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HAL is

to obtain a new proof of the equality FO[N ] ∩ Reg = (x ω-1 y) ω+1 = (x ω-1 y) ω for x, y words of the same length . [START_REF] Almeida | Residually finite congruences and quasi-regular subsets in uniform algebras[END_REF] where E denotes the class of languages defined by a set E of equations. This formula gives the profinite equations characterizing the regular languages in FO[N ], the class of languages defined by sentences of first order logic using arbitrary numerical predicates and the usual letter predicates. This result follows from the work of Barrington, Straubing and Thérien [START_REF] Barrington | Non-uniform automata over groups[END_REF] and Straubing [START_REF] Straubing | Constant-depth periodic circuits[END_REF] and is strongly related to circuit complexity. Indeed its proof makes use of the equality between FO[N ] and AC 0 , the class of languages accepted by unbounded fan-in, polynomial size, constant-depth Boolean circuits [11, Theorem IX.2.1, p. 161].

See also [START_REF] Mckenzie | Extensional uniformity for Boolean circuits[END_REF] for similar results and problems. However, before attacking this problem in earnest we have to tackle the following questions: how does one get hold of an ultrafilter equation given the non-constructibility of each one of them (save the trivial ones given by pairs of words)? In particular, how does one generalise the powerful use in the regular setting of the ω-power? And how does one project such ultrafilter equations to the regular fragment? In answering these questions and facing these challenges, we have chosen to consider a smaller and simpler logic fragment first. Our choice was dictated by two parameters: we wanted to be able to handle the corresponding ultrafilters and we wished to obtain a reasonably understandable list of profinite equations. Finally, we opted for FO[N 0 , N u 1 ], the restriction of FO[N ] to constant numerical predicates and to uniform unary numerical predicates. Here we obtain the following result (Theorem 5.16) FO[N 0 , N u 1 ] ∩ Reg = (x ω-1 s)(x ω-1 t) = (x ω-1 t)(x ω-1 s), (x ω-1 s) 2 = (x ω-1 s) for x, s, t words of the same length , [START_REF] Almeida | Finite semigroups and universal algebra[END_REF] which shows in particular that membership in FO[N 0 , N u 1 ] is decidable for regular languages.

Although this result is of interest in itself, we claim that our proof method is more important than the result. Indeed, this case study demonstrates for the first time the workability of the ultrafilter approach.

This method can be summarised as follows. First we find a set of ultrafilter equations characterising FO[N 0 , N u 1 ] (Theorems 3.2, 3.3, and 4.7). Projecting these ultrafilter equations onto profinite words, we obtain profinite equations characterising FO[N 0 , N u 1 ] ∩ Reg (Theorem 5.2). Finally we show that the simpler class [START_REF] Almeida | Finite semigroups and universal algebra[END_REF] generates the full family of projections of our ultrafilter equations to obtain Theorem 5.16.

In the conference version of this paper [START_REF] Gehrke | From ultrafilters on words to the expressive power of a fragment of logic[END_REF], we had only proved the validity in B of the equations given in Section 3. Here we also prove their completeness in Section 4. As a consequence, we get a new completeness result for B ∩ Reg obtained by projection in Section 5.1. This leads to a new proof of decidability of membership in B ∩ Reg in Section 5.2. The completeness result expressed by equation [START_REF] Almeida | Finite semigroups and universal algebra[END_REF] above is then obtained from the completeness result in Section 5.1 by rewriting in Section 5. [START_REF] Barrington | Non-uniform automata over groups[END_REF]. In [START_REF] Gehrke | From ultrafilters on words to the expressive power of a fragment of logic[END_REF], the completeness part of (2) was proved by traditional automata theoretic means.

Stone duality and equations

In this paper, given a subset S of a set E, we denote by S c the complement of S in E.

Filters and ultrafilters

Let X be a set. A Boolean algebra of subsets of X is a subset of P(X) containing the empty set and closed under finite intersections, finite unions and complement. Let B be a Boolean algebra of subsets of X. An ultrafilter of B is a nonempty subset γ of B such that:

(1) the empty set does not belong to γ, (2) if K ∈ γ and K ⊆ L, then L ∈ γ (closure under extension)3 , (3) if K, L ∈ γ, then K ∩ L ∈ γ (closure under intersection), (4) for every L ∈ B, either L ∈ γ or L c ∈ γ (ultrafilter condition). Nonempty subsets of B satisfying just conditions (2) and (3) above are called filters, while filters also satisfying (1) are said to be proper. A subset S of B is a filter subbasis if it has the finite intersection property: every finite intersection of elements of S is nonempty. In this case, the set of all supersets of finite intersections of elements of S is a proper filter, called the filter generated by S.

A nonempty subset S of B is a filter basis if it does not not contain the empty set and if, for every K, L ∈ S, there exists M ∈ S such that M ⊆ K ∩ L. In this case, the filter generated by S is the set of all supersets of elements of S. Note that if S and T are filter basis, then S ∪ T is a filter basis if and only if the intersection of any member of S with any member of T is nonempty.

In this paper, we will often need to show that ultrafilters with particular properties exist. The main tool for showing that ultrafilters exist is the Stone Prime Filter Theorem, which guarantees that any filter subbasis and in particular any proper filter extends to an ultrafilter.

Stone duality

Stone duality tells us that every Boolean algebra B has an associated compact Hausdorff space S(B), called its Stone space. This space may be given by the set of ultrafilters of B with the topology generated by the basis of clopen sets of the form

L = {γ ∈ S(B) | L ∈ γ},
where L ∈ B.

Two Stone spaces are of special interest for this paper. The first one is the Stone space of the Boolean algebra of all the subsets of a set X. It is known as the Stone-Čech compactification of X and is usually denoted by βX. Viewing βX as the Stone space of P(X), we will consider elements of βX to be ultrafilters of P(X). Note that the map sending an element x of X to the principal ultrafilter generated by {x} defines an injective map from X into βX.

An important property of Stone-Čech compactification is that every map f : X → K, where K is a compact Hausdorff space, has a unique continuous extension βf : βX → K. Furthermore, every map f : X → Y (where X and Y are discrete spaces) has a unique continuous extension βf : βX → βY defined by L ∈ βf (γ) if and only if f -1 (L) ∈ γ for each subset L of Y and for each γ in βX. In particular, if X = A * and u is a word of A * , the left translation x → ux extends to a continuous map from βA * to βA * and right translations can be extended in the same way. In other words, the product of a word with an element of βA * is a well defined notion, but the product of two elements of βA * is not. 4Our second example is the Stone space of the Boolean algebra Reg of all regular subsets of A * . It is equal to the topological space underlying the free profinite monoid on A, denoted by A * , see e.g. [START_REF] Almeida | Residually finite congruences and quasi-regular subsets in uniform algebras[END_REF]. We refer to [START_REF] Almeida | Finite semigroups and universal algebra[END_REF][START_REF] Pin | Profinite methods in automata theory[END_REF][START_REF] Pin | Equational descriptions of languages[END_REF] for more information on this space, but it can be seen as the completion of A * for the profinite metric d defined as follows. A finite monoid M separates two words u and v of A * if there is a monoid morphism ϕ : v) , with the usual conventions min ∅ = +∞ and 2 -∞ = 0. Then d is a metric on A * and the completion of A * for this metric is denoted by A * . In constrast with the case of βA * , the product on A * can be extended by continuity to A * , making A * a compact topological monoid, called the free profinite monoid. Its elements are called profinite words. The following constructions of profinite words from given ones will play an important rôle in this paper. In a compact monoid, the smallest closed subsemigroup containing a given element x has a unique idempotent, denoted by x ω . Thus if x is a (profinite) word, so is x ω . In fact, one can show that x ω is the limit of the convergent sequence x n! . Moreover, the sequence x n!-1 is also convergent and the element to which it converges is denoted by x ω-1 . More details can be found in [START_REF] Almeida | Finite semigroups and universal algebra[END_REF][START_REF] Pin | Profinite methods in automata theory[END_REF][START_REF] Pin | Equational descriptions of languages[END_REF].

A * → M such that ϕ(u) = ϕ(v). We set r(u, v) = min |M | | M is a finite monoid that separates u and v } and d(u, v) = 2 -r(u,

Equations

Assigning to a Boolean algebra its Stone space is a contravariant functor: if B ′ is a subalgebra of B, then S(B ′ ) is a quotient of S(B). More precisely, the function which maps an ultrafilter of B onto its trace on B ′ induces a surjective continuous map π : S(B) → S(B ′ ).

This leads to the notion of equation relative to B or B-equation. Let γ 1 , γ 2 be two ultrafilters of B and let L ∈ B. We say that L satisfies the B-equation

γ 1 ↔ γ 2 provided L ∈ γ 1 ⇐⇒ L ∈ γ 2 . (3) 
By extension, we say that B ′ satisfies the B-equation Specializing this result to B = Reg and to B = P(A * ) yields Results 1 and 2 of the introduction.

γ 1 ↔ γ 2 provided (3) holds for all L ∈ B ′ , or equivalently π(γ 1 ) = π(γ 2
Let A be a finite alphabet and let B be a Boolean algebra of languages of A * . We say that B is closed under quotients if, for each L ∈ B and u ∈ A * , the languages u -1 L and Lu -1 are also in B.

