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Abstract

The aim of this paper is 1) to address an extension of the On-Surface Radiation Condition (OSRC)
method to multiple scattering by a cluster of convex obstacles and 2) to analyze the numerical
accuracy of the formulation for some model problems. First, the acoustic scattering problem
is considered and materials about integral equations and OSRCs are recalled. Then, an OSRC
integral equation formulation is developed for the Dirichlet multiple scattering problem. Finally,
an extensive numerical study of the method is proposed in the special case of the scattering by
circular cylinders. Even if this situation is not completely general, it provides an assessment of the
accuracy of the approximation, with respect to various parameters, including thanks to the choice
of the OSRC operators.
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1. Introduction

We consider M regular, bounded and disjoint single scatterers Ω−p , p = 1, ...,M , distributed in
the two-dimensional space, with boundary Γp := ∂Ω−p . The global scatterer Ω− is then defined as

the cluster built with the M separate obstacles: Ω− = ∪Mp=1Ω−p . Its boundary is Γ = ∪Mp=1Γp. The

homogeneous isotropic unbounded domain of propagation is set to: Ω+ = R2 \Ω−. We assume that
the scatterers are sound-soft (Dirichlet boundary condition). The extension to other situations (e.g.
sound-hard scatterers, impedance boundary conditions) will be considered in a forthcoming paper.
We now choose a time-harmonic incident wave uinc illuminating Ω−. The time dependence is e−iωt,
where ω is the wave pulsation and k is the wavenumber. The sound-soft multiple scattering problem
of uinc by Ω− leads to calculating the scattered wavefield u as the solution to the boundary-value
problem [14, 39] 

(∆ + k2)u = 0, in Ω+,

u = −uinc, on Γ,

lim
||x||→+∞

||x||1/2
(
∇u · x

||x||
− iku

)
= 0.

(1)

The operator ∆ = ∂2
x1 + ∂2

x2 is the Laplace operator, (∆ + k2) being then the Helmholtz operator.
The gradient operator is ∇ and the euclidian norm is ||x|| =

√
x · x, where x ·y designates the inner

product of two vectors x and y of R2. The last equation of (1) is the well-known Sommerfeld’s
radiation condition at infinity. This asymptotic condition ensures the uniqueness of the scattered
wave u to problem (1) (see e.g. [22, 44]).

Multiple scattering is a clearly difficult physical and numerical problem since interactions be-
tween the single scatterers generate some complex scattered field structures. Consequently, the
physics emerging from such global phenomenae present some specific and unusual behaviors. Vari-
ous numerical techniques [1, 2, 9, 14, 15, 20, 26, 27, 30, 32, 36, 53] can be considered for predicting
the multiple scattering behavior of a complex configuration. One possible approach is based on
rigorous integral equation formulations. For a general boundary Γ, boundary element discretiza-
tion techniques need to be used [12, 14, 22, 39, 44]. While being powerful and applicable to many
situations, they also have some disadvantages. Indeed, they lead to the solution of large dense
linear systems because of the nonlocal character of integral operators. This is most particularly
true for problems that consider small wavelengths (λ� 1), large scatterers (size(Ω−)� 1) or clus-
ters made of many objects (M � 1). A huge memory is then required for solving these systems,
resulting in important computational times. Even if Krylov subspace solvers [10, 11, 12, 47] can be
used with fast matrix-vector products algorithms (for example Multilevel Fast Multipole Methods
[31] or other compression techniques [14, 30]), the resulting method is still computationally ex-
pensive. When the geometry is more trivial, simplifications can be considered in integral equation
approaches. For example, explicit analytical expressions of the integral operators can be derived,
and highly accurate and fast solution techniques can be developed like e.g. for disks [14, 39, 51].
Even if circular cylinders are simple geometries, the solution of such problems is still extremely
useful in applications (acoustics, electromagnetics, optics, nanophotonics, elasticity) that involve
many circular scatterers, modeling structured or disordered media, in particular for large values of
k and M (see e.g. [18, 24, 25, 29, 34, 35, 36, 43, 48, 52, 54]).

The aim of this paper is to extend the method of On-Surface Radiation Conditions (OSRCs)
[37] to multiple scattering by a cluster of sound-soft acoustic scatterers. Initially, the OSRC method
was developed for scattering by single convex obstacles. Among the years, many improvements have
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been addressed [3, 4, 7, 13, 16, 40, 42, 46]. The main advantage of the OSRC technique is that, for
single-scattering, it leads to the numerical solution of (local) partial differential operators set over
the surface Γ of the scatterer, instead of nonlocal integral operators. This is a huge difference since,
indeed, the resulting complex-valued linear system that must be solved at the end is highly sparse
and not dense. Hence, fast numerical solutions can be derived. The essential drawback of OSRC
techniques is that the computational gain in terms of CPU time is paid by the fact that only an
approximate solution to the scattering problem can be obtained, and not an exact one as for integral
formulations. One of the reasons is that multiple scattering effects are non trivial to include into
the OSRC methods. Some efforts have been directed to improve the accuracy of the OSRC solution
when considering for example single scattering by non convex structures [5]. The aim of this paper is
to rather consider another situation: scattering by a cluster of convex objects. A recent study [1] by
Acosta shown that OSRCs can have a strong potential for solving multiple scattering problems. The
present paper completes the contribution [1] since it provides a clearly related but also different point
of view. In particular, we analyze the formulation according to the choice of the OSRC operator
and the numerical study considers both small and large wavelengths as well as complex multiple
scattering configurations with many scatterers... The objective of this paper is twofold. First, we
want to show how to derive a generic OSRC formulation for multiple scattering problems which
naturally incorporates any possible OSRC operator. Secondly, we conduct a numerical investigation
of the potentiality of the proposed method for complex multiple scattering configurations with many
circular cylinders and various frequency regimes. This paper is a first step towards the development
of fast OSRC numerical solutions [8] involving many arbitrarily shaped scatterers that could be
designed through iterative techniques (like domain decomposition methods) to benefit from the
sparse structure of the OSRC matrices related to each local single scatterer. The final algorithm
then would lead to only solving M small size and sparse linear systems coupled through iterations
instead of dense complex valued linear systems.

