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Abstra
t

When end milling free-form surfa
es using a torus milling 
utter, the notion of 
utter e�e
tive radius is

often used to address the pro
edure for removal of material from a purely geometri
al perspe
tive. Using

an original analyti
al approa
h, the present study establishes a relation enabling the value of this e�e
tive

radius to be easily 
omputed. The limits of validity of this relation are then dis
ussed and pre
isely

de�ned.

By way of an illustration, an example of how this relation 
an be used to generate a numeri
al tool for

analysis of the possibilities for ma
hining free-form surfa
es on multi-axis ma
hine-tools is also presented.

Keywords: free-form surfa
e; CNC ma
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1 Introdu
tion

End milling of free-form surfa
es is essentially used

to manufa
ture moulds and dies where it is often ex-

tremely 
ostly in terms of produ
tion time 
onsumed.

From a purely geometri
al standpoint, pre
ise mod-

elling of the movements of the 
utter and its posi-

tioning in relation to the surfa
e are indispensable

to be able to propose improvements to boost pro-

du
tivity. From this perspe
tive, an approa
h 
om-

monly adopted is based on notions of e�e
tive radius

and/or sweep 
urve. Indeed, good knowledge of these

geometri
al entities paves the way for a pre
ise anal-

ysis of the tra
e left by the 
utter in the workpie
e

and through that, the quantity of material a
tually

removed.

1.1 Previous works on the e�e
tive 
ut-

ter radius

Tool path planning, optimisation of 
utter position-

ing and non-interferen
e issues are often the fo
us of

resear
h 
ondu
ted in the �eld of free-form surfa
e

ma
hining on multi-axis ma
hine tools [1℄. Among

these works, many studies refer to the notion of 
ut-

ter e�e
tive radius. The �rst to introdu
e this 
on-


ept were Vi
kers and Quan in 1989. In [2℄, they

show how a �at-end mill tilted to the front 
an be

more produ
tive than a ball-end mill. To do so, they

introdu
e the notion of e�e
tive radius in the 
ase of

the �at-end mill:

Reff =
R

sin(φ)

where R is the 
utter radius and φ its tilt angle in

the plane formed by its feed dire
tion and axis of

rotation.

The relative e�
ien
y of �at-end mills and ball-

end mills is also analysed in [3℄, [4℄ and [5℄. These

works are also based on the e�e
tive radius 
on
ept

to show that, all other parameters being equal, �at-

end 
utters, when 
orre
tly used, produ
e a lower

s
allop height than that produ
ed by ball-end 
ut-

ters. In [4℄ and [5℄, the authors also show that �at

end mills leave pronoun
ed marks in the feed dire
-

tion leading to a greater roughness of the surfa
es

obtained (for the same feed per tooth).

Following these works a number of authors have

argued in favour of using torus 
utters when milling

free-form surfa
es. Indeed, torus mills allow a signif-

i
ant e�e
tive radius to be retained while avoiding

the sharp and unsightly marks left in the workpie
e

by �at-end mills [6℄. Many studies arrive at the same


on
lusions, whether they adopt a pro
edure to opti-

mise the 
utter position [7,8℄ or seek rather to elim-

inate interferen
e [9, 10℄.

Among the works that address the 
utter e�e
tive

radius 
on
ept, those most frequently en
ountered in

the literature utilise the envelope 
urve 
on
ept. For

a given 
utter position, the envelope 
urve materi-

alises the tra
e left by the 
utter in the material.

In [11℄, it is approximated, for a torus milling 
utter,

by the proje
tion of a 
ir
le in a plane normal to the

feed. In [12℄, it is given in the impli
it form for an

APT 
utter.

Within the s
ope of ma
hining simulation [13℄,

many studies use this 
on
ept to determine the vol-

ume of swarf a
tually removed by the 
utter, but

most of these works [14�16℄ address this issue nu-

meri
ally, whi
h does indeed allow the swept volume

to be 
omputed, but pre
ludes an analyti
al study

of the e�e
tive 
utter radius. The sweep 
urve and

e�e
tive 
utter radius notions are also largely used

in works addressing 
onstant s
allop height ma
hin-

ing planning. This toolpath planning te
hnique was

initially introdu
ed in [17℄ and [18℄ using a ball-end


utter. Subsequently it was adapted for a �at-end

mill [19, 20℄ and for the torus milling 
utter [21, 22℄,

tools for whi
h the e�e
tive radius assumes its full

signi�
an
e.

Analysis of the main studies published in the �eld

shows that most works 
overing the e�e
tive radius

of the torus milling 
utter rely on geometri
 approx-

imations (with non-negligible 
onsequen
es) or use

a numeri
al approa
h that, 
ompared with an ana-

lyti
al approa
h, proves to be less �exible and mu
h

more time-
onsuming in 
omputation.

1.2 The present arti
le's 
ontribution

The present arti
le will introdu
e a new study of the

torus milling 
utter e�e
tive radius. Its originality

lies in its totally analyti
al approa
h that neverthe-

less refrains from any geometri
 approximation. The

main result of this work is the de�nition of a relation

authorizing an analyti
al 
al
ulation of the e�e
tive


utter radius.

This study is also a

ompanied by an analysis of

this relation and its limits, thus allowing the s
ope

for its validity to be 
learly determined.

This is followed by an example in whi
h it is
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shown how this relation 
an be used to de�ne numer-

i
al tools potentially useful within the s
ope of end

milling of free-form surfa
es on multi-axis ma
hine

tools. The aim with this example is not to de�ne

a 
omplete pro
edure to plan tool paths, but sim-

ply to emphasise the possibilities o�ered by using an

analyti
al formula where numeri
al pro
edures are

usually applied.

The arti
le 
on
ludes with a reminder of the main

results obtained and some remarks on forth
oming

works on this subje
t.

2 Cal
ulating the e�e
tive radius

2.1 Introdu
tion

It will be shown how it is possible to 
al
ulate an-

alyti
ally, at the point of 
utter/workpie
e 
onta
t,

the e�e
tive radius of a torus milling 
utter ma
hin-

ing a free-form surfa
e on a multi-axis NC ma
hine

tool. This 
al
ulation is based on two mathemati
al

demonstrations that will be introdu
ed prior to the


omputation itself.

A torus milling 
utter de�ned by R and r, R
being the outer radius of that 
utter and r being its
torus radius, is 
onsidered. The tra
e left by that


utter in the material at a given instant is a 
urve

that will be referred to as the envelope 
urve. It is

the su

ession of su
h envelope 
urves that forms the

envelope surfa
e generated by the 
utter movement

in the material. At ea
h instant, the envelope 
urve

is de�ned by Ft · n = 0, where Ft is a ve
tor in the


utter feed dire
tion and n a ve
tor normal to the

surfa
e of the 
utter.

In what follows in the present study, the ve
tor

Ft will be assumed to be 
onstant for all points of

the 
utter; this is equivalent to asserting that the


utter moves in translation, at least lo
ally. More-

over, only the part of the envelope 
urve of the 
utter


ontained in the torus part of the 
utter will be 
on-

sidered. Indeed, the great majority of torus milling


utters used in industry are round insert 
utters and

only that part is a
tive. Also, studying the parts of

the envelope 
urve 
ontained in the 
ylindri
al and

dis
oid portions of the 
utter is unproblemati
 and,

even in the 
ase of solid torus milling 
utters, these

parts of the 
utter are normally ina
tive when re-

moving material, espe
ially when 
ondu
ting �nish-

ing operations.

