gu-

rations. Eah of these speial on�gurations will now

be analysed, bearing in mind that in all ases, it was

possible, during the demonstration, to postulate that

a = 0 without losing in generality (setion 2.2.3):

� Mahining of a loally plane surfae at the ut-

ter / workpiee point of ontat (point Cc): in

this instane, vetor F is parallel to the plane

(x, y) and point Cc is loated on the lower limit

of the torus part of the utter. Then c = 0,
v = −π

2 , S = 0 (Fig. 3) and ψ = 0 (Fig. 4)

obtain. Projetion of the utter envelope urve

in a plane normal to feed is then a straight line

parallel to the plane (x, y), orresponding to

a null urvature. In all the other mahining

on�gurations, v 6= −π
2 and S 6= 0 neessarily

apply. c 6= 0 and ψ 6= 0 also apply in all the

other mahining on�gurations, exept for the

ase of milling perpendiular to the diretion

of the greatest slope (α = ±π
2 ).

� Mahining perpendiular to the diretion of the

greatest slope. In this instane c = 0 and

α = ±π
2 apply (see Fig. 3 with a mahining

diretion perpendiular to the plane (D, z) for

the mahining on�guration and Fig. 4 to de-

�ne angle α). Projetion in a plane normal to

the feed of the utter envelope urve is then

an ar of irle orresponding to the torus part

of the utter and the e�etive mahining ra-

dius is equal to the torus radius r. In all other

mahining on�gurations, α 6= ±π
2 neessarily

obtains.

� Mahining along axis z. b = 0 and ψ = π
2

will then apply. This instane ould possibly

arise when milling vertially with a round in-

sert utter. The utter/workpiee point of on-

tat would then be loated on the upper limit

of the torus part (v = 0) and in this ase the ef-
fetive radius of the utter ould be onsidered

to be equal to its outside radius R. Neverthe-
less, suh mahining onditions are extremely

unfavourable in terms of utting quality and

utter lifetime and are onsequently never ap-

plied industrially. However, in all the other

mahining on�gurations, b 6= 0 and ψ 6= π
2

will neessarily apply.

The hypotheses adopted during alulation thus

orrespond to borderline ases that an be managed

regardless of the e�etive radius. While it is appro-

priate to take them into aount when developing

tools based on relation (30), this should not be an

obstale to implementation.

4 Example of an appliation

4.1 Introdution

Determining the e�etive radius of the utter at the

utter/workpiee point of ontat through a simple

analytial formula as with the one established in re-

lation (30) o�ers many advantages. Indeed, despite

the imposed limits established in setion 3.2, this re-

sult o�ers the perspetive of multiple appliations

that will be further developed in forthoming publi-

ations. Using an analytial formula is always rapi-

der than a numerial proedure. Calulation of the

e�etive radius by an analytial formula instead of

the numerial proedures generally used means ap-

pliations that were hitherto onsidered to be hard to

ontemplate an be developed. For example, thanks

to the relation established in (30), an appliation was

readily developed providing a detailed mapping of
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the e�etive radius of the tool over the entire surfae

almost instantaneously.

This mapping tool was then used to ondut a

study into the omparative e�etiveness of a ball end

mill and a torus milling utter with the same radius

when mahining a free-form surfae from an indus-

trial environment on a 3-axis NC mahine tool.

This surfae, relating to a boat propeller measur-

ing 393 mm in diameter (Fig. 5), is the extrados of

the blade (Fig. 6).

Figure 5: Boat propeller

Figure 6: Extrados of a blade

Whatever the tool path planning strategy envis-

aged (parallel planes, isoparametris, iso-sallop) the

step over distane (de�ned in setion 4.2) must re-

spet the maximum sallop height.

Firstly, it should be realled that, the step over

distane at a point is diretly related to the utter

e�etive radius and, for a given sallop height, that

distane has a signi�ant impat on produtivity. In

what follows, it will be shown how, ompared with

the results obtained using a ball-end mill, using a

torus end utter an be advantageous in some areas

of the workpiee and disadvantageous in others. It

will also be seen how the simpliity of the expression

established in (30) allows this analysis to be on-

duted in an extremely short time.

4.2 Relation between step over distane

and e�etive radius

Whatever the tool path planning strategy used, in

order to position the utter so as to respet the max-

imum sallop height at a given point of the toolpath,

the distane d de�ning its position in the plane per-

pendiular to the feed diretion must �rst have been

alulated (Fig. 7). Subsequently, the step over dis-

tane sod an be readily determined as it is diretly

related to d by angle γ haraterising the loal inli-

nation of the surfae in a plane normal to the ma-

hining diretion. Showing that the step over dis-

tane is diretly related to the utter e�etive radius

is thus equivalent to showing that distane d depends
diretly on that e�etive radius.

