
HAL Id: hal-01244409
https://hal.science/hal-01244409v1

Submitted on 15 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The embeddability of lane detection algorithms on
heterogeneous architectures

Romain Saussard, Boubker Bouzid, Marius Vasiliu, Roger Reynaud

To cite this version:
Romain Saussard, Boubker Bouzid, Marius Vasiliu, Roger Reynaud. The embeddability of lane detec-
tion algorithms on heterogeneous architectures. IEEE International Conference on Image Processing
(ICIP), Sep 2015, Quebec City, Canada. �10.1109/ICIP.2015.7351697�. �hal-01244409�

https://hal.science/hal-01244409v1
https://hal.archives-ouvertes.fr


THE EMBEDDABILITY OF LANE DETECTION ALGORITHMS ON HETEROGENEOUS
ARCHITECTURES

Romain Saussard ?† Boubker Bouzid ? Marius Vasiliu † Roger Reynaud †

? Renault S.A.S.
† Institut d’Électronique Fondamentale - Université Paris Sud

{romain.saussard, boubker.bouzid}@renault.com
{marius.vasiliu, roger.reynaud}@u-psud.fr

ABSTRACT

Lane detection plays a crucial role for Advanced Driver As-
sitance System (ADAS) or autonomous driving applications.
Literature shows a lot of lane detection algorithms can work
in real time with good results. However, they require much
computer processing and cannot be embedded in a vehicle
ECU without deep software optimizations. In this paper, we
discuss the embeddability of lane detection algorithms by
comparing state-of-the-art algorithms in terms of functional
performance and computational timing. We identify what
essential parts of lane detection are time consuming, and
show these parts can be computed in real time on embedded
systems.

Index Terms— ADAS, Lane Detection, Embedded Pro-
cessing

1. INTRODUCTION

On-vehicle lane detection system is an important component
for ADAS application. In fact it can be use for warning sys-
tems (e.g. alerting the driver in case of dangerous situation:
Lane Departure Warning) or active systems (Lane Keeping
Assist or Lane Centering Assist).

Lane detection has been deeply studied this past twenty
years [1, 2, 3, 4]. However, embedded lane detection is not
much studied despite the fact car manufacturers and suppli-
ers are interested in this kind of works. Some automotive
providers already offer embedded solutions for lane detec-
tion. They produce intelligent cameras which perform em-
bedded real time lane detection, the algorithm is computed by
FPGA/ASIC in camera. However, state-of-the-art algorithms
show better results.

Semiconductor companies are moving into the market of
embedded systems for ADAS with heterogeneous architec-
tures. Heterogeneous architectures embed several processing
units with different capabilities on the same System on Chip
(SoC), often with massively parallel computing unit. We can
cite the Tegra K1 SoC of Nvidia (which embed ARM, GPU

and an ISP), the TDA2x SoC [5] of Texas Instrument (ARM,
DSP and EVE vectorial processor). This type of SoC offers a
good solution for embedding image processing algorithms in
the automotive field because it can handle high performance
computing with low-power consumption.

In this paper, we discuss the embeddability of lane de-
tection algorithms on heterogeneous architectures. First we
will study the different approaches for lane detection, their
results and identify their bottlenecks. Then we will discuss
how they can be adapted for embedded processing and what
performances can be expected with the different approaches.

2. LANE DETECTION ALGORITHMS

The aim of lane detection algorithms is to find positions of
lanes on the roads and to characterize them. Based on [6], a
lane detection algorithm can be separated into four parts:

• Image cleaning: This step enhances the input image in
order to get better results with features extraction. It
can be an algorithm dealing with abrupt illumination
change (e.g. when vehicle goes under a tunnel), color
space conversion, ROIs extraction, etc.

• Features extraction: Low level features are extracted
from the image. Algorithms used for this step can be
gradient computation, color segmentation, threshold-
ing, Inverse Perspective Mapping (IPM). The IPM (also
called bird-eyes view) consists in applying a homogra-
phy on the image in order to obtain parallel lines.

• Lane model fitting: A geometric model of lane (2D or
3D) is used on extracted features in order to find poten-
tial lanes. Hough transform (straight lines or curves) is
often used in this step.

• Temporal integration: Results of previous frames are
used in order to detect lane in current frame. It can
be used to reduce the search area in the image and the
computational cost. Temporal integration is not always
used, and often implies data fusion with other sensors,
e.g. IMU, GPS, etc.



In spite of some datasets can be found for pedestrian de-
tection [7], to our knowledge, no free dataset with ground
truth can be found for lane detection algorithms. That is why
it is hard to compare results of state-of-the-art lane detection
algorithms.

