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Abstract

The aim of this paper is to derive and numerically validate some asymptotic estimates of the
convergence rate of Classical and Optimized Schwarz Waveform Relaxation (SWR) domain decom-
position methods applied to the computation of the stationary states of the one-dimensional linear
and nonlinear Schrödinger equations with a potential. Although SWR methods are currently used
for efficiently solving high dimensional partial differential equations, their convergence analysis and
most particularly obtaining expressions of their convergence rate remains largely open even in one
dimension, except in simple cases. In this work, we tacke this problem for linear and nonlinear
one-dimensional Schrödinger equations by developing techniques which can be extended to higher
dimensional problems and other types of PDEs. The approach combines the method developed
in [24] for the linear advection reaction diffusion equation and the theory of inhomogeneous pseu-
dodifferential operators in conjunction with the associated symbolical asymptotic expansions. For
computing the stationary states, we consider the imaginary-time formulation of the Schrödinger
equation based on the Continuous Normalized Gradient Flow (CNGF) method and use a semi-
implicit Euler scheme for the discretization. Some numerical results in the one-dimensional case
illustrate the analysis for both the linear Schrödinger and Gross-Pitaevskii equations.

1. Introduction

Let us consider the following initial boundary-value problem: find the complex-valued wave-
function u(x, t) solution to the real-time nonlinear cubic Schrödinger equation set on R

d, d ≥ 1,

{
i∂tu = −△u+ V (x)u + κ|u|2u, x ∈ R

d, t > 0,
u(x, 0) = u0(x), x ∈ R

d,
(1)

with initial condition u0. (Even if there is usually a 1/2 coefficient in front of the kinetic opera-
tor −△ in the first equation of system (1) for quantum mechanics (dimensionless form), we omit
this coefficient here since this paper is mainly devoted to mathematical and numerical analysis
questions.) The real-valued space-dependent smooth potential V is positive (respectively negative)
for attractive (respectively repulsive) interactions. The nonlinearity strength κ is a real-valued
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constant which is positive (respectively negative) for a focusing (respectively defocusing) nonlin-
earity. If κ = 0, then we speak about the time-dependent Linear Schrödinger Equation (LSE). In
the Physics literature, the first equation of system (1) is also called the Gross-Pitaevskii Equation
(GPE) [3, 11, 14] when considering Bose-Einstein Condensates (BEC) (see e.g. [35, 36]).

The computation of stationary states, e.g. ground state and excited states, is a major question in
quantum physics, most particularly for BECs. Such a problem corresponds [9, 10, 11, 14, 15, 16, 17]
to computing a real number µ and a space dependent function φ which satisfies the equation

µφ(x) = −△φ(x) + V (x)φ(x) + κ|φ(x)|2,x ∈ R
d,

under the normalization constraint

||φ||2L2(Rd) :=

∫

Rd

|φ(x)|2dx = 1.

If we define the total energy of the system as

Eκ(χ) :=

∫

Rd

|∇χ(x)|2 + V (x)|χ(x)|2 + κ

2
|χ(x)|4dx, (2)

then a stationary state is such that

Eκ(φ) := min
||χ||

L2(Rd)
=1
Eκ(χ).

Once it is obtained, the eigenvalue µ (also called chemical potential) can be computed through the
eigenfunction φ by using the expression

µ := µκ(φ) = Eκ(φ) +
κ

2

∫

Rd

|φ(x)|4dx.

Existence and uniqueness results for the minimizers corresponding to a ground state (global mini-
mizer) or excited states (local minimizers) can be found for example in [14]. More general versions
of the GPE include rotational terms, complex nonlinear (nonlocal) functions and coupled species
of cold gases [3, 11, 13, 14, 37].

To numerically determine (µ, φ), a well-known method is the so-called imaginary-time method
[9, 10, 11, 14, 15, 16, 17, 18, 20] which is also designated as Continuous Normalized Gradient Flow
(CNGF) in the Applied Mathematics literature. It consists in solving (1) in imaginary-time, i.e.
setting t → it. This transformation leads to the formulation





∂tφ(x, t) = −∇φ∗Eκ(φ)
= △φ(x, t)− V (x)φ(x, t) − κ|φ|2φ(x, t), x ∈ R

d, tn < t < tn+1,

φ(x, tn+1) := φ(x, t+n+1) =
φ(x, t−n+1)

||φ(·, t−n+1)||L2(Rd)

,

φ(x, t) = φ0(x), x ∈ R
d,with ||φ0||L2(Rd) = 1.

(3)

In the above system of equations, t0 := 0 < t1 < ... < tn+1 < ... are discrete times, φ0 is
an initial data for the time marching algorithm discretizing the projected gradient method and
limt→t±n

φ(x, t) = φ(x, t±n ). It can be proven [16] that the energy is diminishing for positive V
and κ = 0. Let us assume now that the time discretization is uniform. We define the time step
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∆t := tn+1 − tn. In this paper, the chosen semi-discrete time scheme for solving the CNGF (3)
is the Semi-Implicit Euler scheme (SIE) for the imaginary-time method (the associated scheme is
denoted by CNGF-SIE), which reads





φ̃n+1 − φn

∆t
−∆φ̃n+1 + V (x)φ̃n+1 + κ|φn|2φ̃n+1 = 0,

φn+1 =
φ̃n+1

‖φ̃n+1‖L2(Rd)

,

φ0 = φ0,with ||φ0||L2(Rd) = 1.

(4)

For the imaginary-time method (3), the semi-implicit Euler method is well-adapted. Indeed, it can
be stated that the energy is then unconditionally decaying unlike e.g. the Crank-Nicolson scheme
which is only energy decaying under a CFL condition [16]. Concerning the spatial discretization,
various methods can be considered. For example, FFT-based pseudo-spectral methods are often
used [10, 11, 14, 16, 37], yielding then a highly accurate solution when combined with iterative
Krylov subspace solvers [9, 10]. Other techniques rather make use of high-order finite difference or
adaptive finite element approximations [21, 22] to get accurate solutions e.g. when one needs to
capture the nucleation of quantum vortices. Even if this last class of methods works correctly, con-
sidering three-dimensional problems can lead to the numerical solution of large scale linear systems
which are extremely costly to solve. This is more particularly true for the CNGF-SIE scheme since
a linear system must be solved at each iteration of the projected gradient technique. The aim of
this paper is to contribute to understanding Domain Decomposition Methods (DDMs) for solving
the CNGF system for the one-dimensional LSE and GPE. Domain decomposition methods are
particularly well-adapted for the parallel solution of linear systems that appear in finite difference
and finite element methods.

Among the various domain decomposition methods [23, 27], we focus our attention here on
the Classical and Optimized Schwarz Waveform Relaxation (CSWR and OSWR) DDMs [1, 24,
25, 27, 28, 29, 26, 30, 31, 34]. Even if these methods have received much attention over the
past years for many applications, to the best of the authors’ knowledge, the first application to
the Schrödinger equation can be found in [31]. The authors consider the real-time linear one-
dimensional Schrödinger equation with a constant potential. Well-posedness results are stated
and continuous and discrete analysis of the algorithm are developed. In addition, some numerical
simulations illustrate the study. Another recent paper for the Schrödinger equation is [12] where
the algorithms are analyzed for a one-dimensional time-dependent linear Schrödinger equation
that includes ionization and recombination by intense electric field. In [19], the authors study the
numerical performance of Schwarz waveform relaxation methods for the one-dimensional dynamical
solution of the LSE with a general potential, most particularly regarding their efficiency when a
GPU implementation is considered. The behavior of the method shows that it can lead to fast
and robust algorithms for complex linear problems. In [33], domain decomposition methods have
been developed when using geometric optics and frozen gaussian approximation for computing the
solution to linear Schrödinger equations beyond the semi-classical regime.

The goal of the present paper is to contribute to the fundamental understanding of Schwarz
waveform relaxation DDMs for solving the Schrödinger equation. Although SWR-DDM methods
are now extensively used in all kinds of high dimensional problems, the rigorous and thorough
analysis of the rate of convergence remains clearly incomplete and is understood except in some
simple configurations. In this work, we propose to contribute to this question by developing a
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general and rigorous strategy to analyze the convergence and the associated rate of convergence
for the LSE and NLSE when computing stationary states. Even if the approach is developed on a
specific application in quantum mechanics, it appears that the mathematical approach is general
enough and should be applicable to other physics problems by adapting the technical proofs (for
example concerning the methods related to the pseudodifferential operators).

The plan of the paper is the following. First, we develop in Section 2 some analytical estimates
of the convergence rate for both CSWR and OSWR two domains decomposition methods for
the linear Schrödinger (with variable potential) and the Gross-Pitaevskii equations by using the
CNGF method (3). To this aim, we propose an extension of the techniques developed e.g. in
[24, 31] to variable coefficients equations. In particular, we make an intensive use of the theory of
fractional pseudodifferential operators [32] and its associated asymptotic symbolical calculus (see
e.g. [4, 5, 6, 8] for some applications). Concerning the OSWR, we consider some well-adapted
artificial boundary conditions derived in some previous works for the related equations in real-time
[2, 5, 6, 7]. We next consider in Section 3 the CNGF-SIE discretization and provide some complete
and well-chosen examples to validate our analytical estimates. We also analyze the behavior of the
CSWR and OSWR DDMs in this context. Finally, Section 4 concludes.

2. Convergence of the CSWR and OSWR algorithms for the one-dimensional linear
case with a potential V (x)

2.1. Preliminaries related to pseudodifferential operators

Before estimating the convergence rate of the Schwarz waveform relaxation algorithms for the
one-dimensional (d = 1) imaginary-time LSE with a variable potential, let us first introduce some
notions about pseudodifferential operators and microlocal analysis.