̺

O

Reff

Reff

C

A

H

D

sod

γ

β

d/2

sh

Figure 7: Calulating the step over distane

To alulate the value of d it is assumed that the

urvature of surfae ̺ (onsidered in a plane nor-

mal to the feed diretion) and the utter e�etive

radius Reff are onstant loally. The triangle made

by the entre of urvature of the surfae alled O,

and points C and H (Fig. 7) is onsidered. For this
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triangle, the following an be stated:

R2
eff = (Reff + ̺)2 + (̺+ sh)

2

− 2(Reff + ̺)(̺+ sh) cos(β)

where β is the angle between vetors OC and OH.

Moreover, in triangle (OAC), the following ap-

plies:

d

2
= (̺+Reff ) sin(β)

Stating t = tan2
(

β
2

)

, the following is obtained:

{

R2
eff = (Reff + ̺)2 + (̺+ sh)

2 − 2(Reff + ̺)(̺+ sh)
1−t2

1+t2
d
2 = (̺+Reff )

2 t
1+t2

Resolution of this system of equations gives:

d =

√

(

4R2

eff + 4 ̺Reff − 2 sh ̺− sh2
)

(2 ̺+ sh) sh

̺+ sh
(31)

This expression shows that the distane d is in-

deed diretly related to the e�etive radius Reff , es-

peially onsidering that sh an be negleted in re-

lation to the other magnitudes. The step over dis-

tane sod thus depends diretly on the e�etive ra-

dius Reff . Now, for a given sallop height value (the

aeptable tolerane on the surfae), the inrease in

step over distane allows for signi�ant gains in pro-

dutivity. Consequently, it an be said that this in-

rease in the e�etive radius of the utter has a diret

impat on produtivity.

4.3 Comparison methodology

A seen previously (setion 3.1), the e�etive radius

value an vary between the torus radius r in the ase

of a path perpendiular to the diretion of the great-

est slope, and a value that tends to in�nity for hor-

izontal milling. Given the relation between e�etive

radius utter and step over distane, it is lear that

where the e�etive radius equals r, using a ball-end

utter instead of a torus milling utter will allow for

greater produtivity. However, the loser the path

beomes to being horizontal in the diretion of the

greatest slope, the more the torus milling utter will

prove to be more e�etive as ompared with a ball-

end mill of the same diameter. It therefore seems

useful to be able to determine, for a given surfae,

the zones where the torus milling utter is more ef-

fetive than the ball-end utter and vie-versa.

For the ball-end utter, the e�etive radius is al-

ways equal to its nominal radius R, whatever the

feed diretion and slope of the surfae.

For the torus milling utter, alulation of the

e�etive radius with the formula established in (30)

requires knowledge of the slope of the surfae at the

point onsidered and the angle formed by the dire-

tion of the greatest slope and the feed diretion. To

pursue this analysis, a mahining diretion �rst needs

to be de�ned that will be parameterized by the an-

gle θ its projetion makes in the plane (X,Y) with
the axis X of the mahine. Then a meshing of the

parametri spae omprising 256 x 256 tiles is on-

sidered. In the entre of eah tile thus onstituted,

the e�etive radius of the torus milling utter an be

readily alulated using relation (30). The value of

the e�etive radius thus obtained is then assoiated

with a orresponding olour from a sale of olours

varying linearly from r (blue) to 2R (red). The grid

of olours is then applied as texture to the 3D rep-

resentation of the surfae to generate graphi images

like those shown in �gures 8 to 11.

The entire proedure (alulation and visualisa-

tion) was developed using the Java programming lan-

guage.

4.4 Results

Here, the results for two utters with outer radius

R = 5mm are presented. One utter is a ball-end

mill while the other is a torus milling utter whose

torus radius is r = 2mm. The surfae onsidered is

the extrados of a boat propeller as shown previously

(setion 4.1).

Applying the methodology de�ned in setion 4.3

to a number of representative mahining diretions

the following graphi representations are obtained:
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� for a mahining diretion de�ned by θ = −45°,
�gure 8 is obtained

� for a mahining diretion de�ned by θ = 0°,
�gure 9 is obtained

� for a mahining diretion de�ned by θ = 45°,
�gure 10 is obtained

� for a mahining diretion de�ned by θ = 90°,
�gure 11 is obtained

Figure 8: Visualisation of the e�etive radius for θ =
−45°

Figure 9: Visualisation of the e�etive radius for θ =
0°

On these �gures, the white urves represent the

limit between the zones, that is the points where

Figure 10: Visualisation of the e�etive radius for

θ = 45°

Figure 11: Visualisation of the e�etive radius for

θ = 90°

Reff = R = 5mm. In the regions that are pre-

dominantly blue, Reff < R applies. It an thus be

said that in these regions the ball-end mill is more

e�etive than the torus milling utter. Conversely, in

mainly red and green regions, the e�etive radius of

the torus milling utter is greater than the nominal

radius of the ball-end utter (Reff > R); as a result,
it an be said that in these regions, the torus milling

utter is more e�etive than the ball-end utter.

The alulation time needed to ondut the entire

analysis proedure (omputation and display) for all

the tests onduted always took less than one se-

ond. This rapidity in alulation is essentially due

to the simpliity of expression of the e�etive radius
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(relation 30).

This simpliity of expression means that tools for

analysis, like the one introdued here, an be de-

�ned to provide preious help in hoosing a mahin-

ing strategy.

5 Conlusions and perspetives

When end milling of free-form surfaes with a torus

milling utter, the e�etive radius onept is essen-

tial to analyse the mahining proedure in purely

geometrial terms.

The study presented in the present publiation

enabled the e�etive radius of a torus milling utter

milling with a translation movement to be expressed.

Adopting this an original approah, this expression

was determined in analytial form without having

to resort to geometri approximation. This relation

was also analysed and the limits to its validity were

studied.

As the expression was relatively simple, it should

pave the way for appliations that it would be impos-

sible to implement in a reasonable time frame using

a numerial approah. As an example, a tool for

numerial analysis was presented that ould prove

useful in pre-projet analysis of a proedure for free-

form mahining using parallel planes.

The possibilities o�ered by the relation estab-

lished in the present study are, however, far from

being limited to the example adopted here. Due to

it being so easy to implement, the analytial for-

mula de�ned here to ompute the e�etive radius

may readily be integrated into reently developed

"intelligent CAM" proesses [24, 25℄.

In forthoming publiations it will be seen how

analytial expression of the utter e�etive radius

an �nd many di�erent appliations in studies into

the mahining of free-form surfaes with a torus milling

utter that adopt a geometri approah.

A Calulation detail

A.1 Identi�ation of terms in r in equa-

tion (9)

From equation (13):

c cos (t)
√

b2 sin2 (t) + c2
=

√

1− c2 sin2 (v)

b2 cos2 (v)
cos (v)

it an be dedued suessively that:

c2 cos2(t) =

(

1− c2

b2
tan2(v)

)

cos2(v)
(

b2 sin2 (t) + c2
)

b2 c2 cos2(t)
(

1 + tan2(v)
)

=
(

b2 − c2 tan2(v)
) (

c2 + b2 sin2 (t)
)

= b2 c2 + b4 sin2(t)− c4 tan2(v)− b2 c2 tan2(v)
(

1− cos2(t)
)

b2 c2 cos2(t) = b2 c2 + b4
(

1− cos2(t)
)

− c4 tan2(v)− b2 c2 tan2(v)

b2 cos2(t)
(

b2 + c2
)

= b2 c2 + b4 − c2 tan2(v)
(

b2 + c2
)

cos2(t) = c2 + b2 − c2

b2
tan2(v)

and this leads to the following equation (12) :

cos(t) =

√

1− c2 sin2(v)

b2 cos2(v)

A.2 Identi�ation of terms in r in equa-

tion (10)

From equation (14) :

c sin(t)
√

b2 sin2(t) + c2
= −

(

c3

b
sin(v) + b c sin(v)

)
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it follows that:

c2 sin2(t)

b2 sin2(t) + c2
=

(

c3 + b2 c

b

)2

sin2(v)

=
(

c2 + b2
)2 c2

b2
sin2(v)

whene

b2c2 sin2(t) = c2 sin2(v)
(

b2 sin2(t) + c2
)

b2 c2 sin2(t)
(

1− sin2(v)
)

= c4 sin2(v)

b2 sin2(t) cos2(v) = c2 sin2(v)

1− cos2(t) =
c2 sin2(v)

b2 cos2(v)

from whih follows equation (12) :

cos(t) =

√

1− c2 sin2(v)

b2 cos2(v)
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