Recall that u -1 L = {x ∈ A * | ux ∈ L} and Lu -1 = {x ∈ A * | xu ∈ L}.
If B is closed under quotients, then the set of all equations satisfied by B is a kind of congruence. More precisely, the following result holds: In view of these two results, it is convenient to introduce the following notation. Given γ 1 , γ 2 ∈ βA * , we say that a language satisfies the ultrafilter equation γ 1 = γ 2 if it satisfies all the ultrafilter equations uγ 1 ↔ uγ 2 and γ 1 u ↔ γ 2 u for all words u ∈ A * . Similarly, given w 1 , w 2 ∈ A * , we say that a regular language satisfies the profinite equation w 1 = w 2 if it satisfies the profinite equations uw 1 ↔ uw 2 and w 1 u ↔ w 2 u for each profinite word u ∈ A * . The main interest of this notation is to allow one to produce smaller sets of defining equations for a Boolean algebra closed under quotients.

In the regular case, there is a convenient connection between profinite equations and syntactic morphisms. Let L be a regular language of A * and let η : A * → M be its syntactic morphism. We denote by η : A * → M the unique continuous extension of η to A * . Proposition 1.4. Let u, v ∈ A * , let L be a regular language of A * and let η : A * → M be its syntactic morphism.

(1) L satisfies the profinite equation u ↔ v if and only if η(u) ∈ η(L) is equivalent to η(v) ∈ η(L). We prove [START_REF] Almeida | Finite semigroups and universal algebra[END_REF]. By (1), L satisfies the profinite equation u = v if and only if, for every x, y ∈ A * , η(xvy) ∈ η(L) is equivalent to η(xvy) ∈ η(L). Since η(xuy) = η(x) η(u) η(y) and since η is surjective, this is equivalent to saying that, for all s, t ∈ M ,

s η(u)t ∈ η(L) ⇐⇒ s η(v)t ∈ η(L),
which means that η(u) = η(v) by the definition of the syntactic morphism.

Let B be a Boolean algebra of languages defined by a set E of ultrafilter equations. It follows from Result 1 that B ∩ Reg can be defined by a set of profinite equations. The following proposition, which follows immediately from Stone duality, explains how to obtain such a defining set of profinite equations for B ∩ Reg from E. Let π Reg : βA * → A * be the projection defined by

π Reg (µ) = µ ∩ Reg,
and let

π Reg (E) = {π Reg (µ) ↔ π Reg (ν) | µ ↔ ν is an equation in E}.
By construction, π Reg (E) is a set of profinite equations. Proposition 1.5. Let B be a Boolean algebra of languages defined by a set of ultrafilter equations E. Then the Boolean algebra B ∩ Reg is defined by the set of profinite equations π Reg (E).

Proof. Since E is a complete set of ultrafilter equations for B, one has, for each language L of A * ,

L ∈ B ⇐⇒ for all equations µ ↔ ν in E, L ∈ µ ⇐⇒ L ∈ ν .
This holds in particular for each regular language L. However, if L is regular and µ ∈ βA * we have

L ∈ µ ⇐⇒ L ∈ µ ∩ Reg ⇐⇒ L ∈ π Reg (µ).
Thus we get, for each each regular language L, L ∈ B ∩ Reg ⇐⇒ (for all equations µ ↔ ν in E, L ∈ π Reg (µ) ⇐⇒ L ∈ π Reg (ν)) , and thus the set π Reg (E) defines B ∩ Reg.

Here is another useful result on equations. Proposition 1.6. Let f : A * → B * be a map and let L be a subset of B * . Then f -1 (L) satisfies u ↔ v for some u, v ∈ βA * , if and only if L satisfies βf (u) ↔ βf (v).

Proof. By definition, f -1 (L) satisfies u ↔ v if and only if

f -1 (L) ∈ u ⇐⇒ f -1 (L) ∈ v. (4) 
The definition of βf tells us that f -1 (L) ∈ u if and only if L ∈ βf (u). Thus ( 4) is equivalent to

L ∈ βf (u) ⇐⇒ L ∈ βf (v), which means that L satisfies βf (u) ↔ βf (v).
The counterpart of Proposition 1.6 for regular languages can be stated as follows:

Proposition 1.7. Let f : A * → B * be a function such that the inverse image of any regular language is regular and let L be a regular language of B * . Then f -1 (L) satisfies the profinite equation u ↔ v for some u, v ∈ A * , if and only if L satisfies the profinite equation f (u) ↔ f (v).

More results on ultrafilters

Consider the Stone space βX of a full power set P(X). If Y is a subset of X, then one can identify βY with the set

Y = {γ ∈ βX | Y ∈ γ}.
Indeed, the function which maps an element γ of βY to the filter of P(X) generated by γ yields an ultrafilter of P(X) that has Y as an element. Furthermore, one may show that this function is a homeomorphism from βY to Y . The inverse is the homeomorphism from Y to βY , which maps an element γ of Y to the set

{S ∩ Y | S ∈ γ} = {S ∈ γ | S ⊆ Y },
which by construction is an ultrafilter on P(Y ).

When working with ultrafilter equations, the following observations will be helpful. Let us denote by K △ L the symmetric difference of the sets K and L. Proposition 1.8. Let γ be an ultrafilter of B and let K, L ∈ B. Then the following statements are equivalent:

(1)

K ∈ γ if and only if L ∈ γ, ( 2 
) K △ L / ∈ γ.
Proof. It is a consequence of the following sequence of equivalent properties:

K ∈ γ if and only if L ∈ γ ⇐⇒ (K ∈ γ and L ∈ γ) or (K c ∈ γ and L c ∈ γ) ⇐⇒ K ∩ L ∈ γ or K c ∩ L c ∈ γ since γ is a filter ⇐⇒ (K ∩ L) ∪ (K c ∩ L c ) ∈ γ since γ is an ultrafilter ⇐⇒ K △ L / ∈ γ since K △ L = [(K ∩ L) ∪ (K c ∩ L c )] c .

A Boolean algebra and its logical description

The length of a word u is denoted by |u| or by ℓ(u).

Let u = a 0 . . . a n-1 be a nonempty word where a 0 , . . . , a n-1 are letters of the alphabet A. Then u may be viewed as a first-order model whose domain is the set Dom(u) = {0, . . . , |u| -1} carrying, for each letter a in A, the unary predicate a u defined by

a u = {i ∈ Dom(u) | a i = a}.
For instance, if u = aabcbaba, then a u = {0, 1, 5, 7}, b u = {2, 4, 6}, and c u = {3}.

We are now ready to introduce the Boolean algebra of languages for which we will obtain ultrafilter equations. For each letter a in A and for each subset P of N, let

L P = {u ∈ A * | |u| ∈ P } and L a,P = {u ∈ A * | a u ⊆ P }.
Let B be the Boolean algebra generated by the languages L P and L a,P for P ⊆ N and a ∈ A. We first establish some combinatorial properties of B and then provide a logical description for it.

Combinatorial properties of B

Let us start with some elementary but useful relations. Note that Proposition 2.2 and Proposition 2.5 are not used in this paper. However Proposition 2.5 was instrumental in [START_REF] Gehrke | From ultrafilters on words to the expressive power of a fragment of logic[END_REF] but was not proved there.

Proposition 2.1. The following formulas hold:

L P ∪ L Q = L P ∪Q L P ∩ L Q = L P ∩Q (5) L c P = L P c L c a,P = {u ∈ A * | a u ∩ P c = ∅} (6) L a,P ∩ L a,Q = L a,P ∩Q L c a,P ∪ L c a,Q = L c a,P ∩Q . (7) 
Proof. Formulas (5) follow immediately from the equalities

L P ∪ L Q = {u ∈ A * | |u| ∈ P or |u| ∈ Q} = L P ∪Q L P ∩ L Q = {u ∈ A * | |u| ∈ P and |u| ∈ Q} = L P ∩Q
To establish [START_REF] Gehrke | From ultrafilters on words to the expressive power of a fragment of logic[END_REF], it suffices to observe that

L c P = {u ∈ A * | |u| / ∈ P } = {u ∈ A * | |u| ∈ P c } = L P c
Finally, [START_REF] Mckenzie | Extensional uniformity for Boolean circuits[END_REF] follows from the relations

L a,P ∩ L a,Q = {u ∈ A * | a u ⊆ P } ∩ {u ∈ A * | a u ⊆ Q} = {u ∈ A * | a u ⊆ P ∩ Q} = L a,P ∩Q L c a,P ∪ L c a,Q = (L a,P ∩ L a,Q ) c = L c a,P ∩Q .
Proposition 2.1 leads to a normal form for the languages in B.

Proposition 2.2 (Normal form). Each language of B can be written as a finite intersection of languages of the form

L P ∪ a∈A L c a,Pa ∪ i∈Ia L a,Pa,i (8) 
where the sets I a are finite and the sets P , P a and P a,i are subsets of N.

Proof. Since B is the Boolean algebra generated by the languages L P and L a,P , every language of B can be written as a finite intersection of finite unions of languages L P , L a,P or their complement. Now a simple application of Proposition 2.1 leads to the desired normal form.

We now study the behaviour of B with respect to left and right quotients. The following notation will help us to formulate our results. Given P ⊆ N and r ∈ N, we set

P + r = {n ∈ N | n -r ∈ P } and P -r = {n ∈ N | n + r ∈ P }.
We first consider the left and right quotients by a letter.