We define a pseudodifferential operator A(x, t, ∂t) := Op(a) in the Fourier space through its
symbol a(x, t, τ)

A(x, t, ∂t)u(x, t) = F−1
t

(
a(x, t, τ)û(x, τ)

)

=

∫

R

a(x, t, τ)Ft(u)(x, τ) e
itτ dτ := Op(a)u(x, t),

(5)

where the Fourier transform in time Ft is

Ft(u)(x, τ) = û(x, τ) =
1

2π

∫

R

u(x, t)e−itτdt.

In this paper, we use the inhomogeneous pseudodifferential operator calculus introduced in [32] and
applied in [4, 5, 6, 8] to the design of TBCs/ABCs. Since all the details cannot be included here,
we only develop the necessary material to understand the paper. Let us consider a real number
α and an open subset Ξ of R. The symbol class S

α(Ξ × Ξ) is defined as the linear space of C∞

functions a(x, t, τ) in Ξ×Ξ×R such that for any set K ⊆ Ξ×Ξ, for all indices β, δ, γ, there exists
a positive constant Cβ,δ,γ(K) such that the following inequality holds

(∀(x, t) ∈ K)(∀τ ∈ R) |∂βτ ∂δt ∂γxa(x, t, τ)| ≤ Cβ,δ,γ(K)(1 + |τ |2)α−β.

A function f is said to be inhomogeneous of degree m if it satisfies the relation: f(x, t, µτ) =
µmf(x, t, τ), ∀µ > 0. According to this definition, a pseudodifferential operator A = A(x, t, ∂t) is
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inhomogeneous and classical of order M , for M ∈ Z/2, if its total symbol a = σ(A) admits the
following asymptotic expansion

a(x, t, τ) ∼
+∞∑

j=0

aM−j/2(x, t, τ), (6)

where aM−j/2 is an inhomogeneous function of degree M − j/2, for j ∈ N. In the above expression,
∼ means that we have the relation

∀m̃ ∈ N, a−
m̃∑

j=0

aM−j/2 ∈ S
M−(m̃+1)/2.

If a is a symbol that satisfies the above expansion, then it will be denoted by a ∈ S
M
S and the

corresponding pseudodifferential operator A = Op(a) is an element of the class OPSMS . Since we
are using the above pseudodifferential operator theory, we need to assume that V is a smooth
potential. In addition, in the linear case and because V does not depend on t, the time variable
t is not needed in the sequel. However, if this would be the case, the technique extends to the
calculations performed in this paper.

Let us now define the time-dependent one-dimensional Schrödinger operator P as

P (x, t, ∂x, ∂t) = i∂t + ∂2x − V (x), (7)

Then, the following proposition holds [6].

Proposition 2.1. We have the Nirenberg-like factorization

P (x, t, ∂x, ∂t) = (∂x + iΛ−)(∂x + iΛ+) +R, (8)

where R ∈ OPS−∞ is a smoothing pseudodifferential operator. The operators Λ± are pseudodif-
ferential operators of order 1/2 (in time) and order zero in x. Furthermore, their total symbols

λ± := σ(Λ±) can be expanded in S
1/2
S as

λ± ∼
+∞∑

j=0

λ±1/2−j/2, (9)

where λ±1/2−j/2 are symbols corresponding to operators of order 1/2 − j/2.

Practically, an approximation of Λ± can be obtained through the computation of a finite number
of elementary inhomogeneous symbols. More precisely, one gets the proposition [6].

Proposition 2.2. Let us fix the principal symbol to

λ±1/2 = ∓
√
−τ + V . (10)

Then, the next symbols are given by

λ±0 = 0, λ±−1/2 = 0 and λ±−1 = ∓
i

4

∂xV

−τ + V
. (11)
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The proof of Propositions 2.1 and 2.2 is obtained by a constructive process based on the following
recursive formulae. Let us fix λ+1/2 and λ+0 by the expressions given in proposition 2.2. Then, it

can be proved [6] that, for j ∈ N
∗,

λ+−j/2 =
1

2λ+1/2

(
− i∂xλ

+
1/2−j/2 −

j∑

k=1

λ+−j/2+k/2λ
+
1/2−k/2

)
, (12)

and λ+−j/2 = λ−−j/2, for j = −1/2, 0, 1/2... Based on this formula, we get

Proposition 2.3. Let us define the symbol class S
1/2
S by

S
1/2
S :=

{
a ∼

+∞∑

j=0

a1/2−j/2 ∈ S
1/2
S such that: a1/2−j/2(x, τ) :=

1

(λ+1/2)
j−1

Lj∑

ℓ=0

FV,1/2−j/2
ℓ

(λ+1/2)
ℓ
,with FV,1/2−j/2

ℓ ∈ C∞(R;R), Lj ∈ N
}
,

(13)

and the associated class of pseudodifferential operators OPS
1/2
S . In (13), FV,1/2−j/2

ℓ are smooth

functions depending on x and V . Then, Λ± are in OPS
1/2
S and, for each j ∈ N, there exist some

regular functions
{
FV,1/2−j/2
ℓ

}Lj

ℓ=0
such that

λ+1/2−j/2 = −λ−1/2−j/2 =
1

(λ+1/2)
j−1

Lj∑

ℓ=0

FV,1/2−j/2
ℓ

(λ+1/2)
ℓ
. (14)

Proof. For j = 0, we trivially have

λ+1/2 = −λ−1/2 =
FV,1/2
0

(λ+1/2)
−1
, (15)

with FV,1/2
0 = 1 and L0 = 1. Assume now that, for 0 ≤ k ≤ j, with k ∈ N, we have

λ±1/2−k/2 =
1

(λ+1/2)
k−1

Lk∑

ℓ=0

FV,1/2−k/2
ℓ

(λ+1/2)
ℓ
. (16)

We need to prove by induction that the expression (14) holds for j + 1. First, from (16), a direct
calculation leads to

∂xλ
+
1−j/2 = ∂x(

Lj∑

ℓ=0

FV,1/2−j/2
ℓ

(λ+1/2)
j+ℓ−1

) =

Lj∑

ℓ=0

(
(1− j − ℓ)

2
∂xV

FV,1/2−j/2
ℓ

(λ+1/2)
j+ℓ

+
∂xFV,1/2−j/2

ℓ

(λ+1/2)
j+ℓ−1

) =
1

(λ+1/2)
j−1

Lj∑

ℓ=0

GV,1/2−j/2
ℓ

(λ+1/2)
ℓ
,

(17)

for some given functions GV,1/2−j/2
ℓ . Now, we also have

λ+−j/2+k/2 = λ+1/2−(j−k+1)/2 =
1

(λ+1/2)
j−k

Lj−k+1∑

ℓ=0

FV,(k−j)/2
ℓ

(λ+1/2)
ℓ
. (18)
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As a consequence, we deduce that

λ+1/2−k/2λ
+
−j/2+k/2 = (

1

(λ+1/2)
k−1

Lk∑

ℓ=0

FV,(1−k)/2
ℓ

(λ+1/2)
ℓ

)(
1

(λ+1/2)
j−k

Lj−k+1∑

ℓ=0

FV,(k−j)/2
ℓ

(λ+1/2)
ℓ

)

=
1

(λ+1/2)
j−1

(

Lk∑

ℓ=0

FV,(1−k)/2
ℓ

(λ+1/2)
ℓ

)(

Lj−k+1∑

ℓ=0

FV,(k−j)/2
ℓ

(λ+1/2)
ℓ

) =
1

(λ+1/2)
j−1

Lk+Lj−l+1∑

ℓ=0

HV,(j,k)
ℓ

(λ+1/2)
ℓ

(19)

for some functions HV,(j,k)
ℓ which can be expressed thanks to FV,(1−k)/2

ℓ and FV,(k−j)/2
ℓ . Now,

looking at (12), we see that, by summing up the different expressions related to (17) and (19), we
have

λ+−j/2 =
1

(λ+1/2)
j

Lj+1∑

ℓ=0

FV,−j/2
ℓ

(λ+1/2)
ℓ
, (20)

showing that the result holds for the index j + 1. The functions FV,−j/2
ℓ and the index Lj+1 can

be deduced from the calculations if required.
Proving that λ+1/2−j/2 = −λ−1/2−j/2 is a direct consequence of the results stated in [6] for Propo-

sition 2.1. �

2.2. Asymptotic estimates of the contraction factor of the CSWR algorithm

The real-time operator P defined by (7) becomes a heat-like operator in imaginary-time follow-
ing the first equation of system (3)

P = ∂t − ∂2x + V (x). (21)

Assuming that φ±,(0)
(
∓ ǫ/2, ·

)
are two given functions, the CSWR algorithm at iteration k ≥ 1

reads as follows




Pφ±,(k) = 0, in Ω±
ǫ × R

∗
+,

φ±,(k)(·, 0) = φ±0 , in Ω±
ǫ ,

φ±,(k)
(
± ǫ/2, ·

)
= φ∓,(k−1)

(
± ǫ/2, ·

)
, in R

∗
+,

(22)

where φ±0 denotes the restriction of φ0|Ω±
ǫ
to Ω±

ǫ , with Ω+
ǫ =

(
−∞, ǫ/2

)
, Ω−

ǫ =
(
− ǫ/2,+∞

)
and

ε > 0 is the (small) size of the overlapping region. Working with the error equations, i.e. eC,±
P

corresponds to φ± for CSWR, we have in Ω±
ǫ

P · eC,±
P = 0 in Ω±

ǫ × R
∗
+, eC,±

P

(
± ǫ/2, t

)
= h±ǫ (t) at {±ǫ/2} × R

∗
+, (23)

where P is given by (21). We use the index P for eC,±
P to specify to which operator the error is

associated to, and the exponent C stands for the CSWR algorithm (the OSWR algorithm will be
introduced later with an exponent O). In the following, some other approximate errors will also
be used when the potential V is variable. The time-dependent functions h±ǫ are now assumed to
be given. To shorten the notations in what follows, h±ǫ also denotes the extension of h±ǫ to all R
which is null on R−. As proposed in [24], we want to determine the contraction factor CC

P,ǫ of GC2
P

(setting GC2
P := GC

P ◦ GC
P ), where the mapping GC

P is defined by

GC
P : 〈h+ǫ , h−ǫ 〉 7→

〈
eC,−
P

(
ǫ/2, ·

)
, eC,+

P

(
− ǫ/2, ·

)〉
. (24)
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To prove that GC2
P is a contraction, we solve (23) in the (x, τ)-coordinates in an exact way for

V = 0. For V 6= 0 (in fact, for a non constant potential V ), we estimate the rate of convergence
through approximations.

