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Abstract—Image processing algorithms are widely used in
the automotive field for ADAS (Advanced Driver Assistance
System) purposes. To embed these algorithms, semiconductor
companies offer heterogeneous architectures which are com-
posed of different processing units, often with massively parallel
computing unit. However, embedding complex algorithms on
these SoCs (System on Chip) remains a difficult task due to
heterogeneity, it is not easy to decide how to allocate parts
of a given algorithm on processing units of a given SoC. In
order to help automotive industry in embedding algorithms
on heterogeneous architectures, we propose a novel approach
to predict performances of image processing algorithms on
different computing units of a given heterogeneous SoC. Our
methodology is able to predict a more or less wide interval of
execution time with a degree of confidence using only high level
description of algorithms to embed, and a few characteristics
of computing units.

Keywords-Heterogeneous Architectures; Performance Pre-
diction; Image Processing;

I. INTRODUCTION

Vehicles increasingly provide ADAS (Advanced Driver
Assistance System) capabilities, as passive systems (e.g.
a lane departure warning system alerts the driver when
the vehicle crosses a lane) or active systems (e.g. a lane
centering assist system controls vehicle trajectory). Some
of these systems use cameras and image processing to
sense the environment and detect potential obstacles, we
can cite lane detection [1], obstacle detection [2], pedestrian
detection [3], [4], etc. Image processing algorithms need
high computational capabilities, because they process high
amount of data. Most of state-of-the-art algorithms for
ADAS run on powerful computers or not in real time. How-
ever, image processing algorithms can often be parallelized,
so they can benefit from hardware accelerator like GPU or
multi-core CPU. Automotive industry needs low-power high
performance embedded systems to embed image processing
applications on vehicles.

Semiconductor companies are moving into the market of
embedded systems for ADAS with heterogeneous architec-
tures. These architectures embed several processing units
with different capabilities on the same SoC (System on
Chip), often with massively parallel computing unit. We can

cite the Tegra K1 SoC of Nvidia (which embed ARM, GPU
and ISP), the TDA2x SoC [5] of Texas Instrument (ARM,
DSP and EVE vectorial processor), or the EyeQ of Mobileye
[6].

The problem of this type of architecture is the complexity
to embed algorithms. Indeed, as there are several processing
units, it is not easy to find the best mapping between
algorithms and processing units. Moreover, adjusting an
algorithm to embed it on a single processing unit is quite
time-consuming, that is why adjusting an algorithm for
all processing units to determine the best association is
unachievable. In light of that fact, there is a need for
car manufacturers and suppliers to predict performances of
algorithms on different processing units to help them to
choose the best algorithm–processing unit association.

In this work, we introduce a novel methodology to
meet automotive industry needs, to predict performances
of image processing algorithms on heterogeneous archi-
tectures. Firstly, we describe in section II the Nvidia K1
and TDA2x heterogeneous architectures, their characteristics
and capabilities. Then, in section III, we introduce our
parallelism classification and the problem of kernel mapping
optimization. In section IV, we present state-of-the-art of
performance prediction, followed by our novel approach
description in section V. We illustrate our methodology with
an example extracted from an ADAS application in section
VI. Finally, we discuss future works and conclude in section
VII.

II. EMBEDDED HETEROGENEOUS ARCHITECTURE

Semiconductor companies such as Nvidia, Texas Instru-
ment and Freescale propose heterogeneous architectures
to meet automotive industry needs for embedding image
processing algorithms for ADAS. These architectures han-
dle high performance computing with massively parallel
computing unit (e.g. GPU or vectorial processor) and low-
power consumption. In this paper, we propose a general
approach which can fit with any of these SoCs, and we
show some preliminary results obtained on Nvidia Tegra K1
heterogeneous SoC.



A. Nvidia Tegra K1 Architecture

The Nvidia Tegra K1 SoC is composed of quad-core
ARM Cortex A15 CPU (1.5 GHz clock rate) providing
ARMv7 instruction set and out-of-order speculative issue
3-way superscalar execution pipeline, see Fig. 1, each core
has NEON and FPU unit [7].

