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Abstract

When end milling free-form surfaces using a torus milling cutter, the notion of cutter effective radius is
often used to address the procedure for removal of material from a purely geometrical perspective. Using
an original analytical approach, the present study establishes a relation enabling the value of this effective
radius to be easily computed. The limits of validity of this relation are then discussed and precisely
defined.

By way of an illustration, an example of how this relation can be used to generate a numerical tool for
analysis of the possibilities for machining free-form surfaces on multi-axis machine-tools is also presented.

Keywords: free-form surface; CNC machine-tool; end-mill; toroidal cutter; effective tool radius; swept
curve
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1 Introduction

End milling of free-form surfaces is essentially used
to manufacture moulds and dies where it is often ex-
tremely costly in terms of production time consumed.
From a purely geometrical standpoint, precise mod-
elling of the movements of the cutter and its posi-
tioning in relation to the surface are indispensable
to be able to propose improvements to boost pro-
ductivity. From this perspective, an approach com-
monly adopted is based on notions of effective radius
and/or sweep curve. Indeed, good knowledge of these
geometrical entities paves the way for a precise anal-
ysis of the trace left by the cutter in the workpiece
and through that, the quantity of material actually
removed.

1.1 Previous works on the effective cut-
ter radius

Tool path planning, optimisation of cutter position-
ing and non-interference issues are often the focus of
research conducted in the field of free-form surface
machining on multi-axis machine tools [1]. Among
these works, many studies refer to the notion of cut-
ter effective radius. The first to introduce this con-
cept were Vickers and Quan in 1989. In [2], they
show how a flat-end mill tilted to the front can be
more productive than a ball-end mill. To do so, they
introduce the notion of effective radius in the case of
the flat-end mill:
R
Rers = sin(¢)

where R is the cutter radius and ¢ its tilt angle in
the plane formed by its feed direction and axis of
rotation.

The relative efficiency of flat-end mills and ball-
end mills is also analysed in [3], [4] and [5]. These
works are also based on the effective radius concept
to show that, all other parameters being equal, flat-
end cutters, when correctly used, produce a lower
scallop height than that produced by ball-end cut-
ters. In [4] and [5], the authors also show that flat
end mills leave pronounced marks in the feed direc-
tion leading to a greater roughness of the surfaces
obtained (for the same feed per tooth).

Following these works a number of authors have
argued in favour of using torus cutters when milling
free-form surfaces. Indeed, torus mills allow a signif-
icant effective radius to be retained while avoiding

the sharp and unsightly marks left in the workpiece
by flat-end mills [6]. Many studies arrive at the same
conclusions, whether they adopt a procedure to opti-
mise the cutter position |7,8] or seek rather to elim-
inate interference [9,10].

Among the works that address the cutter effective
radius concept, those most frequently encountered in
the literature utilise the envelope curve concept. For
a given cutter position, the envelope curve materi-
alises the trace left by the cutter in the material.
In [11], it is approximated, for a torus milling cutter,
by the projection of a circle in a plane normal to the
feed. In [12], it is given in the implicit form for an
APT cutter.

Within the scope of machining simulation [13],
many studies use this concept to determine the vol-
ume of swarf actually removed by the cutter, but
most of these works [14-16] address this issue nu-
merically, which does indeed allow the swept volume
to be computed, but precludes an analytical study
of the effective cutter radius. The sweep curve and
effective cutter radius notions are also largely used
in works addressing constant scallop height machin-
ing planning. This toolpath planning technique was
initially introduced in [17] and [18] using a ball-end
cutter. Subsequently it was adapted for a flat-end
mill [19,20] and for the torus milling cutter [21,22],
tools for which the effective radius assumes its full
significance.

Analysis of the main studies published in the field
shows that most works covering the effective radius
of the torus milling cutter rely on geometric approx-
imations (with non-negligible consequences) or use
a numerical approach that, compared with an ana-
lytical approach, proves to be less flexible and much
more time-consuming in computation.

1.2 The present article’s contribution

The present article will introduce a new study of the
torus milling cutter effective radius. Its originality
lies in its totally analytical approach that neverthe-
less refrains from any geometric approximation. The
main result of this work is the definition of a relation
authorizing an analytical calculation of the effective
cutter radius.

This study is also accompanied by an analysis of
this relation and its limits, thus allowing the scope
for its validity to be clearly determined.

This is followed by an example in which it is



shown how this relation can be used to define numer-
ical tools potentially useful within the scope of end
milling of free-form surfaces on multi-axis machine
tools. The aim with this example is not to define
a complete procedure to plan tool paths, but sim-
ply to emphasise the possibilities offered by using an
analytical formula where numerical procedures are
usually applied.

The article concludes with a reminder of the main
results obtained and some remarks on forthcoming
works on this subject.

2 Calculating the effective radius

2.1 Introduction

It will be shown how it is possible to calculate an-
alytically, at the point of cutter/workpiece contact,
the effective radius of a torus milling cutter machin-
ing a free-form surface on a multi-axis NC machine
tool. This calculation is based on two mathematical
demonstrations that will be introduced prior to the
computation itself.

A torus milling cutter defined by R and r, R
being the outer radius of that cutter and r being its
torus radius, is considered. The trace left by that
cutter in the material at a given instant is a curve
that will be referred to as the envelope curve. It is
the succession of such envelope curves that forms the
envelope surface generated by the cutter movement
in the material. At each instant, the envelope curve
is defined by F¢ - n = 0, where Fy is a vector in the
cutter feed direction and n a vector normal to the
surface of the cutter.