Let us first start by assuming that V = 0 (the extension to a constant V remains valid).

According to [24], for a fixed time T , GC
P is defined to H

3/4
0 (0, T ) = {φ ∈ H3/4(0, T ) : φ(0) = 0}.

Let us characterize the part of the error eC,+
P (respectively eC,−

P ) which is a traveling wave in the
overlapping region related to Ω+

ε (respectively Ω−
ε ) and transmitted to the left (respectively right)

domain R/Ω+
ε (respectively R/Ω−

ε ). To this aim, one introduces the system of equations

{
(∂x + iΛ∓) · eC,±

Λ = 0, in Ω±
ε ,

eC,±
Λ

(
± ǫ/2, t

)
= h±ǫ (t) at {±ǫ/2} × R.

(25)

For V = 0, the solution of the first equation of system (25) can be made explicitly and exactly
through the Fourier transform Ft in the t-direction (meaning at the symbol level). As we see
below, if V 6= 0, this leads to an explicit but approximate solution. The exact solution to system
(25) is given in the (x, τ)-space by

êC,±
Λ (x, τ) = ĥ±ǫ (τ) exp

(
− i

∫ x

±ǫ/2
λ∓(τ)dy

)
.

In addition, since we need to use the symbols for the imaginary-time equation, we obtain the
correct symbols for (21) through the symbols for (7) but with the following modifications: t → it
and τ → iτ . As a consequence, the application of Proposition 2.2 for V = 0 leads to: λ±(τ) =
λ±1/2(τ) = ∓

√
−iτ = ∓eiπ/4

√
−τ . If we define

GC
Λ : 〈h+ǫ , h−ǫ 〉 7→

〈
eC,−
Λ

(
ǫ/2, ·

)
, eC,+

Λ

(
− ǫ/2, ·

)〉
, (26)

we have the equalities

Ft

(
GC2
Λ 〈h+ǫ , h−ǫ 〉

)

=
〈
exp

(
i

∫ ǫ/2

−ǫ/2

(
λ−(τ)− λ+(τ)

)
dy

)
ĥ+ǫ , exp

(
i

∫ ǫ/2

−ǫ/2

(
λ−(τ)− λ+(τ)

)
dy

)
ĥ−ǫ

〉

= exp
(
− 2iǫλ+(τ)

)
〈ĥ+ǫ , ĥ−ǫ 〉.

(27)

Following for instance [24] (and for a constant potential V ), we deduce that the contraction factors
CC
Λ,ǫ of GC2

Λ and CC
P,ǫ of GC2

P are the same and that

CC
P,ǫ = CC

Λ,ǫ = sup
τ∈Hτ

LC
Λ,ǫ(τ),

where

LC
Λ,ǫ(τ) =

∣∣ exp
(
− 2iǫλ+(τ)

)∣∣ = exp
(
− ǫ

√
−2τ

)
.

In the above expression, Hτ designates the hyperbolic zone {τ ∈ R : τ < 0}. We can then expect
a fast convergence of the DDM at high frequency and/or for a large enough overlapping region of
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size ǫ. Note that the above approach is valid at any frequency, although the convergence will be
naturally much slower for low-frequency waves. Without overlap (ǫ = 0), the CSWR algorithm
diverges.

Let us now consider the general case with a potential V . Then, the hyperbolic zone is defined by
{τ ∈ R : τ < V }. As above, we need to characterize the error that travels from one domain to the
other. However, for a general potential V , this cannot be made exactly because of the scattering
effects related to the action of V . Therefore, we still consider the system

{
(∂x + iΛ∓) · eC,±

Λ = 0, in Ω±
ε ,

eC,±
Λ

(
± ǫ/2, t

)
= h±ǫ (t) at {±ǫ/2} × R,

(28)

but eC,+
Λ (respectively eC,−

Λ ) must be understood as the part of eC,+
P (respectively eC,−

P ) which

travels to the right (respectively left). As a consequence, the computation of eC,±
Λ provides an

approximation of eC,±
P solution to P · eC,±

P = 0. We approximate CC
P,ε which is the contraction

factor of GC2
P by CC

Λ,ε for GC2
Λ

CC
P,ε ≈ CC

Λ,ε.

For solving (28), let us consider the equation at the symbol level, i.e.
{

(∂x + iλ∓(x, τ))êC,±
Λ (x, τ) = 0, in Ω±

ε ,

êC,±
Λ

(
± ǫ/2, τ

)
= ĥ±ǫ (τ) at {±ǫ/2} × R.

(29)

A direct calculation shows that

êC,±
Λ (x, τ) = ĥ±ǫ (τ) exp

(
− i

∫ x

±ǫ/2
λ∓(y, τ)dy

)
. (30)

The computation of the contraction factor CC
Λ,ǫ of the associated mapping GC2

Λ requires the knowl-

edge of the total symbols λ±. For a general potential V , this is generally impossible. However, as
seen in Section 2.1, we have access to some asymptotic expansions {λ±1/2−j/2}

+∞
j=0 of λ±. To get an

estimate, we first expand λ± asymptotically as the sum of inhomogeneous symbols

λ± ≈
±∞∑

j=0

λ±
1/2−j/2

,

and then we truncate up to the (p+ 1) first terms

λ± ≈ λ±,p =

p∑

j=0

λ±1/2−j/2

as proposed in [6]. This means that the approximate convergence rates are

CC
P,ǫ ≈ CC

Λ,ǫ ≈ CC,p
ǫ := sup

τ∈Hτ

LC,p
ǫ (τ), (31)

with

LC,p
ǫ (τ) =

∣∣∣ exp
(
i

∫ ǫ/2

−ǫ/2

(
λ−,p(y, τ)− λ+,p(y, τ)

)
dy

)∣∣∣. (32)
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Let us recall now that if one chooses the principal symbol λ±1/2 = ∓
√
−τ + V , then ones gets (see

Section 2.1)

λ−,p = −λ+,p, (33)

implying that (32) becomes

LC,p
ǫ (τ) =

∣∣∣ exp
(
− 2i

∫ ǫ/2

−ǫ/2
λ+,p(y, τ)dy

)∣∣∣. (34)

Let us remark that (33) does not hold for λ±1/2 = ∓√−τ if V 6= 0 [6].

A third approximation step consists in developing each symbol λ±1/2−j/2, j = 0, ..., p, according

to the small parameter 1/|τ | (high-frequency regime). More precisely, for each symbol λ±1/2−j/2, we

consider its Taylor’s expansion (λ±1/2−j/2)(1−p)/2 up to the order 1/|τ |(p−1)/2

λ±,p ≈ λ̃±,p =

p∑

j=0

(λ±
1/2−j/2

)(1−p)/2. (35)

We then define

L̃C,p
ǫ (τ) =

∣∣∣ exp
(
− 2i

∫ ǫ/2

−ǫ/2
λ̃+,p(y, τ)dy

)∣∣∣,

and the associated high-frequency asymptotic convergence rate C̃C,p
ǫ such that

CC
P,ǫ ≈ CC

Λ,ǫ ≈ C̃C,p
ǫ := sup

τ∈Hτ

L̃C,p
ǫ (τ). (36)

Let us set

Lǫ,1/2−j/2(τ) =
∣∣∣ exp

(
− 2i

∫ ǫ/2

−ǫ/2
λ+1/2−j/2(y, τ)dy

)∣∣∣,

L̃p
ǫ,1/2−j/2(τ) =

∣∣∣ exp
(
− 2i

∫ ǫ/2

−ǫ/2
(λ+1/2−j/2)(1−p)/2(y, τ)dy

)∣∣∣.
(37)

Then, we trivially have

LC,p
ǫ =

p∏

j=0

Lǫ,1/2−j/2 and L̃C,p
ǫ =

p∏

j=0

L̃p
ǫ,1/2−j/2. (38)

This means that the elementary contribution of each inhomogeneous symbol and its approximate
Taylorized symbol to the convergence rate can be studied separately, the global contribution being
obtained by a simple multiplication. Based on these remarks, we now state some estimates of the
rate of convergence of the CSWR algorithm for a general potential V .