The Kepler GPU of the K1 is composed of one streaming
multiprocessor (SMX) of 192 cores [8], accessible with
CUDA [9] and the new standard OpenVX [10]. This frame-
work is a hardware abstraction layer for image processing
applications supporting modern hardware architectures such
as embedded heterogeneous SoCs. OpenVX is based on the
implementation of image processing kernels designed by
SoCs manufacturers, beneficing from hardware acceleration
of architectures.

The parallelization with CUDA is qualified as SIMT (Sin-
gle Instruction Multiple Threads). GPU has three memories
reachable by all threads:
• Global memory: read and write access.
• Constant memory: low latency, read access only.
• Texture memory: read access only, can interpolate

adjacent data value, always handle boundary issues.
The global memory of the K1 is the same for GPU and
ARM, both can potentially access to the same data, see Fig.
2. Memory area of each processing unit is handled by the OS
(L4T or Vibrante, which are both based on Linux kernel).

B. K1 Specific Features

The K1 also has several hardware processing units like
Image Signal Processor (ISP) and Image Processing Acceler-
ator providing fast and specific image processing algorithms
such as debayering, noise reduction, lens correction etc.
These units are very fast but user can only control a limited
set of parameters and the chaining order of kernels is
restricted.

In addition of basic instructions, ARM and Kepler GPU
have specific features which can be used to accelerate im-
age processing algorithms. Thus, ARM processor provides
SIMD instructions with NEON units [11]. In order to handle
the issues of concurrent reading and writing, CUDA provides
atomic instructions based on hardware design.

Nvidia GPU texture memory provides couple of advan-
tages for reading images data. When accessing to non-
integer pixel coordinates (e.g. Im[i-0.5][j-0.5]), texture units
handle linear interpolation. This is cost-free because it
is computed by hardware design. Moreover, texture units
handle access to pixels outside the image (e.g. Im[-1][-1]),
also cost-free.

C. Texas Instrument TDA2x SoC

The TDA2x is composed of four different types of pro-
grammable units. The architecture is given in Fig. 3. Firstly,
it provides a 750 MHz dual core ARM A15 and a dual-
Cortex-M4. These computing units do not bring that much

Figure 1. ARM A15 3-way superscalar instruction pipeline.

Figure 2. Tegra K1 heterogeneous architecture, global memory is the same
for CPU, GPU and ISP.

computing capability (A15 core on TDA2x is 4 times less
powerful than the one in K1), but they can be used for
data management, video acquisition control / rendering, high
level decision making, etc.

To handle heavy image processing tasks, TDA2x pro-
vides a mix of Texas Instrument fixed and floating point
TMS320C66x DSP (Digital Signal Processor) and up to
four EVE (Embedded Vision Engine) cores. TMS320C66x
is the most recent DSP from Texas Instrument, it can handle
up to 32 multiply-accumulate operations per cycle. Each
EVE is a 650 MHz core, optimized for image processing,
composed of one specific RISC processor and one 512-bit
vector coprocessor.

III. HARDWARE ACCELERATION AND KERNEL MAPPING

In order to increase performance of a given algorithm,
we have to identify parts of code which can benefit from
hardware accelerations of a given architecture. This implies
to separate the algorithm in more or less fine blocks called
kernels.

A. Parallelization Level and Classification

Execution time of a given kernel can be accelerated by us-
ing different levels of parallelization of a given architecture.



Figure 3. Block diagram of TDA2x heterogeneous architecture.

First, one can address parallelism at register level, which
we usually call SIMD instructions or vectorization (e.g.
NEON for ARM). Some compilers can handle automatic
vectorization, e.g. GCC [12], but optimization result can vary
depending on compiler.

Secondly, computing units often provide multi-core (ARM
provides 4 cores and GPU 192 CUDA cores on K1 SoC).
This parallelism can be accessed by using different API,
e.g. for multi-core CPU, with pthread (for linux), or at
more generic level with OpenMP [13] and C++11/14 parallel
features. Pthread is a low level API, it enables fine-grained
control over thread management but may be difficult to
implement, sometimes too much complicated (depending
on code complexity). On the other hand, OpenMP is a
high level API, easier to implement, but may have different
performances than pthread.

At higher level, heterogeneous architectures offer multi-
computing units with different capabilities. Each of these
computing units may execute different kernels concurrently.

Speed increasing brought by parallelism is not the same
for all kernels, of course it depends on how kernel can be
parallelized. We propose four simple classes to characterize
kernels parallelism degree:

• Simple parallelism P0: kernels for which there is no
dependency between data, each operation can be exe-
cuted without the result of another one, so concurrently,
e.g. convolution.