In what follows in the present study, the vector
F; will be assumed to be constant for all points of
the cutter; this is equivalent to asserting that the
cutter moves in translation, at least locally. More-
over, only the part of the envelope curve of the cutter
contained in the torus part of the cutter will be con-
sidered. Indeed, the great majority of torus milling
cutters used in industry are round insert cutters and
only that part is active. Also, studying the parts of
the envelope curve contained in the cylindrical and
discoid portions of the cutter is unproblematic and,
even in the case of solid torus milling cutters, these
parts of the cutter are normally inactive when re-
moving material, especially when conducting finish-
ing operations.

The two lemmas on which the calculation is based
are as follows:

Lemma 1 Let P be the mathematical operation for
projection along the feed direction Fy in a plane nor-
mal to Fy. Let Tp(v), be the curve resulting from the
projection along P of the cutter envelope. Let E(t)
be the ellipse resulting from the projection along P
of the cutter centre-torus circle, and oE(t) an offset
exterior to that ellipse with a value equal to the ra-
dius of the cutter torus. Then the two curves Tp(v)
and oE(t) are coincident.

Lemma 2 The radius of curvature of a plane off-
set curve is equal to the radius of curvature of the
original curve augmented by the offset value.

It will thus be shown initially that the projection
of the cutter envelope curve in a plane normal to the
feed direction Ft can be defined by an ellipse aug-
mented by an offset equal to the cutter torus radius
(section 2.2).

It will then be shown that the radius of curvature
of an offset to this ellipse is equal to the radius of
curvature of the original ellipse augmented by the
offset value (section 2.3).

Based on these results, it will then be possible
to calculate analytically the effective radius of the
cutter R.ry considering the radius of curvature of
the ellipse E(t) to which is added the cutter torus
radius the cutter (section 2.4).

All these calculations were verified using the al-
gebraic computation software Maxima [23].

2.2 Demonstration of lemma 1

2.2.1 Statement of the problem

Firstly the projection of the cutter envelope curve in
a plane normal to F¢ is considered, then an offset by
r of the ellipse defined by the projection of the torus
major radius circle of the cutter (centre of the torus
tube) in the same plane (Fig. 1 and 2).

The purpose of this demonstration is to show that
these two curves coincide.

2.2.2 Definitions

Naming R; the radius of the cutter torus centre circle
(R; = R —r), the toroid surface defining the cutter



in its reference frame can be defined by:

(Rt + r cos(v)) cos(u)
(Re+r C(?s((v))) sin(u) (1)

T(u,v) =

with u € [0,27] and v € [-%,0]

Let F, be a unit vector in the machining direction
Fti
[Fe |

The trace left by the cutter (envelope curve) can
then be defined by F - n = 0, where n is the normal
to the cutter surface.

Consider the projection along the feed direction
F in a plane P perpendicular to F. Naming a, b and
¢ the coordinates of F, the plane P is expressed by
equation :

with d € R

ar+by+cz=d

Figure 1: Projection of a parametric curve in a plane

Let C(t) be a curve defined in three dimensions
by:
Ca(t)
Cy(t)
C.(t)

Ct) =

The curve Cp(t) resulting from the projection of
C(t) in P along the direction F is then defined by the
intersection of the plane P and the surface defined
by S(t,w) = C(t) + f(w)F where f(w) is a scalar
function of the parameter w defined in [—oo, +00]

(Fig. 1). This surface is the ruled surface defined
from C(t) and F. The projected curve Cp(t) is thus

defined by the system:

ax+by+cz=d
x=Ci(t)+af(w)
y=Cy(t) +bf(w)
z=C,(t)+ cf(w)

where x, y and z represent the three coordinates of

the curve Cp(t).

Resolving this system in relation to «, y, z and
f(w), the expression of these coordinates is obtained
as a function of ¢ that will be referred to as Cp.(t),
Cpy(t) and Cp(1):

—acCy(t)—abCy(t)+c2 Crp(t)+b2 Cr(t)+ad
Cpa}(t): acC:(t)—a yc(2)4l;§+a2()+ ®+a

_ =beC.()+c% Cy(t)+a? Cy(t)—abCy(t)+bd
Gy 1) = UGl Cy
sz(t) _b C.(t)+a Cz(t)cJerch;i(%y(t)faCz(t))Jrcd
as also
—cC,(t)=bC,(t) —aCy(t)+d
flw) = —¢C=0) =bCy () —aCe ()

2 4+ b% + a?

Given that the vector F is unitary, this gives a®+
b2 + ¢ = 1, whence the equation for the projected
curve:

—acC, (t) —abCy(t) + 2 Cy (t) + b2 Cy (t) + ad

Cp(t) =

—beC, (t)+c*Cy(t) +a*>Cy (t) —abCy () + bd (2)

b C, (t) +a?C, (t) + ¢ (=bCy (t) —aCy (1)) + cd

2.2.3 Contextualisation

Within the scope of the present study, the cutter is
defined within its own reference frame, the axis co-

inciding with its axis of rotation. As the cutter is
a surface of revolution, whatever the movement of
translation driving it, the envelope curve resulting
from this movement, defined by F - n = 0, admits a



plane of symmetry containing the axis z of the refer-
ence frame. Furthermore, a projection P in a plane
normal to the feed F is considered. This projection
thus corresponds to a vector contained within the
plane of symmetry of the envelope curve. The prob-
lem is thus axisymmetric. Consequently, the results
obtained in the case of a particular projection (i.e. in
a given radial direction) are true whatever the pro-
jection P considered, meaning whatever translation
movement drives the cutter. It can thus be consid-
ered that the results obtained in the case of a pro-
jection along a vector contained in the plane x = 0
(or y = 0) can be extended to the general case.

A projection P is chosen whose direction F is
contained in the plane of equation x = 0, with co-
ordinate a of F thus being null. The plane P nor-
mal to this projection will then have for equation
by + ¢z = d and the coordinates of vector F are:

F=1|b
c

In what follows in the present demonstration, b £
0 and ¢ # 0 will be considered. Indeed, instances
where b = 0 and ¢ = 0 correspond to horizontal
or vertical cutter paths that constitute special cases
that will be addressed in section 3.2.

Furthermore, as vector F is unitary, it can be
asserted that b% + ¢ = 1.

Also, in so far as the focus is on curves projected
orthogonally in a plane normal to the milling direc-
tion, any plane normal to that direction can be cho-
sen without impairing generality. To simplify com-
putation, a plane P passing through the origin is
chosen, that is a plane with equation by + cz = 0.
This gives d = 0.

Taking these considerations into account, the equa-
tion (2) for a curve transformed along projection P
becomes:

Cq ()

—beC, (t) +c* Cy (t)
b2 C, (t) —beCy (t)

Cp(t) = (3)

In the following demonstration, will be consid-
ered the projection P, defined by equation (3) en-
abling a curve to be projected in a plane P according
to a vector F, with plane P going through the origin
and being normal to the vector F that is contained
in the plane of equation z = 0.

2.2.4 Demonstration

First of all, the projection P is applied to the circle
C(t), the cutter torus centre, defined by the equation

Ry cos(t)
Ry sin(t)
0

C(t) = with ¢ € [0, 2]

Using (3), the orthogonal projection of that circle
can be defined in the plane of equation by +cz = 0.
This projection is an ellipse that will be referred to
as E(t), and whose equation is:

Ry cos(t)
c? Ry sin(t)
—bc Ry sin(t)

E(t) =

In what follows, only the lower part of the ellipse
E(t) will be considered, that is the part defined by
t € [-m 0] (Fig. 2).

The unit vector nE(¢) normal to E(¢) and con-
tained in the plane P can then be defined by:

dE() «F

L

that is

¢ cos(t)
¢ sin(t)

—b sin(t)

nE(t) = (4)

b2 sin? () + c2

Given the previously established restrictions (¢ # 0
and b # 0), this expression is defined whatever ¢ €
[—,0].

In the plane P, oE(t) is defined, an offset with
value r to the ellipse E(t):

oE(t) = E(t) + rnE(t)

This curve is expressed as follows:

cr cos(t)

4/ b2 sin? (t)(—i—)c2
cr sin(t
C Sll’l( ) Rt + b2 sin? (t)+c?

—besin(t) Ry — br sin(t)

\/ b2 sin? (t)+c?

cos(t) Ry +

oE(t) = (5)

Secondly, the envelope curve is considered, that is
the trace left by the cutter in the material at a given
instant. For a torus milling cutter whose definition



view on plane (y, 2)

view on plane P

Figure 2: Projection of the envelope curve and the torus centre circle in a plane normal to F

is given by the equation (1), this envelope curve is
defined by F - nT(u,v) = 0, where nT(u,v) is a
vector normal to T(u,v).

0T (u,v) " 0T (u,v)

nT(u, v) = ou ov
that is
r cos(u) cos(v) (R + 7 cos(v))
nT(u,v) = | r sin(u) cos(v) (Ry + r cos(v))

r sin(v) (Ry 4+ r cos(v))
with u € [0,7] and v € [, 0]

The equation F - nT(u,v) = 0 can then be ex-
pressed

I
o

r (¢ sin(v) + b sin(u) cos(v)) (R + 7 cos(v))

whence it can be deduced that

) _ csin(v)
sin (u) = “heos (0) (7)

for v € ]—%, O]. Section 3.2 adresses the case where
v = —5. In what follows in the demonstration, it
will be considered that —5 < v < 0.

Using this relation (7) in the expression of T (u, v)
— equation (1) — the equation of the envelope curve,
referred to as Ty (v), is obtained:

1 c? sin2(U) (Rt +r COS(’U))

b2 cos?(v)
__csin(v) (Re+r cos(v))
b cos(v)

7 sin(v)

T,(v) =

for u € [O ”], and

’2
in? (v
-V 1- 5222052((1)% (Rt +r COS(U))
¢ sin(v) (Ry+r cos(v))
b cos(v)

r sin(v)

T, (v) =

for u € [5,7]. As the curve Ty(v) is symmetrical in
relation to the plane of equation x = 0 corresponding
to parameter v = 7, only the part defined by 0 <
u < 5 will be considered in what follows, with the
same reasoning being applicable by symmetry for the
part defined by § <u < 7.

As previously, using (3) the projection of that
curve can be defined in the plane P. Thus the curve

Tp(v) can be obtained:



2 sin? (v)

1- (R + 7 cos(v))

b2 cosZ(v)
) = | S e | (9
2 sin(v)c(::E:r)r cos(v)) + b2y Sln(v)
|
cos(t) Ry + cr cos(t)

9 cr sin(t)

b2sin?(t) + c2 a

The problem posed can thus be reduced to show-
ing that oE(t) = Tp(v).

By identifying the coordinates of these two curves
(equations 5 and 8) member by member, 3 equations
are obtained:

2 sin%(v)

" oo (0) (Rt + 7 cos(v))

¢ sin(v) (Ry +r cos(v))

¢ sin(t) Ry +

br sin(t)

b2 sin’(t) + c2 T
_c sin(v) (R¢ + 1 cos(v))

—ber sin(v) (10)

b cos(v)

2

—besin(t) Ry —
(t) B b2sin?(t) + c2

Analysing these equations, it clearly emerges that
the last two, (10) and (11), are equivalent. Indeed,
by multiplying each term of equation (10) by —b/c,
equation (11) is obtained.

To show that the two curves are equal, all one
needs to do is find a change in variable linking ¢ and
v such that the equation of one of the two curves can
be transformed into the equation of the other curve.

To do so, the terms on R; and r between the first
equation (9) and one of the two others (for example
(10)) are identified member by member.

From equation (9), identifying the terms on Ry,
the following is obtained:

2 sin?(v)
t) = -7 12
cos(t) b2 cos?(v) (12)
and identifying the terms on r, this gives:
t 2 sin?
¢ cos (t) _ B 02 sm2 (v) cos(v)  (13)
b2 sin? (t) + 2 b? cos? (v)

which, after simplification (see 5), results in return-
ing to equation (5):

2 sin?(v)
cos(t) = b2 cos?(v)

From equation (10), identifying the terms on Ry,
the following is obtained:

3 .
¢ sin(t) = — & S0

b cos(v)

+ b2 r sin(v) (11)

cos(v)

whence it can be deduced

) _ csin(v)
sin(t) = b cos(v)

% sin?(v
1 —cos®(t) = 2 cos2((v))

which results in returning to equation (12):

2 sin?(v)

cos(t) = b2 cos?(v)

From this same equation (10), identifying the
terms on r, the following is obtained:

3

:_<g

b

¢ sin(t)
b2 sin?(t) + c2

sin(v) +be sin(v))

(14)
which, after simplification (see 5), again gives the
equation (12):

2 sin?(v)

1> V)
b2 cos?(v)

cos(t) =

Identification of the terms on R; and r for equa-
tions (9) and (10) thus leads to the same relation (12)
linking parameters ¢ and v. Using this relation as a
change in variable, it proves possible to pass from
equation (5) to equation (8). There is thus a change
in variable to go from one curve to the other. This
leads to concluding that curves Tp(v) and oE(t) co-
incide.



2.2.5 Conclusion

It was shown that in the case of a projection P in
a plane going through the origin and along a vector
F contained in the plane of equation z = 0, the two
curves Tp(v) and oE(t) coincide. As the problem
is axisymmetric, what is true in this instance is also
true whatever the plane of projection, provided that
the projection is made along a normal to that plane.
In the case of a translation movement, the curve re-
sulting from the projection plane of the trace left by
the cutter thus coincides with the curve parallel to
the ellipse, located at a distance r outside the lat-
ter that itself results from the projection of the torus
centre circle.

2.3 Demonstration of lemma 2

This demonstration’s objective is to show that the
radius of curvature of a plane offset curve is equal
to the radius of curvature of the original curve aug-
mented by the value of the offset.

Let C be a plane curve whose parameters are set
by its curvilinear abscissa s. Let Cg, be an offset
curve derived from C:

Co=C+rn

where r is the scalar value of the offset and n the unit
normal to C oriented towards the centre of curvature.

Deriving the previous expression in relation to
the curvilinear abscissa s, the following is obtained:

iC, _dC | dn
ds  ds rds

dC
where T is the unit vector t, tangent to C.

s
Calling s, the curvilinear abscissa of the curve
C, one obtains:
dC, ds, dn

=t+r—

ds, ds ds

Frenet formulae give:

— =7b -kt
ds
where « is the curvature of C at the point considered.
As the curve C is plane, twisting 7 is null and

thus:
dn B

=kt
ds "

giving:

dC, ds,
Do ¢ rrt=(1- 1
35, ds t—ret=(1—rk)t (15)

By definition %?0 is the unit vector tangent to

Co- As the curve C, is the offset of C, for a given
value of s, both curves have the same tangent. Thus

dCo, ¢
ds,
Whence, in (15) :
dso
t dss =(1-rkr)t
which can be simplified:
dso
dSS =1-rk (16)

Moreover, the Frenet formulae give:

dt
35, fem
o
whence
dt  dt ds
ds, ds ds,
or
dt
& =R
and, according to (16)
ds B 1
ds, 1—rk
Thus
1
n=kn
Fo : 1—rk
Whence it can be deduced that:
K
— 17
fio 1—-7rk (7

Let p be the radius of curvature of C and p, the
radius of curvature of C,. These magnitudes are
related to curvatures x and k, by:

1
pP=— et Po = —
K o
Whence, in (17) :
1
1 ’




which can be expressed:

1 1

Po p—r
and finally:

Po=pP—T

In the case of a plane curve C, the radius of cur-
vature of an offset to C is equal to the radius of
curvature of C reduced by the algebraic value of the
offset. It can therefore be concluded that in the case
of an offset remoter from the centre of curvature than
the original curve, the radius of curvature of the off-
set curve will be equal to the radius of curvature of
the initial curve increased by the absolute value of
the offset.

2.4 Calculating the effective radius

During milling (Fig. 3), the cutter axis coincides
with the z-axis of the reference frame and the x and
y axes of the reference frame are set as previously (see
section 2.2.3), i.e. the feed direction Fy is contained
in the plane z = 0.

Furthermore, let D be the unit vector contained
in the plane (z,y) that indicates the direction of the
greatest slope at the cutter/workpiece point of con-
tact (point C¢). The normal to the surface at that
point (n¢c) is then contained in the plane (D, z).

