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Let Ω ⊂ R d , d ≥ 2, be a bounded open set, and denote by λj (Ω), j ≥ 1, the eigenvalues of the Dirichlet Laplacian arranged in nondecreasing order, with multiplicities. The weak form of Pleijel's theorem states that the number of eigenvalues λj (Ω), for which there exists an associated eigenfunction with precisely j nodal domains (Courant-sharp eigenvalues), is finite. The purpose of this note is to determine an upper bound for Courant-sharp eigenvalues, expressed in terms of simple geometric invariants of Ω. We will see that this is connected with one of the favorite problems considered by Y. Safarov.

Introduction and main result

We consider the Dirichlet Laplacian H(Ω) in a bounded open set Ω in R d . We denote by λ j (Ω) (j ∈ N * ) the sequence of eigenvalues arranged in nondecreasing order, with multiplicities. The ground state energy λ 1 (Ω) is simply denoted by λ(Ω). We denote by N (φ j ) = φ -1 j (0) the nodal set of an eigenfunction φ j associated with λ j (Ω), and by µ(φ j ) the number of connected components of Ω \ N (φ j ) (nodal domains).

Courant's nodal domain theorem [START_REF] Courant | Ein allgemeiner Satz zur Theorie der Eigenfunktionen selbstadjungierter Differentialausdrücke[END_REF]1923] says that for any j ≥ 1, the number µ(φ j ) is not greater than j.

An eigenvalue λ j (Ω) is called Courant-sharp if there exists an associated eigenfunction φ j with µ(φ j ) = j. In contrast with Sturm's theorem in dimension 1, the weak form of Pleijel's theorem [START_REF] Pleijel | Remarks on Courant's nodal theorem[END_REF]1956] This theorem is the consequence of a more precise theorem (strong Pleijel's theorem): Theorem 1.2 In dimension 2, for any sequence of spectral pairs (φ n , λ n ) of H(Ω),

lim sup n→+∞ µ(φ n ) n ≤ 4π λ(D 1 ) = 2 j 2 < 1 , (1) 
where D 1 is the disk of unit area, and j the least positive zero of the Bessel function J 0 .

Remark. Pleijel's theorem extends to bounded domains in R d , and more generally to compact d-dimensional manifolds with boundary, see Peetre [START_REF] Peetre | A generalization of Courant nodal theorem[END_REF], Bérard and Meyer [START_REF] Bérard | Inégalités isopérimétriques et applications[END_REF]. More precisely for d ≥ 2, there exists a constant γ(d) < 1 such that lim sup

n→+∞ µ(φ n ) n ≤ γ(d) . (2) 
It is interesting to note that the constant γ(d) only depends on the dimension and is otherwise independent of the geometry.

In view of Pleijel's theorem, it is a natural question to look for geometric upper bounds for Courant-sharp eigenvalues. The purpose of this note is to give a geometrically controlled version of Theorem 1.1. In dimension 2, we prove the following result.

Theorem 1.3 Let Ω ⊂ R 2 be a bounded C 2 domain. Then, there exists a positive constant β(Ω) depending only on the geometry of Ω, such that any Courant-sharp eigenvalue

λ k (Ω) of H(Ω) satisfies k λ(D 1 ) |Ω| ≤ λ k (Ω) ≤ β(Ω).
More precisely, the constant β(Ω) can be computed in terms of the area |Ω|, the perimeter ℓ(∂Ω) of Ω, as well as bounds on the curvature of ∂Ω and on the cut-distance 1 ε 0 (Ω) to ∂Ω.

The result also holds with weaker regularity assumptions. For example, inspection of the proof which uses the results of van den Berg and Lianantonakis [START_REF] Van Den Berg | Asymptotics for the spectrum of the Dirichlet Laplacian on horn-shaped regions and ζ functions on cross sections[END_REF] gives the following non optimal but more explicit corollary. 

λ(D 1 ) k ≤ |Ω| λ k (Ω) ≤ 2 24 π λ(D 1 ) λ(D 1 ) -4π 4 (D(Ω)) 4 |Ω| 2 .
Observe that the lower and upper bounds are dilation invariant. When Ω is regular, D(Ω) can be bounded from above by

D(Ω) ≤ max |Ω| ε 0 (Ω)
, 2ℓ(∂Ω) .