The structure of the paper is the following. The aim of Section 2 is to recall some results
concerning integral equations for multiple scattering. In Section 3, we introduce some elements
on OSRC techniques and the most standard operators that will be used. Section 4 develops the
OSRC formulation for the Dirichlet multiple scattering problem. The formulation is tested in
Section 5 for the scattering problem by many circular cylinders. The geometrical configurations
that are considered are 1) two scatterers, 2) a triangular lattice and 3) a cluster of randomly
distributed scatterers. In particular, we introduce a new OSRC operator that allows a relatively
accurate representation of the scattered field for a large range of frequencies (from small to large
wavenumbers k). These various tests lead to understanding the capacity of OSRC methods for
solving multiple scattering problems. The paper ends by a conclusion in Section 6.

2. Integral equation formulations for multiple scattering

Let us introduce G as the two-dimensional free-space Green’s function given by

∀x,y ∈ R2,x 6= y, G(x,y) =
i

4
H

(1)
0 (k‖x− y‖).

The special function H
(1)
0 is the first-kind Hankel function of order zero. Integral equations are

mainly based on the standard Helmholtz integral representation formula [22].
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Proposition 1. If v is a solution to the Helmholtz equation in an unbounded connected domain
Ω+ and if v satisfies the Sommerfeld’s radiation condition, then we have the following relation∫

Γ
−G(x,y)∂nv(y) + ∂nyG(x,y)v(y) dΓ(y) =

{
v(x) if x ∈ Ω+,

0 otherwise.
(2)

In addition, if v− is solution to the Helmholtz equation in a bounded domain Ω−, then we can write
that ∫

Γ
−G(x,y)∂nv

−(y) + ∂nyG(x,y)v−(y) dΓ(y) =

{
0 if x ∈ Ω+,

−v−(x) otherwise.
(3)

The integrals on Γ should be interpreted as duality brackets between the Sobolev spaces H1/2(Γ)
and H−1/2(Γ). However, when the incident wavefield uinc and the curve Γ are both regular enough,
the scattered field is then smooth and the duality bracket can be identified to the (non hermitian)
inner product in L2(Γ)

〈f, g〉H−1/2,H1/2 =

∫
Γ
fgdΓ.

We adopt this notation in the sequel of the paper.
Let us now introduce the volume single- and double-layer integral operators, respectively de-

noted by L and M . They are defined by the following relations ∀x ∈ R2\Γ

L : ρ 7−→ L ρ(x) =

∫
Γ
G(x,y)ρ(y) dΓ(y),

M : λ 7−→ Mλ(x) = −
∫

Γ
∂nyG(x,y)λ(y) dΓ(y).

From these relations, the wavefields v and v− can be written as (see equations (2) and (3))v(x) = −L (∂nv|Γ)(x)−M (v|Γ)(x), ∀x ∈ Ω+,

v−(x) = L (∂nv
−|Γ)(x) + M (v−|Γ)(x), ∀x ∈ Ω−.

(4)

In addition, the single- and double-layer integral operators provide some outgoing solutions to the
Helmholtz equation [21].

Proposition 2. For any surface densities ρ ∈ H−1/2(Γ) and λ ∈ H1/2(Γ), the functions L ρ and
Mλ are outgoing solutions to the Helmholtz equation in R2\Γ.

Let us now recall the trace and normal derivative trace of the volume single- and double-layer
potentials. These relations are usually called jump relations (see e.g. [21]).

Proposition 3. For any x in Γ, the trace and normal derivative traces of the operators L and M
are such that (± precise that z tends towards x from the exterior/interior of Γ)

lim
z∈Ω±→x

L ρ(z) = Lρ(x), lim
z∈Ω±→x

Mλ(z) =

(
∓1

2
I +M

)
λ(x),

lim
z∈Ω±→x

∂nzL ρ(z) =

(
∓1

2
I +N

)
ρ(x), lim

z∈Ω±→x
∂nzMλ(z) = Dλ(x),

(5)
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where I is given as the identity operator, for x ∈ Γ, and

Lρ(x) =

∫
Γ
G(x,y)ρ(y)dΓ(y), Mλ(x) = −

∫
Γ
∂nyG(x,y)λ(y)dΓ(y),

Nρ(x) =

∫
Γ
∂nxG(x,y)ρ(y)dΓ(y) = −M∗ρ(x), Dλ(x) = −∂nx

∫
Γ
∂nyG(x,y)λ(y)dΓ(y).