The two lemmas on whi
h the 
al
ulation is based

are as follows:

Lemma 1 Let P be the mathemati
al operation for

proje
tion along the feed dire
tion Ft in a plane nor-

mal to Ft. Let Tp(v), be the 
urve resulting from the

proje
tion along P of the 
utter envelope. Let E(t)
be the ellipse resulting from the proje
tion along P
of the 
utter 
entre-torus 
ir
le, and oE(t) an o�set

exterior to that ellipse with a value equal to the ra-

dius of the 
utter torus. Then the two 
urves Tp(v)
and oE(t) are 
oin
ident.

Lemma 2 The radius of 
urvature of a plane o�-

set 
urve is equal to the radius of 
urvature of the

original 
urve augmented by the o�set value.

It will thus be shown initially that the proje
tion

of the 
utter envelope 
urve in a plane normal to the

feed dire
tion Ft 
an be de�ned by an ellipse aug-

mented by an o�set equal to the 
utter torus radius

(se
tion 2.2).

It will then be shown that the radius of 
urvature

of an o�set to this ellipse is equal to the radius of


urvature of the original ellipse augmented by the

o�set value (se
tion 2.3).

Based on these results, it will then be possible

to 
al
ulate analyti
ally the e�e
tive radius of the


utter Reff 
onsidering the radius of 
urvature of

the ellipse E(t) to whi
h is added the 
utter torus

radius the 
utter (se
tion 2.4).

All these 
al
ulations were veri�ed using the al-

gebrai
 
omputation software Maxima [23℄.

2.2 Demonstration of lemma 1

2.2.1 Statement of the problem

Firstly the proje
tion of the 
utter envelope 
urve in

a plane normal to Ft is 
onsidered, then an o�set by

r of the ellipse de�ned by the proje
tion of the torus

major radius 
ir
le of the 
utter (
entre of the torus

tube) in the same plane (Fig. 1 and 2).

The purpose of this demonstration is to show that

these two 
urves 
oin
ide.

2.2.2 De�nitions

Naming Rt the radius of the 
utter torus 
entre 
ir
le

(Rt = R − r), the toroid surfa
e de�ning the 
utter
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in its referen
e frame 
an be de�ned by:

T(u, v) =





(Rt + r cos(v)) cos(u)
(Rt + r cos(v)) sin(u)

r sin(v)





(1)

with u ∈ [0, 2π] and v ∈
[

−π
2 , 0
]

Let F, be a unit ve
tor in the ma
hining dire
tion

Ft:

F =
Ft

‖Ft‖
The tra
e left by the 
utter (envelope 
urve) 
an

then be de�ned by F · n = 0, where n is the normal

to the 
utter surfa
e.

Consider the proje
tion along the feed dire
tion

F in a plane P perpendi
ular to F. Naming a, b and
c the 
oordinates of F, the plane P is expressed by

equation :

a x+ b y + c z = d with d ∈ R

C(t)

Cp(t)

S(t, w)

P

x

y

z

F

Figure 1: Proje
tion of a parametri
 
urve in a plane

Let C(t) be a 
urve de�ned in three dimensions

by:

C(t) =





Cx(t)
Cy(t)
Cz(t)





The 
urve Cp(t) resulting from the proje
tion of

C(t) in P along the dire
tion F is then de�ned by the

interse
tion of the plane P and the surfa
e de�ned

by S(t, w) = C(t) + f(w)F where f(w) is a s
alar

fun
tion of the parameter w de�ned in [−∞,+∞]
(Fig. 1). This surfa
e is the ruled surfa
e de�ned

from C(t) and F. The proje
ted 
urve Cp(t) is thus
de�ned by the system:















a x+ b y + c z = d
x = Cx(t) + a f(w)
y = Cy(t) + b f(w)
z = Cz(t) + c f(w)

where x, y and z represent the three 
oordinates of

the 
urve Cp(t).
Resolving this system in relation to x, y, z and

f(w), the expression of these 
oordinates is obtained

as a fun
tion of t that will be referred to as Cpx(t),
Cpy(t) and Cpz(t):















Cpx(t) =
−a cCz(t)−a bCy(t)+c2 Cx(t)+b2 Cx(t)+a d

c2+b2+a2

Cpy(t) =
−b cCz(t)+c2 Cy(t)+a2 Cy(t)−a bCx(t)+b d

c2+b2+a2

Cpz(t) =
b2 Cz(t)+a2 Cz(t)+c (−bCy(t)−aCx(t))+c d

c2+b2+a2

as also

f(w) =
−cCz (t)− bCy (t)− aCx (t) + d

c2 + b2 + a2

Given that the ve
tor F is unitary, this gives a2+
b2 + c2 = 1, when
e the equation for the proje
ted


urve:

Cp(t) =





−a cCz (t)− a bCy (t) + c2 Cx (t) + b2 Cx (t) + a d
−b cCz (t) + c2Cy (t) + a2Cy (t)− a bCx (t) + b d
b2Cz (t) + a2Cz (t) + c (−bCy (t)− aCx (t)) + c d





(2)

2.2.3 Contextualisation

Within the s
ope of the present study, the 
utter is

de�ned within its own referen
e frame, the axis 
o-

in
iding with its axis of rotation. As the 
utter is

a surfa
e of revolution, whatever the movement of

translation driving it, the envelope 
urve resulting

from this movement, de�ned by F · n = 0, admits a
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plane of symmetry 
ontaining the axis z of the refer-
en
e frame. Furthermore, a proje
tion P in a plane

normal to the feed F is 
onsidered. This proje
tion

thus 
orresponds to a ve
tor 
ontained within the

plane of symmetry of the envelope 
urve. The prob-

lem is thus axisymmetri
. Consequently, the results

obtained in the 
ase of a parti
ular proje
tion (i.e. in

a given radial dire
tion) are true whatever the pro-

je
tion P 
onsidered, meaning whatever translation

movement drives the 
utter. It 
an thus be 
onsid-

ered that the results obtained in the 
ase of a pro-

je
tion along a ve
tor 
ontained in the plane x = 0
(or y = 0) 
an be extended to the general 
ase.

A proje
tion P is 
hosen whose dire
tion F is


ontained in the plane of equation x = 0, with 
o-

ordinate a of F thus being null. The plane P nor-

mal to this proje
tion will then have for equation

b y + c z = d and the 
oordinates of ve
tor F are:

F =





0
b
c





In what follows in the present demonstration, b 6=
0 and c 6= 0 will be 
onsidered. Indeed, instan
es

where b = 0 and c = 0 
orrespond to horizontal

or verti
al 
utter paths that 
onstitute spe
ial 
ases

that will be addressed in se
tion 3.2.

Furthermore, as ve
tor F is unitary, it 
an be

asserted that b2 + c2 = 1.
Also, in so far as the fo
us is on 
urves proje
ted

orthogonally in a plane normal to the milling dire
-

tion, any plane normal to that dire
tion 
an be 
ho-

sen without impairing generality. To simplify 
om-

putation, a plane P passing through the origin is


hosen, that is a plane with equation b y + c z = 0.
This gives d = 0.

Taking these 
onsiderations into a

ount, the equa-

tion (2) for a 
urve transformed along proje
tion P
be
omes:

Cp(t) =





Cx (t)
−b cCz (t) + c2 Cy (t)
b2 Cz (t)− b cCy (t)





(3)

In the following demonstration, will be 
onsid-

ered the proje
tion P, de�ned by equation (3) en-

abling a 
urve to be proje
ted in a plane P a

ording

to a ve
tor F, with plane P going through the origin

and being normal to the ve
tor F that is 
ontained

in the plane of equation x = 0.