Figure 3: Defining angle S

S designates the slope of the surface machined
at the cutter/workpiece point of contact C.. This
angle S is contained in the plane (D, z). Only the

case where S # 0 will be considered in the present
calculation. Indeed, milling in a direction contained
within the plane (z,y) constitutes a special case that
will be addressed in section 3.2. Thus S > 0.

This angle S is also that between the cutter axis z
and the normal to the surface at the point of contact
nee. The vector nee can be expressed in the form:

nee = —sin(S) D + cos(9) z (18)

«a will designate the angle separating vector D of
the y-axis. The following calculations will be limited
to the case where —5 < a < 5. Where a = £7, the
direction with the greatest slope D is perpendicular
to the feed direction F. These values correspond to
special cases that will be studied in section 3.2.

In the reference frame (O, z,y) the vector D can
be expressed:

D = sin(a) x + cos(a) y (19)

Thus, in the reference frame (O, x,y, z), the vec-
tor nec can be expressed:

—sin(S) sin(a)

—sin(S) cos(a)
cos(S)

(20)

Nee =

Besides, for each point Cg, the vector F is deter-
mined such that it belongs to the plane tangent to
the surface at this point (Fig. 4). In the reference
frame (O, z,y, z), F can be expressed in the form :

0

cos(v)
sin(1)

where 1) designates the angle formed by vector F
and its projection in the plane (z,y). This angle is
contained in the plane made by vectors z and y.

To obtain a displacement of the cutter tangent to
the surface at the cutter/workpiece point of contact
(point C¢), the curve defined by the trace left by the
cutter in the material, referred to as the envelope
curve, verifies the equation F - ne. = 0. Using (20)
and (21) in this equation, the following is obtained:

F = (21)

— cos(®)) sin(S) cos(a) + sin(¢)) cos(S) =0
This gives, for each cutter contact point

tan(y) = tan(S) cos(a) (22)



view on plane P normal to F

Figure 4: Definition of elements used to calculate the effective radius Ry

In further calculations, only the cases where 0 <
1 < 5 are considered. Cases where ¢y = 0and ¢ = §
correspond to special instances that will be studied
in section 3.2 (indeed, for ¢» = 0 the cutter moves
horizontally and for ¢ = 7, it moves vertically).

In its own reference (O;zg,yg), an ellipse is de-
fined by the parametric equation:

w cos(t)

7 sin(t)
0

E(t) = (23)

where values p and 7 represent respectively the semi-
major axis and the semi-minor axis of the ellipse
E(t).

In the case of the ellipse resulting from projection
of the torus centre circle of radius R, in a plane
normal to F (Fig. 4), values 1 and n are defined by:

{ Ry

Ry sin(v)

"

! (24)
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Using the fact that:

tan (1))
1+ tan?(v)

and equation (22) in equation (24), the value of the
semi-minor axis 77 can be expressed by:

sin(y) =

_ R, tan(.S) cos(a)
V/1+ tan?(S) cos?(a)

n (25)

In its own plane, the ellipse E(¢) is thus defined
by:

Ry cos(t)
tan(S) cos(a)
t \/1+tan2(S) cos?(a)
0

E(t) sin(t) (26)

The radius of curvature of a parametric curve



C(t) is defined by:

3

H dC(t)
dt
)

dC(t

dt

42C(t)

T ]

From equation (23), the following can be calculated:

dE(1) —p sin(t)
arrall U cos(t)
0
and
n_ (1o
az "

The radius of curvature of the ellipse E(¢) is thus
equal to:

(1% sin?(t) + n? cos?(t))s/2

ne

pE =

and is only defined for n # 0 and p # 0. Now,
according to equations (24), pu = 0 implies R; = 0,
which cannot be and 7 = 0 implies v» = 0. The
case where 1 is null corresponds to machining in the
plane (z,y) (Fig. 4) which is equivalent to saying
that S = 0 (Fig. 3) or o = £5 (cf. equation (22));
now, as has already been stated, these instances will
be analysed in section 3.2.

The radius of curvature of the ellipse is thus given
by:

(1? (1= cos?(t)) + n? (:os2(t))3/2
i

1 2 77_2 2 2
— cos”(t) + — cos”(t)
,u

(1 + cos?(t) <Z—z - 1>>3/2 (27)

PE

=% =%

R}
Ry tan(S) cos(a)
\/lqttan2 (S) cos?(a)

PE

Ri/1 + tan?(S) cos?(a)
tan(.S) cos(a)

1+ sin?(a)

(1 + sin’(a) <
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Equation (27) can be used to calculate the radius
of curvature of the ellipse E(t) as a function of the pa-
rameter ¢ of that curve. Let Ecc be the point of that
ellipse corresponding to the point of contact C, (Fig.
4). To determine the radius of curvature of E(t) at
point E¢e, the value of parameter ¢ at that point
has to be known. To find it, equation (12) is used
again. In this equation b and c are the coordinates
of the unit feed vector F and can be expressed by

¢ =sin(¢)) and b = cos(¢)) (see equation 21 and Fig.
4). In addition, at point C., the value of parameter

v is given by v = =% + S (Fig. 3), whence it can be
deduced that sin(v) = — cos(S) and cos(v) = sin(.5).
Applying these considerations to equation (12), the
following is obtained:

cos(t) = \/1 -

whence it transpires naturally that:

sin?(¢)) cos?(9)
cos?(v)) sin?(9)

tan2(4))

1= tan?(S)

cos(t) =

Now, according to equation (22),

tan (1)
tan(.S)

= cos(a)

It can therefore be confirmed that at point Ecc,
there is cos(t) = sin(a). Using this result in equation
(27) giving the radius of curvature of the ellipse, the
radius of curvature pg at that point can be expressed:

2 2 3/2
PE = il <1 + sin?(a) <77—2 - 1>>
n H

Using expressions of p and n established in equa-
tions (24) and (25), the expression of pg becomes:

3/2
R: tan(S) cos(a)

\/1—|—tan2 (S) cos?(a)
i

( )

—1

() cofte) 1))




Ri/1 + tan?(9) cos?(a)

sin?(a)

PE tan(S) cos(a)

Ry

<1 <a>>3/2

1+ tan?(S) cos?