Remarks. (i) Corollary 1.4 holds as soon as the boundary of Ω has Minkowski dimension 1, see Section 3.2. (ii) The constant D(Ω) is bigger than the upper Minkowski content. We cannot substitute D(Ω) with the upper Minkowski content because we need upper bounds on the quantities involved, not only an asymptotic behaviour.

In all the paper, we only consider the Dirichlet problem. It would also be interesting to analyze the Neumann problem in the same spirit. Looking at the proof of Polterovich in [START_REF] Polterovich | Pleijel's nodal domain theorem for free membranes[END_REF], the main point would be to obtain a geometric estimate of the number of nodal domains touching the boundary.

Organization of the paper.

The paper is organized as follows. In Section 2, we sketch the proofs of Pleijel's theorem, and we explain the idea of how to obtain geometric upper bounds for Courant-sharp eigenvalues. In Section 3 we describe lower bounds on the counting function, using [START_REF] Safarov | Fourier Tauberian theorems and applications[END_REF] or [START_REF] Van Den Berg | Asymptotics for the spectrum of the Dirichlet Laplacian on horn-shaped regions and ζ functions on cross sections[END_REF], and we derive upper bounds for the Courantsharp eigenvalues. In Section 4, we compare the bounds obtained in Section 3 for three very simple examples (the disk, the annulus and the square), and the bounds one can derive for other explicit examples (rectangles, equilateral triangles, etc.).

Added in proof. We point out the following recent paper: M. van den Berg, K. Gittins, On the number of Courant sharp Dirichlet eigenvalues, arXiv 1602.08376.

Proofs of Pleijel's theorem

In this section, we sketch the proof of Theorem 1.2 for a domain Ω in R d . We first introduce some notation. Let N Ω (λ) denote the counting function for H(Ω),

N Ω (λ) = # {j | λ j (Ω) < λ} . (3) 
The counting function can be written as

N Ω (λ) = C d |Ω| λ d 2 -R(λ) , (4) 
where C d is the Weyl constant, |Ω| denotes the d-dimensional volume of Ω, and the remainder term R(λ) satisfies R(λ) = o(λ d 2 ) according to Weyl's theorem. The Weyl constant is given by

C d := (2π) -d ω d , (5) 
where ω d is the volume of the unit ball in R d ,

ω d = π d 2 /Γ( d 2 + 1) . (6) 
We also denote by B d 1 the ball of volume 1 in R d . To prove Theorem 1.2, we start with the identity

µ(φ n ) n n λ n (Ω) d 2 λ n (Ω) d 2 µ(φ n ) = 1 . (7) 
Applying the Faber-Krahn inequality to each nodal domain of φ n and summing up, we have λ n (Ω)

d 2 µ(φ n ) ≥ λ(B d 1 ) d 2 |Ω| . (8) 
Note for later reference that

if µ(φ n ) = n , then λ n (Ω) d 2 n ≥ λ(B d 1 ) d 2 |Ω| . (9) 
This gives a necessary condition for λ n (Ω) to be Courant-sharp, which is (up to the renormalization by the volume) independent of the geometry of Ω.

Taking a subsequence φ ni such that

lim i→+∞ µ(φ ni ) n i = lim sup n→+∞ µ(φ n ) n ,
and implementing in [START_REF] Van Den Berg | Asymptotics for the spectrum of the Dirichlet Laplacian on horn-shaped regions and ζ functions on cross sections[END_REF], we deduce:

λ(B d 1 ) d 2 |Ω| lim sup n→+∞ µ(φ n ) n lim n→+∞ n N Ω (λ n ) lim λ→+∞ N Ω (λ) λ d 2 ≤ 1 . (10) 
Having in mind Weyl's formula, we obtain

lim sup n→+∞ µ(φ n ) n ≤ γ(d) := 1 C d λ(B d 1 ) d 2 . ( 11 
) When d = 2, one has C 2 = 1 4π , λ(B 2 1 ) = πj 2 , so that γ(2) = 4 j 2 < 1 since j ≈ 2.40 . More generally, for d ≥ 2 , one has γ(d) := 2 d-2 d 2 Γ(d/2) 2 (j d-2 2 ,1 ) d
, where j ν,1 denotes the first positive zero of the Bessel function J ν (in particular j 0,1 = j), and it can be shown, see [START_REF] Bérard | Inégalités isopérimétriques et applications[END_REF], that

γ(d) < 1 . (12) 
This proves Theorem 1.2, and Theorem 1.1 follows as well.