2.2.4 Demonstration

First of all, the proje
tion P is applied to the 
ir
le

C(t), the 
utter torus 
entre, de�ned by the equation

C(t) =





Rt cos(t)
Rt sin(t)

0





with t ∈ [0, 2π]

Using (3), the orthogonal proje
tion of that 
ir
le


an be de�ned in the plane of equation b y+ c z = 0.
This proje
tion is an ellipse that will be referred to

as E(t), and whose equation is:

E(t) =





Rt cos(t)
c2Rt sin(t)
−b cRt sin(t)





In what follows, only the lower part of the ellipse

E(t) will be 
onsidered, that is the part de�ned by

t ∈ [−π, 0] (Fig. 2).
The unit ve
tor nE(t) normal to E(t) and 
on-

tained in the plane P 
an then be de�ned by:

nE(t) =
dE(t)
dt × F

∥

∥

∥

dE(t)
dt × F

∥

∥

∥

that is

nE(t) =
1

√

b2 sin2 (t) + c2





c cos(t)
c sin(t)
−b sin(t)





(4)

Given the previously established restri
tions (c 6= 0
and b 6= 0), this expression is de�ned whatever t ∈
[−π, 0].

In the plane P , oE(t) is de�ned, an o�set with

value r to the ellipse E(t):

oE(t) = E(t) + rnE(t)

This 
urve is expressed as follows:

oE(t) =











cos(t)Rt +
c r cos(t)√
b2 sin2(t)+c2

c2 sin(t)Rt +
c r sin(t)√
b2 sin2(t)+c2

−b c sin(t)Rt − b r sin(t)√
b2 sin2(t)+c2











(5)

Se
ondly, the envelope 
urve is 
onsidered, that is

the tra
e left by the 
utter in the material at a given

instant. For a torus milling 
utter whose de�nition
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view on plane (y, z) z

y

r

R

Rt

P

Tr(v)

F

view on plane P

E(t)

oE(t)

Tp(v)

Figure 2: Proje
tion of the envelope 
urve and the torus 
entre 
ir
le in a plane normal to F

is given by the equation (1), this envelope 
urve is

de�ned by F · nT(u, v) = 0, where nT(u, v) is a

ve
tor normal to T(u, v).

nT(u, v) =
∂T(u, v)

∂u
× ∂T(u, v)

∂v
that is

nT(u, v) =





r cos(u) cos(v) (Rt + r cos(v))
r sin(u) cos(v) (Rt + r cos(v))

r sin(v) (Rt + r cos(v))





with u ∈ [0, π] and v ∈
[

−π
2 , 0
]

The equation F · nT(u, v) = 0 
an then be ex-

pressed

r (c sin(v) + b sin(u) cos(v)) (Rt + r cos(v)) = 0
(6)

when
e it 
an be dedu
ed that

sin (u) = − c sin (v)

b cos (v)
(7)

for v ∈
]

−π
2 , 0
]

. Se
tion 3.2 adresses the 
ase where

v = −π
2 . In what follows in the demonstration, it

will be 
onsidered that −π
2 < v 6 0.

Using this relation (7) in the expression ofT(u, v)
� equation (1) � the equation of the envelope 
urve,

referred to as Tr(v), is obtained:

Tr(v) =









√

1− c2 sin2(v)
b2 cos2(v)

(Rt + r cos(v))

− c sin(v) (Rt+r cos(v))
b cos(v)

r sin(v)









for u ∈
[

0, π2
]

, and

Tr(v) =









−
√

1− c2 sin2(v)
b2 cos2(v)

(Rt + r cos(v))

− c sin(v) (Rt+r cos(v))
b cos(v)

r sin(v)









for u ∈
[

π
2 , π

]

. As the 
urve Tr(v) is symmetri
al in
relation to the plane of equation x = 0 
orresponding
to parameter u = π

2 , only the part de�ned by 0 6

u 6
π
2 will be 
onsidered in what follows, with the

same reasoning being appli
able by symmetry for the

part de�ned by

π
2 6 u 6 π.

As previously, using (3) the proje
tion of that


urve 
an be de�ned in the plane P . Thus the 
urve
Tp(v) 
an be obtained:
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Tp(v) =









√

1− c2 sin2(v)
b2 cos2(v) (Rt + r cos(v))

− c3 sin(v) (Rt+r cos(v))
b cos(v) − b c r sin(v)

c2 sin(v) (Rt+r cos(v))
cos(v) + b2 r sin(v)









(8)

The problem posed 
an thus be redu
ed to show-

ing that oE(t) = Tp(v).
By identifying the 
oordinates of these two 
urves

(equations 5 and 8) member by member, 3 equations

are obtained:

cos(t)Rt +
c r cos(t)

√

b2 sin2(t) + c2
=

√

1− c2 sin2(v)

b2 cos2(v)
(Rt + r cos(v)) (9)

c2 sin(t)Rt +
c r sin(t)

√

b2 sin2(t) + c2
= −c

3 sin(v) (Rt + r cos(v))

b cos(v)
− b c r sin(v) (10)

−b c sin(t)Rt −
b r sin(t)

√

b2 sin2(t) + c2
=
c2 sin(v) (Rt + r cos(v))

cos(v)
+ b2 r sin(v) (11)

Analysing these equations, it 
learly emerges that

the last two, (10) and (11), are equivalent. Indeed,

by multiplying ea
h term of equation (10) by −b/c,
equation (11) is obtained.

To show that the two 
urves are equal, all one

needs to do is �nd a 
hange in variable linking t and
v su
h that the equation of one of the two 
urves 
an

be transformed into the equation of the other 
urve.

To do so, the terms on Rt and r between the �rst

equation (9) and one of the two others (for example

(10)) are identi�ed member by member.

From equation (9), identifying the terms on Rt,

the following is obtained:

cos(t) =

√

1− c2 sin2(v)

b2 cos2(v)
(12)

and identifying the terms on r, this gives:

c cos (t)
√

b2 sin2 (t) + c2
=

√

1− c2 sin2 (v)

b2 cos2 (v)
cos (v) (13)

whi
h, after simpli�
ation (see 5), results in return-

ing to equation (5):

cos(t) =

√

1− c2 sin2(v)

b2 cos2(v)

From equation (10), identifying the terms on Rt,

the following is obtained:

c2 sin(t) = −c
3 sin(v)

b cos(v)

when
e it 
an be dedu
ed

sin(t) = − c sin(v)

b cos(v)

1− cos2(t) =
c2 sin2(v)

b2 cos2(v)

whi
h results in returning to equation (12):

cos(t) =

√

1− c2 sin2(v)

b2 cos2(v)

From this same equation (10), identifying the

terms on r, the following is obtained:

c sin(t)
√

b2 sin2(t) + c2
= −

(

c3

b
sin(v) + b c sin(v)

)

(14)

whi
h, after simpli�
ation (see 5), again gives the

equation (12):

cos(t) =

√

1− c2 sin2(v)

b2 cos2(v)

Identi�
ation of the terms on Rt and r for equa-
tions (9) and (10) thus leads to the same relation (12)

linking parameters t and v. Using this relation as a


hange in variable, it proves possible to pass from

equation (5) to equation (8). There is thus a 
hange

in variable to go from one 
urve to the other. This

leads to 
on
luding that 
urves Tp(v) and oE(t) 
o-
in
ide.
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2.2.5 Con
lusion

It was shown that in the 
ase of a proje
tion P in

a plane going through the origin and along a ve
tor

F 
ontained in the plane of equation x = 0, the two

urves Tp(v) and oE(t) 
oin
ide. As the problem

is axisymmetri
, what is true in this instan
e is also

true whatever the plane of proje
tion, provided that

the proje
tion is made along a normal to that plane.