However, some papers give results and performance of
their algorithm. Thus in [8], where both IPM and Hough
transform are used, algorithm has been tested on KITTI
database [9] (1392 × 512 color images) with an average of
68.18 ms processing time per frame. The average error be-
tween marked points and lines located with GPS + map is 15
cm.

The algorithm in [10] performs an IPM transformation
with integration on Y axis for features extraction and uses
RANSAC for lane fitting. It achieves 50 frames per second
rate with 640× 480 input images. Their provided correct de-
tection rate is 90.89% in urban conditions.

In [11], the lane fitting is based on active contours with
initialization performed by Canny & Hough lines detection.
It shows good results, 95% of correct lane detection, but poor
performance, only 2 frames per seconds with a resolution of
240 × 256. We can notice it has been tested on old CPU,
executing the algorithm on a recent one may show better per-
formance.

Most state-of-the-art algorithms use IPM and/or Hough
transformation. These two kernels are essential to have good
results for lane detection, but they have a high computational
cost. That is why we choose to focus on these two kernels, to
implement and optimize them on an embedded SoC.

3. HETEROGENEOUS ARCHITECTURES

Semiconductors companies such as Nvidia, Texas Instrument
and Freescale propose heterogeneous architectures to meet
automotive industry needs for embedding image processing
algorithms for ADAS. These architectures handle high per-
formance computing with massively parallel computing units
(e.g. GPU or vectorial processor) and low-power consump-
tion. In this paper, we propose a general approach which can
fit with any of these SoCs, and we show some preliminary
results obtained on Nvidia Tegra K1 heterogeneous SoC.

3.1. Nvidia Tegra K1 SoC

The Nvidia Tegra K1 SoC is composed of a quad-core ARM
Cortex A15 CPU (1.5 GHz clock rate) providing ARMv7 in-
struction set and an out-of-order speculative issue 3-way su-
perscalar execution pipeline, each core has a NEON and FPU
unit [12].

The Kepler GPU of the K1 is composed of one stream-
ing multiprocessors of 192 cores [13], accessible with CUDA
[14] and the new standard OpenVX [15]. The parallelization
with CUDA is qualified as SIMT (Single Instruction Multi-
ple Threads). The global memory of the K1 is the same for

GPU and ARM, both can potentially access to the same data.
Memory area of each processing unit is handled by the OS.

3.2. K1 Specific Features

The K1 also has several hardware processing units like Im-
age Signal Processor (ISP) and Image Processing Accelerator
providing fast and specific image processing algorithms such
as debayering, noise reduction, lens correction etc. These
units are very fast but the user can only control a limited set
of parameters and the chaining order of kernels is restricted.

In addition of the basic instructions, ARM and Kepler
GPU have specific features which can be used to accelerate
image processing algorithms. Thus, ARM processor provides
SIMD instructions with NEON units [16]. In order to handle
the issues of reading and writing accesses of different threads,
CUDA provides atomic instructions based on hardware de-
sign. This feature is very useful for histogram construction
and the voting process of Hough transform.

The Nvidia GPU texture memory provides couple of ad-
vantages for reading images data. When accessing to non-
integer pixel coordinates (e.g. Im[i-0.5][j-0.5]), texture units
handle linear interpolation, this is cost-free because computed
by hardware design. Moreover texture units handle access to
pixels outside the image (e.g. Im[-1][-1]), also cost-free. This
feature can highly decrease the IPM computational timing.

4. KERNEL MAPPING AND EMBEDDABILITY

According to section 2, IPM and Hough transform are two
kernels used by state-of-the-art algorithms with best results,
but have a high computational cost. Embedding a given al-
gorithm on a heterogeneous architecture is a difficult task be-
cause one can not easily find how to allocate kernels on the
different processing units (kernel mapping) [17].

4.1. Kernel Mapping Optimization

Let P be the vector of the processing units of a given hetero-
geneous architecture, K be the vector of kernels of a given
algorithm, the matrix M constitutes the mapping of K on
P , given by P = M.K. Let ϕ be the dependency ma-
trix (dependencies between kernels K), τ(M) be the exe-
cution function (returning the execution time for each ker-
nel), δ(M) be the transfer function (returning the transfer de-
lay needed for each kernel), η(M) be the occupancy func-
tion (returning the occupancy for each computing unit) and
f(P,K,ϕ, τ(M), δ(M), η(M)) be the cost function (return-
ing the global execution time of the algorithm). The aim of
kernel mapping optimization is to find M minimizing f :

argmin
M

[f (P,K,ϕ, τ(M), δ(M), η(M))]

Parameters of function f can be measured or predicted for
differentM . Measure needs all kernels implementation on all



processing units (very time consuming), but prediction needs
kernels and architectures analysis (very efficient but needs
deep SW / HW knowledge). Actually, our approach mixed
both techniques, starting with some specific representative
kernels implementations, and finishing with performance pre-
diction analysis to achieve the best kernel mapping [18].