(tan?(S) cos®(a) + cosz(oz))S/2

tan(S) cos(a)

1+ tan?(S) cos?(a)

Rycos?(a) (1+ tanQ(S))?)/2

tan(S) (1 + tan?(9) cos?(a))

Given that 1 + tan?(S) = it can stated

that:

1
cos?(S)?

Ry cos?(a)
cos?(S) tan(S) (1 + tan?(S) cos2(a))

PE =

Also, given the restrictions established on « and
S (that is =5 < a < § and S # 0), this expression
can be simplified as:

Ry cos?(a)
_ 28
PE = ) s’ (8) 1 cod(8) sin(8) )
or again:
R 2
pr = veos o) (29)

sin(S) (1 — sin?(«) sin?(S))

This expression allows the radius of curvature of
the ellipse E(t) resulting from the projection of the
torus major radius circle of the cutter in a plane nor-
mal to the feed direction to be calculated, and this
for the torus centre point of that curve corresponding
to the point of contact with the machined surface.

Based on lemma 2 applied to the ellipse, the ra-
dius of curvature R.;s on C. can be expressed by:

(R — ) cos?(a)

sin(S) (1 — sin?() sin?(S)) (80)

Repp = tr

This expression can be used to calculate the ef-
fective radius of the cutter at the cutter/workpiece
point of contact in the case of end milling of a free-
form surface with a torus milling cutter moving in
translation on a multi-axis CNC machine.
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3 Discussion

3.1 Analysis of the expression of effective

radius

In relation (30), angle «, characterising the machin-
ing direction projected in the plane (z,y), only enters
into expressions cos?(a) and sin?(a). It can thus be
asserted that all other parameters being equal, the
value of the effective radius is the same for values «
and a + 7. This is equivalent to saying that for a
given point, the values of the effective radius are the
same whether up milling or climb milling in a diamet-
rically opposite direction. This result is unsurprising
in so far as the study of the effective radius is based
on a projection in a plane normal to the machining
direction.

Moreover, analysis of the relation (30) shows that
for a = &5, Reyy = r obtains, which constitutes
the minimum value of the effective radius for a torus
milling cutter. Its maximum value, which is theoret-
ically infinite (horizontal machining) is approached
when « tends towards 0 and when S tends towards
0.

3.2 Study into limits of validity of the ex-
pression of the effective radius

Relation (30) affords an analytical calculation of the
effective radius of the cutter at the cutter/workpiece
point of contact when machining a free-form surface
with a torus milling cutter. It should, however, be
recalled here what precisely is the framework of va-
lidity for this relation. Firstly, this relation is only
valid at the cutter/workpiece point of contact. In-
deed, many relations established during computation
— (20) and following — are only valid at this point.



The framework of validity of relation (30) is also
bounded by the hypotheses adopted during calcu-
lation. The most restrictive of these hypotheses is
that the feed vector F is constant at any point of the
cutter. As stated previously, this means that locally
at least, the cutter is moved by simple translation.
Application-wise, this is always true on 3-axis NC
machines. For 4- and 5- axis NC machines, this may
be true for portions of the paths but this relation
cannot be used systematically. In particular, when
the axes of rotation of the machine are activated,
the relative movement of the cutter in relation to the
workpiece comprises a translation and a rotation. In
this case, the feed rate cannot be represented by the
same vector F for all points of the cutter.

During the demonstration, restrictions were stated
as to the value of components b and ¢ of the feed
vector F (section 2.2.3), on the value of parameter
v (section 2.2.4) and the values of angles S, a and
¥ (section 2.4). Thus, relation (30) is only demon-
strable if b # 0, ¢ # 0, v # =5, § # 0, a # £7,
Y # 0 and ¢ # 5. Analysis of the mathematical
and technological context shows that these differ-
ent exceptional cases overlap. Indeed, these special
cases correspond to quite specific machining configu-
rations. FEach of these special configurations will now
be analysed, bearing in mind that in all cases, it was
possible, during the demonstration, to postulate that
a = 0 without losing in generality (section 2.2.3):

e Machining of a locally plane surface at the cut-
ter / workpiece point of contact (point C¢): in
this instance, vector F is parallel to the plane
(z,y) and point C, is located on the lower limit
of the torus part of the cutter. Then ¢ = 0,
v=—%,8 =0 (Fig. 3) and ¢ = 0 (Fig. 4)
obtain. Projection of the cutter envelope curve
in a plane normal to feed is then a straight line
parallel to the plane (x,y), corresponding to
a null curvature. In all the other machining
configurations, v # —% and S # 0 necessarily
apply. ¢ # 0 and @ # 0 also apply in all the
other machining configurations, except for the
case of milling perpendicular to the direction
of the greatest slope (o = +7).