• Parallelism using atomic instructions P1: kernels for
which different threads may write on the same shared
data in the same time. Thus mutexes, memory barriers
or atomic instructions should be used, e.g. histogram
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Figure 4. Execution time for an image copy kernel for different image
size, using 1, 2, 3, and 4 cores of the ARM.

construction.
• Parallel reduction P2: kernels for which parallel reduc-

tion can be used, e.g. computing sum of all values of
a vector.

• Iterative kernels P3: kernels for which each iteration
depends on the result of the previous one, e.g. if
ui = f(ui−1). Due to this dependency, kernels in
their original form cannot be parallelized. However,
operations executed at each iteration, e.g. f(u), may
be parallelized.

Complex algorithms provide a mix of kernels which
belong to different parallelism classes.

B. Kernel Concurrency

Multi-core and multi-computing units parallelisms enable
to execute multiple kernels concurrently, however execution
time of each concurrent kernel may be higher than execution
time of one kernel without concurrency. In fact, depending
on the architecture, some resources (e.g. global memory or
cache) may be shared between cores or computing units,
limiting performance of kernels execution.

In the K1 SoC case, we implemented a simple benchmark
in order to identify this kind of limits for the ARM processor.
This benchmark is a simple kernel which copies an input
image to an output image, it processes by using 1, 2, 3,
or 4 threads (image is divided by the number of threads,
each thread copy one part of the image). As shown in
Fig. 4, copy using 1 core is slower than copy using 2
cores, whereas performance is the same when using 2, 3,
or 4 cores. Thus cache bandwidth of each core is slower
than global memory bandwidth, so executing more than 2
memory transfers concurrently can degrade global execution
time.



C. Kernel Mapping Optimization

Embedding a given algorithm on a heterogeneous archi-
tecture is a difficult task because one can not easily find how
to allocate kernels on the different processing units (kernel
mapping) [14].

Let P be the vector of processing units of a given
heterogeneous architecture of size m × 1, K be the vector
of kernels of a given algorithm of size n× 1 :

P =


p1

p2
...
pm

 ; K =


k1

k2
...
kn

 . (1)

The matrix M , of size m × n, constitutes the mapping of
K on P , given by

P =MK, (2)

with ∀(i, j) ∈ J1,mK×J1, nK,Mi,j ∈ {0, 1}. Thus Mi,j = 1
implies that kernel kj is mapped on processor pi.

Let ϕ be the dependency matrix (dependencies between
kernels K), with a n× n size, defined as ∀(i, j) ∈ J1, nK×
J1, nK, ϕi,j ∈ {0, 1}, ϕi,j = 1 implies that kernel ki depends
on kj results.

Let:
• τ(M) be the execution function, returning a n×1 vector

corresponding to the execution time of each kernel with
mapping M ;

• δ(M) be the transfer function, returning a n×1 vector
corresponding to the transfer delay needed for each
kernel with mapping M ;

• η(M) be the occupancy function, returning a m × 1
vector corresponding to the occupancy rate of each
processor with mapping M ;

Then, let f(P,K,ϕ, τ(M), δ(M), η(M)) be the cost
function, returning the global execution time of the algorithm
executed on the heterogeneous architecture with mapping
M . The aim of kernel mapping optimization is to find M
minimizing f :

argmin
M

[f (P,K,ϕ, τ(M), δ(M), η(M))] . (3)

Parameters of function f can be measured or predicted
for different M . This evaluation needs all kernels imple-
mentations on all processing units (very time consuming),
but prediction only needs kernels and architectures analysis
(very efficient but needs deep SW / HW knowledge). In this
paper, we present a methodology to estimate the execution
τ(M) and transfer δ(M) times with little knowledge of
target architecture.

Our approach is based on two levels of accuracy. The first
one uses all basic information provided by manufacturers;
but this level cannot deal with cache effects, compiler
optimizations, memory latency, concurrent memory access,

resources starvation, etc. Thus the second level overcomes
these limitations by using a generic benchmark-vectors set
which automatically extracts parameters (e.g. L1, L2, L3
caches, concurrent access, or compiler auto-vectorization ef-
fects on execution and transfer times, etc.). These parameters
can be extracted for any architectures and compilers.

