
HAL Id: hal-01244426
https://hal.science/hal-01244426v1

Submitted on 15 Dec 2015 (v1), last revised 8 Apr 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Guaranteed Global Deterministic Optimization and
Constraint Programming for Complex Dynamic

Problems
Hugo Joudrier, Khaled Hadj-Hamou

To cite this version:
Hugo Joudrier, Khaled Hadj-Hamou. Guaranteed Global Deterministic Optimization and Constraint
Programming for Complex Dynamic Problems. 21th International Conference on Principles and Prac-
tice of Constraint Programming, Aug 2015, Cork, Ireland. �hal-01244426v1�

https://hal.science/hal-01244426v1
https://hal.archives-ouvertes.fr


Guaranteed Global Deterministic Optimization
and Constraint Programming for Complex

Dynamic Problems

Hugo Joudrier (student) and Khaled Hadj-Hamou (advisor)

Université de Grenoble, Laboratoire G-SCOP
46, avenue Félix Viallet - 38031 Grenoble Cedex 1 - France

hugo.joudrier@grenoble-inp.fr

Abstract. In this article we focus on particular multi-physics (mechanic,
magnetic, electronic...) dynamic problems. These problems contain some
differential constraints to model dynamic behaviors. The goal is to be
able to solve it with guarantee, meaning to get a proof that all constraints
are satisfied (without any approximation caused by binary representa-
tions or rounding modes from the unit core computing). The idea of
getting guarantees on the arithmetic operations has been introduced via
Interval Arithmetic [?]. Computers become faster gradually, increasing
the rate of operations number computable in one time unit. The results
computed are often rounded to the nearest representable values, then the
global errors are increasing gradually as well without any control over it.

Keywords: Ordinary Differential Equation, Interval Arithmetic, Tube
Arithmetic, Constraint Programming, Global Optimization

1 Introduction

In this paper, we try to solve some multi-physics dynamic problems, which are
widely represented in the industries to model some complex design problems. The
work we present here is motivated by the designing of an electromagnetic contac-
tor. These problems are hardly solvable because of the types of variables (contin-
uous, functionals) and constraints (algebraics, differentials and non-continuous).
Usually some approximations over the mathematical model and/or the resolution
process of these models are used, then the solution considered can be suboptimal
and even worst, not feasible.

Once the multi-physics dynamic problems are presented, we will review some
arithmetic aspects (Interval Arithmetic (IA) and Tube Arithmetic (TA)) used to
compute safe operations results and the Ordinary Differential Equation (ODE)
constraints describing the dynamic behavior of the problem. Then we will in-
troduce the Multi-ODE constraints and an algorithm to solve and propagate
these complex dynamical constraints. After a description of the integration in a
more global Interval Branch & Bound Algorithm (IBBA) to compute the global
optimal solution, the last sections will present the results we get and some per-
spectives.



2

2 Multi-Physics Dynamic Problem

The work related in this paper is motivated by the optimization of complex
systems. It consists in finding the best real inputs x ∈ Rp in order to minimize
a cost function (Eq. 1).

Minimize cost(x,u) (1)

where u ∈ (R → R)n is the functional variables vector used to compute and
control the dynamic behaviors of the problem described by ODEs (Eq. 3) and
Multi-ODEs (Eq. 4). The model contains some algebraic constraints f from Rp×
(R→ R)n to Rk, used to model static properties of the system (Eq. 2).

f(x,u) ≤ 0 (2)

In order to model components evolving with use, we consider some differential
constraints (Eq. 3 and 4).

u′(t) = h(t,x,u) (3)

where t ⊂ R is a local variable used to control the chronological evolution and
h ∈ Rp+1×(R→ R)n → Rn is the function describing the dynamical behavior of
the model. The specificity of the problems we try to solve, is the hardly solvable
multiple differential constraints (Eq. 4).

u′(t) =


h1(t,x,u) if g1(t,x,u)

...

hm(t,x,u) if gm(t,x,u)

(4)

where for all i in {1 . . .m}, hi ∈ Rp+1 × (R → R)n → Rn is the description of
the i-th dynamical behavior guarded by the boolean function gi ∈ Rp+1× (R→
R)n → B (B is the boolean set, B = {False, True}).