4.2. Gradient Computation

Gradient computation is often performed with convolution
operators (e.g. Sobel filter). First, it can easily be accelerated
by using separable filter. Moreover convolution operators are
easily parallelizable because the result of one pixel is not de-
pendent on other pixels result. Thus it can be accelerated with
GPU or by using NEON instructions and multicore on CPU
ARM.

According to our results, an algorithm performing hori-
zontal and vertical Sobel filter is 14 times faster by using 4
cores and 8×int16 NEON vectors than using only one core.
Our implementation of this algorithm is 20 times faster on the
GPU of K1 than the implementation on ARM with one core.
However, using GPU implies extras delays for transferring
data between CPU and GPU (about 2ms for a 2MB image).

4.3. Inverse Perspective Mapping (IPM)

Many state-of-the-art lane detection algorithms use IPM, it
results an image with vertical and parallel lines which re-
duces the complexity of lane marking. Camera intrinsic (fo-
cal length and optical center) and camera extrinsic (pitch an-
gle, yaw angle and height above the ground) parameters are
needed to construct the homography matrix [19]. Pitch angle
and yaw angle may not be constant (e.g. vehicle vibrations),
that is why camera is often associated with an IMU [8].

A pixel IIPM of the bird-eyes view image with coordinate
(u, v) corresponds to the pixel Iin with coordinate (x, y) of
the input image, so IIPM (u, v) = Iin(x, y). Coordinates are
linked by:

(
s.x s.y s

)T
= H.

(
u v 1

)T
, with H the

homography matrix. However, x and y will be non-integer
values, so interpolation should be performed in order to com-
pute Iin(x, y). Despite the complexity of the IPM is linear,
this transformation is associated with some computational
cost and is often apply on a ROI.

Linear interpolation can be handled very quickly with tex-
ture memory of the GPU which highly reduces the computing
time. Indeed only the matrix product has to be computed for
each pixel, so it can be parallelized.

Our IPM implementation on GPU provides 5 ms on a
1920× 1080 HD image (with a transfer delay 8.5 ms). These
results on HD image are here to illustrate reachable perfor-
mance, real implementation uses a ROI of a smaller image.

Table 1. Best performances for tested algorithms, execution
time is given in pixels per second. As Hough transform per-
formance depends on the number of input points, which can
vary with a fixed image size, the value is given in points per
second.

Algorithm Performance Computing Unit
Horizontal & vertical
gradient

450 Mp/s ARM

IPM transformation 415 Mp/s GPU
Hough transform 960 kPts/s GPU
Simple lane detection 200 Mp/s ARM + GPU

4.4. Hough Transform

The computational complexity of a two-dimensional Hough
transform is given by: O(n.s), where n is the number of input
points and s the number of iterations needed. Based on [20],
Hough transform computation can be accelerated on GPU.
In fact reducing the number of input points and parallelizing
each iteration decreases the computational timing.

We implemented a simple algorithm which performs a So-
bel filter, a thresholding, a morphological filter and apply the
Hough transform. According to our results, the best mapping
is to embed Hough transform on GPU, and other kernels on
ARM. Our algorithm has been tested with a 1920× 1080 HD
image, about 0.2% of total pixels are used for Hough trans-
form. The ARM processes in 5.4 ms, and the Hough trans-
form on GPU in 4.5 ms. Thus, by adding the memory delay
and latency for GPU kernel execution, the full lane detection
algorithm is executed in 10.4 ms. Results for tested algo-
rithms are given in table 1.

Our next hardware target for studying ADAS algorithms
embeddability is the TDA2x platform [5]. Gradient will prob-
ably be computed by the DSP, and IPM and Hough transform
by the EVE vectorial processors.

4.5. Conclusion

The embeddability of image processing algorithms is a big is-
sue for automotive industry, it is not a simple task to predict if
a robust known algorithm can be embedded on a given SoC.
In this paper we discussed the embeddability of lane detection
algorithms on a heterogeneous architecture, the K1 SoC. It
has been shown that costly operations such as IPM or Hough
transform can be optimized and executed in real time on an
embedded SoC. However, doing such studies for multiple al-
gorithms and SoCs represents a lot of work. The most ef-
fective solution for dealing with embeddability of image pro-
cessing algorithms is performance prediction. Thus, we are
working on performance prediction for algorithms embedded
on different SoCs, in order to help car manufacturers and sup-
pliers to choose what algorithm – SoC association presents
the best performance and efficiency.