Theorem 2.1. Let V be a smooth potential and let us assume that the symbols are defined as in
Proposition 2.2. An asymptotic estimate of the contraction factor of the mapping GC2

P defined by
(24), for the CSWR algorithm (22), is given by

CC
P,ǫ ≈ CC,3

ǫ = sup
τ∈Hτ

LC,3
ǫ (τ), (39)
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for |τ | ≫ 1, where Hτ is the hyperbolic zone and

LC
ǫ (τ) ≈ LC,3

ǫ (τ) :=
∣∣∣
(
τ − iV (−ǫ/2)
τ − iV (+ǫ/2)

)1/2 ∣∣∣
∣∣∣ exp

(
− 2e−iπ/4

∫ ǫ/2

−ǫ/2

√
−τ + iV (y)dy

)∣∣∣. (40)

In addition, one also gets the following approximation when the symbols are Taylorized

CC
P,ǫ ≈ C̃C,3

ǫ = sup
τ∈Hτ

L̃C,3
ǫ (τ), (41)

with

LC
ǫ (τ) ≈ L̃C,3

ǫ (τ) := exp
(
− ǫ

√
−2τ −

1√
−2τ

∫ ǫ/2

−ǫ/2
V (y)dy

)
. (42)

Let us remark that the potential has no effect here if it is odd. In the case of a positive potential
which confines the solution into the domain (standard situation for the GPE), then the convergence
rate is improved. Again, in the non overlapping case, the iterative method diverges.
Proof. From (30), we have

êC,±
Λ (x, τ) = ĥ±ǫ (τ) exp

(
− i

∫ x

±ǫ/2
λ∓(y, τ)dy

)
.

This implies that we have the approximation

Ft

(
GC
P ◦ GC

P 〈h+ǫ , h−ǫ 〉
)
≈ exp

(
i

∫ ǫ/2

−ǫ/2

(
λ−(y, τ) − λ+(y, τ)

)
dy

)
〈ĥ+ǫ , ĥ−ǫ 〉.

By using Proposition 2.2 for the imaginary-time equation, one gets

λ±1/2(x, τ) = ∓eiπ/4
√

−τ + iV (x), λ±−1(x, τ) = ∓
1

4

V ′(x)

τ − iV (x)
, (43)

λ±0 = 0 and λ±−1/2(x, τ) = 0. A direct computation leads to

Lǫ,1/2(τ) =
∣∣∣ exp

(
− 2e−iπ/4

∫ ǫ/2

−ǫ/2

√
−τ + iV (y)dy

)∣∣∣,

Lǫ,−1(τ) =
∣∣∣ exp

( i
2

∫ ǫ/2

−ǫ/2

V ′(y)

τ − iV (y)
dy

)∣∣∣,
(44)

and Lǫ,0 = Lǫ,−1/2 = 1. Some calculations show that

Lǫ,−1(τ) =
∣∣∣
(
τ − iV (−ǫ/2)
τ − iV (+ǫ/2)

)1/2 ∣∣∣. (45)

As a consequence, one gets

LC,p
ǫ (τ) =

∣∣∣
(
τ − iV (−ǫ/2)
τ − iV (+ǫ/2)

)1/2 ∣∣∣
∣∣∣ exp

(
− 2e−iπ/4

∫ ǫ/2

−ǫ/2

√
−τ + iV (y)dy

)∣∣∣. (46)
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Let us note that computing the real part of λ+1/2 is possible through

ℜ(−2e−iπ/4
√
−τ + iV ) = (a+

V

2a
), with a = ((−τ + (τ2 + V 2)1/2)1/2.

Now, by using a Taylor’s expansion

(λ+1/2)−1 = −eiπ/4
√
−τ

(
1−

iV (x)

2τ

)
,

we have the following estimates L̃3
ǫ,0 = L̃3

ǫ,−1/2 = L̃3
ǫ,−1 = 1 and

L̃3
ǫ,1/2 =

∣∣∣ exp
(
− 2e−iπ/4(ǫ

√
−τ + i

2
√−τ

∫ ǫ/2

−ǫ/2
V (y)dy)

∣∣∣

=
∣∣∣ exp

(
− ǫ

√
−2τ −

1√
−2τ

∫ ǫ/2

−ǫ/2
V (y)dy

)∣∣∣.
(47)

The proof follows from L̃C,3
ǫ = L̃3

ǫ,1/2. �

More specific contraction factors can be established. For a small overlap ǫ, we observe that we
have the following estimates through the midpoint quadrature rule and a Taylor expansion with
respect to ǫ

LC,0
ǫ (τ) ≈

∣∣∣ exp
(
− 2e−iπ/4ǫ

√
−τ + iV (0))

∣∣∣. (48)

2.3. Asymptotic estimates of the contraction factor in the OSWR algorithm

We now study the rate of convergence of the Optimized Schwarz Waveform Relaxation (OSWR)
method [31] as a function of the order of the transmitting boundary conditions which are used. If
we assume that φ±,(0)

(
∓ ǫ/2, ·

)
and φ±0 are some given functions, the OSWR algorithm at iteration

k ≥ 1 reads as follows





Pφ±,(k) = 0, in Ω±
ǫ × R

∗
+,

φ±,(k)(·, 0) = φ±0 , in Ω±
ǫ ,

(∂x + iΛ±,p) · φ±,(k)
(
± ǫ/2, ·

)
= (∂x + iΛ±,p) · φ∓,(k−1)

(
± ǫ/2, ·

)
in R

∗
+,

(49)

where, in the same spirit as (35), we set: Λ±,p = Op(λ±,p), for p = 1/2, 0,−1/2... Following [24],
we formally define in Ω±

ǫ

P · eO,±,p
P = 0 on Ω±,p

ǫ × R
∗
+, (∂x + iΛ±,p) · eO,±,p

P

(
± ǫ/2, t

)
= h±ǫ (t) on {±ǫ/2} × R

∗
+, (50)

and we introduce the mapping

GO,p
P : 〈h+ǫ , h−ǫ 〉 7→

〈
(∂x + iΛ+,p) · eO,−,p

P

(
ǫ/2, ·

)
, (∂x + iΛ−,p) · eO,+,p

P

(
− ǫ/2, ·

)〉
. (51)

The aim of the next result is to derive some asymptotic estimates of the convergence rate of
the OSWR DDM when a transmitting boundary condition based on the symbol approximation
involving λ±,p is considered (system (49)). A corollary is also stated when the truncated symbolical
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expansion is Taylorized to get boundary operators based on λ̃±,p (corollary 2.1). Let us introduce
the following approximate boundary-value problem related to the OSWR method

{
(∂x + iΛ∓) · eO,±,p

Λ = 0, in Ω±
ε × R

∗
+,

(∂x + iΛ±,p) · eO,±,p
Λ

(
± ǫ/2, t

)
= h±ǫ (t), on {±ǫ/2} × R

∗
+.

(52)

Then, the following result holds.

Theorem 2.2. Let us assume that V (x) is a smooth one-dimensional potential and that λ± is
approximated by

λ± ≈ λ±,p :=

p∑

j=0

λ±1/2−j/2,

with |τ | ≫ 1 and p ∈ N
∗. An asymptotic estimate of the contraction factor CO

P,ǫ of the mapping

GO,p2
P (with GO,p2

P = GO,p
P ◦GO,p

P ), defined by (51), for the fixed-point OSWR algorithm (49) is given
by

CO
P,ǫ ≈ CO,p

ǫ = sup
τ∈Hτ

LO,p
ǫ (τ),

where

LO,p
ǫ (τ) ≈ cpǫ

1

|λ+1/2(ǫ/2, τ)λ
+
1/2(−ǫ/2, τ)|p+1

LC,p
ǫ (τ). (53)

In the previous expression, cpǫ is an (ǫ, p, V )-dependent positive real-valued constant. The principal
symbol is given by (10) and LC,p

ǫ (τ) designates the estimate of the convergence rate of the CSWR
method given by equation (34).

For a constant potential V , the fixed point OSWR algorithm (49) converges in two iterations
for the one-dimensional potential-free case, even without overlap (ǫ = 0).

Proof. Let us introduce the approximate problem (52) which leads to the approximate represen-
tation êO,±,p

Λ of the error êO,±,p
P . Like for the CSWR method, the strategy for the OSWR approach

consists in evaluating the convergence rate of the operator (called later GO,p
Λ , see (56)) related to

problem (52) to approximate the exact convergence rate of the application GO,p
P given by (51) for

the initial problem (50). At the symbol level, we have from (52)
{

(∂x + iλ∓) · êO,±,p
Λ = 0, in Ω±

ε × R
∗
+,

(∂x + iλ±,p) · êO,±,p
Λ

(
± ǫ/2, t

)
= ĥ±ǫ (t), on {±ǫ/2} × R

∗
+,

(54)

leading to the expression

êO,±,p
Λ (x, τ) = α±,p

ǫ (τ) exp
(
− i

∫ x

±ǫ/2
λ∓(y, τ)dy

)
, (55)

for some functions α±,p
ǫ . By using the transmitting boundary conditions (second equation of system

(54)), we obtain

êO,±,p
Λ (x, τ) =

ĥ±ǫ (τ)

i(λ±,p
(
± ǫ/2, τ

)
− λ∓

(
± ǫ/2, τ

)
)
exp

(
− i

∫ x

±ǫ/2
λ∓(y, τ)dy

)
.
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Let us now consider the mapping

GO,p
Λ : 〈h+ǫ , h−ǫ 〉 7→

〈
(∂x + iΛ+,p) · eO,−,p

Λ

(
ǫ/2, ·

)
, (∂x + iΛ−,p) · eO,+,p

Λ

(
− ǫ/2, ·

)〉
. (56)

We can then write that

Ft

〈
GO,p
Λ (h+ǫ , h

−
ǫ )

〉
=

〈
(∂x + iλ+,p)êO,−,p

Λ

(
ǫ/2, ·

)
, ((∂x + iλ−,p)êO,+,p

Λ

(
− ǫ/2, ·

)〉

= i
〈
(λ+,p

(
ǫ/2, τ

)
− λ+(ǫ/2, τ))êO,−,p

Λ

(
ǫ/2, ·

)
, (λ−,p

(
− ǫ/2, τ

)
− λ−

(
− ǫ/2, τ

)
)êO,+,p

Λ

(
− ǫ/2, ·

)〉

= i
〈 +∞∑

j=p+1

λ−1/2−j/2

(
ǫ/2, τ

)
êO,−,p
Λ

(
ǫ/2, ·

)
,

+∞∑

j=p+1

λ+1/2−j/2

(
− ǫ/2, τ

)
êO,+,p
Λ

(
− ǫ/2, ·

)〉
.