Lemma 2.3. Let a and b be two distinct letters of A and let P be an arbitrary subset of N. Then

a -1 L P = L P -1 L P a -1 = L P -1 ; a -1 L a,P = L a,P -1 if 0 ∈ P , ∅ otherwise; L a,P a -1 = L a,P ∩ L P ; b -1 L a,P = L a,P -1 L a,P b -1 = L a,P .
Proof. We first have

a -1 L P = {u ∈ A * | au ∈ L P } = {u ∈ A * | |au| ∈ P } = {u ∈ A * | |u| + 1 ∈ P } = L P -1 ; L P a -1 = {u ∈ A * | ua ∈ L P } = {u ∈ A * | |ua| ∈ P } = {u ∈ A * | |u| + 1 ∈ P } = L P -1 .
Observing that a au = {0} ∪ (a u + 1) and a ua = a u ∪ {|u|}, we get Lemma 2.6. Let a and b be two distinct letters of A and let P be an arbitrary subset of N. Then 

a -1 L a,P = {u ∈ A * | au ∈ L a,P } = {u ∈ A * | {0} ∪ (a u + 1) ⊆ P } = L a,P -1 if 0 ∈ P , ∅ otherwise; L a,P a -1 = {u ∈ A * | ua ∈ L a,P } = {u ∈ A * | a u ∪ {|u|} ⊆ P } = {u ∈ A * | a u ⊆ P and |u| ∈ P } = L a,P ∩ L P . Now, if b = a, a bu = a u + 1 and a ub = a u and consequently, b -1 L a,P = {u ∈ A * | bu ∈ L a,P } = {u ∈ A * | a u + 1 ⊆ P } = L a,P -1 ; L a,P b -1 = {u ∈ A * | ub ∈ L a,P } = {u ∈ A * | a u ⊆ P } = L a,
aL P = aA * ∩ L P +1 aA * = c =a L c,N-{0} (9) 
Proof. We first have

aL P = {au | |u| ∈ P } = aA * ∩ L P +1 c =a L c,N-{0} = c =a {u ∈ A * | c u ⊆ N -{0}} = c =a {u ∈ A * | 0 / ∈ c u } = aA *
Furthermore we have

aL a,P = {au | a u ⊆ P } = aA * ∩ L a,(P +1)∪{0} ; aL c a,P = aA * ∩ {u ∈ A * | a u ∩ (P c + 1) = ∅} = aA * ∩ L c a,(P +1)∪{0} since (P c + 1) c = (P + 1) ∪ {0}; bL a,P = {bu | a u ⊆ P } = bA * ∩ L a,P +1 ; bL c a,P = bA * ∩ {u ∈ A * | a u ∩ (P c + 1) = ∅} = bA * ∩ u ∈ A * | a u ∩ (P c + 1) ∪ {0} = ∅ = bA * ∩ L c a,(P +1) since (P c + 1) ∪ {0} c = P + 1.
So far, we have considered the languages L P and L a,P as languages of A * , where A was a fixed alphabet. But for the remainder of this section, we need to consider several alphabets simultaneously. Recall that a class of languages C assigns to each finite alphabet A a set C(A * ) of languages of A * . In particular, we define the classes of languages B and B ∩ Reg as follows: for each alphabet A, B(A * ) is the Boolean algebra generated by the languages of the form L P or L a,P , where P ⊆ N and a ∈ A and B ∩ Reg(A * ) is the Boolean algebra of all regular languages in B(A * ).

Actually, the definition of L P and L a,P also depends on the alphabet, but in order to avoid cumbersome notation, we will keep the notation for L P and L a,P regardless of the alphabet, the context making it clear whether these languages are considered as subsets of A * or of B * .

Recall that a monoid morphism from B * to A * is length-multiplying if there exists a positive integer k such that, for every

b ∈ B, |f (b)| = k. Lemma 2.7. Let f : B * → A * be a morphism such that |f (u)| = k|u| for all words u ∈ B * . Then f -1 (L P ) = L Q where Q = {n ∈ N | kn ∈ P } (12) f -1 (L a,P ) = b∈B s∈a f (b) L b,Qs where Q s = {n ∈ N | kn + s ∈ P } (13) 
Proof. Formula ( 12) follows from the equalities

f -1 (L P ) = {u ∈ B * | f (u) ∈ L P } = {u ∈ B * | |f (u)| ∈ P } = {u ∈ B * | k|u| ∈ P } = {u ∈ B * | |u| ∈ Q} = L Q .
To establish Formula (13), first observe that for a word u = u 0 u 1 • • • u n-1 in B * , the letter in position kr + s in f (u) is an a if and only if the letter in position s in f (u r ) is an a. It follows that a f (u) is the disjoint union of the sets kb u + s, where b runs over B and s runs over a f (b) . In particular, a f (u) is a subset of P if and only if every set kb u + s is a subset of P . Consequently, we get

f -1 (L a,P ) = {u ∈ B * | f (u) ∈ L a,P } = {u ∈ B * | a f (u) ⊆ P } = b∈B s∈a f (b) {u ∈ B * | kb u + s ⊆ P } = b∈B s∈a f (b) {u ∈ B * | b u ⊆ Q s } = b∈B s∈a f (b)
L b,Qs .

Corollary 2.8. The classes of languages B and B ∩ Reg are closed under the operation L → f -1 (L), for any length-multiplying morphism f .

Proof. The result follows from Lemma 2.7 and from the fact that inverses of functions commute with Boolean operations.

It follows from Corollaries 2.4 and 2.8 that B ∩ Reg is a length-multiplying variety (or lm-variety) of languages, in the sense of Straubing [START_REF] Straubing | On logical descriptions of regular languages[END_REF].

Logical description of B

Let us turn to the logical description of B. For each subset P of N, let us define two entities: a 0-ary predicate which is true on u if and only if |u| ∈ P and a unary uniform numerical relation5 defined by P (n) = P ∩ {0, . . . , n -1}. Its interpretation on a word u is the subset P (|u|) of {0, . . . , |u| -1}.

We denote by FO[N 0 , N u 1 ] the class of languages defined by first-order sentences built on these predicates. Note that we do not consider = as a logical symbol, so that each formula is equivalent to one of quantifier depth at most one.

When defining the language given by a formula, it is preferable to avoid the empty word, as several problems arise when dealing with empty structures in logic. 6 Therefore, the language defined by a sentence ϕ is the set

L(ϕ) = {u ∈ A + | u satisfies ϕ}.
For instance if ϕ = ∃x ax, then L(ϕ) = A * aA * . We have the following logical description of our Boolean algebra B. Theorem 2.9. A language L of A + belongs to B if and only it belongs to

FO[N 0 , N u 1 ].
Proof. First we show that every language of B contained in

A + belongs to FO[N 0 , N u 1 ]
. It suffices to do it for the generators of B, namely the languages of the form L P and L a,P , where P ⊆ N and a ∈ A. The language L P is defined by the atomic formula |u| ∈ P and the language L a,P is defined by the formula ∀x (ax → x ∈ P ).

For the other direction we need to show that every language definable in the logic can be written as a Boolean combination of the L P and L a,P . Let us now have a closer look at the formulas of our logic fragment. Since we do not allow equality, the atomic formulas are |u| ∈ P , true, false, ax or x ∈ P for some variable x and some subset P of N (viewed as a unary uniform numerical relation). Furthermore, ¬ax is equivalent to b =a bx and ¬(x ∈ P ) is equivalent to x ∈ P c . Thus every quantifier-free formula can be written as a disjunction of conjunctions of atomic formulas.

Since all the predicates are 0-ary or unary, and since we do not allow equality, we cannot express any relationship between any two variables. Hence nested quantifiers can be pulled apart. It follows that every sentence is equivalent to a Boolean combination of existential formulas of depth at most one. Thus every sentence is a Boolean combination of sentences of the form (1) ϕ P = |u| ∈ P , where P ⊆ N,

(2) ϕ a,P = ∃x (ax ∧ x ∈ P ), where P ⊆ N and a ∈ A. It only remains to show that the languages L(ϕ P ) and L(ϕ a,P ) are in B. Clearly, L(ϕ P ) = L P ∈ B. The language defined by ϕ a,P is

L(ϕ a,P ) = {u ∈ A + | a u ∩ P = ∅} = {u ∈ A + | a u ⊆ P } = A + -L a,P c ,
and thus L(ϕ a,P ) belongs to B.

3 Some ultrafilter equations for B Let π 0 : A * × N k → A * be the projection defined by π 0 (u, n 1 , . . . , n k ) = u and let, for 1 i k, let π i : A * × N k → N be the projection on N defined by

π i (u, n 1 , . . . , n k ) = n i .
We first characterise the ultrafilter of P(A * ×N k ) having the same projections under each π i , for 1 i k.

Proposition 3.1. Let γ ∈ β(A * × N k ) with k 1.
Then, for each α ∈ βN, the following conditions are equivalent:

(1) βπ i (γ) = α for each i ∈ {1, . . . , k};

(2) {A * × P k | P ∈ α} ⊆ γ. Furthermore, these conditions hold for γ with respect to some α if and only if

(3) For each partition {P 1 , . . . , P n } of N, we have

n j=1 (A * × P k j ) ∈ γ.
Proof.

(1) implies (2) since A * × P k = k i=1 π -1 i (P ) and γ is closed under finite intersections.

(2) implies (1). Let P ∈ α and i ∈ {1, . . . , k}. Then by (2), A * × P k ∈ γ and thus π -1 i (π i (A * × P k )) ∈ γ so that P = π i (A * × P k ) ∈ βπ i (γ). It follows that α ⊆ βπ i (γ) and thus α = βπ i (γ) since ultrafilters are maximal.