Throughout the paper, the boundary integral operators are denoted by a roman letter (e.g. L)
while the volume integral operators use a calligraphic letter (e.g. L ). The operator M∗ = −N is
the adjoint operator of M , that is

〈g,Mf〉H−1/2,H1/2 = 〈−Ng, f〉H−1/2,H1/2 , ∀(f, g) ∈ H1/2(Γ)×H−1/2(Γ).

Compactness or invertibility properties of integral operators can also be obtained [14, 22, 44].
We consider here the single-layer representation of the scattered field

u = L ρ, (6)

even if various integral equations can also be written for solving the Dirichlet problem (like the
Combined Field Integral Equation (CFIE) or the Brakhage-Werner integral equation, see [11, 14,
19, 22, 33, 44, 51]). From the representation (6) and Proposition 3, one can prove that the surface
density ρ is equal to (−∂nu − ∂nu

inc)|Γ. A first-kind integral equation, which is usually called
Electric Field Integral Equation (EFIE), is based on the trace of the single-layer operator

Lρ = −uinc|Γ. (7)

The equation is well-posed and equivalent to the exterior scattering problem (1) as soon as k is not
an irregular interior frequency of the associated Dirichlet boundary-value problem [12, 49]. When
Ω− =

⋃M
p=1 Ωp is multiply connected, all the integral operators can be written by blocks. For

example, the single-layer potential L ρ can be expressed as the sum of elementary potentials

L ρ =
M∑
p=1

Lpρp,

where ρp = ρ|Γp and

Lpρp(x) =

∫
Γp

G(x,y)ρp(y) dx, ∀x ∈ R2\Ωp.

Another way of writing equation (7) is
L1,1 L1,2 . . . L1,M

L2,1 L2,2 . . . L2,M
...

...
. . .

...
LM,1 LM,2 . . . LM,M




ρ1

ρ2
...
ρM

 = −


uinc|Γ1

uinc|Γ2

...
uinc|ΓM

 ,

setting Lp,qρq = (Lqρq)|Γp and

∀x ∈ Γq, Lqρq(x) =

∫
Γq

G(x,y)ρq(x) dy.
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Introducing some matrix operator notations, we also have the compact form of the EFIE for the
acoustic multiple scattering problem

Lρ = −Uinc, (8)

where

L :=


L1,1 L1,2 . . . L1,M

L2,1 L2,2 . . . L2,M
...

...
. . .

...
LM,1 LM,2 . . . LM,M

 , ρ :=


ρ1

ρ2
...
ρM

 , Uinc :=


uinc|Γ1

uinc|Γ2

...
uinc|ΓM

 . (9)

The integral formulation (8) provides an exact representation of the wavefields, and in particular
of the surface field ρ and the associated far-field pattern (like the Radar Cross Section (RCS)).
However, this is at the price of a computationally extensive calculation. Indeed, the linear system
(8) is dense due to the nonlocal character of the integral operators. In particular, the size of
the system increases thanks to the number of scatterers M when a discretization by a boundary
element is applied [39, 50, 51]. This therefore leads to a huge memory requirement as well as a
costly numerical solution for the linear system. Clearly, a numerical solution by Krylov subspace
iterative solvers [11, 12, 47] can be expected in conjunction with Multilevel Fast Multipole Methods
(FMM) [23, 38]. Nevertheless, the numerical solution remains expensive to obtain since M can be
very large.

3. OSRCs for single scattering: overview and standard operators

Because of the high cost of an integral equation solution, new ideas have been developed over
the years to find some alternative solutions. Among them, the On-Surface Radiation Condition
method, or for the sake of brevity OSRC method, has been introduced in the middle of the 80’s
by Kriegsmann, Taflove and Umashankar [37]. In this paper, the three authors proposed a fast
but approximate method for computing the solution to two-dimensional electromagnetic scattering
problems by an infinite cylinder with a simple cross section. Extensions and interesting improve-
ments are reported e.g. in [1, 3, 4, 7, 13, 16, 40, 42, 46].

To explain in a synthetic way the OSRC ideas, let us come back to the Helmholtz integral
relation (4) also given below, for a single-scattering obstacle Ω1 = Ω− with shape Γ1 = Γ,

∀x ∈ Ω+, u1(x) = −L1(∂nu1|Γ1)(x)−M1(u1|Γ1)(x). (10)

A simple remark is the following: if we compute the two first traces (u1|Γ1 , ∂n1u1|Γ1) of the scattered
field (also called Cauchy data (u1|Γ1 , ∂n1u1|Γ1)) we obtain the scattered field from the integral
representation (10). This is the heart of the integral equation methods where a suitable exact
formulation is built by using the trace relations given in Proposition 3. In other terms, one wants
to get an exact representation of the solution through a boundary operator DtN1 linking the trace
and the normal derivative trace as

∂n1u1|Γ1
= DtN1(u1|Γ1), on Γ1. (11)

The operator DtN1 is often called the nonlocal Dirichlet-to-Neumann operator. In practice, one
way to write the exact (explicit or implicit) representation of the DtN map for a general single
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convex shape Γ = Γ1 is to consider the integral relations. Unfortunately and as previously explained
in Section 2, considering integral equations is similar to solving at the discretization level a full
linear system. For this reason, Kriegsmann et al. proposed to rather choose an approximation Λ1

of the DtN operator through a local relation of the following form

ϕ1 = Λ1(ψ1), on Γ1, (12)

where (ψ1, ϕ1) is ”an approximation” (that we will denote by ≈) of the exact Cauchy data
(u1|Γ1 , ∂n1u1|Γ1) and the local approximation Λ1 of DtN must be explicitly specified. By ”local”,
we mean that we wish to use some differential or partial differential operators over the single surface
Γ1 but not an integral operator. The essential gain is then the fast solution of the associated sparse
discrete linear system by using an iterative Krylov subspace method. Finally, a relation like (12)
is called an On-Surface Radiation Condition or OSRC.

Let us assume now that we succeeded in deriving such operators. Then, if one considers for
example the single-scattering Dirichlet problem, we can set: ψ1 = −uinc|Γ1 . As a consequence, the
OSRC leads to

ϕ1 = −Λ1(uinc|Γ1), on Γ1. (13)

Therefore, an approximate value ϕ1 of the normal derivative trace is realized by the application of
a local operator Λ1 to the surface field uinc|Γ1 on the single shape Γ1. From a practical point of
view, this is done by surface finite element methods for a general shape [4, 13] but, as it will be
seen in Section 5, special mathematical functions can also be used when a specific shape Γ (like
a circle) is considered. Reporting this approximation in Equation (10) with (ψ1, ϕ1) instead of
(u1|Γ1 , ∂n1u1|Γ1) provides a simple way to compute any valuable physical quantity (like e.g. the
far-field pattern).

Among the past years, several kinds of OSRC operators Λ have been derived by various authors
[3, 4, 7, 13, 16, 40, 42, 46]. Here, we propose to focus on some of the most standard operators.
Historically, the first class of OSRCs that have been introduced [37] were based on purely local
operators. They were built by using absorbing boundary conditions (mainly related to the works
by Engquist-Majda [28] and Bayliss-Gunzburger-Turkel [17]). Here, we consider the rigorous version
of the half- (for ` = 1/2) and second-order (for ` = 2) symmetrical OSRCs (see e.g. [6])

Λ`1ψ1 = −∂s1(α`1∂s1ψ1) + β`1ψ1, on Γ1, (14)

with
α

1/2
1 = 0 and β

1/2
1 = ik, (15)

and

α2
1 = − 1

2(κ1 − ik)
and β2

1 = ik − κ1

2
+

κ2
1

8(κ1 − ik)
. (16)

In the above relations, κ1 designates the curvature of Γ1, ∂s1 is the surface derivative over Γ1 and
the variable s1 is the counterclockwise directed surface abscissa over Γ1.

Even if these OSRCs can be accurate enough in some situations, they are also sometimes limited,
implying a need for more precise OSRCs while being still computationally efficient. In the present
paper, we consider the square-root and Padé-type boundary conditions developed in [13]. The

authors propose to rather consider the original square-root operator Λ
√

1 = ik
√

1 +X1 for two-
and three-dimensional problems setting X1 = ∆Γ1/k

2, where ∆Γ1 is the Laplace-Beltrami operator
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over Γ1. It is shown that the square-root approximation of the total symbol of the DtN map is
well-adapted to represent both the propagative and evanescent parts of the scattered field but not
the creeping zone. To partially avoid this problem, a regularization of the square-root operator
is proposed by including a small damping artificial parameter ε1 to the real wavenumber k. In
particular, analytical estimates are provided for the complexified wavenumber kε1 = k + iε1. The

value ε1 = 0.4k2/3κ
1/3
1 is shown to produce very satisfactory results for different model problems

even at very high-frequencies. The new OSRC operator

Λ
√

1 = ik
√

1 +Xε1 , (17)

with Xε1 = ∂s1(k−2
ε1 ∂s1 ·), is next localized by using some complex Padé approximants of order

Nr. More precisely, using a rotating branch-cut argument with rotation angle θ1,r as in [41], the
square-root operator is formally approximated by the rational operator

√
1 +X1 ≈ C0 +

N1,r∑
j=1

AjX1

1 +BjX1
, (18)

where the complex coefficients Aj , Bj and C0 are explicitly known. Then, a suitable representation
of the operator Λ1 is given through the introduction of auxiliary functions: if ψ1 is given, then

compute ϕ1 = Λ
N1,r,θ1,r
1 ψ1 satisfying

ϕ1 = ikC0ψ1 + ik

N1,r∑
j=1

∂s1(
Aj
k2
ε1

∂s1ϕ
j
1), (19)

setting ϕj1 as the solutions to the surface partial differential equations

∂s1(
Bj
k2
ε1

∂s1ϕ
j
1) + ϕj1 = ψ1, 1 ≤ j ≤ N1,r. (20)

For a general single shape, the implementation of the OSRC methods with Padé approximants
can be realized efficiently through a boundary element method [13]. Concerning the square-root
operator, its implementation is far from being trivial for a general single scatterer case and may
appear as time consuming since the operator is global. In the numerical results considered in this
paper, this operator will nevertheless be tested since it can be diagonalized in a Fourier basis when
the obstacles are circular cylinders.