IV. RELATED WORK

The aim of performance prediction is to estimate the
execution time of a given kernel on a given computing unit.
It needs a characterization of computing unit (provided by
manufacturer or by benchmark results), and a characteriza-
tion of kernel (high level description, source code or binary
file analysis).

The difficulty for performance prediction techniques is to
find the best compromise between complexity of model and
precision of predictions. In fact if technique needs a full
optimized source code in order to estimate execution time
on one target, it does not bring that much gain compared
to measure real performance on real embedded system.
Whereas, if technique needs only a high level description
of kernel in order to predict performance for different
computing unit, one can rapidly find what target will bring
the best performance for that kernel.

A survey of performance modeling techniques is given in
[15], according to it three main approaches for performance
modeling can be found in literature: analytical modeling,
machine learning, and simulation. A performance simulator
is able to reproduce a computing unit behavior. It can give a
lot of information, identify bottlenecks, predict performance,
etc, and generally obtains a fine estimation. Some simulators
address hybrid architectures (CPU+GPU), e.g. [16].

Using an architecture simulator implies to port kernel to
simulator, which represents about the same amount of work
than embedding kernel on architecture. Moreover, a fine
simulation of the system implies a very long execution time.

An analytical model is a set of equations which represents
characteristics of the system (kernel and computing unit).
Machine learning techniques extract some characteristics by
using a set of code and hardware features, then it performs
by using feature selection, clustering and regressions tech-
niques to estimate execution times of a kernel, e.g. [17]
which addresses CPU and GPU.

Most of analytical model handle performance prediction
for only one type of architecture. In [18], authors propose a
model based on 47 architecture independent characteristics.
Then performances are predicted by using programs in a
benchmark suite and measuring similarity between bench-
mark programs and application, using the 47 architecture
independent characteristics. Authors show results on differ-
ent CPU architectures, but do not address neither GPU nor
embedded architectures like DSP.

The famous model of Hong and Kim [19] addresses
performance prediction for GPU with two metrics: Memory



Warp Parallelism (MWP) and Computation Warp Parallelism
(CWP). The aim of this two metrics is that if MWP ≤
CWP then performance is limited by memory bandwidth
and latency, but if CWP > MWP then memory latency
is hidden by computing operations. Authors report a 13.3%
mean error on execution time estimation.

The roofline model [20] uses approximatively the same
approach by studying the arithmetic intensity of application
and memory / computational bandwidths of architecture.
However, it is not used for performance prediction, only
for bottleneck highlighting and code optimization. The boat
hull model [21] adapts the roofline model to provide per-
formance prediction. It is based on a set of primitives,
kernel complexity, and memory / computational bandwidths
of architecture. It shows good results, 3 and 8% of error
for 2 applications. However, the model is limited to kernels
which fit in classification given in [22], and cannot handle
arbitrary code.

V. PERFORMANCE PREDICTION USING COMPUTING
PROFILE

We propose a novel model for performance prediction
which:
• can address multiple architectures,
• is not limited to a set of primitives,
• can be used without specific optimized source code,
• does not need a deep knowledge of architectures.

Our methodology is based on a kernel descriptor, the com-
puting profile.

A. Basic Level of Classification

A kernel can be defined as a set of well-defined instruc-
tions, and each instruction can be classified in two classes:
the computing instructions, and the memory instructions.
Secondly, we can classify each computing instruction. The
key is that one class of computing instructions is executed
by one type of unit on the computing unit, e.g. additions
will be executed by the ALU, and floating point operations
by the FPU.

Classes of instruction are:
• S Int: simple operations on integer, e.g. add, sub, cmp,

etc.
• M Int: operations with multiplications on integers, this

includes multiply accumulate operations.
• Float: floating points operations, instructions computed

by the FPU.
• Specific: specific operations which often encapsulate

several instructions, e.g. div, sqrt, etc.
• Branch: branching instructions, e.g. for loop, if, etc.
• Address: addressing operations, e.g. accessing to the ith

member of an array.
• Memory: load and store instructions.
The arithmetic intensity [23] is defined as the number of

operations per memory instruction (load and store). Given

NM , the number of memory instructions and NC the number
of computing instructions, the arithmetic intensity Ia is
defined as:

Ia =
NC

NM
. (4)

This metric can be used to identify the way to optimize the
algorithm, for example with the roofline model [20]. Thus,
performance of algorithm with small arithmetic intensity is
limited by memory bandwidth and latency, whereas perfor-
mance is limited by computing capability for algorithm with
high arithmetic intensity. In fact, memory access latency can
be hidden by multiple computing operations.