In the 
ase of a translation movement, the 
urve re-

sulting from the proje
tion plane of the tra
e left by

the 
utter thus 
oin
ides with the 
urve parallel to

the ellipse, lo
ated at a distan
e r outside the lat-

ter that itself results from the proje
tion of the torus


entre 
ir
le.

2.3 Demonstration of lemma 2

This demonstration's obje
tive is to show that the

radius of 
urvature of a plane o�set 
urve is equal

to the radius of 
urvature of the original 
urve aug-

mented by the value of the o�set.

Let C be a plane 
urve whose parameters are set

by its 
urvilinear abs
issa s. Let Co be an o�set


urve derived from C:

Co = C+ r n

where r is the s
alar value of the o�set and n the unit

normal toC oriented towards the 
entre of 
urvature.

Deriving the previous expression in relation to

the 
urvilinear abs
issa s, the following is obtained:

dCo

ds
=

dC

ds
+ r

dn

ds

where

dC

ds
is the unit ve
tor t, tangent to C.

Calling so the 
urvilinear abs
issa of the 
urve

Co one obtains:

dCo

dso

dso
ds

= t+ r
dn

ds

Frenet formulae give:

dn

ds
= τ b− κ t

where κ is the 
urvature ofC at the point 
onsidered.

As the 
urve C is plane, twisting τ is null and

thus:

dn

ds
= −κ t

giving:

dCo

dso

dso
ds

= t− r κ t = (1− r κ) t (15)

By de�nition

dCo

dso
is the unit ve
tor tangent to

Co. As the 
urve Co is the o�set of C, for a given

value of s, both 
urves have the same tangent. Thus

dCo

dso
= t

When
e, in (15) :

t
dso
ds

= (1− r κ) t

whi
h 
an be simpli�ed:

dso
ds

= 1− r κ (16)

Moreover, the Frenet formulae give:

dt

dso
= κo n

when
e

dt

dso
=

dt

ds

ds

dso
or

dt

ds
= κn

and, a

ording to (16)

ds

dso
=

1

1− r κ

Thus

κo n = κn
1

1− r κ

When
e it 
an be dedu
ed that:

κo =
κ

1− r κ
(17)

Let ρ be the radius of 
urvature of C and ρo the
radius of 
urvature of Co. These magnitudes are

related to 
urvatures κ and κo by:

ρ =
1

κ
et ρo =

1

κo

When
e, in (17) :

1

ρo
=

1
ρ

1− r
ρ
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whi
h 
an be expressed:

1

ρo
=

1

ρ− r

and �nally:

ρo = ρ− r

In the 
ase of a plane 
urve C, the radius of 
ur-

vature of an o�set to C is equal to the radius of


urvature of C redu
ed by the algebrai
 value of the

o�set. It 
an therefore be 
on
luded that in the 
ase

of an o�set remoter from the 
entre of 
urvature than

the original 
urve, the radius of 
urvature of the o�-

set 
urve will be equal to the radius of 
urvature of

the initial 
urve in
reased by the absolute value of

the o�set.

2.4 Cal
ulating the e�e
tive radius

During milling (Fig. 3), the 
utter axis 
oin
ides

with the z-axis of the referen
e frame and the x and

y axes of the referen
e frame are set as previously (see
se
tion 2.2.3), i.e. the feed dire
tion Ft is 
ontained

in the plane x = 0.
Furthermore, let D be the unit ve
tor 
ontained

in the plane (x, y) that indi
ates the dire
tion of the

greatest slope at the 
utter/workpie
e point of 
on-

ta
t (point Cc). The normal to the surfa
e at that

point (ncc) is then 
ontained in the plane (D, z).

O

z

D
r

R

Rt

v

ncc

Cc

S

Figure 3: De�ning angle S

S designates the slope of the surfa
e ma
hined

at the 
utter/workpie
e point of 
onta
t Cc. This

angle S is 
ontained in the plane (D, z). Only the


ase where S 6= 0 will be 
onsidered in the present


al
ulation. Indeed, milling in a dire
tion 
ontained

within the plane (x, y) 
onstitutes a spe
ial 
ase that
will be addressed in se
tion 3.2. Thus S > 0.

This angle S is also that between the 
utter axis z
and the normal to the surfa
e at the point of 
onta
t

ncc. The ve
tor ncc 
an be expressed in the form:

ncc = − sin(S)D+ cos(S) z (18)

α will designate the angle separating ve
tor D of

the y-axis. The following 
al
ulations will be limited
to the 
ase where −π

2 < α < π
2 . Where α = ±π

2 , the

dire
tion with the greatest slope D is perpendi
ular

to the feed dire
tion F. These values 
orrespond to

spe
ial 
ases that will be studied in se
tion 3.2.

In the referen
e frame (O, x, y) the ve
tor D 
an

be expressed:

D = sin(α)x+ cos(α)y (19)

Thus, in the referen
e frame (O, x, y, z), the ve
-
tor ncc 
an be expressed:

ncc =





− sin(S) sin(α)
− sin(S) cos(α)

cos(S)





(20)

Besides, for ea
h point Cc, the ve
tor F is deter-

mined su
h that it belongs to the plane tangent to

the surfa
e at this point (Fig. 4). In the referen
e

frame (O, x, y, z), F 
an be expressed in the form :

F =





0
cos(ψ)
sin(ψ)





(21)

where ψ designates the angle formed by ve
tor F

and its proje
tion in the plane (x, y). This angle is


ontained in the plane made by ve
tors z and y.
To obtain a displa
ement of the 
utter tangent to

the surfa
e at the 
utter/workpie
e point of 
onta
t

(point Cc), the 
urve de�ned by the tra
e left by the


utter in the material, referred to as the envelope


urve, veri�es the equation F · ncc = 0. Using (20)

and (21) in this equation, the following is obtained:

− cos(ψ) sin(S) cos(α) + sin(ψ) cos(S) = 0

This gives, for ea
h 
utter 
onta
t point

tan(ψ) = tan(S) cos(α) (22)
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view on plane P normal to F

y

x

O D

yz

Ft
F

ψ

xE

yE

Rt

Cc

Cc

Ecc

F

α

E(t)

Figure 4: De�nition of elements used to 
al
ulate the e�e
tive radius Reff

In further 
al
ulations, only the 
ases where 0 <
ψ < π

2 are 
onsidered. Cases where ψ = 0 and ψ = π
2


orrespond to spe
ial instan
es that will be studied

in se
tion 3.2 (indeed, for ψ = 0 the 
utter moves

horizontally and for ψ = π
2 , it moves verti
ally).