4. OSRCs and multiple scattering for the Dirichlet boundary-value problem

The goal of this section is to introduce an OSRC formulation for the multiple scattering case.
For M obstacles, let us first consider the exact single-layer representation

∀x ∈ Ω+, u(x) = L ρ(x) =

M∑
p=1

up(x),

where the elementary scattered field up by the p-th obstacle can be written

up(x) := Lp(ρp)(x), (21)
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where ρp := −[∂nu]|Γp . For each p, up is outgoing to Ωp and satisfies the Dirichlet boundary
condition

up|Γp := −uinc|Γp −
M∑

q=1,q 6=p
uq|Γp . (22)

This means that the single scattered fields uq are seen as incident wavefields for Ωp. This is the
rigorous integral equations viewpoint.

Now, since we are considering an OSRC approximation, we define an outgoing approximate
wavefield ũ under the form of a single-layer potential through

∀x ∈ Ω+, ũ(x) = L ρ̃(x) =

M∑
p=1

ũp(x),

where each OSRC-based generated p-th exterior field writes

ũp(x) := Lp(ρ̃p)(x). (23)

Here, we search for an approximate normal derivative jump such that ρ̃q := −ϕq − ∂nuinc|Γq ≈ ρq,
with ϕq which also satisfies an OSRC ϕq = Λqψq on Γq, for 1 ≤ q ≤M . Now we force our exterior
fields to satisfy the Dirichlet boundary condition

ũp|Γp := −uinc|Γp −
M∑

q=1,q 6=p
ũq|Γp . (24)

From the trace theorem, one gets, for q 6= p,

ũq|Γp := Lp,qρ̃q = −Lp,qϕq − Lp,q(∂nuinc|Γq) = −(Lqϕq)|Γp − (Lq(∂nu
inc|Γq))|Γp , (25)

where Lp,qϕq = (Lqϕq)|Γp . In addition, since ũp|Γp is supposed to be approximated by ψp, we
consider the following trace relation: ũp|Γp ≈ ψp, for p = 1, ...,M . By using this remark in (24),
combining with equation (25) and finally by composing by Λp, we have the following simplified
equation

ϕp −
M∑

q=1,q 6=p
ΛpLp,qϕq = −Λp(u

inc|Γp) +
M∑

q=1,q 6=p
ΛpLp,q(∂nu

inc|Γq), on Γp. (26)

An alternative way of writing the above system is
I1,1 −Λ1L1,2 . . . −Λ1L1,M

−Λ2L2,1 I2,2 . . . −Λ2L2,M
...

...
. . .

...
−ΛMLM,1 −ΛMLM,2 . . . IM,M




ϕ1

ϕ2
...
ϕM

 = Ψinc, (27)

where the right hand side is given by

Ψinc = −


Λ1u

inc|Γ1

Λ2u
inc|Γ2

...
ΛMu

inc|ΓM

+


01,1 Λ1L1,2 . . . Λ1L1,M

Λ2L2,1 02,2 . . . Λ2L2,M
...

...
. . .

...
ΛMLM,1 ΛMLM,2 . . . 0M,M




∂nu
inc|Γ1

∂nu
inc|Γ2

...
∂nu

inc|ΓM

 . (28)
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If we define the operators

I := diag((Ij,j)j=1,...,M ), LΛ =


01,1 Λ1L1,2 . . . Λ1L1,M

Λ2L2,1 02,2 . . . Λ2L2,M
...

...
. . .

...
ΛMLM,1 ΛMLM,2 . . . 0M,M

 , (29)

and

Λ :=


Λ1

Λ2
...

ΛM

 , ∂nU
inc :=


∂nu

inc|Γ1

∂nu
inc|Γ2

...
∂nu

inc|ΓM

 , (30)

then system (27) reads

(I − LΛ)ϕ = Ψinc := −Λ ·Uinc + LΛ∂nU
inc. (31)

A nicer and equivalent writing of this last equation is

(I − LΛ)ρ̃ = −(∂nU
inc − Λ ·Uinc) (32)

Let us remark that system (32) is defined by a second-kind integral equation with the perturbed
smoothing operator LΛ. This means that its numerical solution through an iterative solver (e.g.
iterative Krylov subspace solver) should be particularly efficient since it exhibits a fast convergence
rate due to the distribution of its eigenvalues in the complex plane.

5. The example of scattering by a cluster of circular cylinders

5.1. Numerical approximation for a cluster of circular cylinders

Let us now analyze the numerical validity of the OSRC approach for solving the Dirichlet
multiple scattering problem. Our goal here is to understand the quality of the mathematical
approximate OSRC formulations in several situations. To this end and to not introduce accuracy
problems that could be related to the fact that a boundary element method is used, we consider
the special case where the scatterers are all circular cylinders. The situation with more general
objects will be analyzed in a forthcoming paper. For circular cylinders, a Mie series expansion
of the solutions can be derived which allows to measure the ”continuous” accuracy of the OSRC
formulation. Indeed, almost no numerical error related to the numerical approximation by Mie
series expansions arises since the method is spectrally accurate [9, 51]. Most particularly, the
choice of the OSRC operator is of course crucial for the approximation quality and is investigated
below.

To implement the following examples, we use the µ-diff Matlab toolbox 1 [51] that has been
developed for solving scattering problems with integral formulations and for complex multiple
scattering configurations involving circular cylinders. In µ-diff, the numerical solution based on the
EFIE formulation (8) is already available. Concerning the OSRC formulation (32), the numerical

1http://mu-diff.math.cnrs.fr/mu-diff/
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approximation by a Mie series expansion can also be obtained easily. Indeed, this formulation
mainly considers integral operators that can be written directly in µ-diff. In addition, the OSRC
operators introduced in section 3 can all be diagonalized in the Fourier basis. This can be made
mode-by-mode since the angular derivative ∂θ corresponds to a multiplication by the Fourier symbol
(m for µ-diff, see [51]). The application of an OSRC operator can then be reduced to multiplying
by a diagonal matrix when the Mie series expansion is truncated. We do not give the details of
the implementation here but rather analyze the numerical results. We first start by considering
a simple scattering problem in section 5.2 involving two disks. Then, in sections 5.3 and 5.4, we
investigate the case of scattering by a triangular lattice and next a cluster of randomly distributed
circular cylinders.

In the sequel, we use the following notations [9, 51]. The scattering obstacle Ω− is the union of
M disks Ω−p , for p = 1, . . . ,M , of radius ap and center Op. For any p, q = 1, . . . ,M , with q 6= p, we
introduce bpq = OqOp as the vector between the centers Oq and Op as the distance between two
centers bpq = ‖bpq‖.

5.2. Example 1: scattering by two circular cylinders

The first test case considers two circular cylinders Ω−1 and Ω−2 , with O2 = (b/2, 0) = −O1

(with b > 0), which means that b12 = b. In the notations, the OSRC formulation for multiple
scattering with the OSRC (14)-(15) for single scattering is denoted by OSRC1/2, OSRC2 with (14)-
(16), OSRC

√
with (17) and finally OSRCNr,θr for (17) but where the square-root is approximated

by the Padé expansion (18). For this last case, we fix the standard values of the parameters to
Nr = Np,r = 4 and θr = θp,r = π/4, for p = 1, ...,M , (see e.g. [13]). Since there is no noticeable
difference numerically between OSRCNr,θr and OSRC

√
, we essentially report only the results for

OSRCNr,θr (which corresponds to a practical OSRC computation [13]). The incident fields are
chosen as the plane wave uinc(x) = eikα·x, with an incidence direction α = (cos(α), sin(α)).

Let us start by studying a low-frequency problem. We fix a1 = a2 = a = 0.5, b = 1.2 and
ka = 0.5 (k = 1). The angle of incidence is α = 0. For this situation, OSRC1/2 does not provide
some correct numerical results. This can be seen on Figure 1(b) where we represent the scattered
field by the two objects, compared to the reference solution 1(a). More computations show that
this is true whatever is the incidence angle. This is quite well-known from single-scattering since
the simple associated OSRC operator is not accurate enough at low-frequency. The accuracy is
higher when OSRC2 is used, due to the corrective terms that appear in the boundary operator.
The associated scattered field is reported on 1(c). Now if one considers OSRCNr,θr (as well as
the square-root version OSRC

√
), then a loss of accuracy can be observed (see Figure 1(d)). The

precision can be recovered if one chooses the following new square-root OSRC with second-order
terms correction (denoted by OSRC

√
,2) for the p-th scatterer (p = 1, ...,M)

Λ
√
,2

p = ik
√

1 +Xεp + (β2
p − ik), (33)

with β2
p given by

β2
p = ik − κp

2
+

κ2
p

8(κp − ik)
,

setting κp = 1/ap. The associated Padé approximation is denoted by OSRCNr,θr,2 . The results
are reported on Figure 1(e). In addition, we observe that the Radar Cross Section (RCS) defined
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by (see e.g. [9, 51])

∀θ ∈ [0, 2π], RCS(θ) = 10 log10

(
2π |A(θ)|2

)
(dB),

is also accurate (Figure 1(f)), setting as A the scattering amplitude. For much lower frequencies
(k ≤ 0.1), the accuracy is not satisfactory. Alternative OSRCs might then be considered [40, 45]
for single-scattering, improving hence the accuracy of the global method for the very low-frequency
multiple scattering situation.

One reason why the OSRC can have a loss of accuracy is related to the fact that the computa-
tions in the shadow zone are partially included into the OSRC representation (see [13]). Let us first
consider that the incidence angle is now set to α = π/2 (for the same parameters as in the previous
case). Then, one can see that the reference (Figure 2(a)) and OSRCNr,θr,2 solutions (Figure 2(b))
are very similar. Now, we let α = 0 but consider a larger separation distance b = 4. We can remark
that the results (see Figures 3(a)(b)(c)) are yet correct which means that for the low frequency
regime, the creeping rays are less present into the reference solution.

Let us investigate now the higher frequency regime. The first case considers ka = 2.5 with
the parameters a1 = a2 = a = 0.5, k = 5 and b = 1.2, for α = 0. We only present on Figures
(4) the numerical results for the most accurate OSRC, that is OSRCNr,θr,2. We observe that the
computations are correct but depending on the scattering angle. This is related to the fact that the
incidence angle is zero and that the shadow zone is significant (compare Figures 4(a) and 4(b), and
the corresponding RCS curves on Figure 4(c)). This is much improved according to the incidence
angle (see Figures 5(a) and 5(b) for α = π/4 and b = 1.2, the other parameters being the same) or
to the distance between the scatterers (see Figures 6(a)-6(b) and 6(c) for α = 0 and b = 4).

Finally, we report some results for a much higher frequency, i.e. k = 30, for the same scatterers
with b = 1.2, and two scattering angles, α = 0 (Figures 7) and α = π/4 (Figures 8). We see that,
according to the situation, the results can be more or less precise for the scattered field and the
RCS, confirming then the previous results.

5.3. Example 2: scattering by a triangular lattice of circular cylinders

The triangular lattice is a structure that is composed of two parallel horizontal single-rows. The
first one contains Mx ≥ 2 equally spaced disks and the second one Mx−1. The horizontal distance
between two objects is bx. Next, the first row is repeated vertically My times with a uniform
distance by = b1(2Mx), while the second one is reproduced My ± 1 times with again a separation
distance by (see e. g. Figure 9(a)).

The first numerical example reported on Figures 9 considers the values Mx = 10 and My = 10,
for a total of 95 circular cylinders. The separation distances are fixed to bx = by = 0.8. The radii are
equal to a = 0.2 and the wavenumber is k = 2 for an incidence angle α = π/6. The second example
considers the same situation but for the larger wavenumber k = 15 (see Figures 10). In both cases,
the RCS results are correct even if a loss of accuracy can be observed for higher frequencies since
the incident wave penetrates deeper inside the cluster for larger k and then more multiple scattering
effects take place. They are partially reproduced through the OSRC approximation.

5.4. Example 3: scattering by randomly distributed circular cylinders

The first case considers M = 120 randomly distributed circular cylinders with radii ap such
that: 0.18 ≤ ap ≤ 0.22 , for p = 1, ...,M (see Figure 11(a)). They are all set in the domain ]−5; 5[2.
The minimal distance between the scatterers is fixed to 0.1. The plane wave is incident at α = π/6
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for k = 2. The RCS results are reported on Figure 11(b). We observe that the accuracy is correct.
This can be explained from Figures 11(c)-11(d) by the fact that the scattered field outside the
cluster is well-reproduced even if some inaccuracies arise inside.

For the last test-case, we have M = 100 randomly distributed circular cylinders (see Figure
12(a)) with some radii ap that satisfy 0.18 ≤ ap ≤ 0.22 , for p = 1, ...,M . They are placed inside
the box ] − 5; 5[2. The minimal distance between two scatterers is 0.1. We consider k = 8 for an
incidence angle α = π/4. One can see on Figures 12(c)-12(d) that the scattered field is extremely
complex to reproduce due to the strong penetration of the incident wave inside the cluster of circular
cylinders. However, the RCS remains acceptable even if the precision of the amplitude at some
scattering angles is sometimes not correct (see Figure 12(b)).

6. Conclusion

This paper introduced an extension of the OSRC method to multiple scattering problems by a
cluster of cylinders. The method has the advantage of being generic and can consider well-adapted
OSRCs with respect to the frequency regime under investigation. The formulation is tested for
several cases involving circular cylinders, from the low- to the high-frequency regime. This shows
that the method can lead to relatively accurate computations of the scattered field and associated
far-field.

This work is a first step towards the development of more efficient algorithms [8] based on the
OSRC method for arbitrarily shaped two- and three-dimensional obstacles, with the possibility of
handling more complex boundary conditions. This reliable numerical solution would be able to
provide a fast (iterative) algorithm for multiple scattering but could also lead to efficient precondi-
tioners for the full solution by integral equations, in the spirit of the ideas investigated in [10, 11].
These questions will be addressed in some future works.
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(a) Reference solution (b) OSRC1/2 solution

(c) OSRC2 solution (d) OSRCNr,θr solution

(e) OSRCNr,θr,2 solution
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Figure 1: Scattering by two circular cylinders: comparison of the amplitude of the scattered fields for (a): the
reference solution and the four OSRC solutions ((b): OSRC1/2, (c): OSRC2 and (d:) OSRCNr,θr , (e): OSRCNr,θr,2).
Furthermore, (f) reports the RCS for the reference solution and OSRCNr,θr,2. The chosen parameters are: a1 = a2 =
a = 0.5, and b = 1.2. The wavenumber k is such that ka = 0.5 and the angle of incidence is α = 0.
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(a) Reference solution (b) OSRCNr,θr,2 solution