3 Preliminaries

3.1 Interval Arithmetic (IA)

Interval Arithmetic (IA) [?] is a method to compute safe arithmetic operations.
Values and results of operations are bounded by controlling the rounding (up,
down) of the unit core computing and redefining basic operations and functions.
The IA is also able to induce some reasoning on a continuous set of values,
without enumerating all of them. This last point will be useful to do global
optimization over real inputs. The set of intervals on the real line R is defined
as below (Eq. 5) :

IR =

{
[a; a]

∣∣∣∣∣ (a, a) ∈ R2

a ≤ a

}
(5)



3

In order to be able to compute on IR, basic binary operators • ∈ {+,−,×,÷}
and usual functions f ∈ {abs, cos, sin, tan, exp, log, power, root . . . } are ex-
tended on the interval arithmetic (Eq. 6). Let ([a], [b]) ∈ IR2, then :

[a] • [b] = {x • y | x ∈ [a] , y ∈ [b]}
f([a]) = {f(x) | x ∈ [a]}

(6)

For each function f : D → Rn with D ⊆ R, we define the range of f over an
interval [a] ⊆ D by :

range(f, [a]) = {f(x) | x ∈ [a]} (7)

The interval-arithmetic evaluation of a complex function f(x1, . . . , xn) over some
intervals [a1] . . . [an], denoted by f([a1], . . . , [an]) is obtained by replacing all the
variables (x1 . . . xn) by their respective interval value ([a1] . . . [an]) and evaluate
each part of f (f is a composition of sub-functions) by including the range
interval.

The IA is fast computable and doesn’t require a lot of memory. Unfortunately
for some cases results are too large and irrelevant. To illustrate, let us consider
the interval [a] = [−10; 10]. Computing [a] − [a] we get [−10; 10] − [−10; 10] =
[−20; 20] which is totally over-approximating 0. Thinner results can be obtained
using piecewise evaluation over intervals or Affine Arithmetic (AA) developed
a few years later [?] with some interesting properties but unfortunately some
important memory and computing time requirements. To compute the results of
the test presented in this article we used the IA efficiently implemented in the
library BIAS [?].

3.2 Tube Arithmetic (TA)

Tube Arithmetic (TA) [?] is a generalization of the IA to enclose unary functions.
The TA will be used for internal representation of necessary functional variables
which are to play with dynamic constraints (ODEs and Multi-ODEs). Let f a
function from R to Rn. We note [f ] the tube defined by two functions f and f
bounding f (Fig. 1a). We got some similarities with the IA like the evaluation
(Eq. 8).

[f ]([t]) = range(f , [t]) =
⋃

s′∈[t]

[f(s); f(s)] (8)

Also, basic binary operations • on the tubes are defined as below (Eq. 9) :

([f ] • [g])([t]) = [f ]([t]) • [g]([t]) (9)

We extended the TA to Multiple-Tube Arithmetic (Multi-TA) to be able to
enclose multiple functions within the tiniest enclosure. A multi-tube (Fig. 1b)
can be viewed as a set of tubes or a tube with holes. This trick is really efficient
when enclosing Multi-ODEs trajectories.



4

(a) Evaluation of [f ] enclosing f over [a] (b) Multi-tube enclosure of f ∪ g

Fig. 1: Tube enclosures

3.3 Ordinary Differential Equation (ODE)

An Ordinary Differential Equation (ODE) of order n, is an equation of the form

u(n)(t) = h(t, u, u′, u′′, . . . , u(n−1)) (10)

which can be reduced to a n-dimensional first-order ODEs system Θ (Eq. 11)
by declaring new variables.

Θ


u′1(t) = h1(t, u1, . . . , un)

...

u′n(t) = hn(t, u1, . . . , un)

(11)

where ui ∈ R→ R, and hi ∈ R× (R→ R)n → R. We adopt the lighter vectorial
notation u′(t) = h(t,u).

The number of solutions for the equation system Θ (Eq. 11) is infinite. The
Initial Value Problem (IVP) is defined by adding an initial value u(t0) = U0.
The solution u∗ is a function such that u∗ satisfies Θ and u∗(t0) = U0.

Fig. 2: Enclosure of an ODE solution u∗ returned by Alg. 1



5

In the state of the art, the classical overall and efficient method to solve some
IVP with a guaranteed enclosure (Fig. 2) is by using a successive integration
scheme (Alg. 1). The sub-integration can be viewed as a composition of two
phases.