(57)
To get an explicit expression of Ft

(
GO,p2
Λ 〈h+ǫ , h−ǫ 〉

)
, we iterate one more time by fixing the boundary

data h
±,(2)
ǫ to

ĥ±,p,(2)
ǫ (τ) = i

(
λ∓

(
± ǫ/2, τ

)
+ λ±,p

(
± ǫ/2, τ

))
êO,∓,p
Λ (±ǫ/2, τ)

and then

ê
O,±,p,(2)
Λ (x, τ) =

λ∓
(
± ǫ/2, τ

)
+ λ±,p

(
± ǫ/2, τ

)

λ±,p
(
± ǫ/2, τ

)
− λ∓

(
± ǫ/2, τ

)êO,∓,p
Λ (±ǫ/2, τ) exp

(
− i

∫ x

±ǫ/2
λ∓(y, τ)dy

)
.

By using (55), this leads to

ê
O,±,p,(2)
Λ (x, τ) =

λ∓
(
± ǫ/2, τ

)
+ λ±,p

(
± ǫ/2, τ

)

λ±,p
(
± ǫ/2, τ

)
− λ∓

(
± ǫ/2, τ

) ×
ĥ∓ǫ (τ)

i
(
λ∓,p

(
∓ ǫ/2, τ

)
− λ±

(
∓ ǫ/2, τ

))

× exp
(
− i

∫ ±ǫ/2

∓ǫ/2
λ±(y, τ)dy

)
exp

(
− i

∫ x

±ǫ/2
λ∓(y, τ)dy

)
.

Now, we have

Ft

(
GO,p
Λ ◦ GO,p

Λ 〈h+ǫ , h−ǫ 〉
)
(τ)

=
〈
(∂x + iλ+,p)ê

O,−,p,(2)
Λ

(
ǫ/2, ·

)
, (∂x + iλ−,p)ê

O,+,p,(2)
Λ

(
− ǫ/2, ·

)〉
.

(58)

We then need to evaluate (∂x + iλ±,p)ê
O,∓,p,(2)
Λ

(
± ǫ/2, ·

)
through

(∂x + iλ±,p) · êO,∓,p,(2)
Λ

(
± ǫ/2, ·

)

=
λ∓

(
± ǫ/2, τ

)
+ λ±,p

(
± ǫ/2, τ

)

λ±,p
(
± ǫ/2, τ

)
− λ∓

(
± ǫ/2, τ

) ×
λ∓,p

(
∓ ǫ/2, τ

)
− λ∓

(
∓ ǫ/2, τ

)

λ∓,p
(
∓ ǫ/2, τ

)
− λ±

(
∓ ǫ/2, τ

)

× exp
(
− 2i

∫ ±ǫ/2

∓ǫ/2
λ±(y, τ)dy

)
ĥ±ǫ (τ).

(59)

Since λ− = −λ+ and λ−,p = −λ+,p, we can simplify the above expression as

(∂x + iλ±,p) · êO,∓,p,(2)
Λ

(
± ǫ/2, ·

)

=
λ+,p

(
± ǫ/2, τ

)
− λ+

(
± ǫ/2, τ

)

λ+,p
(
± ǫ/2, τ

)
+ λ+

(
± ǫ/2, τ

) ×
λ+

(
∓ ǫ/2, τ

)
− λ+,p

(
∓ ǫ/2, τ

)

λ+,p
(
∓ ǫ/2, τ

)
+ λ+

(
∓ ǫ/2, τ

)

× exp
(
− 2i

∫ ǫ/2

−ǫ/2
λ+(y, τ)dy

)
ĥ∓ǫ (τ).

(60)
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Based on (58) and by using (60), one deduces that

Ft

(
GO,p
Λ ◦ GO,p

Λ 〈h+ǫ , h−ǫ 〉
)
(τ)

=

[
λ+,p

(
ǫ/2, τ

)
− λ+

(
ǫ/2, τ

)][
λ+

(
− ǫ/2, τ

)
− λ+,p

(
− ǫ/2, τ

)]
[
λ+,p

(
ǫ/2, τ

)
+ λ+

(
ǫ/2, τ

)][
λ+

(
− ǫ/2, τ

)
+ λ+,p

(
− ǫ/2, τ

)]

× exp
(
− 2i

∫ ǫ/2

−ǫ/2
λ+(y, τ)dy

)
〈ĥ+ǫ , ĥ−ǫ 〉(τ).

(61)

When p = +∞, we first notice that λ+,p coincides with λ+ implying that the exact convergence
occurs in 2 iterations since the numerator in (61) is null

Ft

(
GO,p
Λ ◦ GO,p

Λ 〈h+ǫ , h−ǫ 〉
)
(τ) = 0× 〈ĥ+ǫ , ĥ+ǫ 〉(τ).

In the special case where V is constant and consequently eO,±
P = eO,±

Λ , we also recover that the
OSWR algorithm converges in 2 iterations [24]. However, in practice, p is a finite number. From
(61), we can deduce an approximate rate of convergence CO,p

ǫ of the OSWR algorithm with exact
convergence rate CO

P,ǫ. From Proposition 2.3, we know that we have the following asymptotic
control (for large | − τ + V | ≫ 1) of the remaining term

λ+(±ǫ/2, τ) − λ+,p(±ǫ/2, τ) =
+∞∑

j=p+1

λ+1/2−j/2(±ǫ/2, τ)

=
1

(λ+1/2(±ǫ/2, τ))p
+∞∑

j=p+1

Lj+1∑

ℓ=0

FV,−j/2
ℓ

(λ+1/2)
ℓ
(±ǫ/2, τ) = O

( 1

(λ+1/2(±ǫ/2, τ))p
).

(62)

Furthermore, we have

λ+(±ǫ/2, τ) + λ+,p(±ǫ/2, τ) = 2λ+1/2(±ǫ/2, τ) +O
(
1). (63)

Collecting the various estimates, we conclude that

Ft

(
GO,p2
Λ 〈h+ǫ , h−ǫ 〉

)
(τ) =

O
( 1

(λ+1/2(ǫ/2, τ)λ
+
1/2(−ǫ/2, τ))p+1

)× exp
(
− 2i

∫ ǫ/2

−ǫ/2
λ+(y, τ)dy

)
〈h+ǫ , h−ǫ 〉(τ).

(64)

As a consequence and truncating the symbolical expansion within the exponential term, an estimate
of the convergence rate of the OSWR DDM is given by

CO,p
ǫ = sup

τ∈Hτ

LO,p
ǫ (τ), (65)

with

LO,p
ǫ (τ) ≈ cpǫ

1

|λ+1/2(ǫ/2, τ)λ
+
1/2(−ǫ/2, τ)|p+1

LC,p
ǫ (τ), (66)

where LC,p
ǫ (τ) is given by (34), p ∈ N

∗, and cpǫ is an ǫ-, p- and V -dependent positive real-valued
constant. �
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Let us consider some examples now. We proved in Theorem 2.1 that

LC
ǫ (τ) ≈ LC,3

ǫ (τ) :=
∣∣∣
(
τ − iV (−ǫ/2)
τ − iV (+ǫ/2)

)1/2 ∣∣∣
∣∣∣ exp

(
− 2e−iπ/4

∫ ǫ/2

−ǫ/2

√
−τ + iV (y)dy

)∣∣∣. (67)

Consequently, ones gets

CO,0
ǫ = c0ε sup

τ∈Hτ

∣∣∣
1

(τ − iV (ǫ/2))1/2(τ − iV (−ǫ/2))1/2
∣∣∣
∣∣∣ exp

(
− 2e−iπ/4

∫ ǫ/2

−ǫ/2

√
−τ + iV (y)dy

)∣∣∣ (68)

and

CO,3
ǫ = c3ε sup

τ∈Hτ

∣∣∣
1

(τ − iV (−ǫ/2))3/2(τ − iV (ǫ/2))5/2

∣∣∣
∣∣∣ exp

(
− 2e−iπ/4

∫ ǫ/2

−ǫ/2

√
−τ + iV (y)dy

)∣∣∣ (69)

for some positive constants c0ε and c3ε. If we consider now a small overlapping region, then one has

CO,0
ǫ ≈ c0ε sup

τ∈Hτ

∣∣∣
1

τ − iV (0)

∣∣∣
∣∣∣ exp

(
− 2e−iπ/4ǫ

√
−τ + iV (0))

∣∣∣ (70)

and

CO,3
ǫ ≈ c3ε sup

τ∈Hτ

∣∣∣
1

(τ − iV (0))4

∣∣∣
∣∣∣ exp

(
− 2e−iπ/4ǫ

√
−τ + iV (0))

∣∣∣. (71)

We remark that these asymptotic estimates show that the OSWR DDM converges (unlike the
CSWR method) even with no overlap because of the remaining factor. In addition, at least for
large frequencies, the convergence is improved with respect to the order p of the approximation.

Now, in practice, the Taylorized version of the truncated symbolical expansion is rather used
for transmitting conditions. Similarly to theorem 2.2, the following result holds.

Corollary 2.1. Let V (x) be a regular one-dimensional potential. We assume that λ± is approxi-
mated by

λ± ≈ λ̃±,p :=

p∑

j=0

(λ±1/2−j/2)(1−p)/2,

for |τ | ≫ 1 and p ∈ N
∗. The contraction factor CO

P,ǫ of the mapping GO,p2
P given by (51) for the

fixed-point OSWR algorithm (49) can be estimated by

CO
P,ǫ ≈ C̃O,p

ǫ = sup
τ∈Hτ

L̃O,p
ǫ (τ),

where

L̃O,p
ǫ (τ) ≈ c̃pǫ

1

|τ |p+1
L̃C,p
ǫ (τ). (72)

The positive constant c̃pǫ is (ǫ, p, V )-dependent and L̃C,p
ǫ (τ) designates the convergence rate estimate

of the CSWR DDM given by equation (42).
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2.4. Convergence of the Classical and Optimized Schwarz Waveform Relaxation algorithms

From the evaluation of the contraction factor and by using a similar analysis as in [24], we
can deduce an asymptotic convergence result (Theorem 2.3). At any Schwarz iteration k, we
denote by T (k) the convergence time of the CNGF algorithm thanks to the stopping criterion:
φ(·, t) = φ(·, T (k)), for any t ≥ T (k). In practice, we introduce a positive parameter δ and, at
Schwarz iteration k, the imaginary-time iterations are stopped when, for n ≥ 0, ones gets

‖φ±,(k)(·, t−n+1)− φ±,(k)(·, T (k))‖L∞(R) ≤ δ. (73)

To prove the result, we assume that the sequence of stopping times {T (k)}k i) satisfies T (k) ≤ T (k−1)

(at least for k large enough) and ii) is convergent to T (kcvg) > 0 . This last assumption is morally
reasonable and will be confirmed numerically (see Section 3). It means that the larger the iteration
k, the faster the CNGF algorithm to reach the stationary state. By extension of Theorem 5.8 in
[24], we have

Theorem 2.3. Let us assume that i) V is a smooth and bounded spatial dependent function, ii)
the sequence {T (k)}k is decreasing and convergent to T (∞) > 0, i.e. there exists k0 such that
0 < T (∞) ≤ T (k) ≤ T (k−1) for all k ≥ k0, with limk→+∞ T (k) = T (∞), and iii) T (k0) is finite. Then,
the following inequalities hold

‖eO,C,±
Λ ‖L2(R+;H2(Ω±

ǫ )) ≤ CC,O
Λ,ǫ ‖h±ǫ ‖(

H3/4(R+)
)2 (74)

and
‖((eO,C,+

Λ )2k+1, (eO,C,−
Λ )2k+1)‖H3,3/2(Ω+

ǫ ×(0,T (k0)))×H3,3/2(Ω−
ǫ ×(0,T (k0)))

≤ D
(
CC,O
Λ,ǫ

)k∥∥(h+,0
ǫ , h−,0

ǫ

)∥∥(
H3/4(0,T (k0))

)2 , (75)

where D is a constant and the initial guess is null in Ω±
ǫ . The constant CC,O

Λ,ǫ is defined as the

contraction factor of the mapping GC,O,p2
Λ .

To prove this theorem, we first start by stating the following Lemma.

Lemma 2.1. We denote by P the linear imaginary-time Schrödinger operator, Ω an open subset
of R and φ0 in L2(Ω). Now, let φ̃ designates the solution to

{
∂tφ̃ = Pφ̃, on Ω× R

∗
+,

φ̃(·, 0) = φ0(·), on Ω,

and ψ̃ the solution to





∂tψ̃ = Pψ̃, on Ω× R
∗
+,

ψ̃(·, 0) =
φ0(·)

‖φ0(·)‖L2

, on Ω.

Then, for any T > 0, we have φ(·, T ) = ψ(·, T ), where

φ(·, T ) :=
φ̃(·, T )

‖φ̃(·, T )‖L2

, ψ(·, T ) :=
ψ̃(·, T )

‖ψ̃(·, T )‖L2

.
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Proof. The proof of Theorem 2.3 is a consequence of i) the analysis presented in [24], ii) Lemma
2.1, iii) the decay of T (k) with respect to k and convergent to T (∞) > 0, and iv) that at any iteration
k ≥ 2

‖GC,O
Λ ◦ GC,O

Λ (h+ǫ , h
+
ǫ )‖(H3/4(0,T (k)))2 ≤ CC,O

Λ,ǫ ‖(h+ǫ , h−ǫ )‖(H3/4(0,T (k)))2

≤ CC,O
Λ,ǫ ‖(h+ǫ , h−ǫ )‖(H3/4(0,T (k−2)))2 ,

(76)

for any h±ǫ ∈ H3/4(0, T (k−2)). This last statement is a consequence of Theorems 2.1 and 2.2 and
is valid due to the linearity of the Schrödinger equation in imaginary-time. Indeed, the analysis
provided in Sections 2.2 and 2.3 is performed on a fixed time interval (0, T ) and without normal-
ization. In other words, at any Schwarz iteration k and for any imaginary time interval (tn, tn+1),
n ≥ 0, Theorems 2.1 and 2.2 hold. In the CNGF method, at any Schwarz iteration k and at any
time t−n+1 ≤ T (k), we normalize the computed solution (see system (3)). This process is performed

at each time iteration until convergence at time T (k). For the linear operator P and for a final and
finite convergence time T (k), the normalization can be performed only once at time T (k) according
to Lemma 2.1. In other words, for linear operators, the inequality (76) is valid with or without
normalization at each time iteration. Now, at iteration 2k, since

(h+,(2k)
ǫ , h−,(2k)

ǫ ) = GC,O
Λ ◦ GC,O

Λ (h+,(2k−2)
ǫ , h−,(2k−2)

ǫ ),

we can also write that

‖(h+,(2k)
ǫ , h−,(2k)

ǫ )‖(H3/4(0,T (2k)))2 ≤ CC,O
Λ,ǫ ‖(h+,(2k−2)

ǫ , h−,(2k−2)
ǫ )‖(H3/4(0,T (2k−2)))2 ,

where we have h
±,(k)
ǫ = BC,O

± · e±,(k)(±ǫ/2, ·). In the previous formulae, we introduce i) BC,O
± as the

transmission operator (for CSWR or OSWR) and ii) e±,(k) = φ±,(k)−φexact|Ω±
ǫ
. The function φexact

is the exact solution to (3). Now, since (T (k))k is decreasing for k ≥ k0 and converges to T (∞) > 0,

we can extend h±,2k
ǫ defined on (0, T (2k)) by zero on (T (2k), T (2k−2)) in H(0, T (2k−2)) and we next

have

‖(h+,(2k)
ǫ , h−,(2k)

ǫ )‖(H3/4(0,T (2k−2)))2 ≤ CΛ,ǫ‖(h+,(2k−2)
ǫ , h−,(2k−2)

ǫ )‖(H3/4(0,T (2k−2)))2 .

We then deduce by induction that

‖(h+,(2k)
ǫ , h−,(2k)

ǫ )‖(H3/4(0,T (k0)))2 ≤ CCk
Λ,ǫ‖(h+,(0)

ǫ , h−,(0)
ǫ )‖(H3/4(0,T (k0)))2 .

The rest of the proof is similar to the one of Theorem 5.8 in [24]. �

For k large enough or for φ0 sufficiently close to an eigenfunction (denoted by φs), we expect
that the results remain valid for the GPE. Indeed, in both cases, the function φ(k) is close to an
eigenstate and consequently the nonlinearity κ|φ(k)(·, t)|2 is supposed to behave almost like a fixed
linear potential. In other words, from (40), we asymptotically guess that the contraction factor for
the CSWR algorithm (denoted by LGP,C

ǫ ) behaves like

LGP,C
ǫ (τ) ≈ LGP,C,3

ǫ (τ) :=
∣∣∣
(
τ − iV (−ǫ/2)− iκ|φs(−ǫ/2)|2
τ − iV (+ǫ/2)− iκ|φs(ǫ/2)|2

)1/2 ∣∣∣

×
∣∣∣ exp

(
− 2e−iπ/4

∫ ǫ/2

−ǫ/2

√
−τ + iV (y) + iκ|φs(y)|2dy

)∣∣∣,
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or, from (42), like

LGP,C
ǫ (τ) ≈ L̃GP,C,3

ǫ (τ) := exp
(
− ǫ

√
−2τ −

1√
−2τ

∫ ǫ/2

−ǫ/2
V (y) + κ|φs(y)|2dy

)
.

3. Numerical validation of the theoretical asymptotic results

3.1. Discretization and algorithms

Let us first describe how a consistent discretization is realized for the SIE scheme (4) applied
to the imaginary-time version of the LSE/GPE based on the CNGF (3).

We consider the ABCs of order p ∈ N
∗ for the LSE

∂nφ+ iΛ̃+,p(x, t, ∂x, ∂t)φ = 0, (77)

with Λ̃+,p = Op(λ̃+,p). For the LSE, an equivalent form of the ABCs (77) can be obtained (see [6],
Corollary 2, page 321) in imaginary-time as follows





Λ̃+,1(x, t, ∂x, ∂t)φ = −ieiΦ∂1/2t

(
e−iΦφ

)
,

Λ̃+,4(x, t, ∂x, ∂t)φ = Λ̃+,1φ−
i

4
∂n

(
V (x)

)
eiΦIt

(
e−iΦφ

)
,

(78)

where we keep the same notations, in particular Φ(x, t) = tV (x). These forms of the boundary
conditions are more adapted to the numerical treatment presented here. The formal extension to
the nonlinear case [5] for the GPE is based on the formal operation V (x) → V (x) + κ|φ(x, t)|2 and
yields





Λ̃+,1(x, t, ∂x, ∂t, |φ|)φ = −ieiΦ∂1/2t

(
e−iΦφ

)
,

Λ̃+,4(x, t, ∂x, ∂t, |φ|)φ = Λ̃+,1φ−
i

4
∂n

(
κ|φ|2 + V (x)

)
eiΦIt

(
e−iΦφ

)
,

(79)

where the function Φ is defined for both the linear and nonlinear cases by

Φ(x, t) = tV (x) + κ

∫ t

0
|φ(x, s)|2ds.