Figure 2: Scattering by two circular cylinders: comparison of the amplitude of the scattered fields for (a): the reference
solution and (b): OSRCNr,θr,2. The chosen parameters are: a1 = a2 = a = 0.5, and b = 1.2. The wavenumber k is
such that ka = 0.5 and the angle of incidence is α = π/2.
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(a) Reference solution (b) OSRCNr,θr,2 solution
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(c) RCS comparison

Figure 3: Scattering by two circular cylinders: comparison of the amplitude of the scattered fields for (a): the reference
solution and (b): OSRCNr,θr,2. The RCS are reported on Figure (c). The chosen parameters are: a1 = a2 = a = 0.5,
and b = 4. The wavenumber k is such that ka = 0.5 and the angle of incidence is α = 0.
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(a) Reference solution (b) OSRCNr,θr,2 solution
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(c) RCS comparison

Figure 4: Scattering by two circular cylinders: comparison of the amplitude of the scattered fields for (a): the reference
solution and (b): OSRCNr,θr,2. The RCS are reported on Figure (c) The chosen parameters are: a1 = a2 = a = 0.5,
and b = 1.2. The wavenumber k is such that ka = 2.5 and the angle of incidence is α = 0.

21



(a) Reference solution (b) OSRCNr,θr,2 solution
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Figure 5: Scattering by two circular cylinders: comparison of the amplitude of the scattered fields for (a): the reference
solution and (b): OSRCNr,θr,2. The RCS are reported on Figure (c). The chosen parameters are: a1 = a2 = a = 0.5,
and b = 1.2. The wavenumber k is such that ka = 2.5 and the angle of incidence is α = π/4.
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(a) Reference solution (b) OSRCNr,θr,2 solution
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(c) RCS comparison

Figure 6: Scattering by two circular cylinders: comparison of the amplitude of the scattered fields for (a): the reference
solution and (b): OSRCNr,θr,2). The RCS are reported on Figure (c). The chosen parameters are: a1 = a2 = a = 0.5,
and b = 4. The wavenumber k is such that ka = 2.5 and the angle of incidence is α = 0.
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(a) Reference solution (b) OSRCNr,θr,2 solution
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Figure 7: Scattering by two circular cylinders: comparison of the amplitude of the scattered fields for (a): the reference
solution and (b): OSRCNr,θr,2). The RCS are reported on Figure (c). The chosen parameters are: a1 = a2 = a = 0.5,
and b = 1.2. The wavenumber k is such that ka = 15 and the angle of incidence is α = 0.
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(a) Reference solution (b) OSRCNr,θr,2 solution
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Figure 8: Scattering by two circular cylinders: comparison of the amplitude of the scattered fields for (a): the reference
solution and (b): OSRCNr,θr,2). The RCS are reported on Figure (c). The chosen parameters are: a1 = a2 = a = 0.5,
and b = 1.2. The wavenumber k is such that ka = 15 and the angle of incidence is α = π/4.
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(a) Triangular lattice
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Figure 9: Scattering by a triangular lattice (Mx = 10 and My = 10 resulting in 95 circular scatterers (Figure (a)).
The RCS are reported on Figure (b) and the comparison of the amplitude of the scattered fields is given on Figure
(c) for the reference solution and (d) for the OSRCNr,θr,2 solution. The inter-center distance between the obstacles
is bx = by = 0.8. The radii of the scatterers are fixed to a = 0.2. The wave number is k = 2 and the incidence angle
is α = π/6.
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(a) Reference solution (b) OSRCNr,θr,2 solution

θ (degree)
0 50 100 150 200 250 300 350

R
C
S
(θ
)
(d
B
)

-20

-10

0

10

20

30

Radar Cross Section

EFIE
OSRC

(c) RCS comparison

Figure 10: Scattering by a triangular lattice (Mx = 10 and My = 10 resulting in 95 circular scatterers (Figure (a)).
The RCS are reported on Figure (b) and the comparison of the amplitude of the scattered fields is given on Figure
(c) for the reference solution and (d) for the OSRCNr,θr,2 solution. The inter-center distance between the obstacles
is bx = by = 0.8. The radii of the scatterers are fixed to a = 0.2. The wave number is k = 15 and the incidence angle
is α = π/6.
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(a) Randomly distributed scatterers
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Figure 11: Scattering by 120 randomly distributed scatterers with radii between 0.18 and 0.22 (see Figure (a)). The
RCS are reported on Figure (b) and the comparison of the amplitude of the scattered fields is given on Figure (c)
for the reference solution and (d) for the OSRCNr,θr,2 solution. The wave number is k = 2 and the incidence angle
is α = π/6.
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(a) Randomly distributed scatterers
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Figure 12: Scattering by 100 randomly distributed scatterers with radii between 0.18 and 0.22 (see Figure (a)). The
RCS are reported on Figure (b) and the comparison of the amplitude of the scattered fields is given on Figure (c)
for the reference solution and (d) for the OSRCNr,θr,2 solution. The wave number is k = 8 and the incidence angle
is α = π/4.
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