On state-of-the-art architectures, it is not easy to predict
the number of global memory access and the delay of each
one because of sophisticated cache systems. Indeed there
are different levels of cache with different latencies and
bandwidths.

B. Computing Profile and Throughput

The computing profile of a kernel is an illustration of
resources needed by this kernel. The aim is not to get
the complexity (number of operations), but to know which
classes of instructions are used.

The profile is the ratio of each class, this is the number
of instructions of one class divided by the number of
instructions of all computing classes. Let C be the set of
computing instructions (no memory instructions):

C = {S int,M int, F loat, Specific, Branch,Address}
(5)

Let Nc be the number of instructions associated with class
c, with c ∈ C. The ratio for the class c, rc is:

rc =
Nc∑
i∈C Ni

. (6)

The computing profile shows us which class of instruc-
tions is the most used (the maximum of the rc for all c ∈ C).
This information can be used to choose the best architecture
for the algorithm. For example an algorithm with a lot of
branching operations will have poor performance if embed-
ded on GPU, but could have good performance on ARM,
with speculative execution.

Moreover, if we know the throughputs of different classes
of instructions for a given architecture, we are able to
estimate computation time for each class of instructions on
this architecture. Let pc,a be the throughput (in operations
per cycle) of architecture a for class of instructions c,
computation time (in cycles) Tc,a is:

Tc,a =
Nc

pc,a
. (7)

If architecture a is scalar, different instructions of dif-
ferent classes cannot be executed simultaneously, so total



computation time is the sum of all Tc,a:

ta =
∑
i∈C

Ti,a. (8)

If architecture a is superscalar, and in the optimal case
(when instructions of different classes follow each other with
good timing in order to get the maximum benefit from the
superscalar capability of the architecture), computation time
is given by the maximum of all Tc,a:

ta = max
{i∈C}

Ti,a. (9)

State-of-the-art architectures are all superscalar, thus we
can estimate an execution time interval for the kernel as-
sociated with architecture a. In the best case (when the
superscalar capability is fully exploited), the computation
time is given by the maximum of all Tc,a. In the worst case
(when the superscalar capability is not exploited), the total
computation time is the sum of all Tc,a:

tmin,a = max
{i∈C}

Ti,a tmax,a =
∑
i∈C

Ti,a. (10)

Given a kernel and a computing unit, we are able to
estimate a computation time interval. In our case, that can
be helpful to estimate the best computing unit for a given
kernel. Indeed, our method is applicable to different kind of
computing units, and results can be compared by knowing
clock frequency of each computing unit.

C. Prediction for Consecutive Kernels

With computing profile prediction, we can obtain an
interval of predicted execution time for a given kernel and
different computing units. However a complete algorithm is
composed of consecutive kernels, so we have to associate
predictions of multiple kernels in order to predict perfor-
mance of a complete algorithm.

First, we can simply use interval arithmetic, to sum
intervals of the different kernels in order to obtain another
interval. This implies a loss of precision because of a larger
interval. Let an algorithm be composed of two consecutive
kernels k1 and k2, let x1, x2 be the real execution time of
k1 and k2 on a given computing unit. Let [a1, b1], [a2, b2]
be the predicted interval obtained with computing profile
for k1 and k2, such as x1 ∈ [a1, b1] and x2 ∈ [a2, b2].
This approach returns another interval for the predicted total
execution time: (x1 + x2) ∈ [a1 + a2, b1 + b2].

The exact value of execution time is unknown (until
we measure it in real condition), so this value belongs
to the predicted interval [tmin, tmax]. Without any other
specific information, we can modelize the possible value
for the execution time as a uniform distribution over the
predicted interval [tmin, tmax]. As predictions of two dif-
ferent kernels are independent (as long as they are not
executed concurrently), summing two predicted execution
times implies summing two independent random variables.