Remark. In the case of general Riemannian manifolds, one needs to use an adapted isoperimetric inequality which is valid for domains with small enough volume, see [START_REF] Peetre | A generalization of Courant nodal theorem[END_REF][START_REF] Bérard | Inégalités isopérimétriques et applications[END_REF].

We now give an alternative proof of Theorem 1.1 which provides a hint on how to bound the Courant-sharp eigenvalues from above.

If λ n is Courant-sharp, then λ n-1 < λ n and hence, n = N Ω (λ n ) + 1. Using (9), we obtain λ n Courant-sharp ⇒ N Ω (λ n ) + 1 = n ≤ |Ω| λ n (Ω) λ(B d 1 ) d 2 . ( 13 
)
Writing the counting function as,

N Ω (λ) = C d |Ω| λ d 2 -R(λ) . ( 14 
)
and plugging this relation into [START_REF] Kuznecov | Asymptotic distribution of eigenfrequencies of a plane membrane in the case of separable variables (Russian)[END_REF], we obtain that

λ n (Ω) Courant-sharp ⇒ F Ω (λ n (Ω)) ≤ 0 , (15) 
where the function F Ω is defined for λ > 0 by

F Ω (λ) = C d (1 -γ(d)) |Ω| λ d 2 -R(λ) + 1 . (16) 
By Weyl's theorem, the remainder term satisfies

R(λ) = o(λ d 2 )
. Since 1-γ(d) > 0, see [START_REF] Ya | On the second term of the spectral asymptotics for the Laplace-Beltrami operator on manifold with boundary[END_REF], the function F Ω tends to infinity when λ tends to infinity and hence the number of Courant-sharp eigenvalues must be finite.

As a matter of fact, the preceding proof tells us that Courant-sharp eigenvalues must be less than or equal to

inf{µ > 0 | F Ω (λ) > 0 for λ ≥ µ} . (17) 
Although this quantity is a geometric invariant associated with Ω, it is not clear how to estimate it in terms of simple geometric invariants, even if we used Ivrii's sharp estimate

R(λ) = O(λ d- 1 
2 ), [START_REF] Ya | On the second term of the spectral asymptotics for the Laplace-Beltrami operator on manifold with boundary[END_REF][START_REF] Seeley | A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R 3[END_REF]. In order to proceed, it is sufficient to have an explicit geometric upper bound R(λ) of R(λ). Indeed, define the function

F Ω (λ) = C d (1 -γ(d)) |Ω| λ d 2 -R(λ) + 1 . (18) 
Then, any Courant-sharp eigenvalue λ k (Ω) must satisfy F Ω (λ k (Ω)) ≤ 0, and hence the inequality

λ k (Ω) ≤ inf{µ > 0 | F Ω (λ) > 0 for λ ≥ µ} . (19) 
In the next section, we use the explicit upper bounds R(λ) provided by the papers of Safarov [START_REF] Safarov | Fourier Tauberian theorems and applications[END_REF] and van den Berg and Lianantonakis [START_REF] Van Den Berg | Asymptotics for the spectrum of the Dirichlet Laplacian on horn-shaped regions and ζ functions on cross sections[END_REF] to obtain upper bounds on the Courant-sharp eigenvalues in terms of simple geometric invariants.

Lower bounds on the counting function and applications to Courant-sharp eigenvalues

In this section, we describe lower bounds on the counting functions derived from [START_REF] Safarov | Fourier Tauberian theorems and applications[END_REF] or [START_REF] Van Den Berg | Asymptotics for the spectrum of the Dirichlet Laplacian on horn-shaped regions and ζ functions on cross sections[END_REF], and apply them to bounding the Courant-sharp eigenvalues.