In the sequel of the paper, we designate by condition of order zero the first-order condition based
on Λ̃+,1 by forcing V = 0 and κ = 0. The discretizations of the nonlocal time operators are chosen
as follows.

∂
1/2
t f(tn) ≈

√
2

∆t

n∑

k=0

βn−kf
k, (80)

It f(tn) ≈ ∆t

n∑

k=1

fk, (81)

where the sequence (βn)n∈N is such that β0 = 1 and, for n ≥ 0,

βn+1 = (−1)n
1− 2n

2n+ 2
βn.
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The discretizations (80)-(81) are designed to be consistent with the implicit Euler scheme by using
the associated generating function [2]. For (81), we use the right rectangle quadrature rule.

Let us recall that the problem is a priori set in an unbounded domain. However, we assume here
that the solution φ remains confined within a finite computational domain (−a, a), with a > 0 large
enough. This is a standard assumption in the framework of the numerical solution of the GPE. As
a consequence, we can set a homogeneous Dirichlet boundary condition at x = ±a: φ(±a, t) = 0.
Let us remark that other boundary conditions could also be considered (see e.g. [12]). For the
one-dimensional DDM, the subdomains of interest are then Ω+

a,ǫ =
(
− a, ǫ/2

)
, Ω−

a,ǫ =
(
− ǫ/2, a

)

and Ωa = Ω+
ǫ ∪ Ω−

ǫ = (−a, a), with the overlapping region Γǫ = Ω+
ǫ ∩ Ω−

ǫ =
(
− ǫ/2, ǫ/2

)
, where

ǫ ≥ 0. The solution φ+ (respectively φ−) in Ω+
a,ǫ (respectively Ω−

a,ǫ) at time tn+1 and Schwarz

iteration k (the time is also written t
(k)
n later for some given (n, k) when necessary) is denoted by

φ+,n+1,(k) (respectively φ−,n+1,(k)). The index ±ǫ/2 designates the value of a function at point
x = ±ǫ/2 (e.g. φ±ǫ/2 = φ(±ǫ/2)).

We consider a normalized initial guess φ0 and set (φ̃+,0,(k), φ̃−,0,(k)) := (φ+0 , φ
−
0 ) := (φ0|Ω+

a,ǫ
, φ0|Ω−

a,ǫ
),

for any k ≥ 0. The semi-discrete OSWR-SIE scheme for a two-domains decomposition of the CNGF
with a first-order ABC writes as follows





(
I

∆t
− ∂2x + V (x) + κ|φ±,n,(k)|2)φ̃±,n+1,(k) =

φ±,n,(k)

∆t
, in Ω±

a,ǫ,

(∂
n
± +

√
2

∆t
)φ̃

±,n+1,(k)
±ǫ/2 = g

∓,n+1,(k−1)
±ǫ/2 + α

±,n,(k)
±ǫ/2 − α

∓,n,(k−1)
±ǫ/2 ,

φ̃±,n+1,(k) = 0, at x = ∓a.

(82)

At each iteration (n+ 1, k), the global solution φ̃n+1,(k) needs to be normalized

φn+1,(k) :=
φ̃+,n+1,(k) + φ̃−,n+1,(k)

||φ̃+,n+1,(k) + φ̃−,n+1,(k)||L2((−a,a))

. (83)

The outwardly directed unit normal vector to Ω±
a,ǫ is denoted by n±. We also set

g
∓,n+1,(k−1)
±ǫ/2 = ∂

n
± φ̃

∓,n+1,(k−1)
±ǫ/2 +

√
2

∆t
φ̃
∓,n+1,(k−1)
±ǫ/2 ,

α
∓,n,(k)
±ǫ/2 = −

√
2

∆t
E

∓,n,(k)
±ǫ/2

n∑

ℓ=0

βn+1−ℓĒ
∓,ℓ,(k)
±ǫ/2 φ̃

∓,ℓ,(k)
±ǫ/2 ,

E
∓,n,(k)
±ǫ/2 = exp

(
−∆t

n∑

q=0

(V±ǫ/2 + κ|φ∓,q,(k)
±ǫ/2 |2)

)
,

Ē
∓,n,(k)
±ǫ/2 =

1

E
∓,n,(k)
±ǫ/2

.

(84)

We use the following convergence criterion of the CNGF at Schwarz iteration k

||φn+1,(k) − φn,(k)||∞ ≤ δ,

with δ = 10−8 and where ‖ψ‖∞ := supx∈Ωa
|ψ(x)|. When the convergence is reached, the stopping

time is: T (k) := T cvg,(k) = ncvg,(k)∆t for a converged solution φcvg,(k) reconstructed from the two
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subdomains solutions φ±,cvg,(k). The convergence criterion for the Schwarz DDM is given by

∥∥ ‖φ+,cvg,(k)
|Γǫ

− φ
−,cvg,(k)
|Γǫ

‖∞,Γǫ

∥∥
L2(0,T (kcvg))

≤ δSc, (85)

with δSc = 10−14 (”Sc” for Schwarz). When the convergence of the full iterative algorithm is
obtained at Schwarz iteration kcvg, one gets the converged global solution φcvg := φcvg,(k

cvg) in Ωa.
Let us remark that (82) is simple to implement since it is a standard CNGF-SIE scheme in each
subdomain with homogeneous Dirichlet boundary conditions at the endpoint of the exterior domain
and a local Fourier-Robin boundary condition at the transmitting endpoint. The extensions to the
zeroth- and fourth-order boundary conditions are quite straightforward. We consider a spatial
uniform grid and the Laplace operator is discretized by using a 3-points stencil.

3.2. Numerical results in the linear case (κ = 0)

This subsection is devoted to some numerical experiments in the linear case. The computational
domain Ω8 = (−8, 8) is divided into two subdomains: Ω+

8,ǫ = (−8,∆x/2), Ω−
8,ǫ = (∆x/2, 8). The

left and right subdomains are uniformly subdivided by using N±
ǫ = 65 points, including the two

endpoints. The overlapping region is reduced to one cell of size ∆x = 16/127.

3.2.1. Test 1.a

In this first series of experiments, we consider the quadratic potential V (x) = x2/2. The initial
data is e−x2/2π−1/4 and the imaginary time step is ∆t = 2× 10−1.

In Fig. 1 (left), we report the convergence time of the CNGF, i.e. T (k), versus the Schwarz
iterations k for the CSWR DDM. The total number of iterations to get the convergence of the
CSWR at machine tolerance is kcvg = 158. We observe the decay of the sequence (T (k))0≤k≤kcvg

which is in accordance with the assumption in Theorem 2.3. In addition, we numerically obtain

that T (kcvg) ≈ 7.6. Figure 1 (right) presents the energy E
cvg,(k)
0 of the converged solution φcvg,(k)

computed at T (k) in Ω8 and defined by

Ecvg,(k)
κ := Eκ(φ

cvg,(k)) =

∫

Ωa

|∇φcvg,(k)|2 + V (x)|φcvg,(k)|2 + κ

2
|χ(x)|4dx. (86)

Similarly to the standard global CNGF-SIE scheme, we observe that the energy is diminishing.
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Figure 1: CSWR: stopping times T (k) (left) and total energy E
cvg,(k)
0 of the reconstructed CNGF converged solution

φcvg,(k) (right) vs. iteration k until convergence.
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Figure 2 (left) compares the numerical convergence rate obtained with the CNGF-SIE algorithm
and the theoretical convergence rates (40) and (42) but written at the discrete level, i.e. we represent
the L2-norm error in time in the overlap (85). Then, we have ǫ = ∆x and the largest time frequency
is given by 1/∆t. According to (40), this leads to

LC
∆x(τ) ≈∣∣∣
(
1/∆t− iV (−∆x/2)

1/∆t− iV (+∆x/2)

)1/2 ∣∣∣
∣∣∣ exp

(
− 2e−iπ/4

∫ ∆x/2

−∆x/2

√
−1/∆t+ iV (y)dy

)∣∣∣,
(87)

which can be further approximated by a Taylor’s expansion following (42) as

LC
∆x(τ) ≈ exp

(
−∆x

√
2

∆t
− V (0)∆x

√
∆t

2

)
. (88)

We observe an excellent agreement between the theoretical estimates and the computed convergence
rates. Let us note that the estimate (87) based on the Taylor formula gives a contraction factor
equal to 0.671379 when the nonlocal one (88) yields 0.671395. We also report in Fig. 2 (right) the

total energy E
n,(k)
0 := E0(φ

n,(k)) of the reconstructed solution φn,(k) as a function of the imaginary

time t
(k)
n for different Schwarz iterations k. Let us note that although the SIE scheme with Dirichlet

boundary condition is energy diminishing [16] in each subdomain, this property is not necessarily

satisfied in the CSWR framework at time t
(k)
n due to the arbitrary reconstruction (83) in the

overlapping region Γǫ. However, if k is large enough, the total energy is diminishing like for the
global CNGF-SIE scheme.
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Figure 2: CSWR: left: comparison between the discrete versions of the estimated theoretical convergence rates (87)

and (88) and the numerical ones. Right: total energy E
n,(k)
0 of the reconstructed solution φn,(k) for a few iterations

k vs. imaginary-time t
(k)
n .