Let us now consider two independent random variables X1

and X2 representing the estimated execution times, and two
uniform distributions fX1(p) and fX2(p), describing the
relative likelihood that X1 = x1 and X2 = x2, defined
such as:

fXi
(p) =

{
1

bi−a1
for ai ≤ p ≤ bi,

0 for p < ai or p > bi
, i ∈ {1, 2}.

(11)
Thus:

Pr[p1 ≤ Xi ≤ p2] =
∫ p2

p1

fXi
(p)dp. (12)

As X1 and X2 are independent, the probability density
function of their sum, fX1+X2

, is given by the convolution
of the two density functions:

fX1+X2
(p) =

∫ ∞
−∞

fX1
(p− u)fX2

(u)du. (13)

The density function fX1+X2
(p) is non-zero for p ∈ (a1 +

a2, b1 + b2) and is maximum for p ∈ [min(a1 + b2, a2 +
b1),max(a1 + b2, a2 + b1)].

For both approaches, predicted interval become larger
each time we add a kernel. However the probabilistic ap-
proach enables to reduce the estimated interval with a degree
of confidence, as shown in (12), thus we obtain a better
precision for performance prediction.

VI. CASE OF STUDY: A LANE DETECTION ALGORITHM
EMBEDDED ON THE K1 SOC

To illustrate our method for performance prediction, we
take an automotive use-case: lane detection application. The
image processing part of our application takes about 95%
of computational needs. It is divided into four levels:

1) Gradient computation: the input color image is con-
verted to grayscale, the gradient is computed with a
horizontal Sobel operator, and finally a threshold is
applied in order to get a binary image.

2) A Bottom-Hat filter is applied to reduce the number
of points for the next step.

3) The lane detection is performed by a Hough transform.
4) High level kernel for decision-making.

The gradient computation and the Bottom-Hat filter outputs
are illustrated in Fig. 5.

A. Throughputs of the K1 SoC

As seen in previous section, the model is based on
throughputs of architectures, pc,a. Manufacturers may give
information about throughput for each class, e.g. for Nvidia
this can be found in [9].

Moreover, we establish throughputs for different comput-
ing units by using a benchmark, which measures the time to
execute a known number of instructions. Time is measured
with performance counter registers of each architecture.



(a) Input image
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Figure 5. Successive steps of the lane detection application, and their
computing profile.

Throughputs for ARM and GPU of the K1 SoC are given
in Tab. I. As Specific operations on ARM imply multiple
instructions, there is not a unique throughput for this class.
Throughputs are given for one core, or one SMX for the
GPU. Speed increasing provided by using 4 cores on ARM
vary depending on parallelism degree of kernel and API
used. For a P0 kernel with high Ai, we assume that using
the best acceleration technique provides a speed increasing
equal to the number of threads (e.g. using 4 cores reduces
execution time by 4).

The throughputs of NEON operations on ARM are the
same than corresponding regular operations, e.g. NEON unit
can execute 2 SIMD additions per cycle. However using
NEON implies that data have to be loaded into NEON
registers from ARM registers, and have to be stored from
NEON registers to ARM registers, throughput for loading
and storing NEON instructions can vary depending on data
alignment.

B. Example of Performance Prediction with Horizontal Gra-
dient

In order to illustrate our methodology for performance
prediction, we present an example with the Gradient al-
gorithm of our lane detection application. The algorithm
processes in two steps, first a RGB to gray conversion and
then a horizontal Sobel filter. In order to achieve high Ai, we

Table I
THROUGHPUTS FOR ARM AND GPU OF THE K1 ARCHITECTURE.

VALUES ARE GIVEN IN INSTRUCTIONS PER CYCLE.

Class of instructions ARM A15 GPU Kepler
S Int 2 160
M Int 1 32
Float 1 192

Specific ∗ 32
Branch 1 32
Address 1 32

NEON load & store 0.5 /

choose to store temporary values in a small buffer, benefiting
from low latency of L1 cache. Thus complete algorithm
performs only 3 loads (one for each color component) and
1 store from / to global memory for each pixel.

RGB to gray conversion is given by listing 1, with pIn
pointer on input image, and pOut pointer on output image.
For each pixel, it performs 3 M Int, 5 S Int plus 2 if we
consider that multiplication-accumulation is not used, and 1
S Int plus 1 Branch for the for loop.