Algorithm 1 : Integrate(t0 ∈ R, [u0] ⊆ IRn, tf ∈ R)

1: int i← 0 ; real t← t0
2: while t 6= tf do
3: ([ũi], ti+1)← GlobalEnclosure(ti, [ui], tf )
4: [ui+1]← LocalEnclosure(ti, [ui], [ũi], ti+1)
5: t← ti+1 ; i← i + 1
6: end while
7: return Tube(t0, [u0], [ũ0], t1, [u1], [ũ1], . . . , ti−1, [ui−1], [ũi−1], ti, [ui])

The first one, GlobalEnclosure (Alg. 1, line 3) [?] [?], builds an a-priori en-
closure [ũi] of the solution on a range time step [ti; ti+1] considering an initial
enclosure [ui] of u∗(ti). The process based on the Picard Existence and Unique-
ness Theorem and Banach Fixpoint Theorem is assured to return a safe enclosure
of the solution and then a proof of the existence and uniqueness of the latter.

The LocalEnclosure method (Alg. 1, line 4) [?] computes a contraction [ui+1]
at ti+1 of the a-priori enclosure [ũi] using the interval extension of Taylor Model.
This enclosure can be eroded by calling a PruneEnclosure method [?] to cut
unreachable domains. Then this enclosure is used as an initial value to integrate
the ODE on [ti+1; ti+2].

A lot of ODEs solvers are available like AWA [?], COSY-VI [?] and others.
To realize the test presented later on, we used VNODE-LP [?] which is one of
the best ODEs solver available.

4 Multiple Ordinary Differential Equation (Multi-ODE)

The problems we try to solve contain some complex differential constraints,
which consist in a set of ODEs guarded by some logical expressions (Eq. 12).

u′(t) =


h1(t,u) if g1(t,u)

...

hm(t,u) if gm(t,u)

(12)

where u ∈ R→ Rn, hi ∈ R× (R→ Rn)→ Rn and gi ∈ R× (R→ Rn)→ B (B is
the boolean set). Such systems are hardly solvable due to their non-continuous
behavior as the solution can oscillate between many states using many differential
functions. Moreover each guard couple gi1 and gi2 are not necessary disjoint,
then a state set of the system can induce more than one dynamic. This case is



6

represented in the following Multi-ODE (Eq. 13) in which for all t in R such that
0 ≤ u(t) ≤ 10 we got u′(t) = h1(t,u) ∪ h2(t,u).

u′(t) =

{
h1(t,u) if u(t) ≤ 10

h2(t,u) if 0 ≤ u(t)
(13)

These dynamic systems are not treated in the state of the art. We developed
an approach (Alg. 2) to solve them without any approximation, keeping the
guarantee under certain conditions by bounding the solution.

Algorithm 2 : Integrate(T0 ∈ IR, [u0] ⊆ IRn, Tf ∈ R, k ∈ N,mask ∈ P(N))

1: mask ← mask ∪ {k}
2: int i← 0 ; real t← T0 ; Tube tres(∅)
3: [ui]← Contract(gk, t, [ui])
4: while (t 6= T0 ∨ t 6= Tf ) ∧ [ui] 6= ∅ do
5: if t < T0 then ([ũi], ti+1)← GlobalEnclosure(ti, [ui], T0)
6: else ([ũi], ti+1)← GlobalEnclosure(ti, [ui], tf )
7: [ũi]← Contract(gk, [ti, ti+1], [ũi])
8: for all k′ ∈ {1 . . .m} \mask do
9: tres ← tres ∪ IntegrateMultiODE([ti, ti+1], [ũi], tf , k

′,mask)
10: end for
11: if t < T0 then [ui+1]← [ũi]
12: else [ui+1]← LocalEnclosure(ti, [ui], [ũi], ti+1)
13: t← ti+1

14: i← i + 1
15: [ui]← Contract(gk, ti, [ui])
16: end while
17: return tres ∪Tube(t0, [u0], [ũ0], t1, [u1], [ũ1], . . . , ti−1, [ui−1], [ũi−1], ti, [ui])

The method consists in solving ODEs using the classical approach (Alg. 1) to
propagate branches of ODE, coupled with a Set Inversion Via Interval Analysis
procedure (SIVIA) [?]. This procedure (called by the method Contract in Alg.
2 at each integration step) has two different uses:

– Filter accessible domains reach by the integration of a branch. Let [ui] an
enclosure of the solution u∗ at ti. Before to compute the integration step over
the k-th branch, we can reduce the initial value [ui] used in this computation
by filtering it with the k-th guard (as we know states which are false through
the k-th guard are inconsistent with this branch and aren’t involved in its
integration) (Alg. 2, lines 7 and 15).

[ui]← Contract(gk, ti, [ui])

The same process can be applied with [ũi] over [ti; ti+1].