e Machining perpendicular to the direction of the
greatest slope. In this instance ¢ = 0 and
a = £7 apply (see Fig. 3 with a machining
direction perpendicular to the plane (D, z) for
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the machining configuration and Fig. 4 to de-
fine angle o). Projection in a plane normal to
the feed of the cutter envelope curve is then
an arc of circle corresponding to the torus part
of the cutter and the effective machining ra-
dius is equal to the torus radius . In all other
machining configurations, o # £7 necessarily
obtains.

e Machining along axis z. b = 0 and ¢ = §
will then apply. This instance could possibly
arise when milling vertically with a round in-
sert cutter. The cutter/workpiece point of con-
tact would then be located on the upper limit
of the torus part (v = 0) and in this case the ef-
fective radius of the cutter could be considered
to be equal to its outside radius R. Neverthe-
less, such machining conditions are extremely
unfavourable in terms of cutting quality and
cutter lifetime and are consequently never ap-
plied industrially. However, in all the other
machining configurations, b # 0 and ¢ # 3
will necessarily apply.

The hypotheses adopted during calculation thus
correspond to borderline cases that can be managed
regardless of the effective radius. While it is appro-
priate to take them into account when developing
tools based on relation (30), this should not be an
obstacle to implementation.

4 Example of an application

4.1 Introduction

Determining the effective radius of the cutter at the
cutter /workpiece point of contact through a simple
analytical formula as with the one established in re-
lation (30) offers many advantages. Indeed, despite
the imposed limits established in section 3.2, this re-
sult offers the perspective of multiple applications
that will be further developed in forthcoming publi-
cations. Using an analytical formula is always rapi-
der than a numerical procedure. Calculation of the
effective radius by an analytical formula instead of
the numerical procedures generally used means ap-
plications that were hitherto considered to be hard to
contemplate can be developed. For example, thanks
to the relation established in (30), an application was
readily developed providing a detailed mapping of



the effective radius of the tool over the entire surface
almost instantaneously.

This mapping tool was then used to conduct a
study into the comparative effectiveness of a ball end
mill and a torus milling cutter with the same radius
when machining a free-form surface from an indus-
trial environment on a 3-axis NC machine tool.

This surface, relating to a boat propeller measur-
ing 393 mm in diameter (Fig. 5), is the extrados of
the blade (Fig. 6).

Figure 5: Boat propeller

Figure 6: Extrados of a blade

Whatever the tool path planning strategy envis-
aged (parallel planes, isoparametrics, iso-scallop) the
step over distance (defined in section 4.2) must re-
spect the maximum scallop height.

Firstly, it should be recalled that, the step over
distance at a point is directly related to the cutter
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effective radius and, for a given scallop height, that
distance has a significant impact on productivity. In
what follows, it will be shown how, compared with
the results obtained using a ball-end mill, using a
torus end cutter can be advantageous in some areas
of the workpiece and disadvantageous in others. It
will also be seen how the simplicity of the expression
established in (30) allows this analysis to be con-
ducted in an extremely short time.

4.2 Relation between step over distance
and effective radius

Whatever the tool path planning strategy used, in
order to position the cutter so as to respect the max-
imum scallop height at a given point of the toolpath,
the distance d defining its position in the plane per-
pendicular to the feed direction must first have been
calculated (Fig. 7). Subsequently, the step over dis-
tance s,q can be readily determined as it is directly
related to d by angle « characterising the local incli-
nation of the surface in a plane normal to the ma-
chining direction. Showing that the step over dis-
tance is directly related to the cutter effective radius
is thus equivalent to showing that distance d depends
directly on that effective radius.

Figure 7: Calculating the step over distance

To calculate the value of d it is assumed that the
curvature of surface ¢ (considered in a plane nor-
mal to the feed direction) and the cutter effective
radius R.yy are constant locally. The triangle made
by the centre of curvature of the surface called O,
and points C and H (Fig. 7) is considered. For this



triangle, the following can be stated:

R2i; = (Regy+0)° + (0+ s1)°
—2(Refs + 0)(0 + sp) cos(B)

where 3 is the angle between vectors OC and OH.

{

Resolution of this system of equations gives:

\/(4R§ff+4gReff 725;1@75;12) (20+ sn) sn

o+ sh

d =

(31)

This expression shows that the distance d is in-
deed directly related to the effective radius Ry, es-
pecially considering that s, can be neglected in re-
lation to the other magnitudes. The step over dis-
tance s,q thus depends directly on the effective ra-
dius Ress. Now, for a given scallop height value (the
acceptable tolerance on the surface), the increase in
step over distance allows for significant gains in pro-
ductivity. Consequently, it can be said that this in-
crease in the effective radius of the cutter has a direct
impact on productivity.

4.3 Comparison methodology

A seen previously (section 3.1), the effective radius
value can vary between the torus radius r in the case
of a path perpendicular to the direction of the great-
est slope, and a value that tends to infinity for hor-
izontal milling. Given the relation between effective
radius cutter and step over distance, it is clear that
where the effective radius equals r, using a ball-end
cutter instead of a torus milling cutter will allow for
greater productivity. However, the closer the path
becomes to being horizontal in the direction of the
greatest slope, the more the torus milling cutter will
prove to be more effective as compared with a ball-
end mill of the same diameter. It therefore seems
useful to be able to determine, for a given surface,
the zones where the torus milling cutter is more ef-
fective than the ball-end cutter and vice-versa.