Listing 1. RGB to Gray conversion
∗ ( pOut ++) = (∗ ( p In ) ∗28 + ∗ ( p In +1) ∗151 + ∗ ( p In +2)

∗77) >> 8 ;
p In +=3;

We choose to separate the Sobel filter into two filters. The
first one is given by listing 2, for each pixel it performs 5
S Int, and 1 S Int plus 1 Branch for the for loop.

Listing 2. First Sobel filter
∗ ( pOut ++) = ∗ ( pIn −1) − ∗ ( p In +1) ;
p In ++;

The second one is given by listing 3, the Step variable is
the distance between vertically consecutive pixels. For each
pixel it performs 7 S Int (multiplication by 2 is counted
as S Int, because corresponds to an arithmetic left shift), 1
S Int plus 1 Branch for the if condition, 1 S Int for the abs
operator , and 1 S Int plus 1 Branch for the for loop.

Listing 3. Second Sobel filter
v a r = abs (∗ ( pIn−Step ) + ∗ ( p In ) ∗2 + ∗ ( p In + S tep ) )
i f ( v a r > 255)

∗ ( pOut ++) = 255 ;
e l s e

∗ ( pOut ++) = v a r ;
p In ++;

1) Prediction on ARM: First, we apply prediction model
for ARM using one core and no vectorization. We assume
Ai is high enough to consider performance is limited by
computing capability of the architecture, not by memory
bandwidth. Predicted execution time, t, is given in number
of clock ticks per pixel:
• RGB to Gray: t ∈ [4, 8]
• First Sobel Filter: t ∈ [3, 4]
• Second Sobel Filter: t ∈ [5, 7]
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Figure 6. Probability density function of predicted execution time for
gradient algorithm using 1 core and no vectorization on ARM. Measured
execution time is 15.87 clock ticks per pixel.

The global execution time, obtained by summing the inter-
vals, is t ∈ [12, 19], or t = 15.5 ± 22.6% clock ticks per
pixel.

The probability density distribution f(p), obtained by
convolving probability density distribution of each kernel,
is:

f(p) =



(p− 12)2/16 for 12 ≤ p ≤ 13,

(p− 12.5)/8 for 13 ≤ p ≤ 14,

0.25− (p− 15)2/16 for 14 ≤ p ≤ 15,

0.25 for 15 ≤ p ≤ 16,

0.25− (p− 16)2/16 for 16 ≤ p ≤ 17,

(p− 18.5)/8 for 17 ≤ p ≤ 18,

(p− 19)2/16 for 18 ≤ p ≤ 19,

0 for p < 12 or p > 19.
(14)

Distribution f(p), shown in Fig 6, is maximum for p ∈
[15, 16]. According to the density function, the probability
that execution time t ∈ [14, 17] (or t = 15, 5 ± 9.7%) is
70%.

We implement Gradient algorithm on ARM, and apply it
on a 1280 × 720 image. Measured execution time is 9.750
ms, 15.87 clock ticks per pixel which is in the interval
with 70% confidence, and represents a difference of 2.5%
compared with the average of the interval.

To benefit from multi-core and decrease execution time,
image is divided into four parts, each thread processes one
part of the image. In order to avoid side effect, each thread
processes their parts plus one line, in our case this represents
blocks of 1280×181 pixels. Based on prediction with 1 core,
we can estimate execution time using 4 cores. As all kernels
used for Gradient algorithm are P0, and pthread is used, we
assume there is no waste of time.

One thread processes on 1280×181 pixels, thus predicted
time is t ∈ ([12, 19]× 1280× 181) clock ticks. If we divide
by the total number of pixels, then t ∈ [3.017, 4.776] clock
ticks per pixel. Measured value is 2.560 ms, 4.17 clock ticks
per pixel, it represents a difference of 7% compared with the
average of the interval.

Gradient algorithm can also be accelerated by using
NEON. Performance with auto-vectorization depends on
compiler capabilities, so our methodology using computing
profile can not work. Moreover, in this example memory
delay is hidden by computing time. In order to address
prediction where performance depends on other parame-
ters than computing profile and throughput, we are using
the second level of our estimation approach (a generic
benchmark-vectors set injected on this specific architecture).
The extracted parameters can be acceleration provided with
auto-vectorization, memory access delays, transfers delays
between computing units, etc. Then, both information from
computing profile and benchmarks are used to obtain pre-
dicted performances (cost function f ) and the best mapping
for a given algorithm and heterogeneous SoC.