7

– Detect behavior discontinuities. Let [ũi] an enclosure of the solution u∗ over
[ti; ti+1]) on the current branch k. Then for all k′ 6= k we can compute the
guard intersection (Alg. 2, line 3, using the recursive call).

[uk′

i ]← Contract(gk′ , [ti; ti+1], [ũi])

If [uk′

i ] is empty then the k′-th ODE is not activated by the branch k over

[ti; ti+1]. Otherwise, [uk′

i ] is not empty, it has to be considered as an initial
value to start the integration on the branch k′ (a behavior discontinuity over
[ti; ti+1] could exist).

By computing the union of tubes built that way we get a multi-tube enclosing
all the solutions of the integration. Unfortunately, we get an over-approximation
of the solution, because of IA. In addition to the pessimistic evaluation issue,
the fact of considering bounding boxes is problematic. Indeed, finding the in-
tersection between a bounding box from a branch k and a guard k′ we get an
enclosure of this intersection containing some states for which the guard g′k is
false. The integration of these states with hk′ will generate new ones for which
the guard gk is evaluated as true. Then, in order to keep the guarantee, we will
have to consider these new states as initial values for the branch k. This recursive
process will finally enclose all the guards hit by the enclosure which is a huge
over-approximation. In order to get a tiny enclosure of the solution, we assume
that when a trajectory from a branch k goes to another dynamic k′, it will never
come back to the previous branch k.

Alg. 2, line 1 : mask ← mask ∪ {k}
Alg. 2, line 8 : k′ ∈ {1 . . .m} \mask

5 Interval Branch and Bound Algorithm (IBBA)

To optimize on such problems, we used an Interval Branch & Bound Algorithm
(IBBA) [?] [?] extended with the Multi-TA. In order to get a faster convergence
towards some feasible solutions, we coupled this algorithm with a constraint
satisfaction process we developed, in which we included the ODEs and Multi-
ODEs constraints propagators.

For each step of the IBBA, a node is selected and bisected. The sub-nodes
are then contracted using the constraint satisfaction process through two steps.
Firstly algebraic constraints are used to filter search domains, because the for-
mer are fast computable. If the nodes still contain some feasible domains then
the differential constraints are propagated. This step costs memory and time
computing. They are the main negative impacts from the methods previously
mentioned (Alg. 1 and 2).

At the end of each iteration, if the node still contains some feasible solutions,
a final step is usually used in the IBBA in order to get the lowest upper bound.
This part consists in randomly finding a feasible point in the domain described
by the node. Computing both the feasibility and the goal from one point limits



8

the over-approximation caused by IA, then we obtain a tinier enclosure of the
goal.

6 Experiments

In this section we present the results of the experiment we conducted on an Intel
Core i5-4200M processor with 2 cores and 2 gigabytes of RAM under the 32-bits
ubuntu 12.04 operating system. The Multi-ODEs constraints resolution is the
most important part in this work, and the recursive method we proposed to solve
it is currently not faster enough to be efficient in an optimization process. Given
that current limit, we just present some partial results about the constraint
satisfaction module we developed.

Let the following complex second order multi-ODEs constraint with two
dynamic components (Eq. 14). We choose the following coefficients a = 0.01,
b = 0.02 and c = −1.0 in order to get the needed behavior (the first piece cross
the guard from the second piece). The initial value is declared with an algebraic
constraint.

(u0, u1)′(t) =

{
(u0(t) ∗ u1(t) + c, a ∗ u0(t) + b) if u0(t) < 11.5

(−b, 0) if u0(t) > 11

(u0, u1)(0) = ([9.5; 10.5], 0)

(14)

The solution enclosure of the integration over t = [0; 5] returned by the
propagator after 1400ms is presented below (Eq. 15) and drawn on Figure 3
where the black curves (respectively red boxes) represent the guards (respectively
the solution enclosure).

u0(5) = [11, 11.101]

u1(5) = [0.276, 0.39]
(15)

We introduce a single test, since it’s difficult to provide some random tests.
Indeed, the guard has to be crossed, and dynamic systems are really sensitive.
We are not able to establish some comparisons with other approaches because
these kind of constraints (without disjoint guards) are not treated in the state
of the art.

7 Perspectives

Through this work we demonstrated the feasibility of solving some really complex
dynamic systems with guarantees. The propagation algorithm requires a lot of
time. It still can be improved to be used in an optimization process but it could
be the price to pay to get guarantee. In the continuity of this work, it would be
interesting to develop some strategies inside the IBBA to propagate differential
constraints.



9

Fig. 3: enclosure of u0 over [0; 5]