The approach via Y. Safarov

Here, we implement a result by Y. Safarov [START_REF] Safarov | Fourier Tauberian theorems and applications[END_REF]2001] which provides a lower bound for the spectral function on the diagonal, with an explicit control on the remainder term. This estimate is obtained by making use of finite propagation speed for the wave equation, and precise Tauberian theorems.

If Ω ⊂ R d is an open set, then the spectral function of the Dirichlet Laplacian

e(x, x, λ) := 1 2   λj <λ φ j (x) 2 + λj ≤λ φ j (x) 2   , satisfies [19, Cor. 3.1] e(x, x, λ) ≥ C d λ d 2 - 2d C d π -1 ν 2 m d d(x) λ 1 2 + ν m d d(x) d-1 , (20) 
for all x ∈ Ω and λ > 0 .

Here d(x) is the Euclidean distance to ∂Ω, and ν m d is a universal constant depending only on the dimension. More precisely, let

m d = d+1 2 , if d is odd, (d+2) 2 
, if d is even.

Then,

ν m = ( ν m ) 1 2m
, where ν m is the ground state energy of the Dirichlet realization of (-1)

m d 2m dt 2m on ] -1 2 , 1 2 [. Define N Ω (λ) := Ω e(x, x, λ) dx ,
and let ǫ 0 (Ω) be the largest number ε with the property that

Ω b ǫ := {x ∈ Ω , d(x) < ǫ} is diffeomorphic to ∂Ω×]0, ǫ[. Then, for 0 < ǫ < ǫ 0 (Ω), N Ω (λ) ≥ C d |Ω| λ d 2 -C d |Ω b ǫ |λ d 2 -2d C d π -1 ν 2 m d λ 1 2 + νm d ǫ d-1 d(x)>ǫ 1 d(x) dx .
This inequality is also true by semi-continuity for N Ω (λ).

Writing

N Ω (λ) = C d |Ω| λ d 2 -R(λ)
as in ( 14), we have

R(λ) ≤ C d |Ω b ǫ |λ d 2 + 2d C d π -1 ν 2 m d λ 1 2 + ν m d ǫ d-1 d(x)>ǫ 1 d(x) dx . ( 21 
)
We now use our freedom for choosing ǫ. A convenient choice in order to get the right power of λ is to take

ǫ := α(Ω)λ -1 2 . ( 22 
)
Because we need this estimate for any λ in the spectrum of the Laplacian, and actually for λ > λ 2 (Ω) (because the Courant-sharp property is already established for the two first eigenvalues), we choose

α(Ω) = ǫ 0 (Ω)λ 2 (Ω) 1 2 . ( 23 
)
To have more explicit bounds, we could also choose

α(Ω) = ǫ 0 (Ω)λ 2 (Ω) 1 2
where λ 2 (Ω) is a geometric lower bound of λ 2 (Ω) (using Faber-Krahn inequality or a consequence of Li-Yau inequality, see below (37) and ( 38)).

For regular domains, the right-hand side of ( 21) can be estimated in terms of the geometry of Ω.

For the sake of simplicity, we give the details in the case d = 2.

In dimension 2, the above lower bound for N Ω (λ) (and N Ω (λ)) reads

N Ω (λ) ≥ C 2 |Ω|λ -C 2 Ω b αλ -1 2 λ -4C 2 π -1 ν 2 2 1 + ν2 α λ 1 2 d(x)>αλ -1 2 1 d(x) dx . (24) 
When d = 2, we have m 2 = 2, and we can verify (using the quasimode (

1 4 -x 2 ) 2 of [19]) that ν 2 ≤ 7 × 8 × 9 ≤ 2 9 ,
which implies the rough estimate

ν 2 ≤ 4 • 2 1 4 ≤ 5 .
We now assume that ∂Ω is a smooth submanifold, so that ∂Ω is the union of p smooth simple closed curves. We write the proof in the case p = 1, the general case is similar. Let c : [0, L] → R 2 be a parametrization of ∂Ω by arclength, with L := ℓ(∂Ω), the length of the boundary. The associated Frenet frame is {τ (s), ν(s)}. We can assume that the orientation is chosen such that ν(s) points towards the interior of Ω. The curvature κ(s) of the curve is given by the equation τ (s) = κ(s)ν(s). Let κ -(Ω) denote the infimum of κ over [0, L]. Define the map

F : [0, L]×] -∞, ∞[→ R 2 , F (s, t) = c(s) + tν(s) .
We have

∂ s F (s, t) ∧ ∂ t F (s, t) = (1 -tκ(s)) τ (s) ∧ ν(s) .
The map F is a local diffeomorphism for |t| < t + with

t + := sup [0,L] |κ(s)| -1
.