Within the same framework as above, we compare in Figures 3 and 4 the convergence time and
energy per Schwarz iteration k (CNGF at convergence) as well as the CSWR convergence rate for
various time steps ∆t. On Figure 3 (left), we see that the convergence time for large values of
∆t (= 1, 5) decays from the beginning but can also exhibit an increase when the algorithm starts
and then decays for smaller ∆t (= 10−1, 10−2). This is again in accordance with the theoretical
assumption given in Section 2.4. In addition, the number of Schwarz iterations is diminishing with
respect to ∆t, which was expected since it corresponds to increase the time frequency in formulae

(87) and (88). Figure 3 (right) reports the energy E
cvg,(k)
0 at convergence for each Schwarz iteration
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k. We see that it is decaying whatever ∆t is. For small ∆t, the energy is decaying but presents
some regions with extremely slow decay and then an instantaneous decay between two successive
iterations to start a new regime with slowly decaying energy. Finally, Figure 4 shows the residual
history of the error (85) vs. k, for various values of ∆t. We observe that the slopes of the errors
decay according to ∆t.
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Figure 3: CSWR: stopping times T (k) (left) and total energy E
cvg,(k)
0 of the reconstructed CNGF converged solution

φcvg,(k) (right) vs. iteration k until convergence for various imaginary time steps ∆t.
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Figure 4: CSWR : residual history for various imaginary time steps ∆t.

With the same data, we verify that the first-order OSWR contraction factor |L0
ǫ (τ)| behaves as

cǫ
∣∣LC

ǫ (τ)/τ
∣∣ (see Theorem 2.2) for an unknown time independent constant cǫ, with ǫ = ∆x. More

specifically, the approximate contraction factor at x ≈ 0 for the OSWR method with first-order
transmitting boundary conditions is

LO
∆x(τ) ≈ c∆x

1

|λ+1/2(∆x/2, 1/∆t)λ
+
1/2(−∆x/2, 1/∆t)|L

C
∆x(1/∆t),

or, by using a Taylor’s expansion,

LO
∆x(τ) ≈ c∆x

1
√

1/∆t+ iV (−∆x/2)
√

1/∆t+ iV (∆x/2)
× exp

(
−∆x

√
2/∆t−∆xVc(0)

√
∆t/2

)
.

(89)
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For a fixed overlapping region (reduced to one mesh element of size ∆x), we compare the rate of
convergence of the CSWR and first-order OSWR methods, but for different values of ∆t, the latter
being assumed to be small enough. Table 1 reports the theoretical (Theo) and numerical (Num)
convergence rates of the CSWR and OSWR DDMs. In the last column, we report the estimated
values of c∆x according to (89) for different time steps. As expected, we find c∆x as an almost
time independent parameter, which a posteriori validates (89). We remark the excellent agreement
between the theoretical and numerical CSWR-CNGF convergence rates.

Table 1: Comparison between the numerical and theoretical slopes of the CSWR and first-order OSWR DDMs and
estimated value of cǫ.

∆t Num rate CSWR Theo rate CSWR Num rate OSWR Theo rate OSWR Estim c∆x

2.5× 10−2 0.330 0.324 0.001 0.008 c∆x 0.13
5.0× 10−2 0.481 0.451 0.004 0.023 c∆x 0.17
1.0× 10−1 0.566 0.569 0.094 0.057c∆x 0.17
2.0× 10−1 0.653 0.671 0.19 0.134 c∆x 0.15

3.2.2. Test 1.b

We emphasize now on the effect of i) the interface location and ii) the order (of the transmit-
ting boundary condition) of the OSWR algorithm on the convergence rate. We choose V (x) =
5 exp(−αx2) (which is non-zero in the overlapping region and is rapidly decaying) and ∆t = 0.2.
For α = 1, we compare in Fig. 5 (left) the convergence rate of the CSWR algorithm for different
interface locations: x ≈ 0, 0.6, 1 (where V ≈ 5, 2.6, 0.8), illustrating again the importance of the
interface location to optimize the convergence rate. For α = 2, we also compare on Fig. 5 (right)
the convergence rates of the CSWR and OSWR (orders 0, 1 and 4) methods. The OSWR DDM of
order 0 refers to as the potential-free (V = 0) Dirichlet-to-Neumann transmission condition. The
choice α = 2 is justified by the need to have non negligible values of V ′

(
±∆x/2

)
in the overlapping

region to justify the use of a fourth-order transmission condition. As expected, the higher the order,
the faster the convergence.
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Figure 5: Left: CSWR DDM residual history for various interface locations (α = 1). Right: residual history of the
CSWR and OSWR DDMs (α = 2).

3.3. Numerical results in the nonlinear case (κ 6= 0)

We consider now the imaginary-time GPE. Even if the analytical results presented in Section 2
were proven for the LSE, they should remain asymptotically valid for the GPE as discussed after
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Theorem 2.3.

3.3.1. Test 2

We consider the harmonic potential V (x) = x2/2 and the nonlinearity strength κ = 250. The
computational domains are Ω16 = (−16.16), Ω+

16,ǫ = (−16,∆x/2) and Ω−
16,ǫ = (−∆x/2, 16). We fix

∆t = 1 × 10−1, N = 512, N±
ǫ = 257 and ǫ = ∆x = 32/511. The initial guess is x 7→ e−x2/2π−1/4

for which convergence to the ground state of the GPE is expected.
We report in Fig. 6 the converged solution (which is indeed the ground state) (left) as well as

the convergence rate of the CSWR algorithm (right). In particular, we compare the numerical rate
of convergence with the expected theoretical one

LGP
∆x(τ) ≈

∣∣∣
(
∆t− iV (−∆x/2)− iκ|φs(−∆x/2)|2
∆t− iV (+∆x/2) − iκ|φs(∆x/2)|2

)1/2 ∣∣∣

×
∣∣∣ exp

(
− 2e−iπ/4

∫ ∆x/2

−∆x/2

√
−∆t+ iV (y) + iκ|φs(y)|2dy

)∣∣∣,

where τ is given by 1/∆t leading to

LGP
∆x(τ) ≈ exp

(
−∆x

√
2/∆t−∆x

√
∆t/2

(
V (0) + κ|φℓ(0)|2

))
. (90)

The computed numerical contraction factor is equal to 0.55. According to (90), we theoretically
get the value 0.53.
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Figure 6: CSWR: left: converged solution (ground state). Right: comparison between the discrete versions of the
estimated theoretical convergence rates (90) and the numerical ones for the CSWR DDM.

In Fig. 7, we report the results for the first excited state initializing now with x 7→
√
2xe−x2/2π−1/4.

Numerically, the CSWR contraction factor is found to be 0.74 that should be compared with the
theoretical value 0.75 obtained from (90). In both cases, we find a good agreement between the
numerical and the theoretical values, validating the extension of the previous analysis for the LSE
to the GPE.

3.3.2. Test 3

The last example consists in an optical potential V (x) = x2/2+25 cos2(πx/2) and the nonlinear
strength κ = 10. We are interested in the convergence rate of both the CSWR and OSWR
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Figure 7: CSWR: left: converged solution (first excited state). Right: comparison between the discrete versions of
the estimated theoretical convergence rates (90) and numerical ones for the CSWR DDM.

algorithms. We choose Ω8 = (−8, 8), Ω+
8,ǫ = (−8,∆x/2) and Ω−

8,ǫ = (−∆x/2, 8). The overlapping
region is again reduced to one element of size ǫ = ∆x = 16/255 (N = 256) and N±

ǫ = 129.
In Fig. 8, we report the rates of convergence of the CSWR and the OSWR (orders 0 and 1)
DDMs. If φg is the ground state of the GPE, let us remark that ∂x

(
V (x) + κ|φg|2(x)

)
≈ 0 in the

overlapping region. According to (79), it is then useless to perform a fourth-order OSWR method.
For completeness, we also report the CNGF convergence time and energy per Schwarz iteration k
as well as the corresponding stationary state which are both uniformly decaying for the CSWR and
the first-order OSWR method, but not for the zeroth-order OSWR algorithm.

4. Conclusion

This paper concerned the analysis of classical (CSWR) and optimized (OSWR) Schwarz wave-
form relaxation domain decomposition methods for computing in parallel the discrete spectrum
of linear and nonlinear Schrödinger operators based on the Continuous Normalized Gradient Flow
method. Using pseudodifferential calculus and the theory of artificial boundary conditions for LSEs,
we analytically determined the rate of convergence of the CSWR and OSWR algorithms with re-
spect to the order of approximation of the ABCs at the fictitious interfaces. We proved that not
only the OSWR algorithm leads to the convergence of the non-overlapping DDM but that it also
accelerates the CSWR method by a power of the time frequency in the high-frequency regime. Al-
though the analysis was developed in the linear case with non-constant coefficients, the extension to
the nonlinear Schrödinger operators (e.g. the GPE) was conjectured and numerically validated. It
is important to point out that the mathematical methodology based on the theory of pseudodiffer-
ential operators that we developed here can be extended naturally to higher dimensional problems
as well as other PDEs at the price of technical efforts. Several extensions of this paper are currently
studied and are the topics of a forthcoming paper, in particular concerning the two-dimensional
situation and the case of the real-time dynamics of LSEs/GPEs. Finally, the numerical analysis
including the stability and convergence of the CNGF/SWR schemes will be developed in a future
work.
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Figure 8: CSWR/OSWR DDMs: left (top): residual history. Right (top): converged solution (ground state).

Left (bottom): total energy E
cvg,(k)
0 of the reconstructed CNGF converged solution φcvg,(k) vs. iteration k until

convergence. Right (bottom): stopping times T (k) vs. iteration k until convergence.
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