For the second assertion, suppose there is an α ∈ βN such that (1) and (2) hold and {P 1 , . . . , P n } is a partition of N. Then n j=1 P j = N implies P ℓ ∈ α for some ℓ and thus A * × P k ℓ ∈ γ by [START_REF] Almeida | Finite semigroups and universal algebra[END_REF]. Since γ is an upset, condition (3) holds. Suppose now that γ satisfies (3) and let α = {P | A * × P k ∈ γ}. Then ∅ ∈ α and α is an upset closed under intersection. Furthermore, for each P ⊆ N, the partition {P, P c } forces A * × P k ∈ γ or A * × (P c ) k ∈ γ so that α is an ultrafilter. It follows by the equivalence of ( 1) and ( 2) that βπ i (γ) = α for each i ∈ {1, . . . , k}.

We are now ready to introduce the first class of equations pertinent to the languages treated in this paper. For this purpose, given u, s, t ∈ A * , where u = u 0 • • • u n-1 with each u k ∈ A and |s| = |t| = ℓ, and i, j ∈ N, define u(s@i, t@j) = u 0 . . . u i-1 su i+ℓ . . . u j-1 tu j+ℓ . . . u n-1 if i + ℓ j and j + ℓ n u otherwise.

Informally, we put s at position i and t at position j.

u0 • • • ui-1 ui • • • u i+ℓ-1 u i+ℓ • • • uj-1 uj • • • u j+ℓ-1 u j+ℓ • • • un-1 ↑ ↑ s t
For each pair (s, t) of words of the same length, let f s,t : A * × N 2 → A * be the function defined by f s,t (u, i, j) = u(s@i, t@j).

Theorem 3.2. Let s, t ∈ A * with |s| = |t|. If γ ∈ β(A * × N 2 ) and βπ 1 (γ) = βπ 2 (γ), then B satisfies the equation βf s,t (γ) = βf t,s (γ). ( 14 
)
Proof. Let a ∈ A and P ⊆ N. By Proposition 1.2, it suffices to prove that L a,P and L P satisfy the equations

βf s,t (γ) ↔ βf t,s (γ). ( 15 
)
First we have

L a,P ∈ βf (γ) ⇐⇒ f -1 (L a,P ) ∈ γ.
Thus (15) holds for L a,P if and only if

f -1 s,t (L a,P ) ∈ γ ⇐⇒ f -1 t,s (L a,P ) ∈ γ,
and by Proposition 1.8 this is equivalent to S / ∈ γ, where

S = f -1 s,t (L a,P ) △ f -1 t,s (L a,P ).
Let ℓ be the common length of s and t. If an element (u,

n 1 , n 2 ) ∈ A * × N 2 is in S then n 1 + 2ℓ n 2 + ℓ |u| since otherwise f s,t (u, n 1 , n 2 ) = f t,s (u, n 1 , n 2 ) = u. Suppose that (u, n 1 , n 2 ) ∈ f -1 s,t (L a,P ) \ f -1 t,s (L a,P ), that is, f s,t (u, n 1 , n 2 ) ∈ L a,P and f t,s (u, n 1 , n 2 ) /
∈ L a,P . Then all the positions of a in f s,t (u, n 1 , n 2 ) are in P and some position of a in f t,s (u, n 1 , n 2 ) is not in P . This latter position necessarily occurs inside one of the factors s or t of f s,t (u, n 1 , n 2 ). Consequently, there is an i ∈ {0, . . . , ℓ -1} such that one of the two following possibilities occurs:

(1) the letter in position

n 1 + i in f t,s (u, n 1 , n 2 ) is an a but n 1 + i / ∈ P , (2) the letter in position n 2 + i in f t,s (u, n 1 , n 2 ) is an a but n 2 + i / ∈ P . Now, in the first case, the letter in position n 2 + i in f s,t (u, n 1 , n 2 ) is an a. Thus n 2 + i ∈ P since f s,t (u, n 1 , n 2 ) ∈ L a,P .
Similarly, we conclude that n 1 + i ∈ P in the second case. In summary, we have either n 1 + i / ∈ P and n 2 + i ∈ P (first case) or n 1 + i ∈ P and n 2 + i / ∈ P (second case). In both cases we conclude that

(u, n 1 , n 2 ) ∈ ℓ-1 i=0 π -1 1 (P -i) △ π -1 2 (P -i) .
The case (u, n 1 , n 2 ) ∈ f -1 t,s (L a,P ) \ f -1 s,t (L a,P ) leads to the same conclusion and thus we have shown that

S ⊆ ℓ-1 i=0 π -1 1 (P -i) △ π -1 2 (P -i) . If S ∈ γ, then ℓ-1 i=0 π -1 1 (P -i) △ π -1 2 (P -i) ∈ γ and since γ is an ultrafilter, π -1 1 (P -i) △ π -1
2 (Pi) ∈ γ for some i ∈ {0, . . . , ℓ -1}. We complete the proof that S / ∈ γ by showing that, for every

Q ⊆ N we have π -1 1 (Q) △ π -1 2 (Q) / ∈ γ, or equivalently, (π -1 1 (Q) △ π -1 2 (Q)) c ∈ γ. But this is a direct consequence of Proposition 3.1(3) since (π -1 1 (Q) △ π -1 2 (Q)) c = A * × (Q × Q) ∪ (Q c × Q c ) .
Thus S / ∈ γ and L a,P satisfies the equation βf s,t (γ) = βf t,s (γ). By the same argument as applied above, L P satisfies the equations (15) if and

only if f -1 s,t (L P ) △ f -1 t,s (L P ) / ∈ γ. However, since |f s,t (u, n 1 , n 2 )| = |f t,s (u, n 1 , n 2 )| and since x ∈ L P implies y ∈ L P if |y| = |x|, we have f -1 s,t (L P ) = f -1 t,s (L P ) and thus f -1 s,t (L P ) △ f -1
t,s (L P ) = ∅ and therefore it does not belong to γ.

The ultrafilter equations of Theorem 3.2 tell us that our Boolean algebra (or equivalently our logic fragment) cannot tell the order of occurrence of letters occurring in equivalent positions. We need another family of ultrafilter equations in order to characterise B. These tell us that, though B can tell whether or not a letter occurs in a set of equivalent positions, it cannot tell how many times each such letter occurs. For this purpose, we need functions f s1,s2,s3 : A * × N 3 → A * given by s 1 , s 2 , s 3 ∈ A * with |s 1 | = |s 2 | = |s 3 | and defined by f s1,s2,s3 (u, n 1 , n 2 , n 3 ) = u(s 1 @n 1 , s 2 @n 2 , s 3 @n 3 ), where u(s 1 @n 1 , s 2 @n 2 , s 3 @n 3 ) is the word obtained from u by putting s i at position n i when n 1 + |s 1 | n 2 , n 2 + |s 2 | n 3 and n 3 + |s 3 | |u| and as u otherwise. One can then prove the following theorem.

Theorem 3.3. Let s, t ∈ A * with |s| = |t|. If γ ∈ β(A * × N 3 ) and βπ 1 (γ) = βπ 2 (γ) = βπ 3 (γ), then B satisfies the equation βf t,s,s (γ) = βf t,t,s (γ).
Proof. The proof is very similar to the proof of Theorem 3.2 but is based on

f s1,s2,s3 : A * × N 3 → A * .
The ultrafilter equations introduced in this section can be used to prove separation results for nonregular languages. To illustrate this, we show that the set of words of odd length with an a in the middle position does not belong to The proof relies on a technique that we will use again in Section 4. It consists in proving that adding certain sets to the filter subbasis

F =    n j=1 (A * × P 2 j ) | {P 1 , . . . , P n } is a partition of N   
still yields a filter subbasis.

Proof. Let S = {(u, n 1 , n 2 ) ∈ A * × N 2 | n 1 < n 2 2n 1 + 1 = |u|}
We show that adding the set S to the filter subbasis F yields again a filter subbasis. To this end, let {P 1 , . . . , P n } be a partition of N. Then, for m ∈ N with n m there are m + 1 natural numbers n 2 with m < n 2 2m + 1. By the pigeonhole principle, there is an i with 1 i n and n 1 , n 2 ∈ N such that n 1 , n 2 ∈ P i and m < n 1 < n 2 2m + 1. It follows that n 1 < n 2 2n 1 + 1 and thus, for any u ∈ A * with |u| = 2n 1 + 1, we have (u, n 1 , n 2 ) ∈ S ∩ (A * × P 2 i ) and thus S ∩ (A * × P 2 i ) is nonempty and the union of the two families is a filter subbasis as required.

Now let γ ∈ P(A * × N 2 ) be an ultrafilter containing this larger filter subbasis. Since F ⊆ γ, it follows, by Proposition 3.1.3, that βπ 1 (γ) = βπ 2 (γ) where 

π i : A * × N 2 → N, (w, n 1 , n 2 ) → n i for i = 1, 2. Therefore, by Theorem 3.2, it follows that B satisfies βf a,b (γ) ↔ βf b,a (γ). However, if (u, n 1 , n 2 ) ∈ S, then |u| = 2n 1 + 1 and u(a@n 1 , b@n 2 ) ∈ Middle a, but u(b@n 1 , a@n 2 ) / ∈ Middle a. That is,

Completeness

In this section we show that the two families of ultrafilter equations introduced in the previous section are sufficient for characterising B. For a, b ∈ A, let E ab=ba denote the family of equations

βf ab (γ) ↔ βf ba (γ), (E ab=ba )
where γ ranges over all elements of β(A * × N 2 ) satisfying βπ 1 (γ) = βπ 2 (γ), and let E aab=abb denote the family of equations

βf aab (γ) ↔ βf abb (γ), (E aab=abb )
where γ ranges over all elements of β(A * × N 3 ) satisfying βπ 1 (γ) = βπ 2 (γ) = βπ 3 (γ). We will show that any L ∈ P(A * ) which satisfies both E ab=ba and E aab=abb for all a, b ∈ A must belong to B.