In its own referen
e (O;xE, yE), an ellipse is de-

�ned by the parametri
 equation:

E(t) =





µ cos(t)
η sin(t)

0





(23)

where values µ and η represent respe
tively the semi-
major axis and the semi-minor axis of the ellipse

E(t).
In the 
ase of the ellipse resulting from proje
tion

of the torus 
entre 
ir
le of radius Rt, in a plane

normal to F (Fig. 4), values µ and η are de�ned by:

{

µ = Rt

η = Rt sin(ψ)
(24)

Using the fa
t that:

sin(ψ) =
tan(ψ)

√

1 + tan2(ψ)

and equation (22) in equation (24), the value of the

semi-minor axis η 
an be expressed by:

η = Rt
tan(S) cos(α)

√

1 + tan2(S) cos2(α)
(25)

In its own plane, the ellipse E(t) is thus de�ned
by:

E(t) =







Rt cos(t)

Rt
tan(S) cos(α)√

1+tan2(S) cos2(α)
sin(t)

0






(26)

The radius of 
urvature of a parametri
 
urve
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C(t) is de�ned by:

ρC =

∥

∥

∥

dC(t)
dt

∥

∥

∥

3

∥

∥

∥

dC(t)
dt × d2C(t)

dt2

∥

∥

∥

From equation (23), the following 
an be 
al
ulated:

dE(t)

dt
=





−µ sin(t)
η cos(t)

0





and

d2E(t)

dt2
=





−µ cos(t)
−η sin(t)

0





The radius of 
urvature of the ellipse E(t) is thus
equal to:

ρE =

(

µ2 sin2(t) + η2 cos2(t)
)3/2

η µ

and is only de�ned for η 6= 0 and µ 6= 0. Now,

a

ording to equations (24), µ = 0 implies Rt = 0,
whi
h 
annot be and η = 0 implies ψ = 0. The


ase where ψ is null 
orresponds to ma
hining in the

plane (x, y) (Fig. 4) whi
h is equivalent to saying

that S = 0 (Fig. 3) or α = ±π
2 (
f. equation (22));

now, as has already been stated, these instan
es will

be analysed in se
tion 3.2.

The radius of 
urvature of the ellipse is thus given

by:

ρE =

(

µ2
(

1− cos2(t)
)

+ η2 cos2(t)
)3/2

η µ

=
µ2

η

(

1− cos2(t) +
η2

µ2
cos2(t)

)3/2

=
µ2

η

(

1 + cos2(t)

(

η2

µ2
− 1

))3/2

(27)

Equation (27) 
an be used to 
al
ulate the radius

of 
urvature of the ellipse E(t) as a fun
tion of the pa-
rameter t of that 
urve. Let Ecc be the point of that

ellipse 
orresponding to the point of 
onta
t Cc (Fig.

4). To determine the radius of 
urvature of E(t) at
point Ecc, the value of parameter t at that point

has to be known. To �nd it, equation (12) is used

again. In this equation b and c are the 
oordinates

of the unit feed ve
tor F and 
an be expressed by

c = sin(ψ) and b = cos(ψ) (see equation 21 and Fig.

4). In addition, at point Cc, the value of parameter

v is given by v = −π
2 + S (Fig. 3), when
e it 
an be

dedu
ed that sin(v) = − cos(S) and cos(v) = sin(S).
Applying these 
onsiderations to equation (12), the

following is obtained:

cos(t) =

√

1− sin2(ψ) cos2(S)

cos2(ψ) sin2(S)

when
e it transpires naturally that:

cos(t) =

√

1− tan2(ψ)

tan2(S)

Now, a

ording to equation (22),

tan(ψ)

tan(S)
= cos(α)

It 
an therefore be 
on�rmed that at point Ecc,

there is cos(t) = sin(α). Using this result in equation
(27) giving the radius of 
urvature of the ellipse, the

radius of 
urvature ρE at that point 
an be expressed:

ρE =
µ2

η

(

1 + sin2(α)

(

η2

µ2
− 1

))3/2

Using expressions of µ and η established in equa-

tions (24) and (25), the expression of ρE be
omes:

ρE =
R2

t
Rt tan(S) cos(α)√
1+tan2(S) cos2(α)











1 + sin2(α)











(

Rt tan(S) cos(α)√
1+tan2(S) cos2(α)

)2

R2
t

− 1





















3/2

=
Rt

√

1 + tan2(S) cos2(α)

tan(S) cos(α)

(

1 + sin2(α)

(

tan2(S) cos2(α)

1 + tan2(S) cos2(α)
− 1

))3/2
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ρE =
Rt

√

1 + tan2(S) cos2(α)

tan(S) cos(α)

(

1− sin2(α)

1 + tan2(S) cos2(α)

)3/2

=
Rt

tan(S) cos(α)

(

tan2(S) cos2(α) + cos2(α)
)3/2

1 + tan2(S) cos2(α)

=
Rt cos

2(α)
(

1 + tan2(S)
)3/2

tan(S) (1 + tan2(S) cos2(α))

Given that 1 + tan2(S) = 1
cos2(S)

, it 
an stated

that:

ρE =
Rt cos

2(α)

cos3(S) tan(S) (1 + tan2(S) cos2(α))

Also, given the restri
tions established on α and

S (that is −π
2 < α < π

2 and S 6= 0), this expression

an be simpli�ed as:

ρE =
Rt cos

2(α)

cos2(α) sin3(S) + cos2(S) sin(S)
(28)

or again:

ρE =
Rt cos

2(α)

sin(S)
(

1− sin2(α) sin2(S)
)

(29)

This expression allows the radius of 
urvature of

the ellipse E(t) resulting from the proje
tion of the

torus major radius 
ir
le of the 
utter in a plane nor-

mal to the feed dire
tion to be 
al
ulated, and this

for the torus 
entre point of that 
urve 
orresponding

to the point of 
onta
t with the ma
hined surfa
e.

Based on lemma 2 applied to the ellipse, the ra-

dius of 
urvature Reff on Cc 
an be expressed by:

Reff =
(R − r) cos2(α)

sin(S)
(

1− sin2(α) sin2(S)
) + r (30)

This expression 
an be used to 
al
ulate the ef-

fe
tive radius of the 
utter at the 
utter/workpie
e

point of 
onta
t in the 
ase of end milling of a free-

form surfa
e with a torus milling 
utter moving in

translation on a multi-axis CNC ma
hine.

3 Dis
ussion

3.1 Analysis of the expression of e�e
tive

radius

In relation (30), angle α, 
hara
terising the ma
hin-

ing dire
tion proje
ted in the plane (x, y), only enters
into expressions cos2(α) and sin2(α). It 
an thus be

asserted that all other parameters being equal, the

value of the e�e
tive radius is the same for values α
and α + π. This is equivalent to saying that for a

given point, the values of the e�e
tive radius are the

same whether up milling or 
limb milling in a diamet-

ri
ally opposite dire
tion. This result is unsurprising

in so far as the study of the e�e
tive radius is based

on a proje
tion in a plane normal to the ma
hining

dire
tion.

Moreover, analysis of the relation (30) shows that

for α = ±π
2 , Reff = r obtains, whi
h 
onstitutes

the minimum value of the e�e
tive radius for a torus

milling 
utter. Its maximum value, whi
h is theoret-

i
ally in�nite (horizontal ma
hining) is approa
hed

when α tends towards 0 and when S tends towards

0.

3.2 Study into limits of validity of the ex-

pression of the e�e
tive radius

Relation (30) a�ords an analyti
al 
al
ulation of the

e�e
tive radius of the 
utter at the 
utter/workpie
e

point of 
onta
t when ma
hining a free-form surfa
e

with a torus milling 
utter. It should, however, be

re
alled here what pre
isely is the framework of va-

lidity for this relation. Firstly, this relation is only

valid at the 
utter/workpie
e point of 
onta
t. In-

deed, many relations established during 
omputation

� (20) and following � are only valid at this point.
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The framework of validity of relation (30) is also

bounded by the hypotheses adopted during 
al
u-

lation. The most restri
tive of these hypotheses is

that the feed ve
tor F is 
onstant at any point of the


utter. As stated previously, this means that lo
ally

at least, the 
utter is moved by simple translation.