For the ball-end cutter, the effective radius is al-
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Moreover, in triangle (OAC), the following ap-
plies:

(VISR

= (0 + Reyy)sin(p)

Stating t = tan? <§), the following is obtained:

42
R2p = (Regp 4 0)° + (04 51)* = 2(Regs + 0)(0+ sn) Tz
§=(o+ Resy) 1-2&52

ways equal to its nominal radius R, whatever the
feed direction and slope of the surface.

For the torus milling cutter, calculation of the
effective radius with the formula established in (30)
requires knowledge of the slope of the surface at the
point considered and the angle formed by the direc-
tion of the greatest slope and the feed direction. To
pursue this analysis, a machining direction first needs
to be defined that will be parameterized by the an-
gle 6 its projection makes in the plane (X,Y) with
the axis X of the machine. Then a meshing of the
parametric space comprising 256 x 256 tiles is con-
sidered. In the centre of each tile thus constituted,
the effective radius of the torus milling cutter can be
readily calculated using relation (30). The value of
the effective radius thus obtained is then associated
with a corresponding colour from a scale of colours
varying linearly from r (blue) to 2R (red). The grid
of colours is then applied as texture to the 3D rep-
resentation of the surface to generate graphic images
like those shown in figures 8 to 11.

The entire procedure (calculation and visualisa-
tion) was developed using the Java programming lan-

guage.

4.4 Results

Here, the results for two cutters with outer radius
R = 5mm are presented. One cutter is a ball-end
mill while the other is a torus milling cutter whose
torus radius is r = 2mm. The surface considered is
the extrados of a boat propeller as shown previously
(section 4.1).

Applying the methodology defined in section 4.3
to a number of representative machining directions
the following graphic representations are obtained:



e for a machining direction defined by § = —45°,
figure 8 is obtained

e for a machining direction defined by 8 = 0°,
figure 9 is obtained

e for a machining direction defined by 6 = 45°
figure 10 is obtained

e for a machining direction defined by 6 = 90°,

figure 11 is obtained

Figure 9: Visualisation of the effective radius for § =
00

On these figures, the white curves represent the
limit between the zones, that is the points where
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0 = 45°

Figure 11: Visualisation of the effective radius for
0 =90°

R.ty = R = 5mm. In the regions that are pre-
dominantly blue, R.ry < R applies. It can thus be
said that in these regions the ball-end mill is more
effective than the torus milling cutter. Conversely, in
mainly red and green regions, the effective radius of
the torus milling cutter is greater than the nominal
radius of the ball-end cutter (R.r¢ > R); as a result,
it can be said that in these regions, the torus milling
cutter is more effective than the ball-end cutter.
The calculation time needed to conduct the entire
analysis procedure (computation and display) for all
the tests conducted always took less than one sec-
ond. This rapidity in calculation is essentially due
to the simplicity of expression of the effective radius



(relation 30).

This simplicity of expression means that tools for
analysis, like the one introduced here, can be de-
fined to provide precious help in choosing a machin-
ing strategy.

5 Conclusions and perspectives

When end milling of free-form surfaces with a torus
milling cutter, the effective radius concept is essen-
tial to analyse the machining procedure in purely
geometrical terms.

The study presented in the present publication
enabled the effective radius of a torus milling cutter
milling with a translation movement to be expressed.
Adopting this an original approach, this expression
was determined in analytical form without having
to resort to geometric approximation. This relation
was also analysed and the limits to its validity were
studied.

As the expression was relatively simple, it should
pave the way for applications that it would be impos-
sible to implement in a reasonable time frame using
a numerical approach. As an example, a tool for
numerical analysis was presented that could prove

2
¢ cos?(t) = (1 3 tan?

useful in pre-project analysis of a procedure for free-
form machining using parallel planes.

The possibilities offered by the relation estab-
lished in the present study are, however, far from
being limited to the example adopted here. Due to
it being so easy to implement, the analytical for-
mula defined here to compute the effective radius
may readily be integrated into recently developed
"intelligent CAM" processes 24, 25].

In forthcoming publications it will be seen how
analytical expression of the cutter effective radius
can find many different applications in studies into
the machining of free-form surfaces with a torus milling
cutter that adopt a geometric approach.

A Calculation detail

A.1 Identification of terms in r in equa-
tion (9)

From equation (13):

¢ cos (t) B _ sin? (v)
Vb2 sin? (t) + ¢2 b? cos? (v)

it can be deduced successively that:

cos (v)

(v)> cos?(v) (b2 sin? (t) + ¢?)

b* c? cos?(t) (1+ tan2(v)) = (* - ¢ tan2(v)) (¢* + b* sin® (1))
=b%c® +b* sin?(t) — ¢! tan®(v) — b7 ¢® tan®(v) (1 — cos?(t))
b? ¢* cos®(t) = b? ¢ + b* (1 —cos®(t)) — c* tan?(v) — b * tan’(v)

b? cos’(t) (b2 + cz) = b2 + bt — @ tan?(v) (b2 + 02)

2

cos®(t) = 2 + b — c tan?(v)

b2

and this leads to the following equation (12) :

2 sin?(v)

COS(t) = 1-— m

A.2 Identification of terms in r in equa-
tion (10)

From equation (14) :

¢ sin(t)

b2 sin®(t) + c2 a

_ (% sin(v) + be sin(v)>
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it follows that:

c? sin?(t) A+b2e\’ 9
b2 sin?(t) + c2 b sin”(v)
2
= (+ b2)2 Z_Q sin?(v)

from which follows equation (12) :

2 sin?(v)

1o >
b2 cos?(v)

cos(t) =
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