The proof may be divided into the following stages: First we define, for every language L ∈ P(A * ), a binary relation R L on N, which, roughly speaking, relates two positions provided L cannot differentiate between them. Next we prove that, if L satisfies the equations E ab=ba for all a, b ∈ A, then R L contains an equivalence relation of finite index. This allows us to concentrate on infinite subsets P ⊆ N such that P 2 is entirely contained in R L . We then show that for such sets the equations E aab=abb , where a and b range over all letters of A allow us, for sufficiently long words, to decide membership in L based only on equality of words outside P and on the set of letters occurring within P . Finally, we show that the combination of the two families of equations allow us to prove completeness.

A binary relation on positions given by a language

The support of a permutation on N is the set of its non-fixpoints. Let σ be a permutation on N and w ∈ A * . If the support of σ is contained in {0, . . . , |w|-1}, we denote by w• σ the word defined by

(w• σ) k = w σ(k) for 0 k |w| -1.
A permutation σ with finite support is said to be compatible with L provided that for all w ∈ A * , if the support of σ is contained in {0, . . . , |w| -1}, then w ∈ L ⇐⇒ w• σ ∈ L.

We denote the set of all permutations compatible with L by Comp(L). Note that Comp(L) contains the identity and is closed under inverses. While Comp(L) is not closed under composition in general, we do have that if the supports of σ and τ are both contained in the support of σ • τ (so that all words needed to be considered in checking compatibility of the composition are covered by the compatibility of each of σ and τ ), then σ, τ ∈ Comp(L) implies σ • τ ∈ Comp(L). Let R L be the binary relation on N defined by i R L j ⇐⇒ i = j or the transposition (i j) is compatible with L.

Proposition 4.1. For each language L of A * , the relation R L is reflexive and symmetric. Furthermore, if σ is a permutation with finite support satisfying n R L σ(n) for all n, then σ is compatible with L.

Proof. The relation R L is clearly reflexive and symmetric. For the second assertion, let σ be a permutation of finite support such that n R L σ(n) for all n. As any permutation with finite support, σ may be written as a finite product of disjoint finite cycles. Furthermore, any cycle (n 1 n 2 . . . n k ) may be written as a product of transpositions in the form

(n 1 n 2 . . . n k ) = (n 2 n 3 )(n 3 n 4 ) . . . (n k-1 n k )(n k n 1 ),
and since each of these transpositions is compatible with L, it follows that the cycle (n 1 n 2 . . . n k ) is compatible with L and σ is also compatible with L.

Note that for any word w ∈ A * with k, l, m |w|, we have

w• (k m) = [[w• (k l)]• (l m)]• (k l),
so, if both (k l) and (l m) are compatible with L, then w ∈ L if and only if w• (k m) ∈ L. However, if k, m < l it may happen that there is a word w ∈ L with k, m |w| < l with w• (k m) ∈ L even though both (k l) and (l m) are compatible with L. It follows that in general R L is not transitive.

R L and E ab=ba

If L satisfies the equations E ab=ba , we get close to having that R L is an equivalence relation in the following sense. 

S ab = {(u, k, ℓ) ∈ A * × N 2 | k < ℓ < |u|, u k = a, u ℓ = b, u ∈ L but u• (k ℓ) / ∈ L} and M ab = {(k, ℓ) ∈ N 2 | there exists u ∈ A * such that (u, k, ℓ) ∈ S ab or (u, ℓ, k) ∈ S ab }.
Then we have

R c L = (a,b)∈A 2 M ab .
We show that for all (a, b) ∈ A 2 there is a finite partition {P 1 , . . . , P n } of N such that the corresponding equivalence relation θ ab is disjoint from M ab . To see this, suppose that, for each finite partition {P 1 , . . . , P n } of N,

M ab ∩ ( n i=1 P 2 i ) = ∅.
Then adding S ab to the filter subbasis F introduced on page 16 yields a filter subbasis, and thus there is an ultrafilter γ ∈ β(A * ×N 2 ) containing F and having S ab as an element. Now it follows by the definition of S ab that f ab (S ab ) ⊆ L or equivalently that S ab ⊆ f -1 ab (L). Thus f -1 ab (L) ∈ γ and thus L ∈ βf ab (γ). Also by definition of S ab we have f ba (S ab ) ⊆ L c and thus L ∈ βf ba (γ). By contraposition, if L satisfies E ab=ba , then there is an equivalence relation θ ab of finite index which is disjoint from M ab . Setting θ = a,b∈A θ ab , we see that θ is an equivalence Proof. Let n = |u| = |v| and let P be an equivalence class of θ. For each a ∈ A, the sets a u ∩ P and a v ∩ P have the same cardinality and thus there exists a bijection σ a,P : a u ∩ P → a v ∩ P .

relation of finite index contained in R L since θ = (a,b)∈A 2 θ ab ⊆ (a,b)∈A 2 M c ab = R L .
Observe that the sets a u ∩ P (respectively a v ∩ P ), where a ∈ A, are pairwise disjoint and their union is P ∩ {0, . . . , n -1}. Therefore one can define a permutation σ P on N of support contained in P ∩ {0, . . . , n -1} by setting

σ P (k) = σ a,P (k) if k ∈ P ∩ {0, . . . , n -1} and u k = a k if k / ∈ P ∩ {0, . . . , n -1}.
Since P × P is contained in R L , one has k R L σ P (k) for all k, and thus by Proposition 4.1, σ P is compatible with L. Let P 1 , . . . , P r be the equivalence classes of θ. Then the permutations σ P1 , . . . , σ Pr have pairwise disjoint support and hence pairwise commute. Their product (in any order) is a permutation σ of support {0, . . . , n -1} which is also compatible with L. Finally, since u• σ = v by construction, we get that u ∈ L if and only if v ∈ L.

Infinite sets of R L -equivalent positions and E aab=abb

We will need the following notation. For w ∈ A * and P ⊆ N, we let c P (w) = {a ∈ A | there exists n ∈ P such that w n = a}.

Lemma 4.5. Let L be a language of A * satisfying the equations E aab=abb for all a, b ∈ A. Then there exists n ∈ N such that for all u, v ∈ A * , if

(i) n |u| = |v|, (ii) u i = v i for all i / ∈ P , (iii) c P (u) = c P (v), then u ∈ L ⇐⇒ v ∈ L.
Proof. By way of contraposition, we suppose that for each n ∈ N there exist two words of A * , u(n) and v(n) satisfying (i)-(iii) and u(n

) ∈ L but v(n) / ∈ L.
As a first step, we prove that we may assume in addition that for each n, there exist (a n , b n ) ∈ A 2 such that u(n) and v(n) satisfy (iv)

|u(n)| an,P = |v(n)| an,P + 1 |v(n)| bn,P = |u(n)| bn,P + 1 |u(n)| c,P = |v(n)| c,P for all c ∈ A with a n = c = b n .
If for each a ∈ A we have |u(n)| a,P = |v(n)| a,P , then by (ii) this would be true for each θ equivalence class and thus by Proposition 4.4 we would have It is not hard to see that G is connected and that u(n), v(n) ∈ V . Thus there is a path in G from u(n) to v(n) and there must be an edge (w, w ′ ) on this path such that w ∈ L and w ′ / ∈ L. By picking w for u(n) and w ′ for v(n) it follows that we may assume that (i)-(iv) hold for u(n) and v(n). Now let p : N → A 2 be the map defined by p(n) = (a n , b n ). By the Pigeonhole Principle there is a pair (a, b) ∈ A 2 such that the set

u(n) ∈ L if and only if v(n) ∈ L. Thus there exists a ∈ A with |u(n)| a,P = |v(n)| a,P . Consider the graph G = (V, E) on V = {w ∈ A * | |w| = |u(n)|, w i = u i for all i / ∈ P,
M = p -1 (a, b) is infinite.
We claim that for all i, j, k ∈ P with i < j < k there is x ∈ A * with f aab (x, i, j, k) ∈ L and f abb (x, i, j, k) / ∈ L. To show this, let i, j, k ∈ P with i < j < k. Let n ∈ M with k < n. Then the words u = u(n) and v = v(n) satisfy Conditions (i)-(iv). Also note that by definition of M we have a n = a and b n = b. Conditions (iii) and (iv) imply that u contains at least two occurrences of a, say in positions i ′ = j ′ both in P , and at least one b, say in position k ′ also in P . Now let σ be any permutation of support contained in P ∩ {0, . . . , |u| -1} which maps i ′ , j ′ and k ′ to i, j and k, respectively and let x = u• σ. Since P is an equivalence class contained in R L , one has p R L σ(p) for all p ∈ N. It follows by Proposition 4.1 that x ∈ L. Furthermore, the equality x = f aab (x, i, j, k) holds by construction. The word x ′ = f abb (x, i, j, k) satisfies |x ′ | c,P = |v| c,P for all c ∈ A and x ′ i = v i for all i / ∈ P , so by Proposition 4.4 we have f abb (x, i, j, k) / ∈ L, which proves the claim.