5. REFERENCES

[1] M. Bertozzi and A. Broggi, “Gold: A parallel real-time
stereo vision system for generic obstacle and lane detec-
tion,” Image Processing, IEEE Transactions on, vol. 7,
no. 1, pp. 62–81, 1998.

[2] J. C. McCall and M. M. Trivedi, “Video-based lane esti-
mation and tracking for driver assistance: survey, sys-
tem, and evaluation,” Intelligent Transportation Sys-
tems, IEEE Transactions on, vol. 7, no. 1, pp. 20–37,
2006.

[3] Z. Kim, “Robust lane detection and tracking in chal-
lenging scenarios,” Intelligent Transportation Systems,
IEEE Transactions on, vol. 9, no. 1, pp. 16–26, 2008.

[4] S. Sivaraman and M. M. Trivedi, “Integrated lane and
vehicle detection, localization, and tracking: A syner-
gistic approach,” Intelligent Transportation Systems,
IEEE Transactions on, vol. 14, no. 2, pp. 906–917,
2013.

[5] J. Sankaran and N. Zoran, “TDA2X, a SoC optimized
for advanced driver assistance systems,” in Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE In-
ternational Conference on. IEEE, 2014, pp. 2204–2208.

[6] A. B. Hillel, R. Lerner, D. Levi, and G. Raz, “Recent
progress in road and lane detection: a survey,” Ma-
chine vision and applications, vol. 25, no. 3, pp. 727–
745, 2014.

[7] N. Dalal and B. Triggs, “Histograms of oriented gradi-
ents for human detection,” in Computer Vision and Pat-
tern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on. IEEE, 2005, vol. 1, pp. 886–893.

[8] W. Lu, S. A. R. Florez, E. Seignez, and R. Reynaud,
“An improved approach for vision-based lane marking
detection and tracking,” in 2013 International Confer-
ence on Electrical, Control and Automation Engineer-
ing. DEStech Publications, Inc., 2014, pp. 382–386.

[9] G. Andreas, L. Philip, S. Christoph, and U. Raquel, “Vi-
sion meets robotics: The KITTI dataset,” International
Journal of Robotics Research (IJRR), 2013.

[10] M. Aly, “Real time detection of lane markers in urban
streets,” in Intelligent Vehicles Symposium, 2008 IEEE.
IEEE, 2008, pp. 7–12.

[11] Y. Wang, E. K. Teoh, and D. Shen, “Lane detection and
tracking using B-Snake,” Image and Vision computing,
vol. 22, no. 4, pp. 269–280, 2004.

[12] T. Lanier, “Exploring the design of the cortex-
A15 processor,” URL: http://www.arm.com/files/pdf/at-
exploring the design of the cortex-a15.pdf, 2011.

[13] NVIDIA, “Nvidia kepler GK110 architecture whitepa-
per,” 2012.

[14] NVIDIA, “Cuda C programming guide,” 2014.

[15] E. Rainey, J. Villarreal, G. Dedeoglu, K. Pulli, T. Lep-
ley, and F. Brill, “Addressing system-level optimization
with OpenVX graphs,” in Computer Vision and Pattern
Recognition Workshops (CVPRW), 2014 IEEE Confer-
ence on. IEEE, 2014, pp. 658–663.

[16] G. Mitra, B. Johnston, A. P. Rendell, E. McCreath,
and J. Zhou, “Use of SIMD vector operations to ac-
celerate application code performance on low-powered
ARM and Intel platforms,” in Parallel and Dis-
tributed Processing Symposium Workshops & PhD Fo-
rum (IPDPSW), 2013 IEEE 27th International. IEEE,
2013, pp. 1107–1116.

[17] H. Zhou and C. Liu, “Task mapping in heterogeneous
embedded systems for fast completion time,” in Em-
bedded Software (EMSOFT), 2014 International Con-
ference on. IEEE, 2014, pp. 1–10.

[18] R. Saussard, B. Bouzid, R. Reynaud, and M. Vasiliu,
“Predicting ADAS algorithms performances on
K1 architecture,” in URL: http://on-demand-
gtc.gputechconf.com. NVIDIA GTC, 2015.

[19] R. Hartley and A. Zisserman, Multiple view geometry in
computer vision, Cambridge University Press, 2003.

[20] G. van den Braak, C. Nugteren, B. Mesman, and H. Cor-
poraal, “Fast hough transform on GPUs: Exploration of
algorithm trade-offs,” in Advances Concepts for Intelli-
gent Vision Systems, pp. 611–622. Springer, 2011.