The injectivity of F is determined by the infimum δ + of the cut-distance δ + (s) to the submanifold ∂Ω, where

δ + (s) := sup{t > 0 : t = dist(F (s, t), ∂Ω)}. (25) 
In this case, we have

ǫ 0 (Ω) = inf{t + , δ + } (26)
so that F is a diffeomorphism from [0, L]×]0, ǫ 0 (Ω)[ onto its image (i.e. so that F is both a local diffeomorphism and injective). For ǫ < ǫ 0 (Ω), we have

|Ω b ǫ | = L 0 ǫ 0 (1 -tκ(s)) ds dt .
It follows that

C 2 Ω b αλ 1 2 λ ≤ β 1 (Ω)λ 1 2
, where

β 1 (Ω) = 1 4π (1 + ǫ 0 (Ω)|κ -(Ω)|) ǫ 0 (Ω)λ 2 (Ω) 1 2 ℓ(∂Ω) . (27) 
The third term in the right-hand side of (24) can be written as

   β 2 (Ω)λ 1 2 d(x)>αλ -1 2 1 d(x) dx , where β 2 (Ω) := π -2 ν 2 2 1 + ν 2 ǫ 0 (Ω) -1 λ 2 (Ω) -1 2 . ( 28 
) Write d(x)>αλ -1 2 1 d(x) dx = {d(x)>ǫ0(Ω)} 1 d(x) dx + L 0 ǫ0(Ω) αλ -1 2 (1-tκ(s)) t ds dt
We can estimate the second integral in the right-hand side as we did above.

The first integral can be estimated from above by |Ω|/ε 0 (Ω). It follows that there exist positive constants β 3 (Ω) and β 4 (Ω) such that, for all λ > λ 2 (Ω),

N Ω (λ) = |Ω| 4π λ -R(λ), with R(λ) ≤ R(λ) = β 3 (Ω)λ 1 2 ln λ λ 2 (Ω) + β 4 (Ω)λ 1 2 . ( 29 
)
Note that the constants only depend on the geometry of the domain Ω. More precisely, the constants can be computed in terms of |Ω|, ℓ(∂Ω), κ -(Ω), ǫ 0 (Ω), and λ 2 (Ω).

Remarks. (i) The preceding proof shows that one can alternatively estimate the constants in terms of |Ω|, ℓ(∂Ω), ǫ 0 (Ω), λ 2 (Ω), and the number of holes of the domain (through the integral ∂Ω κ).

(ii) In higher dimensions, one can state a similar result in which the curvature κ of the curve is replaced by the mean curvature h of the hypersurface ∂Ω. For this purpose, one uses the Heintze-Karcher comparison theorem [START_REF] Heintze | A general comparison theorem with applications to volume estimates for submanifolds[END_REF].

Applying ( 18) and ( 19), we obtain that any Courant-sharp eigenvalue

λ k (Ω) satisfies f Ω (λ k ) ≤ 0 , ( 30 
)
where the function f Ω is defined for µ > λ 2 (Ω) by

f Ω (µ) := λ(D 1 ) -4π 4πλ(D 1 ) |Ω|µ -β 3 (Ω)µ 1 2 ln µ λ 2 -β 4 (Ω)µ 1 2 + 1 . ( 31 
)
Since λ(D 1 ) > 4π, see [START_REF] Ya | On the second term of the spectral asymptotics for the Laplace-Beltrami operator on manifold with boundary[END_REF], the coefficient of the term µ in the expression of f Ω is positive, so that the function tends to infinity when µ tends to infinity. Hence

I Ω := f -1 Ω (] -∞, 0]) is either empty or bounded from above. Define β S (Ω) = max{λ 2 (Ω), β 0 (Ω)} ,
where β 0 (Ω) is the supremum of I Ω if I Ω is non empty and 0 otherwise. From Equation (30) we conclude that

λ k (Ω) Courant-sharp ⇒ λ k (Ω) ≤ β S (Ω) . ( 32 
)
We have proved Theorem 1.3.