Finally, we let

S = {(x, i, j, k) ∈ A * × N 3 | f aab (x, i, j, k) ∈ L and f abb (x, i, j, k) / ∈ L}.
For any partition {P 1 , . . . , P r } of N there is an i ∈ {1, . . . , r} such that P ∩ P i is infinite. Now picking i < j < k in P ∩ P i , the claim shows that there exists x ∈ A * such that (x, i, j, k) ∈ S and thus (A * × P 3 i ) ∩ S is nonempty. As in the proof of Lemma 4.2 it now follows that there exists γ ∈ β(A * × N 3 ) with βπ 1 (γ) = βπ 2 (γ) = βπ 3 (γ) and L ∈ βf aab (γ) but L / ∈ βf abb (γ). Thus L does not satisfy the equations E aab=abb , which proves the lemma by contraposition.

Proof of completeness

Lemma 4.6. Let L be a language of A * satisfying the equations E ab=ba and E aab=abb for all a, b ∈ A. Then there exists a finite index equivalence relation θ contained in R L and an n ∈ N such that for all u, v ∈ A * , if n |u| = |v| and c P (u) = c P (v) for each θ equivalence class P,

then u ∈ L ⇐⇒ v ∈ L.
Proof. If L satisfies the equations E ab=ba then by Corollary 4.3, R L contains an equivalence relation θ of finite index, for which each finite equivalence class is a singleton. Let P 1 , . . . , P r be the equivalence classes of θ. For each i ∈ {1, . . . , r} with P i infinite, we define n i in Lemma 4.5 and we let n = max{n i | P i is infinite}. Now let u, v ∈ A * , with n |u| = |v| and c P (u) = c P (v) for each θ equivalence class P . We define words w i ∈ A * for i = 0, . . . , r by

(w i ) j = u j if j ∈ P k and i < k v j otherwise.
By construction we have w 0 = u, w r = v and Lemma 4.5 applies to each pair w i-1 , w i with i ∈ {1, . . . , r} and thus

w i-1 ∈ L ⇐⇒ w i ∈ L,
and it follows that u ∈ L ⇐⇒ v ∈ L. Then by Lemma 4.6 the following equality holds

L = L ∩ (1 ∪ A) n ∪ S∈P((P(A)) r ) L(S) ∩ L f -1 (S) ,
and since B contains all finite languages, this formula shows that L ∈ B.

5 The regular case Proposition 1.5 shows that in order to obtain a set of profinite equations defining the Boolean algebra B ∩ Reg, it suffices to project, for all a, b ∈ A, the families E ab=ba and E aab=abb introduced above onto the free profinite monoid. The resulting set of profinite equations will then be used to prove that membership in B ∩ Reg is decidable. However, these equations obtained by projection are not in a form that is familiar to researchers working on regular languages. As a last step, we show by purely classical rewriting methods that our first set of equations is equivalent to a set of equations in a more familiar form.

The profinite projections of the ultrafilter equations for B

The length homomorphism ℓ : A * → N given by ℓ(a) = 1 for each a ∈ A and its extension ℓ : A * → N will play an essential role in this subsection. It is important to note that ℓ is a homomorphism of profinite monoids. We denote by ω the unique idempotent of N -N. It is the limit of the sequence n!. It then follows that n! -1 is also a convergent sequence in N and its limit, which we denote by ω -1, is the unique solution of the equation x + 1 = ω.

We begin with the following partial description of the equations obtained by projection. For this purpose, we will need the following notation: Given a word u = a 0 • • • a n-1 ∈ A * where a i ∈ A, and k and ℓ with 0

k ℓ < n, we let u[k, ℓ] = a k • • • a ℓ . Proposition 5.1. Let a, b ∈ A. Every non-trivial equation in the set π Reg (E ab=ba ) is of the form xaybz ↔ xbyaz, (16) 
where x, y, z ∈ A * with x / ∈ A * and ℓ(y) = ω -1. Similarly, every non-trivial equation in the set π Reg (E aab=abb ) is of the form

xayay ′ bz ↔ xayby ′ bz, (17) 
where x, y, y ′ , z ∈ A * with x / ∈ A * and ℓ(y) = ℓ(y ′ ) = ω -1.

Proof. Let a, b be two fixed letters. We give a detailed proof for E ab=ba , the proof for E aab=abb being similar. Let γ ∈ β(A * × N 2 ) with βπ 1 (γ) = βπ 2 (γ). We first note that we may assume that the set D = {(u, i, j) | u ∈ A * and i < j < |u|} belongs to γ. Otherwise, D c belongs to γ and thus f -1 ab (L) ∈ γ if and only if

f -1 ab (L) ∩ D c ∈ γ. Similarly, f -1 ba (L) ∈ γ if and only if f -1 ba (L) ∩ D c ∈ γ. Now, observing that f ab = f ba = π 0 on D c , we get D c ∩ f -1 ab (L) = D c ∩ π -1 0 (L) = D c ∩ f -1
ba (L) Thus βf ab (γ) and βf ba (γ) are one and the same ultrafilter, namely βπ 0 (γ). It thus follows that in this case the equation βf ab (γ) ↔ βf ba (γ) is trivially satisfied by all languages in A * . Thus we may restrict our attention to the equations βf ab (γ) ↔ βf ba (γ) with βπ 1 (γ) = βπ 2 (γ) and D ∈ γ.

As explained in Section 1.3, we will identify D with βD. In order to prove the proposition, we will show that given γ ∈ βD with βπ 1 (γ) = βπ 2 (γ), there exist x, y, z ∈ A * with x / ∈ A * and ℓ(y) = ω -1 such that π Reg (βf ab (γ)) = xaybz and π Reg (βf ba (γ)) = xbyaz.

Let q : D → (A * ) 3 and g ab : (A * ) 3 → A * be the maps given by q(w, i, j)

= (w[0, i -1], w[i + 1, j -1], w[j + 1, |w| -1]) g ab (x, y, z) = xaybz.
Since A * 3 is compact, q has a unique continuous extension βq : βD → A * 3 . Similarly, g ab has a unique continuous extension g ab : A * 3 → A * . Consider the following diagram, in which all the functions are continuous:

βD βA * A * 3 A * βf ab g ab βq π Reg
Since, for all (w, i, j) ∈ D,

(g ab • q)(w, i, j)) = w[0, i -1]aw[i + 1, j -1]bw[j + 1, |w| -1] = f ab (w),
and since D is dense in βD, the diagram commutes. Let now γ ∈ βD be an ultrafilter such that βπ 1 (γ) = βπ 2 (γ). Setting (x, y, z) = βq(γ), we get π Reg (βf ab (γ)) = xaybz and the same argument applied to βf ba and g ba yields the equality π Reg (βf ba (γ)) = xbyaz.

In order to show that x / ∈ A * and that ℓ(y) = ω -1, consider the following diagrams, where p 1 (x, y, z) = ℓ(x) and p 2 (x, y, z) = ℓ(x) + ℓ(y) + 1. We are now ready to identify the projections of our ultrafilter equations precisely. Now let m be a common multiple of p and q. Then there is i ∈ {1, . . . , n} such that the set

P i ∩ r + mN is infinite. Now let n 1 , n 2 ∈ P i ∩ r + mN with n 2 -n 1 > N . Then n 1 ∈ r + mN ⊆ r +pN implies that there is u ∈ K with ℓ(u) = n 1 . Also, n 2 -n 1 ∈ mN ∩ [N, +∞[ so there is v ∈ L with ℓ(av) = n 2 -n 1 .
Taking now any word w ∈ M , we get

(uavaw, n 1 , n 2 ) ∈ Γ (K, L, M ) ∩ (A * × P 2 i ), which shows that Γ (K, L, M ) ∩ (A * × P 2 i ) is nonempty as required.
One can slightly simplify the equations given in Theorem 5.2. 19) and (20) on the other hand define the same Boolean algebra closed under quotients.

Membership in B ∩ Reg

The aim of this section is to prove that membership in B ∩ Reg is decidable. By Theorem 5.2 it suffices to effectively decide whether a given regular language satisfies the equations ( 19) and (20). These equations involve two types of profinite words that require a separate study: the nonfinite profinite words and the profinite words of length ω -1.

Let L be a regular language of A * . Let η : A * → M be its syntactic morphism and let η : A * → M be the continuous extension of η to A * .

Let us first compute the image by η of a nonfinite profinite word. Let E be the set of idempotents of the semigroup η(A + ). The following lemma is a direct consequence of [2, Corollary 5.6.2 (c)]: Lemma 5.4. The following formula holds: η( A * -A * ) = M EM .

Next we compute the image by η of the set of profinite words of length ω -1. This requires to work with the monoid P(M ), equipped with the subset multiplication defined as follows. For every X, Y ∈ P(M ),

XY = {xy | x ∈ X, y ∈ Y }.
Let R = η(A). Then R generates a cyclic submonoid of P(M ), whose minimal ideal is a group G. The map n → R n defines a monoid morphism from the additive monoid N to P(M ). This morphism has a unique continuous extension to N and since ω is an idempotent of N, R ω is an idempotent of P(M ). Consequently, R ω is the identity of G and R ω-1 is the inverse of R ω+1 in G. The following lemma shows how R ω-1 is related to the profinite words of length ω -1.

Lemma 5.5. An element m of M belongs to R ω-1 if and only if there exists a profinite word y ∈ A * such that η(y) = m and ℓ(y) = ω -1.

Proof. If y

∈ A * is a profinite word such that ℓ(y) = ω-1, then η(y) ∈ R ω-1 . Let n be an integer such that R ω = R n . Then for all k > n, R k! = R ω and R k!-1 = R ω-1 . Therefore, if m ∈ R ω-1 , there exists a word y k such that η(y k ) = m and |y k | = k! -1. Since A * is compact,
there is a subsequence of the sequence (y k ) k>n converging to a profinite word y. By construction, one has η(y) = m and ℓ(y) = ω -1, which proves the lemma.