2) Prediction on GPU: We apply the same methodology
on the same algorithm for the GPU of K1. However, in
order to maximize occupancy [24], each thread computes
four pixels, and Sobel filter is not separated. Moreover RGB
to Gray conversion uses floating point operations. Temporary
values are stored in shared memory in order to minimize the
number of global memory access.

With CUDA API, image indexes are obtained with threads
IDs, there is no need of for loop. Thus in RGB to Gray
kernel, each thread performs 12 Float, 32 S Int and 1
Branch (to handle borders of blocks). In Sobel kernel, each
thread performs 29 S Int, 4 Branch, and 4 Specific (absolute
value operator belongs to Specific class for the GPU). Thus
prediction, in clock ticks per pixel, for each kernel are:
• RGB to Gray: t ∈ [0.2, 0.29275]
• Sobel: t ∈ [0.18125, 0.43125]

Predicted global execution time is t ∈ [0.38125, 0.724]
clock ticks per pixel, or t ∈ [829, 1574] Mp/s (clock rate of
K1 GPU is 600 MHz). According to the probability density
function, given in Fig. 7, t ∈ [0.474, 0.63125] clock ticks
per pixel with 63% of confidence.

Measured execution time on a 1280×720 image is 0.606
clock ticks per pixel, 990 Mp/s, which is in the interval with
63% of confidence, and represents a difference of 9.66%
compared with the average of the interval. Fig. 8 shows
results of predictions and measured execution times for both
ARM 4 cores and GPU with different image sizes.

C. Kernel Mapping

Our application is divided into four parts and K1 SoC
has two programmable computing units, thus more than 128
different configurations can be explored (different mapping,
number of core to use, execution pipeline, etc). On TDA2x,
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Figure 8. Measured and predicted performances for the Gradient compu-
tation on ARM using 4 cores (top) and GPU (bottom). Both axis are in log
scale.
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Figure 9. Result of our benchmark measuring delay needed to transfer
data from CPU to GPU global memory. Nonlinearities are due to cache
effects.

there are four programmable computing units, so more than
1024 different configurations can be studied. Our method-
ology aims to automatically find one of the best mapping
without porting any kernel.

On K1, predictions show that computing time is slower
on GPU than on ARM for all kernels except for the high
level decision making. Acquisition is handle by the ARM,
thus executing a kernel on GPU implies copying data to
GPU memory. According to our benchmarks (see Fig. 9),
copying a RGB image and running the kernel on GPU is
more time consuming than running it on ARM. The Hough
transform kernel only need few pixels coordinates as input
data, returns lines coordinates, and prediction shows it has
good performance on GPU. Thus one of the best mapping for
our application is to embed Hough transform on GPU and
everything else on ARM with 4 cores. With this mapping,
the application runs in 10.4 ms on a 1920×1080 HD image.

On TDA2x, we are working to embed lane detection
application. Our methodology gives us that one of the best
configuration is to run the two first kernels on DSP, then
Hough transform on EVE, and finally high level decision
making on ARM.

VII. CONCLUSION AND FUTURE WORK

In this work, we have introduced a novel approach for
performance prediction addressing multi-architectures, and
operating without specific and optimized source code of
application for each architecture. Our methodology is based
on a high level description of kernels, the computing profile,
and computing throughputs of architectures. We have shown,
with an example extracted from an ADAS application, our
approach is able to predict a more or less wide interval of
execution time with a degree of confidence.

We are working to improve our methodology by taking
into account memory delay to predict performances of ker-



nels with small arithmetic intensity. Thus, we are adapting
the approach of boat hull model to our methodology, clas-
sifying type of memory access found in image processing
algorithms and studying there behaviors. Moreover, we are
applying our method to TDA2x SoC to confirm the general
approach for computing units like vectorial processor.

In a future work, we will propose results on kernels which
belong to other parallelism classes than P0. Finally we will
show performance prediction using both computing profile
and parameters extracted with our set of benchmarks, in
order to predict all terms of (3). Thus, we aim to deal
with performance prediction of a complex application for
different heterogeneous SoC, to help with kernel mapping
optimization, and to choose the best suited SoC for a given
application.
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