Starting from the inequality f Ω (λ k ) ≤ 0 in the above proof, we conclude that any Courant-sharp eigenvalue λ k satisfies

A 2 |Ω|λ 1 2 k ≤ β 3 (Ω) ln λ k λ 2 + β 4 (Ω) ,
where A 2 = 1 4π -1 λ(D1) . Using the inequality ln µ λ2 ≤ 4 µ 

λ k (Ω) ≤ max λ 2 (Ω), 16πλ(D 1 ) λ(D 1 ) -4π 4 (β 3 (Ω) + β 4 (Ω)) 4 |Ω| 4 λ 2 (Ω) . (33) 
Remarks. (i) For the unit disk, the bound (33) is sharper than Corollary 1.4, see Section 4. (ii) Pólya's conjecture for Dirichlet eigenvalues (see [START_REF] Pólya | On the eigenvalues of vibrating membranes[END_REF]) does not go in the right direction. Indeed lower bounds on the Dirichlet eigenvalues correspond to upper bounds on N (λ). This would be good for Neumann eigenvalues, but in this case, there are other problems, see [START_REF] Pleijel | Remarks on Courant's nodal theorem[END_REF] and more recently [START_REF] Polterovich | Pleijel's nodal domain theorem for free membranes[END_REF].

Approach via van den Berg-Lianantonakis

Prior to Y. Safarov, van den Berg and Lianantonakis have given lower bounds for the counting function N Ω (λ) depending on the Minkowski dimension of ∂Ω. When this dimension is (d -1), they prove [7, Theorem 2.1] that if

λ ≥ 4|Ω| -2 d , (34) 
then

N (λ) ≥ C d |Ω| λ d 2 -3D(Ω)λ (d-1)/2 log (2|Ω|) 2 d λ , (35) 
where the geometric constant D(Ω) is defined by

D(Ω) := sup ǫ |Ω b ǫ | ǫ . (36) 
To apply (35) to Pleijel's theorem, one needs to compare condition (34) with the condition λ > λ 2 (Ω). One can for example observe that the Faber-Krahn inequality applied to the second eigenvalue gives (see [START_REF] Ashbaugh | Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon's 60th birthday[END_REF] or [START_REF] Heintze | A general comparison theorem with applications to volume estimates for submanifolds[END_REF] 

for d = 2) λ 2 (Ω) ≥ (2ω d ) 2 d |Ω| -2 d j 2 d 2 -1,1 . (37) 
For d = 2, since 2πj2 0,1 > 4, the condition λ > λ 2 (Ω) implies (34). For d ≥ 2, we can use the following lower bound for λ 2 (Ω) which is a consequence of Li-Yau inequality (see [1, Formula (11.5)]),

λ 2 (Ω) > d d + 2 4π 2 2 2 d (ω d |Ω|) 2 d . ( 38 
)
Hence it is enough to verify that:

d d + 2 4π 2 2 2 d (ω d ) 2 d ≥ 4 ,
which is easy to establish. Indeed, using (6), we obtain

d d + 2 π 2 2 d Γ( d 2 + 1) 2 d ≥ 1 ,
which follows from the inequality d d+2 π ≥ 1 for d ≥ 1.

Assuming d = 2 for the sake of simplicity, and using (15) together with (35), we obtain that any Courant-sharp eigenvalue λ k (Ω), with λ k > λ 2 , satisfies g Ω (λ k ) ≤ 0, where g Ω is defined by

g Ω (µ) = 1 4π - 1 λ(D 1 ) |Ω| λ -3D(Ω) µ 1 2 ln(2|Ω|µ) + 1 ,
for µ ≥ λ 2 (Ω). Define β 1 (Ω) to be 0 if g Ω (µ) ≥ 0, and sup{µ > λ 2 : g Ω (µ) ≤ 0} otherwise, and define

β B (Ω) := max{λ 2 (Ω), β 1 (Ω)} . Then, λ k (Ω) Courant-sharp ⇒ λ k (Ω) ≤ β B (Ω) . (39) 
This proves Theorem 1.3 using the lower bound for the counting function provided by [START_REF] Van Den Berg | Asymptotics for the spectrum of the Dirichlet Laplacian on horn-shaped regions and ζ functions on cross sections[END_REF].

From the inequality g Ω (λ k ) ≤ 0 in the preceding proof, we have that any Courant-sharp eigenvalue λ k (Ω) satisfies the inequality

1 4π - 1 λ(D 1 ) |Ω| λ for λ k ≥ λ 2 . Using the inequality ln µ ≤ 2 µ 1 4
for µ ≥ 16 , and the fact that 2|Ω|λ k > 16 (Faber-Krahn), we obtain the more explicit bound given in Corollary 1.4. As kindly communicated by M. van den Berg, in dimension 2, when Ω is sufficiently regular, the geometric invariant D(Ω) can be bounded from above by

D(Ω) ≤ max |Ω| ǫ 0 (Ω) , ℓ(∂Ω) + π ε 0 (Ω) h(Ω) ,
where h(Ω) is the number of holes of Ω, or by

D(Ω) ≤ max |Ω| ǫ 0 (Ω)
, 2ℓ(∂Ω) .

Examples and particular cases 4.1 Examples

In some 2-dimensional cases, it is possible to compute the upper bounds for Courant-sharp eigenvalues arising from the preceding sections explicitly. Consider the following domains, For the square with side π, one finds that β B (Ω 3 ) ≈ 5.9 • 10 6 . It turns out that this bound is much bigger than the bound which is deduced in the next sub-section, namely 51. This is not surprising. The general lower bounds for the counting functions used in the preceding sections, Equations ( 29) and (35), are worse than the sharp 2-dimensional estimate R(λ) = O(λ

Ω 1 = B(0, 1), the unit disc in R 2 , Ω 2 = B(0, 1) \ B(0, a), 0 < a < 1, the annulus A(0, a, 1) ⊂ R 2 , Ω 3 
2 ), see [START_REF] Ya | On the second term of the spectral asymptotics for the Laplace-Beltrami operator on manifold with boundary[END_REF], by a ln(λ) factor. On the other-hand, the estimate (42) has the right powers, and almost the right second constant. Generally speaking one should therefore expect that the bounds β S (Ω) and β B (Ω) are not sharp.

Particular cases

As already mentioned, improved Weyl's formulas with control of the remainder which are only asymptotic are not sufficient for an explicit version of Pleijel's theorem. We nevertheless mention for comparison a formula due to V. Ivrii in 1980 (cf [11, Chapter XXIX, Theorem 29.3.3 and Corollary 29.3.4]) which reads:

N (λ) = ω d (2π) d |Ω| λ d 2 - 1 4 ω d-1 (2π) d-1 |∂Ω| λ d-1 2 + r(λ), (40) 
where r(λ) = O(λ d-1

2 ) in general, but can also be shown to be o(λ d-1

2 ) if the boundary is C ∞ , and under some generic conditions on the geodesic billiards (the measure of periodic trajectories should be zero). For piecewise smooth boundaries, see [START_REF] Vassiliev | Two-term asymptotic behavior of the spectrum of a boundary value problem in the case of a piecewise smooth boundary (Russian)[END_REF]. The second term is meaningful in this case only. Formula (40) is also established for irrational rectangles as a very special case in [START_REF] Ya | On the second term of the spectral asymptotics for the Laplace-Beltrami operator on manifold with boundary[END_REF], but more explicitly in [START_REF] Kuznecov | Asymptotic distribution of eigenfrequencies of a plane membrane in the case of separable variables (Russian)[END_REF] without any assumption of irrationality. See also [START_REF] Bérard | Remarques sur la conjecture de Weyl[END_REF] for some 2-dimensional domains with negative curvature. We do not discuss here the case of "rough" boundaries which was in particular analyzed by Netrusov et Safarov in [START_REF] Netrusov | Estimates for the counting function of the Laplace operator on domains with rough boundaries[END_REF] (and references therein).

Note that when d = 2, the second term in (40) is

W 2 (λ) := - 1 4π |∂Ω| λ 1 2 . ( 41 
)
The Dirichlet (and Neumann) eigenvalues are explicitly given for few domains. In dimension 2 these domains include the rectangles, the right-angled isosceles triangle, the equilateral triangle and the hemiequilateral triangle. In these cases, estimating the counting function amounts to estimating the number of points with integer coordinates inside some ellipse (these domains are obtained as quotient of a torus). The estimates which are obtained in this manner are compatible with Weyl's two terms asymptotic formula (40)), involving the area of the domain and the length of it boundary. Similarly, in higher dimensions, one can explicitly describe the Dirichlet (and Neumann) eigenvalues of the fundamental domains of crystallographic affine Weyl groups, [START_REF] Bérard | Spectres et groupes cristallographiques I: Domaines euclidiens[END_REF]. As far as the asymptotic estimate is concerned, this is possible because the remainder term in Weyl's estimate has order λ d-2 2 + 1 d+1 for a d-dimensional torus.

Rectangle.

Following (and improving) a remark in a course of R. Laugesen [START_REF] Bérard | Dirichlet eigenfunctions of the square membrane: Courant's property, and A. Stern's and Å. Pleijel's analyses[END_REF], one has a lower bound of N (λ) in the case of the rectangle R = R(a, b) := (0, aπ)×(0, bπ), which can be expressed in terms of area and perimeter. One can indeed observe that the area of the intersection of the ellipse { (x+1) 2 a 2 + (y+1) 2 b 2

< λ} with R + ×R + is a lower bound for N (λ). The formula reads:

N R (λ) > 1 4π |R| λ - 1 2π |∂R| √ λ + 1 , for λ ≥ 1 a 2 + 1 b 2 . ( 42 
)
Here we can observe that the second term is 2 W 2 (λ) (see (41)).

Equilateral triangle, see [START_REF] Bérard | Courant sharp eigenvalues for the equilateral torus, and for the equilateral triangle[END_REF].

We consider the equilateral triangle with side 1.

N T (λ) ≥ √ 3 4 λ 4π - 3 2π √ λ + 1 . ( 43 
)
Again we observe that the second term is 2 W 2 (λ) (see (41)).

Right-angled isosceles triangle, see [START_REF] Bérard | Courant sharp eigenvalues for the equilateral torus, and for the equilateral triangle[END_REF].

Let B π denote the right-angled isosceles triangle,

B π = (x, y) ∈]0, π[ 2 | y < x . ( 44 
) N B (λ) ≥ πλ 8 - (4 + √ 2) √ λ 4 - 1 2 . ( 45 
)
The cube, see [START_REF] Helffer | Dirichlet eigenfunctions on the cube, sharpening the Courant nodal inequality[END_REF].

For the cube ]0, π[ 3 , we have, for λ ≥ 3 :

N (λ) > π 6 λ 3 2 - 3π 4 λ + 3 √ λ -2 -1 . (46) 

says: Theorem 1 . 1

 11 In dimension 2, the number of Courant-sharp eigenvalues of H(Ω) is finite.

Corollary 1 . 4

 14 Let Ω ⊂ R 2 be a bounded domain. Define the geometric quantity D(Ω) by D(Ω) = sup ε>0 |{x ∈ Ω : d(x) < ε}| ε , where d(x) is the distance from x to the boundary of Ω. If D(Ω) is finite, then any Courant-sharp eigenvalue λ k (Ω) satisfies,

λ2 1 4Corollary 3 . 1

 131 which holds for any µ ≥ λ 2 , we obtain the following more explicit bound. In dimension 2, any Courant-sharp eigenvalue λ k (Ω) of H(Ω) satisfies

  =]0, π[×]0, π[ , the square in R 2 with side π .For the unit disc, one finds that β S (Ω 1 ) ≈ 7.1 • 10 6 and β B (Ω 1 ) ≈ 2.1 • 10 7 . For the annulus, one finds that β B (Ω 2 ) ≈ 4.2 • 10 8 when a = 0.75 , and β B (Ω 2 ) ≈ 4 • 10 7 when a = 0.25 . This indicates that the cut-distance to the boundary does matter in the upper bound on Courant-sharp eigenvalues.

The cut-distance is defined in Section 3.1, Equation (25).

k -3D(Ω) ln(2|Ω|λ k ) ≤ 0 ,
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