We are now ready to prove the decidability of the membership in B ∩ Reg. More precisely, we get the following result. Proof. This is an immediate consequence of the structure of the equations ( 19) and (20), of the definition of R, of Theorem 5.2 and of Lemmas 5.4 and 5.5.

Corollary 5.7. Membership in B ∩ Reg is decidable.

An alternative set of equations for B ∩ Reg

Though our work in the previous subsection provides a set of profinite equations for B ∩ Reg and establishes the decidability of membership in this Boolean algebra, we proceed to give an alternative set of profinite equations, which is closer in spirit to the profinite equations usually given in the theory of regular languages. We begin by identifying certain families of projections of the equations introduced in Section 3.

Theorem 5.8. The Boolean algebra B ∩ Reg satisfies the profinite equations of the form A similar argument using (20) instead of (19) as a starting point yields the following theorem.

(x ω-1 s)(x ω-1 t) = (x ω-1 t)(x ω-1 s), (22) 
Theorem 5.9. The Boolean algebra B ∩ Reg satisfies the profinite equations of the form (x ω-1 s)(x ω-1 s)(x ω-1 t) = (x ω-1 s)(x ω-1 t)(x ω-1 t), (24) where x, s, t ∈ A * and |s| = |t| = |x|.

In the setting of Boolean algebras of regular languages closed under quotients, the equations of Theorem 5.9 are equivalent to a simpler family. Proposition 5.10. A Boolean algebra of regular languages closed under quotients satisfies the set of profinite equations (24) if and only if it satisfies the set of profinite equations (x ω-1 s)(x ω-1 s) = x ω-1 s, (25) where x, s ∈ A * and |s| = |x|.

Proof. Let L be a Boolean algebra of regular languages closed under quotients. Suppose that the equations (24) hold for L and let x, s ∈ A * with |s| = |x|. Then (24) with x substituted for s and s substituted for t yields (x ω-1 x)(x ω-1 x)(x ω-1 s) = (x ω-1 x)(x ω-1 s)(x ω-1 s), which gives (25) since x ω x ω-1 = x ω-1 .

Conversely, if (25) holds for L, and x, s, t ∈ A * are three words of the same length, then the equations (x ω-1 s)(x ω-1 s) = x ω-1 s and x ω-1 t = (x ω-1 t)(x ω-1 t) hold for L. Since L is closed under quotients, Proposition 1.3 shows that (x ω-1 s)(x ω-1 s)(x ω-1 t) = (x ω-1 s)(x ω-1 t)(x ω-1 t) holds for L.

We will now show that any regular language satisfying the equations ( 22) and (25) also satisfies the profinite equations ( 19) and (20).

The circular shift operator σ : A * → A * maps a word x = a 0 . . . a n-1 to σ(x) = a 1 . . . a n-1 a 0 . As in Section 5.2, η : A * → M denotes the syntactic morphism of a regular language L. For the remainder of the paper, we define d as the smallest multiple of |M |! such that for all R ∈ P(M ), R d is idempotent. In particular, s d is idempotent for all s ∈ M . For any r ∈ N, we denote by [r] the remainder after division of r by d. Furthermore, we use the notation u = η v for η(u) = η(v).

Lemma 5.11. Suppose that L satisfies the equations (22). Let p, x ∈ A * with |x| = d and px ω = η p. If q ∈ A * is of length n, then pq = η pq (σ n (x)) ω .

Proof. The result may be proved by induction on the length of q. We give the proof in the case n = 1 in order to simplify notation. The inductive step is then an easy consequence. Let a ∈ A. Now for the proof by induction, if the length of q is 0, then the result simply follows from the relation px ω = η p. Suppose by induction that the result holds for a word of length less than or equal to n. A word of length n + 1 is of the form qa where q is of length n. Thus, by the induction hypothesis, we have pq = η pq (σ n (x)) ω .

By the case n = 1 with pq in the place of p and σ n (x) in place of x, we obtain pqa(σ(σ n (x))) ω = η pqa.

Since σ(σ n (x)) = σ n+1 (x), the desired result follows. A similar argument would lead to the following proposition.

Proposition 5.15. If L satisfies the equations (24), then it satisfies the equations (20).

We can now state our final result.

Theorem 5.16. The Boolean algebra B ∩ Reg is defined by the profinite equations (x ω-1 s)(x ω-1 t) = (x ω-1 t)(x ω-1 s) and (x ω-1 s)(x ω-1 s) = x ω-1 s, 

Proposition 1 . 2 .

 12 Let B be a Boolean algebra of languages of A * closed under quotients and let γ 1 , γ 2 ∈ βA * . If B satisfies the equation γ 1 ↔ γ 2 , then it satisfies the equations uγ 1 ↔ uγ 2 and γ 1 u ↔ γ 2 u for each word u ∈ A * . For a Boolean algebra of regular languages closed under quotients, a stronger property holds. Proposition 1.3. Let B be a Boolean algebra of regular languages of A * closed under quotients and let w 1 , w 2 ∈ A * . If B satisfies the profinite equation w 1 ↔ w 2 , then it satisfies the profinite equations uw 1 ↔ uw 2 and w 1 u ↔ w 2 u for each profinite word u ∈ A * .

( 2 )

 2 L satisfies the profinite equation u = v if and only if η(u) = η(v). Proof. (1) follows from [4, Corollary 5.1].

  aL a,P = aA * ∩ L a,(P +1)∪{0} aL c a,P = aA * ∩ L c a,(P +1)∪{0} (10) bL a,P = bA * ∩ L a,P +1 bL c a,P = bA * ∩ L c a,P +1 .

3 . 4 .

 34 B. Let Middle a = {uav | u, v ∈ {a, b} * and |u| = |v|} Proposition The language Middle a does not belong to B.

  f a,b (S) ⊆ Middle a and f b,a (S) ⊆ (Middle a) c . Now f a,b (S) ⊆ Middle a is equivalent to S ⊆ f -1 a,b (Middle a) and since S ∈ γ, it follows that f -1 a,b (Middle a) ∈ γ, or equivalently that Middle a ∈ βf a,b (γ). Similarly, f b,a (S) ⊆ (Middle a) c implies (Middle a) c ∈ βf b,a (γ) or equivalently Middle a ∈ βf b,a (γ). That is, Middle a does not satisfy the equation βf a,b (γ) = βf b,a (γ) and thus, by Theorem 3.2, Middle a is not in B.

Lemma 4 . 2 .

 42 If a language L of A * satisfies the equations E ab=ba for all a, b ∈ A, then R L contains an equivalence relation of finite index. Proof. For (a, b) ∈ A 2 , let

Corollary 4 . 3 .

 43 If a language L of A * satisfies the equations E ab=ba for all a, b ∈ A, then R L contains an equivalence relation of finite index for which each finite equivalence class is a singleton. Proof. By Lemma 4.2, if L satisfies the equations E ab=ba for all a, b ∈ A, then R L contains an equivalence relation θ which is of finite index. It follows that θ has only finitely many finite equivalence classes. By splitting each of these finite equivalence classes into singleton classes, we obtain an equivalence relation θ ′ , still of finite index, which is contained in θ, and thus also in R L , with the required property.We will use the following notation. For w ∈ A * , a ∈ A, and P ⊆ N, we set |w| a,P = |a w ∩ P | = |{n ∈ P | w n = a}|. Proposition 4.4. Let L be a language of A * and let θ be an equivalence relation of finite index contained in R L . Let u and v be two words such that |u| = |v| and |u| a,P = |v| a,P for each a ∈ A and each equivalence class P of θ. Then u ∈ L ⇐⇒ v ∈ L.

  and c P (w) = c P (u(n))} given by (w, w ′ ) ∈ E if and only if there exist a, b ∈ A with |w| a,P = |w ′ | a,P + 1, |w ′ | b,P = |w| b,P + 1, and |w| c,P = |w ′ | c,P for all c ∈ A with a = c = b.

Theorem 4 . 7 .LL

 47 If L ∈ P(A * ) satisfies the equations E ab=ba and E aab=abb for all a, b ∈ A, then L ∈ B. Proof. First notice that for P ⊆ N and B ⊆ A, the set L P,B = {u ∈ A * | c P (u) = B} belongs to B since L P,B = a∈A\B L a,P c ∩ a∈B L c a,P c . By Corollary 4.3, the relation R L contains an equivalence relation θ of finite index for which each finite equivalence class is a singleton. Let P 1 , . . . , P r be the corresponding partition of N. By Lemma 4.6, there is an n ∈ N such that for each m ∈ N with m n, there exists a S m of P(A) r such that A m ∩ L = A m ∩ (B1,...,Br)∈Sm r i=1 Pi,Bi . Now let f : [n, +∞[ → P((P(A)) r ) be defined by f (m) = S m , and, for each S ∈ P((P(A)) r ), define the shorthand L(S) = (B1,...,Br)∈S r i=1 Pi,Bi .

  RegSince each diagram commutes on D, they both commute. Thus, for γ ∈ βD with βπ 1 (γ) = βπ 2 (γ), we havep 1 • βq(γ) = p 2 • βq(γ). That is, the projection of the equation βf ab (γ) ↔ βf ba (γ) is of the form xaybz ↔ xbyaz,where (x, y, z) ∈ A * 3 satisfies ℓ(x) = ℓ(x) + ℓ(y) + 1 or equivalently ℓ(x) / ∈ N and ℓ(y) + 1 = ω and thus x / ∈ A * and ℓ(y) = ω -1.