Appli
ation-wise, this is always true on 3-axis NC

ma
hines. For 4- and 5- axis NC ma
hines, this may

be true for portions of the paths but this relation


annot be used systemati
ally. In parti
ular, when

the axes of rotation of the ma
hine are a
tivated,

the relative movement of the 
utter in relation to the

workpie
e 
omprises a translation and a rotation. In

this 
ase, the feed rate 
annot be represented by the

same ve
tor F for all points of the 
utter.

During the demonstration, restri
tions were stated

as to the value of 
omponents b and c of the feed

ve
tor F (se
tion 2.2.3), on the value of parameter

v (se
tion 2.2.4) and the values of angles S, α and

ψ (se
tion 2.4). Thus, relation (30) is only demon-

strable if b 6= 0, c 6= 0, v 6= −π
2 , S 6= 0, α 6= ±π

2 ,

ψ 6= 0 and ψ 6= π
2 . Analysis of the mathemati
al

and te
hnologi
al 
ontext shows that these di�er-

ent ex
eptional 
ases overlap. Indeed, these spe
ial


ases 
orrespond to quite spe
i�
 ma
hining 
on�gu-

rations. Ea
h of these spe
ial 
on�gurations will now

be analysed, bearing in mind that in all 
ases, it was

possible, during the demonstration, to postulate that

a = 0 without losing in generality (se
tion 2.2.3):

� Ma
hining of a lo
ally plane surfa
e at the 
ut-

ter / workpie
e point of 
onta
t (point Cc): in

this instan
e, ve
tor F is parallel to the plane

(x, y) and point Cc is lo
ated on the lower limit

of the torus part of the 
utter. Then c = 0,
v = −π

2 , S = 0 (Fig. 3) and ψ = 0 (Fig. 4)

obtain. Proje
tion of the 
utter envelope 
urve

in a plane normal to feed is then a straight line

parallel to the plane (x, y), 
orresponding to

a null 
urvature. In all the other ma
hining


on�gurations, v 6= −π
2 and S 6= 0 ne
essarily

apply. c 6= 0 and ψ 6= 0 also apply in all the

other ma
hining 
on�gurations, ex
ept for the


ase of milling perpendi
ular to the dire
tion

of the greatest slope (α = ±π
2 ).

� Ma
hining perpendi
ular to the dire
tion of the

greatest slope. In this instan
e c = 0 and

α = ±π
2 apply (see Fig. 3 with a ma
hining

dire
tion perpendi
ular to the plane (D, z) for

the ma
hining 
on�guration and Fig. 4 to de-

�ne angle α). Proje
tion in a plane normal to

the feed of the 
utter envelope 
urve is then

an ar
 of 
ir
le 
orresponding to the torus part

of the 
utter and the e�e
tive ma
hining ra-

dius is equal to the torus radius r. In all other

ma
hining 
on�gurations, α 6= ±π
2 ne
essarily

obtains.

� Ma
hining along axis z. b = 0 and ψ = π
2

will then apply. This instan
e 
ould possibly

arise when milling verti
ally with a round in-

sert 
utter. The 
utter/workpie
e point of 
on-

ta
t would then be lo
ated on the upper limit

of the torus part (v = 0) and in this 
ase the ef-
fe
tive radius of the 
utter 
ould be 
onsidered

to be equal to its outside radius R. Neverthe-
less, su
h ma
hining 
onditions are extremely

unfavourable in terms of 
utting quality and


utter lifetime and are 
onsequently never ap-

plied industrially. However, in all the other

ma
hining 
on�gurations, b 6= 0 and ψ 6= π
2

will ne
essarily apply.

The hypotheses adopted during 
al
ulation thus


orrespond to borderline 
ases that 
an be managed

regardless of the e�e
tive radius. While it is appro-

priate to take them into a

ount when developing

tools based on relation (30), this should not be an

obsta
le to implementation.

4 Example of an appli
ation

4.1 Introdu
tion

Determining the e�e
tive radius of the 
utter at the


utter/workpie
e point of 
onta
t through a simple

analyti
al formula as with the one established in re-

lation (30) o�ers many advantages. Indeed, despite

the imposed limits established in se
tion 3.2, this re-

sult o�ers the perspe
tive of multiple appli
ations

that will be further developed in forth
oming publi-


ations. Using an analyti
al formula is always rapi-

der than a numeri
al pro
edure. Cal
ulation of the

e�e
tive radius by an analyti
al formula instead of

the numeri
al pro
edures generally used means ap-

pli
ations that were hitherto 
onsidered to be hard to


ontemplate 
an be developed. For example, thanks

to the relation established in (30), an appli
ation was

readily developed providing a detailed mapping of
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the e�e
tive radius of the tool over the entire surfa
e

almost instantaneously.

This mapping tool was then used to 
ondu
t a

study into the 
omparative e�e
tiveness of a ball end

mill and a torus milling 
utter with the same radius

when ma
hining a free-form surfa
e from an indus-

trial environment on a 3-axis NC ma
hine tool.

This surfa
e, relating to a boat propeller measur-

ing 393 mm in diameter (Fig. 5), is the extrados of

the blade (Fig. 6).

Figure 5: Boat propeller

Figure 6: Extrados of a blade

Whatever the tool path planning strategy envis-

aged (parallel planes, isoparametri
s, iso-s
allop) the

step over distan
e (de�ned in se
tion 4.2) must re-

spe
t the maximum s
allop height.

Firstly, it should be re
alled that, the step over

distan
e at a point is dire
tly related to the 
utter

e�e
tive radius and, for a given s
allop height, that

distan
e has a signi�
ant impa
t on produ
tivity. In

what follows, it will be shown how, 
ompared with

the results obtained using a ball-end mill, using a

torus end 
utter 
an be advantageous in some areas

of the workpie
e and disadvantageous in others. It

will also be seen how the simpli
ity of the expression

established in (30) allows this analysis to be 
on-

du
ted in an extremely short time.

4.2 Relation between step over distan
e

and e�e
tive radius

Whatever the tool path planning strategy used, in

order to position the 
utter so as to respe
t the max-

imum s
allop height at a given point of the toolpath,

the distan
e d de�ning its position in the plane per-

pendi
ular to the feed dire
tion must �rst have been


al
ulated (Fig. 7). Subsequently, the step over dis-

tan
e sod 
an be readily determined as it is dire
tly

related to d by angle γ 
hara
terising the lo
al in
li-

nation of the surfa
e in a plane normal to the ma-


hining dire
tion. Showing that the step over dis-

tan
e is dire
tly related to the 
utter e�e
tive radius

is thus equivalent to showing that distan
e d depends
dire
tly on that e�e
tive radius.

̺

O

Reff

Reff

C

A

H

D

sod

γ

β

d/2

sh

Figure 7: Cal
ulating the step over distan
e

To 
al
ulate the value of d it is assumed that the


urvature of surfa
e ̺ (
onsidered in a plane nor-

mal to the feed dire
tion) and the 
utter e�e
tive

radius Reff are 
onstant lo
ally. The triangle made

by the 
entre of 
urvature of the surfa
e 
alled O,

and points C and H (Fig. 7) is 
onsidered. For this
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triangle, the following 
an be stated:

R2
eff = (Reff + ̺)2 + (̺+ sh)

2

− 2(Reff + ̺)(̺+ sh) cos(β)

where β is the angle between ve
tors OC and OH.

Moreover, in triangle (OAC), the following ap-

plies:

d

2
= (̺+Reff ) sin(β)

Stating t = tan2
(

β
2

)

, the following is obtained:

{

R2
eff = (Reff + ̺)2 + (̺+ sh)

2 − 2(Reff + ̺)(̺+ sh)
1−t2

1+t2
d
2 = (̺+Reff )

2 t
1+t2

Resolution of this system of equations gives:

d =

√

(

4R2

eff + 4 ̺Reff − 2 sh ̺− sh2
)

(2 ̺+ sh) sh

̺+ sh
(31)

This expression shows that the distan
e d is in-

deed dire
tly related to the e�e
tive radius Reff , es-

pe
ially 
onsidering that sh 
an be negle
ted in re-

lation to the other magnitudes. The step over dis-

tan
e sod thus depends dire
tly on the e�e
tive ra-

dius Reff . Now, for a given s
allop height value (the

a

eptable toleran
e on the surfa
e), the in
rease in

step over distan
e allows for signi�
ant gains in pro-

du
tivity. Consequently, it 
an be said that this in-


rease in the e�e
tive radius of the 
utter has a dire
t

impa
t on produ
tivity.

4.3 Comparison methodology

A seen previously (se
tion 3.1), the e�e
tive radius

value 
an vary between the torus radius r in the 
ase

of a path perpendi
ular to the dire
tion of the great-

est slope, and a value that tends to in�nity for hor-

izontal milling. Given the relation between e�e
tive

radius 
utter and step over distan
e, it is 
lear that

where the e�e
tive radius equals r, using a ball-end


utter instead of a torus milling 
utter will allow for

greater produ
tivity. However, the 
loser the path

be
omes to being horizontal in the dire
tion of the

greatest slope, the more the torus milling 
utter will

prove to be more e�e
tive as 
ompared with a ball-

end mill of the same diameter. It therefore seems

useful to be able to determine, for a given surfa
e,

the zones where the torus milling 
utter is more ef-

fe
tive than the ball-end 
utter and vi
e-versa.

For the ball-end 
utter, the e�e
tive radius is al-

ways equal to its nominal radius R, whatever the

feed dire
tion and slope of the surfa
e.

For the torus milling 
utter, 
al
ulation of the

e�e
tive radius with the formula established in (30)

requires knowledge of the slope of the surfa
e at the

point 
onsidered and the angle formed by the dire
-

tion of the greatest slope and the feed dire
tion. To

pursue this analysis, a ma
hining dire
tion �rst needs

to be de�ned that will be parameterized by the an-

gle θ its proje
tion makes in the plane (X,Y) with
the axis X of the ma
hine. Then a meshing of the

parametri
 spa
e 
omprising 256 x 256 tiles is 
on-

sidered. In the 
entre of ea
h tile thus 
onstituted,

the e�e
tive radius of the torus milling 
utter 
an be

readily 
al
ulated using relation (30). The value of

the e�e
tive radius thus obtained is then asso
iated

with a 
orresponding 
olour from a s
ale of 
olours

varying linearly from r (blue) to 2R (red). The grid

of 
olours is then applied as texture to the 3D rep-

resentation of the surfa
e to generate graphi
 images

like those shown in �gures 8 to 11.

The entire pro
edure (
al
ulation and visualisa-

tion) was developed using the Java programming lan-

guage.

4.4 Results

Here, the results for two 
utters with outer radius

R = 5mm are presented. One 
utter is a ball-end

mill while the other is a torus milling 
utter whose

torus radius is r = 2mm. The surfa
e 
onsidered is

the extrados of a boat propeller as shown previously

(se
tion 4.1).

Applying the methodology de�ned in se
tion 4.3

to a number of representative ma
hining dire
tions

the following graphi
 representations are obtained:
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� for a ma
hining dire
tion de�ned by θ = −45°,
�gure 8 is obtained

� for a ma
hining dire
tion de�ned by θ = 0°,
�gure 9 is obtained

� for a ma
hining dire
tion de�ned by θ = 45°,
�gure 10 is obtained

� for a ma
hining dire
tion de�ned by θ = 90°,
�gure 11 is obtained

Figure 8: Visualisation of the e�e
tive radius for θ =
−45°

Figure 9: Visualisation of the e�e
tive radius for θ =
0°

On these �gures, the white 
urves represent the

limit between the zones, that is the points where

Figure 10: Visualisation of the e�e
tive radius for

θ = 45°

Figure 11: Visualisation of the e�e
tive radius for

θ = 90°

Reff = R = 5mm. In the regions that are pre-

dominantly blue, Reff < R applies. It 
an thus be

said that in these regions the ball-end mill is more

e�e
tive than the torus milling 
utter. Conversely, in

mainly red and green regions, the e�e
tive radius of

the torus milling 
utter is greater than the nominal

radius of the ball-end 
utter (Reff > R); as a result,
it 
an be said that in these regions, the torus milling


utter is more e�e
tive than the ball-end 
utter.

The 
al
ulation time needed to 
ondu
t the entire

analysis pro
edure (
omputation and display) for all

the tests 
ondu
ted always took less than one se
-

ond. This rapidity in 
al
ulation is essentially due

to the simpli
ity of expression of the e�e
tive radius
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(relation 30).

This simpli
ity of expression means that tools for

analysis, like the one introdu
ed here, 
an be de-

�ned to provide pre
ious help in 
hoosing a ma
hin-

ing strategy.

5 Con
lusions and perspe
tives

When end milling of free-form surfa
es with a torus

milling 
utter, the e�e
tive radius 
on
ept is essen-

tial to analyse the ma
hining pro
edure in purely

geometri
al terms.

The study presented in the present publi
ation

enabled the e�e
tive radius of a torus milling 
utter

milling with a translation movement to be expressed.

Adopting this an original approa
h, this expression

was determined in analyti
al form without having

to resort to geometri
 approximation. This relation

was also analysed and the limits to its validity were

studied.

As the expression was relatively simple, it should

pave the way for appli
ations that it would be impos-

sible to implement in a reasonable time frame using

a numeri
al approa
h. As an example, a tool for

numeri
al analysis was presented that 
ould prove

useful in pre-proje
t analysis of a pro
edure for free-

form ma
hining using parallel planes.

The possibilities o�ered by the relation estab-

lished in the present study are, however, far from

being limited to the example adopted here. Due to

it being so easy to implement, the analyti
al for-

mula de�ned here to 
ompute the e�e
tive radius

may readily be integrated into re
ently developed

"intelligent CAM" pro
esses [24, 25℄.

In forth
oming publi
ations it will be seen how

analyti
al expression of the 
utter e�e
tive radius


an �nd many di�erent appli
ations in studies into

the ma
hining of free-form surfa
es with a torus milling


utter that adopt a geometri
 approa
h.

A Cal
ulation detail

A.1 Identi�
ation of terms in r in equa-

tion (9)

From equation (13):

c cos (t)
√

b2 sin2 (t) + c2
=

√

1− c2 sin2 (v)

b2 cos2 (v)
cos (v)

it 
an be dedu
ed su

essively that:

c2 cos2(t) =

(

1− c2

b2
tan2(v)

)

cos2(v)
(

b2 sin2 (t) + c2
)

b2 c2 cos2(t)
(

1 + tan2(v)
)

=
(

b2 − c2 tan2(v)
) (

c2 + b2 sin2 (t)
)

= b2 c2 + b4 sin2(t)− c4 tan2(v)− b2 c2 tan2(v)
(

1− cos2(t)
)

b2 c2 cos2(t) = b2 c2 + b4
(

1− cos2(t)
)

− c4 tan2(v)− b2 c2 tan2(v)

b2 cos2(t)
(

b2 + c2
)

= b2 c2 + b4 − c2 tan2(v)
(

b2 + c2
)

cos2(t) = c2 + b2 − c2

b2
tan2(v)

and this leads to the following equation (12) :

cos(t) =

√

1− c2 sin2(v)

b2 cos2(v)

A.2 Identi�
ation of terms in r in equa-

tion (10)

From equation (14) :

c sin(t)
√

b2 sin2(t) + c2
= −

(

c3

b
sin(v) + b c sin(v)

)
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it follows that:

c2 sin2(t)

b2 sin2(t) + c2
=

(

c3 + b2 c

b

)2

sin2(v)

=
(

c2 + b2
)2 c2

b2
sin2(v)

when
e

b2c2 sin2(t) = c2 sin2(v)
(

b2 sin2(t) + c2
)

b2 c2 sin2(t)
(

1− sin2(v)
)

= c4 sin2(v)

b2 sin2(t) cos2(v) = c2 sin2(v)

1− cos2(t) =
c2 sin2(v)

b2 cos2(v)

from whi
h follows equation (12) :

cos(t) =

√

1− c2 sin2(v)

b2 cos2(v)

Referen
es

[1℄ Ali Lasemi, Deyi Xue, and Peihua Gu. Re-


ent development in CNC ma
hining of freeform

surfa
es: A state-of-the-art review. Computer-

Aided Design, 42(7):641�654, Juil 2010.

[2℄ G.W. Vi
kers and K.W. Quan. Ball-mills versus

end-mills for 
urved surfa
e ma
hining. Journal

of Engineering for Industry � Transa
tions of

the ASME, 111(1):22�26, Fév 1989.

[3℄ W.L.R. Ip and M. Loftus. Cusp geometry analy-

sis in free-form surfa
e ma
hining. International

Journal of Produ
tion Resear
h, 30(11):2697�

2711, Nov 1992.

[4℄ H.D. Cho, Y.T. Jun, and M.Y. Yang. 5-axis

CNC milling for e�e
tive ma
hining of s
ulp-

tured surfa
es. International Journal of Pro-

du
tion Resear
h, 31(11):2559� 2573, Nov 1993.

[5℄ B.H. Kim and C.N. Chu. E�e
t of 
utter mark

on surfa
e roughness and s
allop height in s
ulp-

tured surfa
e ma
hining. Computer-Aided De-

sign, 26(3):179�188, Mar 1994.

[6℄ S. Bedi, F. Ismail, M. J. Mahjoob, and Y. Chen.

Toroidal versus ball nose and �at bottom

end mills. The International Journal of Ad-

van
ed Manufa
turing Te
hnology, 13(5):326�

332, 1997.

[7℄ C. G. Jensen and D. C. Anderson. A

urate tool

pla
ement and orientation for �nished surfa
e

ma
hining. Journal of Design and Manufa
ture,

3:251�261, 1993.

[8℄ Jean-Max Redonnet, Walter Rubio, Frédéri


Monies, and Gilles Dessein. Optimising tool

positioning for end-mill ma
hining of free-form

surfa
es on 5-axis ma
hines for both semi-

�nishing and �nishing. The International

Journal of Advan
ed Manufa
turing Te
hnology,

16(6):383�391, Mai 2000.

[9℄ Yuan-Shin Lee. Admissible tool orientation


ontrol of gouging avoidan
e for 5-axis 
om-

plex surfa
e ma
hining. Computer-Aided De-

sign, 29(7):507�521, Juil 1997.

[10℄ Frédéri
 Monies, Mi
hel Mousseigne, Jean-Max

Redonnet, and Walter Rubio. Determining a


ollision-free domain for the tool in �ve-axis ma-


hining. International Journal of Produ
tion

Resear
h, 42(21):4513�4530, Nov 2004.

[11℄ Khalid Sheltami, Sanjeev Bedi, and Fathy Is-

mail. Swept volumes of toroidal 
utters us-

ing generating 
urves. International Journal of

Ma
hine Tools and Manufa
ture, 38(7):855�870,

Juil 1998.

[12℄ Yun C. Chung, Jung W. Park, Hayong Shin,

and Byoung K. Choi. Modeling the surfa
e

18



swept by a generalized 
utter for NC veri�
a-

tion. Computer-Aided Design, 30(8):587�594,

Juil 1998.

[13℄ Seok Won Lee and Andreas Nestler. Complete

swept volume generation, part I: Swept volume

of a pie
ewise C1-
ontinuous 
utter at �ve-axis

milling via gauss map. Computer-Aided Design,

43(4):427�441, Avr 2011.

[14℄ C. J. Chiou and Y. S. Lee. Swept surfa
e de-

termination for �ve-axis numeri
al 
ontrol ma-


hining. International Journal of Ma
hine Tools

and Manufa
ture, 42(14):1497�1507, Nov 2002.

[15℄ D. Roth, S. Bedi, F. Ismail, and S. Mann. Sur-

fa
e swept by a toroidal 
utter during 5-axis ma-


hining. Computer-Aided Design, 33(1):57�63,

Jan 2001.

[16℄ Stephen Mann and Sanjeev Bedi. Generaliza-

tion of the imprint method to general surfa
es

of revolution for n
 ma
hining. Computer-Aided

Design, 34(5):373� 378, Avr 2002.

[17℄ K. Suresh and D.C.H. Yang. Constant s
allop-

height ma
hining of free-form surfa
es. Journal

of Engineering for Industry � Transa
tions of

the ASME, 116(2):253�259, Mai 1994.

[18℄ R. S. Lin and Y. Koren. E�
ient tool-path plan-

ning for ma
hining free-form surfa
es. Journal

of Engineering for Industry � Transa
tions of

the ASME, 118(1):20�28, Fév 1996.

[19℄ Yuan-Shin Lee. Non-isoparametri
 tool path

planning by ma
hining strip evaluation for 5-

axis s
ulptured surfa
e ma
hining. Computer-

Aided Design, 30(7):559�570, Juin 1998.

[20℄ A Can and A Ünüvar. A novel iso-s
allop tool-

path generation for e�
ient �ve-axis ma
hining

of free-form surfa
es. The International Journal

of Advan
ed Manufa
turing Te
hnology, 51(9-

12):1083�1098, De
ember 2010.

[21℄ Z.C. Chen and D. Song. A pra
ti
al approa
h

to generating a

urate iso-
usped tool paths

for three axis 
n
 milling of s
ulptured sur-

fa
e parts. Journal of Manufa
turing Pro
esses,

8(1):29�38, 2006.

[22℄ Jianxin Pi, Edward Red, and Greg Jensen.

Grind-free tool path generation for �ve-axis sur-

fa
e ma
hining. Computer Integrated Manufa
-

turing Systems, 11(4):337�350, O
t 1998.

[23℄ Maxima. a 
omputer algebra system. version

5.26.0, 2012.

[24℄ C. Manav, H.S. Bank, and I. Lazoglu. Intelli-

gent toolpath sele
tion via multi-
riteria opti-

mization in 
omplex s
ulptured surfa
e milling.

Journal of Intelligent Manufa
turing, pages 1�7,

2011.

[25℄ L.N López de La
alle, A. Lamikiz, J. Muñoa,

and J.A. Sán
hez. The CAM as the 
entre of

gravity of the �ve-axis high speed milling of


omplex parts. International Journal of Pro-

du
tion Resear
h, 43(10):1983�1999, 2005.

19