Theorem 5 . 2 .

 52 The Boolean algebra B ∩ Reg is defined by the set of profinite equations of the form xaybz ↔ xbyaz and xayay ′ bz ↔ xayby ′ bz, (18) where a, b ∈ A, x, y, y ′ , z ∈ A * with x / ∈ A * and ℓ(y) = ℓ(y ′ ) = ω -1.

Corollary 5 . 3 .

 53 The Boolean algebra B ∩ Reg is defined by the set of profinite equations of the form xayb = xbya (19) and xayay ′ b = xayby ′ b, (20) where a, b ∈ A, x, y, y ′ ∈ A * with x / ∈ A * and ℓ(y) = ℓ(y ′ ) = ω -1. Proof. First of all, since B ∩ Reg is closed under quotients, one can freely replace the equations (18) by xaybz = xbyaz and xayay ′ bz = xayby ′ bz, (21) where a, b ∈ A, x, y, y ′ , z ∈ A * with x / ∈ A * and ℓ(y) = ℓ(y ′ ) = ω -1. The equations (19) and (20) correspond to the equations (21) with z = 1. Furthermore, Proposition 1.3 shows that if B ∩ Reg satisfies an equation of the form xayb = xbya, then it also satisfies the equations xaybz = xbyaz for all z ∈ A * . A similar argument works for an equation of the form xayay ′ b = xayby ′ b, which proves that the set of equations (18) on the one hand and (

Proposition 5 . 6 .

 56 A regular language L satisfies the equations (19) and (20) if and only if the equalities xayb = xbya and xayay ′ b = xayby ′ b hold for all x ∈ M EM , a, b ∈ A and y, y ′ ∈ R ω-1 .

  where x, s, t ∈ A * and |s| = |t| = |x|. Proof. Let B = {a, b, c} be a three letter alphabet. It follows from Corollary 5.3 that (B ∩ Reg)(B * ) satisfies the profinite equations (19) xayb = xbya where x, y ∈ B * -B * and ℓ(y) = ω -1. Taking x = y = c ω-1 in (19), we get the profinite equation (c ω-1 a)(c ω-1 b) = (c ω-1 b)(c ω-1 a). (23) Let now x, s and t be words of A * of the same length and let f : B * → A * be the length-multiplying morphism defined by f (a) = s, f (b) = t and f (c) = x. Corollary 2.8 shows that if L ∈ B ∩ Reg(A * ), then f -1 (L) ∈ B ∩ Reg(B * ). In particular, f -1 (L) satisfies (23). It follows now from Proposition 1.7 that L satisfies the profinite equation f ((c ω-1 a)(c ω-1 b)) = f ((c ω-1 b)(c ω-1 a)) which is exactly Equation (22).

  Setting x = b 0 . . . b d-1 with b i ∈ A, we get pa(σ(x)) ω = η p x ω a(σ(x)) ω = η p x d a(σ(x)) d = p b 0 (σ(x)) d-1 (b 1 . . . b d-1 a)(σ(x)) d-1 σ(x) = η p b 0 (σ(x)) ω-1 (b 1 . . . b d-1 a)(σ(x)) ω-1 σ(x).It follows from (22) that for s = b 1 . . . b d-1 a we have |s| = |x| = |σ(x)| and thus(σ(x)) ω-1 s(σ(x)) ω-1 σ(x) = η (σ(x)) ω-1 σ(x)(σ(x)) ω-1 s.Using that = η is a congruence, the properties of ω and some rewriting we obtainpa(σ(x)) ω = η p b 0 (σ(x)) ω-1 σ(x)(σ(x)) ω-1 (b 1 . . . b d-1 a) = η p b 0 (σ(x)) d-1 σ(x)(σ(x)) d-1 (b 1 . . . b d-1 a)= px 2d a = η pa.

  and applying Corollary 5.12 to the word qarb = a 0 • • • a n-1 , we getpqarb = η p(v d-1 v(a 0 @[0])) • • • (v d-1 v(a n-1 @[n -1]))v d-1 v[0, [n -1]].(26) Note that a |q| = a and a |q|+d = b and [|q|] = [|q| + d]. Since the words v and the v(a i @[i]) all have the same length, one can apply (22) to permute the v(a i @[i])) as one wishes. In particular, applying the transposition (|q| |q| + d) will permute the letters a and b. Since [|q|] = [|q| + d], one can apply Corollary 5.12 again and remove all the inserted copies of shifts of v to obtain pqbra. Therefore xayb = η xbya as required.

  where x, s, t ∈ A * and |s| = |t| = |x|. Proof. It suffices to apply Theorem 5.2 and Propositions 5.10, 5.14 and 5.15.

  ). Note that if B ′ is generated as a Boolean algebra by a subset C, then B ′ satisfies a B-equation as soon as each L ∈ C does. Finally, we say that B ′ is defined by a set E of B-equations if for each L ∈ B, L ∈ B ′ if and only if L satisfies all the B-equations in E. The following result is an immediate consequence of Stone duality.

Theorem 1.1. Every subalgebra of a Boolean algebra B can be defined by a set of B-equations.

  Lemma 2.3 shows that the quotients of the generators of B by a letter are still in B. It follows by induction that the quotients of the generators of B by any word are still in B. Since quotients commute with Boolean operations, it follows that B is closed under quotients. Since regular languages are closed under quotients, it also follows that B ∩ Reg is also closed under quotients.

P . Corollary 2.4. The Boolean algebras B and B ∩ Reg are closed under quotients. Proof. Proposition 2.5. For each word u ∈ A * , the Boolean algebras B and B ∩ Reg are closed under the operation L → uL.

Proof. By induction, it suffices to prove that B is closed under the operation L → aL for each letter a ∈ A. But this is a consequence of Proposition 2.2 and of the following lemma:

In other words, γ is an upset.

The cognoscenti may object that in the literature, βN is routinely equipped with a monoid structure, but the multiplication is not continuous with respect to both of its arguments.

Following the terminology of[START_REF] Straubing | Finite automata, formal logic, and circuit complexity[END_REF], a unary numerical relation R associates to each n > 0 a subset R(n) of {0, . . . , n -1}. It is uniform if there exists a subset P of N such that, for all n > 0, R(n) = P ∩ {0, . . . , n -1}. Not every numerical relation is uniform: for instance, the unary numerical relation R defined by R(n) = {n -1} is not uniform.

See http://en.wikipedia.org/wiki/First-order_logic#Empty_domains.
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Proof. Again, we just treat the case of the equations in E ab=ba , the one of E aab=abb being similar. All that remains to show is that for each choice of x, y, z ∈ A * with x / ∈ A * and ℓ(y) = ω -1, there exists γ ∈ βD with βπ 1 (γ) = βπ 2 (γ) such that π Reg (βf ab (γ)) = xaybz and π Reg (βf ba (γ)) = xbyaz.

To this end, let x, y, z ∈ A * with x / ∈ A * and ℓ(y) = ω -1. We think of x, y, and z as ultrafilters of Reg(A * ).

For K ∈ x, L ∈ y and M ∈ z, let

Note that, being elements of an ultrafilter, the sets K, L and M are nonempty and thus Γ (K, L, M ) is also nonempty. Furthermore, for K 1 , K 2 ∈ x, L 1 , L 2 ∈ y, and M 1 , M 2 ∈ z, we have

so that F (x, y, z) is a filter basis. We claim that any ultrafilter γ extending F (x, y, z) satisfies βq(γ) = (x, y, z). First of all, since each Γ (K, L, M ) is contained in D, γ belongs to βD. We show that the first coordinate of βq(γ) is x, the other arguments being similar. To this end, let q 1 = π 0 • q. Thus q 1 : D → A * is the map defined by

Then βq 1 = βπ 0 • βq and thus we just need to show that βq

y, z) ⊆ γ, and thus q -1 1 (K) ∈ γ or equivalently K ∈ βq 1 (γ). Thus x ⊆ βq 1 (γ) and as x and βq 1 (γ) are ultrafilters it follows that x = βq 1 (γ), which proves the claim. Now suppose that x / ∈ A * and ℓ(y) = ω -1. We show that there is an ultrafilter γ extending F (x, y, z) with βπ 1 (γ) = βπ 2 (γ). By Proposition 3.1, βπ 1 (γ) = βπ 2 (γ) if and only if γ extends the filter basis F . It thus suffices to show that F (x, y, z) ∩ F is a filter subbasis. Let K ∈ x, L ∈ y, and M ∈ z, and let {P 1 , . . . , P n } be a partition of N. We need to show that

for some i ∈ {1, . . . , n}. Since x is nonprincipal, the regular language K is infinite, and thus ℓ(K) contains an infinite arithmetic progression, say r + pN with p > 0. Furthermore, for L ∈ y we have aL ∈ ay, and since ℓ(ay) = ω, there is q 1 and N ∈ N such that [N, +∞[∩qN ⊆ ℓ(aL).

In the next corollary, the notation x(a i @[i]) stands for the word obtained by replacing in x the letter in position i by a i . Corollary 5.12. Suppose that L satisfies the equations (22). Let p, x ∈ A * with |x| = d and px = η p. If q = a 0 . . . a n-1 with a i ∈ A, then

Proof. By the assumption on x we have p = η px ω-1 == η px ω . Now applying Lemma 5.11 after each letter of q, we obtain

and similarly

and so on up through

and the conclusion now follows.

We will need a small combinatorial lemma: