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Abstract

We devise and analyze arbitrary-order nonconforming methods for the discretization of the
viscosity-dependent Stokes equations on simplicial meshes. We keep track explicitly of the viscosity
and aim at pressure-robust schemes that can deal with the practically relevant case of body forces
with large curl-free part in a way that the discrete velocity error is not spoiled by large pressures.
The method is inspired from the recent Hybrid High-Order (HHO) methods for linear elasticity.
After elimination of the auxiliary variables by static condensation, the linear system to be solved
involves only discrete face-based velocities, which are polynomials of degree k ě 0, and cell-wise
constant pressures. Our main result is a pressure-independent energy-error estimate on the velocity
of order pk ` 1q. The main ingredient to achieve pressure-independence is the use of a divergence-
preserving velocity reconstruction operator in the discretization of the body forces. We also prove an
L2-pressure estimate of order pk ` 1q and an L2-velocity estimate of order pk ` 2q, the latter under
elliptic regularity. The local mass and momentum conservation properties of the discretization are
also established. Finally, two- and three-dimensional numerical results are presented to support the
analysis.

Keywords: Stokes problem, mixed methods, curl-free forces, higher-order reconstruction, superconver-
gence, hybrid discontinuous Galerkin method, static condensation
2000 Mathematics Subject Classification (MSC): 65N12, 65N30, 76D07

1 Introduction

The arbitrary-order nonconforming methods analyzed in this work are inspired from the Hybrid High-
Order (HHO) methods recently introduced in [16] for quasi-incompressible linear elasticity and in [17]
for diffusion problems. In a nutshell, HHO methods are formulated using cell- and face-based discrete
unknowns that are typically polynomials of some order k ě 0. These methods rely upon two key
ingredients: a high-order reconstruction operator inside cells from the cell- and face-based unknowns,
and a stabilization operator linking locally cell- and face-based unknowns while preserving the high
order of the reconstruction. The discrete problem is assembled cell-wise, and cell-based unknowns can
be eliminated by static condensation, leading for diffusion problems to a symmetric, positive definite
linear system coupling the face-based unknowns. To emphasize the fact that the only globally coupled
variables are broken polynomials on the mesh skeleton, we have recently introduced [13] the nomenclature
discontinuous skeletal methods. HHO methods support general meshes and lead to energy error estimates
of order pk`1q for smooth solutions and to super-closeness of order pk`2q for the primal variable. These
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methods are also locally conservative, see [15], and, as detailed in [9], close connections exist with the
hybridizable discontinuous Galerkin (HDG) methods, as well as with the High-Order Mimetic methods
from [32]. The most salient differences are the choice of stabilization and that of the spaces to reconstruct
the dual variable (the flux) in HHO methods with respect to HDG.

The aim of this paper is to devise and analyze a discontinuous skeletal method to discretize the viscosity-
dependent Stokes equations on three-dimensional simplicial meshes. We keep track explicitly of the
dependence on the (kinematic) viscosity in the analysis so as to address the practically important issue
of body forces with a large curl-free part, as encountered in more complex flows owing to the nonlinear
convection term [27], exterior forces like buoyancy [20, 24], or Coriolis forces [31, 24] for examples. Our
discretization of the Stokes equations hinges on face-based discrete velocities, which are vector-valued
polynomials of degree k ě 0, and cell-based discrete constant pressures. All the remaining unknowns that
are considered in the derivation of the method, namely cell-based discrete velocities and higher-order
discrete pressures, can be eliminated by static condensation. Our main result, see Theorem 4 below, is
an energy-norm velocity error estimate of order pk` 1q which is independent of the exact pressure (and,
thus, of the viscosity). Furthermore, L2-error estimates of order pk` 1q and pk` 2q are obtained for the
pressure and the velocity, respectively, the latter under the usual elliptic regularity assumption. We also
identify the local mass and momentum conservation properties of the method.

While the discretization of the viscous term and the incompressibility constraint follow along the lines
of [17, 16, 1], the key novelty introduced in the present work is the construction of a high-order,
divergence-preserving velocity reconstruction operator on simplicial meshes, whose role is to ensure an
exact balance of the curl-free part of all the forces in the momentum equation [29, 24] at the discrete level.
In other words, this operator allows us to reestablish the L2-orthogonality in the momentum balance
between discretely divergence-free velocity fields and curl-free vector fields. This property is, in turn, the
key ingredient to achieve viscosity-independent velocity error estimates. It is well-known that nearly all
classical discretization methods for the incompressible Stokes equations fail to achieve such a property.
This difficuly is traditionally tempered, but not cured, by adding grad-div stabilization [36, 35, 22, 5]. An
alternative approach avoiding this stabilization is the variational crime introduced recently in [28, 29] in
the lowest-order case with Crouzeix–Raviart/P0 mixed finite elements. In this context, the present work
can be viewed as a higher-order generalization of [28, 29]. We also mention [4] for a robust treatment of
body forces in the context of (lowest-order) Compatible Discrete Operator (CDO) schemes.

Several high-order discretizations of the Stokes equations using face-based velocities as discrete un-
knowns have been developed recently. In [10], Cockburn and Gopalakrishnan derive HDG methods
for a vorticity-velocity-pressure formulation of the Stokes equations and describe several hybridization
procedures corresponding to different choices of the globally coupled unknowns. In [34], Nguyen et al.
develop an HDG method for a velocity-pressure-gradient formulation of the Stokes equations for which a
velocity reconstruction that converges with order pk ` 2q in the L2-norm can be obtained by a cell-wise
post-processing when polynomials of degree k ě 1 are used. Similar convergence results are obtained for
the HDG method developed by Wang and Khoo [40] for interface problems with discontinuous viscosity
and variable surface tension. In [25], Labeur and Wells present an HDG method where the velocity
unknowns are polynomials of degree k at elements and faces. We also refer to Cockburn and Shi [11] for
an overview of HDG methods for Stokes flows. Other methods using face-based polynomial velocities
as main unknowns include: the method of Egger and Waluga [18], where polynomials of degree k and
pk ´ 1q are used for the velocity and the pressure, respectively, and a hp-convergence analysis is carried
out; the hybridized finite element method of Jeon et al. [23] based on local Dirichlet solves; the method
of Mu et al. [33]. Besides [30] the present work is the first one that addresses the robust treatment of
large curl-free forces using velocity reconstructions in the sense of [29] for arbitrary-order approximations
on simplicial meshes. Another arbitrary-order discretization that recently addressed robustness against
large curl-free forces was proposed in the DG context by [26].

This paper is organized as follows. In Section 2, we present the model problem and introduce some mesh-
related definitions. The discretization is devised in Section 3, leading to the discrete problem (24) below.
Our main results, including stability, error estimates, and local conservation properties, are stated in
Section 4. Two- and three-dimensional numerical results, are treated in Section 5 whereas computational
aspects, including static condensation, are discussed in Section 6. Finally, the proofs of our main results
are collected in Section 7.
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2 Preliminaries

2.1 Model problem

Let Ω Ă Rd, d ě 2, denote an open bounded and connected domain with a polygonal boundary Γ
and f P L2

pΩq :“ L2pΩqd be a given vector field. We consider the model problem: Find the velocity
u : Ω Ñ Rd and the pressure p : Ω Ñ R such that

´ν4u`∇p “ f in Ω, (1a)
divu “ 0 in Ω, (1b)

u “ 0 on Γ, (1c)

where ν ą 0 is a constant viscosity parameter. For any subset X Ă Ω, we respectively denote by
p¨, ¨qX and }¨}X the standard inner product and norm in L2pXq, and we omit the subscript whenever
X “ Ω. The same notation is used in the vector- and tensor-valued cases. LettingH1

0pΩq :“ H1
0 pΩq

d and
L2

0pΩq :“ tq P L2pΩq |
ş

Ω
q “ 0u, the weak formulation of problem (1) reads: Find pu, pq PH1

0pΩqˆL
2
0pΩq

such that

νapu,vq ` bpv, pq “ pf ,vq @v PH1
0pΩq, (2a)

bpu, qq “ 0 @q P L2
0pΩq, (2b)

with bilinear forms a and b defined by

apu,vq :“ p∇u,∇vq, bpv, pq :“ ´pdiv v, pq.

The well-posedness of problem (2) classically hinges on the coercivity of the bilinear form a together
with the inf-sup stability of the bilinear form b (cf., e.g., [21, Section 2.2], [19, Theorem 4.3]), or [3,
Section 8.2].

2.2 Meshes

Denote by H Ă R`˚ a countable set of meshsizes having 0 as its unique accumulation point. We consider
an h-refined mesh sequence pThqhPH where, for all h P H, Th “ tT u is a matching simplicial mesh
characterized by the scalar h :“ maxTPTh hT with hT denoting the diameter of the element T . The mesh
sequence is assumed to be shape-regular in the sense of Ciarlet [7]. Interfaces are collected in the set F i

h,
boundary faces in Fb

h , and we let Fh :“ F i
h YFb

h . The diameter of a face F P Fh is denoted by hF . For
all T P Th, FT denotes the set of faces of T and, for all F P FT , nTF is the unit normal to F pointing
out of T . In what follows, we use the abbreviation a À b for the inequality a ď Cb with generic positive
constant C independent of h and of ν.

3 Key ingredients of the discretization

All the material contained in this section is devised at the local level; thus, we fix an arbitrary mesh cell
T P Th.

3.1 Local velocity space and local reduction map

Let a polynomial degree k ě 0 be fixed. We define the local discrete space for the velocity as

Uk
T :“ PkdpT qd ˆ

#

ą

FPFT

Pkd´1pF q
d

+

, (3)
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where PkdpT q and Pkd´1pF q denote, respectively, the spaces spanned by the restrictions to T and F of
d- and pd ´ 1q-variate polynomial functions of total degree ď k. We underline symbols to indicate a
collection of velocities on elements and faces. Thus, an element vT P U

k
T is called a local collection of

velocities on T and is specified as vT :“ pvT , pvF qFPFT
q.

We define the local velocity reduction map IkT : H1
pT q Ñ Uk

T that maps a given vector-valued function
v PH1

pT q to a local collection of velocities determined as

IkTv :“ pπkTv, pπ
k
FvqFPFT

q, (4)

where πkT and πkF denote the L2-orthogonal projectors on PkdpT qd and Pkd´1pF q
d, respectively.

3.2 Viscous term

The discretization of the viscous term follows the ideas of [17]. We define the local velocity reconstruction
operator rk`1

T : Uk
T Ñ Pk`1

d pT qd that maps a local collection of velocities vT P U
k
T to the vector-valued

polynomial rk`1
T pvT q P P

k`1
d pT qd solution of the following Neumann problem: For all w P Pk`1

d pT qd,

p∇rk`1
T pvT q,∇wqT “ p∇vT ,∇wqT `

ÿ

FPFT

pvF ´ vT ,∇w¨nTF qF , (5)

and the mean-value of rk`1
T pvT q in T is set equal to that of vT . Note that rk`1

T pvT q is a vector-valued
polynomial field in T one degree higher than the polynomials used in Uk

T , and is designed so that the
following optimal approximation property holds: For all v PHk`2

pT q,

}v ´ rk`1
T pIkTvq}T ` hT }∇pv ´ rk`1

T pIkTvqq}T À hk`2
T }v}Hk`2pT q. (6)

The discretization of the viscous term hinges on the local bilinear form aT on Uk
T ˆU

k
T such that

aT pvT ,wT q :“ p∇rk`1
T pvT q,∇rk`1

T pwT qqT ` sT pvT ,wT q, (7)

with stabilization bilinear form

sT pvT ,wT q :“
ÿ

FPFT

h´1
F pπ

k
F pvF ´ r̂

k`1
T pvT qq, π

k
F pwF ´ r̂

k`1
T pwT qqqF , (8)

where r̂k`1
T : Uk

T Ñ Pk`1
d pT qd denotes a second velocity reconstruction operator defined by adding to

vT a high-order correction inferred from rk`1
T pvT q,

r̂k`1
T pvT q :“ vT `

`

rk`1
T pvT q ´ π

k
Tr

k`1
T pvT q

˘

. (9)

This (rather subtle) choice ensures that the penalty term leads to the stability and boundedness result
stated in (27) below, while at the same time preserving the optimal approximation properties of the
potential reconstruction rk`1

T , so that, for all v PHk`2
pT q,

sT pI
k
Tv, I

k
Tvq

1{2 À hk`1
T }v}Hk`2pT q. (10)

Remark 1 (Variations). Following [9], we observe that it is possible to modify the local velocity space
as follows:

Uk,l
T :“ PldpT qd ˆ

#

ą

FPFT

Pkd´1pF q
d

+

, (11)

for k ě 0 and l P tk ´ 1, k, k ` 1u, so that the case l “ k corresponds to the approach presented above.
The local velocity reconstruction operator rk`1

T still maps onto Pk`1
d pT qd and is defined by (5) (only its

domain changes, but we keep the same notation for simplicity). The discrete bilinear form aT is still
defined by (7), but the stabilization bilinear form sT now uses the velocity reconstruction operator r̂k`1,l

T
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such that r̂k`1,l
T pvT q :“ vT `

`

rk`1
T pvT q ´ π

l
Tr

k`1
T pvT q

˘

for all vT P U
k,l
T . The advantage of the choice

l “ k ` 1 is that it leads to a particularly simple expression for sT , namely

sT pvT ,wT q “
ÿ

FPFT

h´1
F pπ

k
F pvF ´ vT q, π

k
F pwF ´wT qqF .

(Note that this choice for sT is not appropriate for l “ k since it does not deliver the high-order con-
sistency property (10).) The interest in the choice l “ k ´ 1 is that the discretization of the viscous
term is then closely related to the recent High-Order Mimetic method studied in [32] for diffusive prob-
lems. Moreover, in the case k “ 0 and l “ ´1, we recover the Crouzeix–Raviart discretization of the
viscous term considered in [29], provided the following conventions are adopted: (i) P´1

d pT q
d “ t0u, so

that cell velocities are not needed; (ii) the local velocity reconstruction operator r1
T is defined such that

r1
T pvT q “ ṽT where ṽT is the unique function in P1

dpT q
d such that

ş

F
ṽT “

ş

F
vF for all F P FT . With

these choices, it is readily seen that the stabilization bilinear form vanishes.

3.3 Pressure-velocity coupling

We next introduce the main ingredient to realize the pressure-velocity coupling. The discrete pressure
space is

P kT :“ PkdpT q. (12)

Following [16], we define the discrete divergence operator Dk
T : Uk

T Ñ P kT as follows: For a given local
collection of velocities vT P U

k
T , Dk

T pvT q is such that, for all q P PkdpT q,

pDk
T pvT q, qqT “ pdivpvT q, qqT `

ÿ

FPFT

pvF ´ vT , qnTF qF (13a)

“ ´pvT ,∇qqT `
ÿ

FPFT

pvF , qnTF qF . (13b)

Crucially, this operator satisfies the commuting property

Dk
T pI

k
Tvq “ πkT pdiv vq @v PH1

pT q. (14)

The pressure-velocity coupling is realized by means of the bilinear form bT on Uk
T ˆ P kT such that, for

all pvT , qT q P U
k
T ˆ P

k
T ,

bT pvT , qT q :“ ´pDk
T pvT q, qT q. (15)

3.4 Divergence-preserving velocity reconstruction

The ingredients discussed in the previous sections are sufficient to devise a well-posed discrete problem
leading to optimal error bounds with respect to the mesh-size. To achieve robustness of the error
estimates with respect to small diffusion, however, a new ingredient is needed whose goal is to yield an
exact balance of the curl-free part in the discrete momentum equation. Such a balance is formulated at
the continuous level by testing the momentum equation against a divergence-free velocity test function.
At the discrete level, this property is obtained by using in the discretization of the body forces a local,
divergence-preserving velocity reconstruction operator whose normal component at mesh interfaces only
depends on the face-based discrete velocities. Let T P Th and let RTkpT q denote the Raviart–Thomas
polynomial space of degree k on T . We define the operator Rk

T : Uk
T Ñ RTkpT q such that, for all

vT P U
k
T ,

pRk
T pvT q,wqT “ pvT ,wqT , @w P Pk´1

d pT qd, (16a)

pRk
T pvT q¨nTF , qqF “ pvF ¨nTF , qqF , @q P Pkd´1pF q, @F P FT , (16b)

where it is understood that (16a) is not needed in the lowest-order case k “ 0. The key properties of
Rk
T are summarized in the following Lemma.
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Lemma 2 (Properties of Rk
T ). The operator Rk

T is divergence-preserving, i.e., for all vT P U
k
T , the

following holds:
divpRk

T pvT qq “ Dk
T pvT q, (17)

and Rk
T pvT q|F ¨nTF only depends on vF ¨nTF . Additionally, for all vT P U

k
T , the following bound holds:

}Rk
T pvT q ´ vT }T À

ÿ

FPFT

h
1{2
F }pvT ´ vF q¨nTF }F . (18)

Proof. For all q P PkdpT q, we observe that

pdivpRk
T pvT qq, qqT “ ´pR

k
T pvT q,∇qqT `

ÿ

FPFT

pRk
T pvT q¨nTF , qqF

“ ´pvT ,∇qqT `
ÿ

FPFT

pvF ¨nTF , qqF “ pD
k
T pvT q, qqT ,

where we have used integration by parts together with the definitions (16) and (13) ofRk
T andDk

T , respec-
tively. This proves (17) since both divpRk

T pvT qq and Dk
T pvT q are in PkdpT q. The fact that R

k
T pvT q|F ¨nTF

only depends on vF ¨nTF results from classical properties of the polynomial space RTkpT q. Finally, we
apply to ϕT “ R

k
T pvT q ´ vT the estimate

}ϕT }T À sup
wPPk´1

d pT qd, }w}Tď1

pϕT ,wqT `
ÿ

FPFT

h
1{2
F }ϕT ¨nTF }F , (19)

which is valid for any function ϕT P RTkpT q, and obtain (18) since the sup-term is zero. Estimate (19)
is proved using the Piola transformation to the reference element and the basis representation of an
arbitrary ϕT P RTkpT q, where the coefficients are integral moments of ϕT over cell T and integral
moments of ϕT ¨nTF over the faces F P FT (see [8, p. 549-555]).

3.5 Assembly of the global problem

The global discrete velocity space Uk
h is obtained by prescribing the single-valuedness of interface un-

knowns so that, if F P F i
h is a common face of two elements T1, T2 P Th, then the approximations vF in

the collections vT1
and vT2

coincide,

Uk
h :“

!

vh “ ppvT qTPTh , pvF qFPFh
q | vT :“ pvT , pvF qFPFT

q P Uk
T @T P Th

)

. (20)

For all vh P U
k
h and all F P F i

h, the single-valuedness of vF across interfaces ensures that the field w
such that w|T “ Rk

T pvT q for all T P Th is in Hpdiv; Ωq. To enforce the homogeneous Dirichlet boundary
condition, we consider the following subspace of Uk

h:

Uk
h,0 :“

!

vh P U
k
h | vF ” 0 @F P Fb

h

)

. (21)

Furthermore, the discrete pressure space is defined to be

P kh :“ PkdpThq, P kh,0 :“ P kh X L
2
0pΩq, (22)

with the broken polynomial space PkdpThq :“ tqh P L
2pΩq | qT :“ qh|T P PkdpT q, @T P Thu.

Global bilinear forms ah and bh on Uk
h ˆU

k
h and Uk

h ˆP
k
h , respectively, are obtained by assembling the

local contributions element-wise as follows:

ahpvh,whq :“
ÿ

TPTh

aT pvT ,wT q, bhpvh, qhq :“
ÿ

TPTh

bT pvT , qT q, (23)

6



with aT defined by (7) and bT by (15). The discrete problem reads: Find puh, phq P U
k
h,0 ˆ P kh,0 such

that,

νahpuh,vhq ` bhpvh, phq “ `hpvhq @vh P U
k
h,0, (24a)

bhpuh, qhq “ 0 @qh P P
k
h,0, (24b)

with right-hand side of the discrete momentum equation such that

`hpvhq :“
ÿ

TPTh

pf ,Rk
T pvT qqT . (25)

4 Main results

In this section, we state our main results and refer to Section 7 for the proofs.

4.1 Stability

We introduce the following discrete H1-like semi-norm on Uk
h:

}vh}
2
1,h :“

ÿ

TPTh

}vT }
2
1,T , }vT }

2
1,T :“ }∇vT }2T `

ÿ

FPFT

h´1
F }vF ´ vT }

2
F @T P Th. (26)

A direct verification shows that the map }¨}1,h defines a norm on the space Uk
h,0 defined by (21). The

stability properties of the bilinear forms ah and bh and the well-posedness of the discrete problem (24)
are summarized in the following Lemma.

Lemma 3 (Stability and well-posedness). There is a real number η ą 0, independent of h, such that,
for all vh P U

k
h,

η}vh}
2
1,h ď ahpvh,vhq ď η´1}vh}

2
1,h. (27)

Additionally, the following holds for all qh P P kh,0:

β}qh} ď sup
vhPU

k
h,0,}vh}1,hď1

bhpvh, qhq, (28)

with real number β ą 0 independent of h. Finally, problem (24) is well-posed.

Proof. See Section 7.1.

4.2 Convergence

We collect in this section the main results concerning the convergence analysis of problem (24). We start
by an energy error estimate which yields a robust bound for the velocity in the small viscosity limit.
Define the global velocity reduction operator Ikh : H1

pΩq Ñ Uk
h such that, for all v PH1

pΩq (cf. (4) for
the definition of IkT ):

pIkhvqT “ I
k
T pv|T q, @T P Th. (29)

Our goal is to bound the discrete velocity error uh ´ I
k
hpuq P U

k
h,0 and the discrete pressure error

ph ´ π
k
hp P P

k
h,0 where πkh denotes the L2-orthogonal projector onto P kh .

Theorem 4 (Convergence rate). Let pu, pq P H1
0pΩq ˆ L2

0pΩq and puh, phq P U
k
h,0 ˆ P kh,0 denote the

unique solutions of (2) and (24), respectively, and assume the additional regularity

u PHk`2
pΩq. (30)

Then, the following holds:

}uh ´ I
k
hu}1,h À hk`1}u}Hk`2pΩq (31a)

β}ph ´ π
k
hp} À νhk`1}u}Hk`2pΩq. (31b)

7



Proof. See Section 7.2

Remark 5 (Role of Rk
T ). The use of the divergence-preserving velocity reconstruction operator Rk

T in
the right-hand side of the discrete problem (24) is crucial to achieve the error estimate of Theorem 4.
Using in (24a) the standard choice

`hpvhq “
ÿ

TPTh

pf ,vT qT , (32)

instead of (25), and under the additional regularity assumption p P Hk`1pΩq, we obtain the following
bound on the velocity error:

}uh ´ I
k
hu}1,h À hk`1

`

}u}Hk`2pΩq ` ν
´1}p}Hk`1pΩq

˘

. (33)

The term ν´1}p}Hk`1pΩq in the right-hand side grows unboundedly when ν Ñ 0`, therefore compromising
the accuracy of the velocity approximation. We refer to Remark 11 for further insight concerning the
proof of (33).

Remark 6 (Estimate for the pressure error). Under the additional regularity assumption p P Hk`1pΩq,
we infer from (31) the following bound on the pressure error:

β}ph ´ p} À νhk`1}u}Hk`2pΩq ` βh
k`1}p}Hk`1pΩq. (34)

The second result stated in this section is an optimally-convergent, viscosity-independent L2-velocity
error estimate under the following elliptic regularity assumption: There is cell, depending only on Ω,
such that, for all g P L2

pΩq, the unique solution of the Stokes problem

´ν4z `∇θ “ g in Ω,

div z “ 0 in Ω,

z “ 0 on Γ,

(35)

satisfies the regularity estimate

ν}z}H2pΩq ` }θ}H1pΩq ď cell}g}rL2pΩq. (36)

This estimate holds, for instance, if the domain Ω is convex; cf. [6, 2].

Theorem 7 (L2-velocity error estimate). Under the assumptions of Theorem 4 and the above elliptic
regularity assumption, the following holds:

}eh}L2pΩq À hk`2}u}Hk`2pΩq, (37)

where eh P L2
pΩq is such that eh|T “ uT ´ πkT puq for all T P Th. Additionally, letting quh P Pk`1

d pThqd

be such that quh|T “ rk`1
T uT for all T P Th, we have

}quh ´ u} À hk`2}u}Hk`2pΩq. (38)

The bound (37) shows that supercloseness holds for the discrete cell velocities (we have convergence at
order pk ` 2q despite using polynomials of degree k). This is, more generally, a salient feature of HHO
methods; cf. the details and a comparison with HDG in [9]. The estimate (38) shows the practical
advantage that can be taken from supercloseness. By a computationally cheap postprocessing step, we
can compute the discontinuous approximation quh of polynomial degree pk ` 1q in each element which
guarantees the order pk ` 2q in the L2-norm. If we would apply a second averaging postprocessing step
to quh, we could also compute a conforming approximation of order pk ` 1q which consists elementwise
of polynomials of the same degree.
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4.3 Local conservation

We follow the general ideas of [15] to identify the local conservation properties of the method; see also [9].
To uncover the numerical fluxes, the first step consists in post-processing the discrete velocities inside
each element. Let T P Th and define the local bilinear form on Uk

T ˆU
k
T such that

ãT pvT ,wT q :“ p∇rk`1
T pvT q,∇rk`1

T pwT qqT ` jT pvT ,wT q, (39)

with rk`1
T defined by (5) and

jT pvT ,wT q :“
ÿ

FPFT

h´1
F pvF ´ vT ,wF ´wT qF ,

where the sole difference with respect to the local bilinear form aT defined by (7) lies in the stabilization
term. We define the isomorphism ckT : Uk

T Ñ Uk
T such that, for a given vT P U

k
T , ckT pvT q is the unique

solution of
ãT pc

k
T pvT q,wT q “ aT pvT ,wT q ` jT pvT ,wT q @wT P U

k
T ,

with closure condition
ş

T
pckT pvT qqT “

ş

T
vT . We then define the post-processed local velocity by means

of the operator r̃k`1
T : Uk

T Ñ Pk`1
d pT qd such that

r̃k`1
T :“ rk`1

T ˝ ckT . (40)

Because of the use of the divergence-preserving velocity reconstruction operator Rk
T in the right-hand

side of the discrete problem, for all T P Th and all F P FT we introduce an additional lifting operator
LkTF : L2

pT q Ñ Pkd´1pF q
d satisfying, for all g P L2

pT q,

pLkTF pgq,wqF “ pg,R
k
T pεTF pwqqqT , @w P Pkd´1pF q

d, (41)

where εTF pwq P U
k
T is defined such that pεTF pwqqT “ 0, pεTF pwqqF 1 “ 0 for all F 1 P FT with F 1 ‰ F ,

and pεTF pwqqF “ w. Finally, the numerical momentum and mass fluxes Φk
TF : Uk

T ˆPkdpT q Ñ Pkd´1pF q
d

and φkTF : Uk
T Ñ Pkd´1pF q are defined as

Φk
TF puT , pT q :“ pν∇r̃k`1

T puT q ´ pT IdqnTF ´L
k
TF pf ´ π

k´1
T fq

` νh´1
F ppδ

k
T puT qqF ´ pδ

k
T puT qqT q, (42a)

φkTF puT q :“ uF ¨nTF , (42b)

with δkT puT q :“ ckT puT q ´ uT and Id the identity matrix in Rdˆd.

Proposition 8 (Local conservation). The numerical fluxes defined in (42) satisfy

Φk
T1F puT1

, pT1q `Φk
T2F puT2

, pT2q “ 0, (43a)

φkT1F puT1
q ` φkT2F puT2

q “ 0, (43b)

and the discrete solution puh, phq of (24) satisfies, for all T P Th, all vT P PkdpT qd, and all qT P PkdpT q,

pν∇r̃k`1
T puT q ´ pT Id,∇vT qT ´

ÿ

FPFT

pΦk
TF puT , pT q,vT qF “ pf ,vT qT , (44a)

puT ,∇qT qT ´
ÿ

FPFT

pφkTF puT q, qT qF “ 0. (44b)

Proof. See Section 7.4

Remark 9 (Lifting LkTF ). One can easily verify that LkTF pgq is collinear to nTF . Moreover, provided f
is smooth enough, it is readily shown using (18) and the triangle inequality that }LkTF pf ´ π

k´1
T fq}F À

h
k`1{2

T }f}HkpT q. The last term in (42a) depending on δkT puT q is of the same order in hT .
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5 Numerical results

In this section, several numerical examples in 2D and in 3D are presented to illustrate the theoretical
results achieved. The numerical results are intended to emphasize the qualitative difference between the
classical discretization of the right-hand side term (32) and the novel discretization (25). The results are
presented for three different discrete norms. The discrete velocity and pressure errors are defined as

eu,h :“ uh ´ I
k
hu, ep,h :“ ph ´ π

k
hp.

The velocity error is measured in the norm

}eu,h}a,h :“ ahpeu,h, eu,hq
1{2,

which corresponds to a discrete version of the velocity error in the H1 seminorm; by (27), this norm is
equivalent to the H1-like norm }¨}1,h defined by (26). We also measure the velocity error in the usual
L2-norm. Note that in the L2

pΩq norm only the cell-based DOFs are taken into account. The pressure
error ep,h is measured in the usual L2-norm. Unstructured grids are generated using the Triangle
library [37] in 2d and the Tetgen library [38] in 3d. The whole implementation is performed in C++
whithin the Pdelib framework [39].

The 2D and 3D examples in Subsection 5.1 illustrate that the classical discretization of the right-hand side
forcing f (32) leads to a scheme which is not pressure-robust, while the more sophisticated discretization
(25) makes the scheme pressure-robust. Note that the stiffness matrix for both discretizations is the
same. The 2D and 3D examples in Subsection 5.2 show that the schemes converge with the theoretical
expected orders of convergence, if ν is fixed to the value 1.0.

5.1 Pressure-robustness with respect to ν

2d example First, we look at a two-dimensional Stokes problem in Ω “ p0, 1q2 with a prescribed
academic solution. The stream function of the velocity field is given by

ξ “ x2px´ 1q2y2py ´ 1q2.

Then, for pu, pq “ pcurl ξ, x5 ` y5 ´ 1
3 q, we obtain u PH1

0pΩq, ∇ ¨ u “ 0 and p P L2
0pΩq, see Figure 2.

The right-hand side is computed from the solution by setting f :“ ´ν∆u ` ∇p, and it is clear that
f P L2

pΩq. For ν Ñ 0, we have that }f}L2pΩq Ñ }∇p}L2pΩq, and this quantity remains bounded and
converges to a fixed value. In Figure 1 numerical results for the velocity error }eu,h}a,h and the pressure
error }ep,h} are presented on the coarsest level with 30 triangles for the polynomial orders k “ 0, 1, 2
and ν “ 1, 10´1, 10´2, 10´3, varying also the discretization of the right-hand side according to (32)
(referred to as “classical”) and (25) (referred to as “pressure-robust”). The discrete velocity error in the
corresponding L2-norm is not shown, since it behaves with respect to ν in a completely analogous manner
as }eu,h}a,h. The velocity error }eu,h}a,h deteriorates for ν Ñ 0, and is asymptotically proportional to 1

ν
as predicted by the theory. This illustrates that the discrete velocities of mixed finite element methods
with the classical right-hand side discretization (32) are not pressure-robust. Indeed, the discrete velocity
error can be arbitrarily distant to the velocity best approximation, even if the data remains bounded. On
general unstructured grids, this probem can be avoided only if the continuous pressure p lies accidentally
in the discrete pressure space. However, in the above example, the prescribed fifth-order pressure does
not lie in the discrete pressure space for k “ 0, 1, 2. Last but not least, the discrete pressure error is
regarded. Contrary to the discrete velocity error, the discrete pressure error for the discretization (32)
behaves in a robust manner for ν Ñ 0. However, the right-hand discretization (25) delivers not only
a discrete pressure error, which is robust, but even converges to 0 for ν Ñ 0! Therefore, the novel
discretization (25) improves both velocity and pressure simultaneously.

3d example The second example illustrates the ν-dependence and ν-independence of the discretiza-
tions with (32) and (25), respectively, in the 3D case on a fixed unstructured grid with 360 tetrahedra.
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(a) }eu,h}a,h vs. ν, classical
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(b) }ep,h} vs. ν, classical
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k “ 0
k “ 1
k “ 2

(c) }eu,h}a,h vs. ν, pressure-robust

10´3 10´2 10´1 100

10´6

10´5

10´4

10´3

10´2

k “ 0
k “ 1
k “ 2

(d) }ep,h} vs. ν, pressure-robust

Figure 1: Results for the 2d example of Section 5.1.

0.0 0.2 0.4 0.6 0.8 1.0

0.0
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0.6

0.8

1.0

Figure 2: Flow field from 2d example in 5.1

For the velocity, a fifth-order polynomial Stokes potential flow is investigated in Ω “ p0, 1q3, i.e., u “ ∇h
with

h “ 5x6 ´ 90x4y2 ` 120x2y4 ´ 16y6 ` 15x4z2 ´ 180x2y2z2 ` 120y4z2 ` 15x2z4 ´ 90y2z4 ` 5z6,

where h is harmonic, and also a fifth-order polynomial is prescribed for the pressure as p “ x5`y5`z5´ 1
2 .

The velocity field is sketched in Figure 4. This example is slightly more difficult than the previous one, and
it is nearer to computational practice, since now the Dirichlet boundary conditions are inhomogeneous
and do not lie in the discrete velocity space. Therefore, the complete ν-independence of (25) may not
be possible theoretically. However, in practice (25) behaves nearly in a ν-robust manner and (32) is
lacking robustness as in the 2D example, see Figure 3. Therefore, again (25) behaves much better than
the classical discretization (32).
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(a) }eu,h}a,h vs. ν, classical
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(b) }ep,h} vs. ν, classical

10´3 10´2 10´1 100

100

100.5 k “ 0
k “ 1
k “ 2

(c) }eu,h}a,h vs. ν, pressure-robust
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k “ 0
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(d) }ep,h} vs. ν, pressure-robust

Figure 3: Results for the 3d example of Section 5.1.
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Figure 4: Flow field from 3d example in 5.1

5.2 Convergence

2d example To assess the convergence rates, we repeat the numerical 2d example of the previous
section, but now the viscosity ν is fixed to 1 and the mesh size and the polynomial orders k “ 0, 1, 2
of the approximation spaces are varied. This example serves as an illustration that all the theoretically
predicted convergence rates are indeed met by both 2D discretizations (32) and (25). For the numerical
results see Table 1.
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Figure 5: Flow field from 3d example in 5.2

3d example The last numerical example is intended to show the expected convergence rates on a
sequence of unstructured tetrahedral meshes for k “ 0, 1, 2 and for both discretizations in the 3D case.
Moreover, now the example is not polynomial. This especially means that the right-hand side terms are
approximated by numerical quadratures. For the velocity u “ pu1, u2, u3q

T in Ω “ p0, 1q3 the components
u1 “

1
2 sinp2πxq cosp2πyq cosp2πzq, u2 “

1
2 cosp2πxq sinp2πyq cosp2πzq, and u3 “ ´ cosp2πxq cosp2πyq sinp2πzq

are prescribed, see Figure 5. The pressure is set to p “ sinp2πxq sinp2πyq sinp2πzq. The numerical results
in Table 2 show that the theoretically expected convergence rates are recovered.

6 Computational aspects

We can reduce substantially the total number of degrees of freedom (DOFs) if we eliminate by static
condensation those local unknows on each mesh cell T P Th that are coupled only to unknowns associated
with the cell T . For the solution uh “ ppuT qTPTh , puF qFPFh

q and ph “ ppT qTPTh , the local unknowns
that can be eliminated on T P Th are the cell-based DOFs associated with uT and those associated with
the component of pT in the subspace L2

0pT q :“ tq P L2pT q; pq, 1qT “ 0u. The unknowns that remain in
the assembled reduced global system are those associated with the face velocities puF qFPF i

h
(boundary

faces F P Fb
h are omitted since the wall boundary condition (1c) is strongly enforced) and the constant

pressure mean values p̄T0 :“ |T |´1ppT , 1qT . In what follows, we describe in detail the static condensation
process from an algebraic viewpoint.

6.1 Expansions of discrete variables

Let T P Th be a given mesh cell and let Uk
T be the T -local velocity space defined in (3). To create a

basis of Uk
T , we choose in a first step a basis of PkdpT qd, i.e.,

PkdpT qd “ span
!

ϕTj , j P Ĵ
v
T

)

, ĴvT :“ t1, . . . ,dimpPkdpT qdqu,

and define the associated basis functions ϕT P Uk
T as

ϕT
j

:“ pϕTj , p0qFPFT
q @j P ĴvT .
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In a second step, we define the basis functions associated with the interior faces of BT . Let Fm, m “

1, . . . ,MT , denote the interior faces of the set FT . Then, we choose basis functions of Pkd´1pFmq
d, i.e.

Pkd´1pFmq
d “ span

!

ϕFm
j , j P ĴvFm

)

, ĴvFm
:“ t1, . . . ,dimpPkd´1pFmq

dqu,

and define the associated basis functions ϕFm

j
P Uk

T as

ϕFm

j
:“ p0, pϕF qFPFT

q with ϕFm
“ ϕFm

j , ϕF “ 0 @F P FT ztFmu.

We collect all face basis functions ϕFm

j
, j P ĴvFm

, m “ 1, . . . ,MT , into one set of basis fuctions ϕBT
j

,

j P ĴvBT :“
ŤMT

m“1 Ĵ
v
BT,m, where ĴvBT,m :“ n̂Tm ` ĴvFm

“ tn̂Tm ` 1, . . . , n̂Tm ` dimpPkd´1pFmq
dqu denote the

shifted local index sets associated with the faces Fm which are disjoint due to the shift parameters n̂Tm
defined recursively by n̂T1 :“ 0 and n̂Ti`1 :“ n̂Ti ` dimpPkd´1pFiq

dq for i “ 1, . . .MT ´ 1. Therefore, each
index j P ĴvBT belongs to exactly one face Fm in the sense that there exists a unique m so that j P ĴvBT,m,
and we define ϕBT

j
:“ ϕFm

j´n̂T
m

. Now we can write each uT P U
k
T in the basis representation

uT “
ÿ

jPĴv
T

uT,`j ϕT
j
`

ÿ

jPĴv
BT

uT,gj ϕBT
j
, (45)

where uT,`j denote the local scalar DOFs which can be eliminated on cell T and uT,gj the global scalar
DOFs which remain in the reduced global system of equations.

Let us now consider the T -local pressure space P kT :“ PkdpT q. At first, we choose as one basis function
ψT0 P P

k
T the characteristic function ψT0 pxq :“ 1 for x P T . The rest of the local basis functions we choose

from the subspace P kT X L
2
0pT q such that

P kT X L
2
0pT q “ span

!

ψTj , j P Ĵ
p
T

)

, ĴpT :“ t1, . . . ,dimpPkdpT qq ´ 1u.

Now we can write each pT P P kT in the basis representation

pT “
ÿ

jPĴp
T

pT,`j ψTj ` p
T,gψT0 , (46)

where pT,`j denote the local scalar DOFs which can be eliminated on cell T and pT,g denotes the one
global scalar DOF from T which remains in the reduced global system. By construction the DOF pT,g

is the integral mean value pT,g “ |T |´1ppT , 1qT .

6.2 Static condensation

We can now describe how the local DOFs on cell T are eliminated. Owing to the basis representations
(45) and (46), we introduce the local vectors uT,` “ puT,`j qjPĴv

T
, uT,g “ puT,gj qjPĴv

BT
and pT,` “ ppT,`j qjPĴp

T

and define the local matrices

pA`,`T qi,j :“ aT pϕ
T
j
,ϕT

i
q, i, j P ĴvT , pA`,gT qi,j :“ aT pϕ

BT
j
,ϕT

i
q, i P ĴvT , j P Ĵ

v
BT ,

pB`,`T qi,j :“ bT pϕ
T
j
, ψTi q, i P Ĵ

p
T , j P Ĵ

v
T , pB`,gT qi,j :“ bT pϕ

BT
j
, ψTi q, i P Ĵ

p
T , j P Ĵ

v
BT ,

as well as the local right-hand side vector f
T,`
“ pf

T,`

j qjPĴv
T
with f

T,`

j :“ pf ,Rk
T pϕ

T
j
qqT . Then, we choose

in the first equation (24a) of the discrete problem the test functions vh “ ϕTi , i P Ĵ
v
T , and in the second

equation (24b) the test functions qh “ ψTi , i P Ĵ
p
T , and obtain the following local system for the local

vectors uT,` and pT,` :
ˆ

νA`,`T pB`,`T q
1

B`,`T 0

˙

loooooooooomoooooooooon

L`,`
T

ˆ

uT,`

pT,`

˙

loomoon

yT,`

“

˜

f
T,`

0

¸

looomooon

rT,`

´

ˆ

νA`,gT 0

B`,gT 0

˙

loooooomoooooon

L`,g
T

ˆ

uT,g

pT,g

˙

looomooon

yT,g

. (47)
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Note that the upper right zero block in the matrix L`,gT is due to the fact that, for the constant basis
function ψT0 , we obtain bT pϕTi , ψ

T
0 q “ 0 for all i P ĴvT . In Lemma 10 below, we prove that the matrix L`,`T

is non-singular. Therefore, the local unknowns collected in the vector yT,` can be eliminated from the
global system of equations and expressed by the T -local global unknowns collected in the vector yT,g as

yT,` “ pL`,`T q
´1rT,` ´ pL`,`T q

´1L`,gT yT,g. (48)

For an efficient implementation, it is advantageous to store for each mesh cell T P Th the local vector
pL`,`T q

´1rT,` and the local matrix pL`,`T q
´1L`,gT . Then, once the reduced global system has been solved,

the local vectors yT,` can be computed very fast in a post-processing loop over all T P Th.

Lemma 10 (Existence and uniqueness for system (47)). The matrix L`,`T in the local system (47) is
non-singular for each mesh cell T P Th.

Proof. At first, we show that the (symmetric) block matrix A`,`T is positive-definite. Let uT,` “ puT,`j qjPĴv
T

be a given vector, and set uT :“
ř

jPĴv
T
uT,`j ϕT

j
P Uk

T . Recalling (27), we infer that puT,`q1A`,`T uT,` “

aT puT ,uT q ě η}uT }
2
1,T . Assuming now that puT,`q1A`,`T uT,` “ 0 leads to

0 “ }uT }
2
1,T “ }∇uT }2T `

ÿ

FPFT

h´1
F }uT }

2
F , (49)

where we have used the fact that the above defined uT “ puT , puF qFPFT
q satisfies uF “ 0 for all F P FT .

From (49) we get ∇uT “ 0, i.e. that uT is constant on T . Moreover, it follows that uT |F “ 0 for each
face F P FT . Therefore, uT “ 0, which implies that the vector uT,` is zero. Since L`,`T has a saddle-
point structure, it only remains to show that the matrix pB`,`T q

1 has zero kernel. Assume that the vector
pT,` “ ppT,`j qjPĴp

T
is in the kernel of pB`,`T q

1. Let us define the pressure function

pT :“
ÿ

jPĴp
T

pT,`j ψTj P P
k
T X L

2
0pT q.

The fact that pB`,`T q
1pT,` “ 0 implies that bT pϕTj , pT q “ pϕ

T
j ,∇pT qT “ 0 for all j P ĴvT . Since ∇pT P

Pk´1
d pT qd Ă PkdpT qd, we get ∇pT “ 0, so that pT “ 0 since ppT , 1qT “ 0. Hence, pT,` is zero.

6.3 Assembly

Let us finally describe how the reduced global system is assembled by the loop over all mesh cells. Owing
to (23), the global stiffness matrix is assembled by adding up, for each mesh cell T P Th, the local
contributions associated with the local bilinear forms aT p¨, ¨q and bT p¨, ¨q. The equations in the global
system that are affected by contributions from cell T are those where we choose in the first equation (24a)
of the discrete problem the test functions vh with vT “ ϕBTi , i P ĴvBT , and in the second equation (24b)
the test function qh “ ψT0 . We define the local matrices

pAg,gT qi,j :“ aT pϕ
BT
j
,ϕBT

i
q, i, j P ĴvBT , pAg,`T qi,j :“ aT pϕ

T
j
,ϕBT

i
q, i P ĴvBT , j P Ĵ

v
T ,

pBg,gT q1,j :“ bT pϕ
BT
j
, ψT0 q, j P Ĵ

v
BT , pBg,`T qi,j :“ bT pϕ

BT
i
, ψTj q, i P Ĵ

v
BT , j P Ĵ

p
T ,

as well as the local right-hand side vector f
T,g

“ pf
T,g

j qjPĴv
BT

with f
T,g

j :“ pf ,Rk
T pϕ

BT
j
qqT . Then, the

T -local block of equations that is added up into the global system is:

ˆ

νAg,gT pBg,gT q1

Bg,gT 0

˙

loooooooooomoooooooooon

Lg,g
T

ˆ

uT,g

pT,g

˙

looomooon

yT,g

`

ˆ

νAg,`T Bg,`T
0 0

˙

loooooooomoooooooon

Lg,`
T

ˆ

uT,`

pT,`

˙

loomoon

yT,`

““T ”

˜

f
T,g

0

¸

looomooon

rT,g

, (50)
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where the symbol ““T ” indicates the principle of adding and storing the local entries into the global
system. If we substitute the local vector yT,` by the elimination formula (48) we get the following
T -local set of equations that are added and stored into the global system:

´

Lg,gT ´ Lg,`T pL
`,`
T q

´1L`,gT

¯

loooooooooooooooomoooooooooooooooon

L̃g,g
T

yT,g ““T ” rT,g ´ Lg,`T pL
`,`
T q

´1rT,`
looooooooooooomooooooooooooon

r̃T,g

, (51)

i.e., the element stiffness matrix associated with mesh cell T is L̃g,gT and the element right-hand side
vector is r̃T,g.

7 Proofs

We collect in this section the proofs of the results stated in Section 4.

7.1 Proof of Lemma 3

Proof. See [17, Lemma 4] for (27). For the derivation of (28), we use the inf-sup condition for the
continuous problem and infer that there is a constant β0 ą 0 such that, for each qh P P kh,0, there exists
an element v PH1

0pΩq with }∇v}Ω ď 1 and

β0}qh} ď ´
ÿ

TPTh

pdiv v, qhqT .

We multiply this inequality by a constant c0 ą 0, choose vh :“ Ikhpc0vq and obtain by the commuting
property (14)

c0β0}qh} ď ´
ÿ

TPTh

pDk
T pI

k
T pc0vqq, qhqT “ bhpvh, qhq,

where c0 ą 0 will be choosen such that }vh}1,h ď 1. Thus, the estimate (28) follows with β “ c0β0. It
remains to show the existence of such an h-independent constant c0. To this end, we prove that there
exists a constant c1 such that }Ikhv}1,h ď c1}∇v}Ω. Let us denote by vT :“ pπkTv, pπ

k
FvqFPFT

q the
T -local part of Ikhv. Then, we get

}vT }1,T À }∇πkTv}T `
ÿ

FPFT

h
´1{2

F }πkF pv ´ π
k
Tvq}F :“ T1 ` T2. (52)

Using the H1-stability of πkT (cf. [14, Lemma 1.58] and [12, Corollary 3.7]), it is readily inferred that
T1 À }∇v}T . Additionally, combining the stability of πkF and the approximation properties of πkT
proved in [14, Lemma 1.59] (cf. also [12, Lemma 3.4]), one has }πkF pv ´ π

k
Tvq}F ď }v ´ πkTv}F À

h
1{2

F }∇v}T , hence T2 À }∇v}T . Plugging the above estimates into (52) shows that there exists an h-
independent constant c1 ą 0 such that }Ikhv}1,h ď c1}∇v}Ω holds. Therefore, the choice c0 :“ 1{c1
leads to }vh}1,h “ }Ikhpc0vq}1,h ď }∇v}Ω ď 1 for the above function v from the continuous inf-sup
condition which concludes the proof of (28). Well-posedness then classically follows from (27) together
with (28).

7.2 Proof of Theorem 4

Proof of Theorem 4. We define the global discrete divergence operator Dk
h : Uk

h Ñ P kh such that, for all
vh P U

k
h,

Dk
hpvhq|T “ Dk

T pvT q @T P Th,
and we introduce the space of discretely divergence-free velocities such that

Uk˚
h,0 :“ tvh P U

k
h,0 | D

k
hpvhq “ 0u.
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Observe that the discrete velocity uh resulting from the discrete problem (24) is in Uk˚
h,0. We introduce

the consistency error

Ehpvhq :“ `hpvhq ´ νahpI
k
hu,vhq ´ bhpvh, π

k
hpq, @vh P U

k
h,0,

and we set
$ :“ sup

vhPU
k
h,0, }vh}1,hď1

Ehpvhq.

Owing to the commuting property (14), we infer that uh ´ I
k
hu P U

k˚
h,0. Then, (27) implies that

ν}uh ´ I
k
hu}1,h À sup

vhPU
k˚
h,0, }vh}1,hď1

νahpuh ´ I
k
hu,vhq.

Since νahpuh ´ I
k
hu,vhq “ `hpvhq ´ bhpvh, phq ´ νahpI

k
hu,vhq “ Ehpvhq, we infer that

ν}uh ´ I
k
hu}1,h À sup

vhPU
k˚
h,0, }vh}1,hď1

Ehpvhq ď $.

Moreover, we observe that the discrete momentum equation (24a) yields

bhpvh, ph ´ π
k
hpq “ νahpI

k
hu´ uh,vhq ` Ehpvhq,

for all vh P U
k
h,0. Using the discrete inf-sup condition (28) for qh “ ph ´ πkhp, the above relation, the

Cauchy–Schwarz inequality, and the boundedness of ah expressed by the second inequality in (27), we
infer that

β}ph ´ π
k
hp} ď sup

vhPU
k
h,0, }vh}1,hď1

bhpvh, ph ´ π
k
hpq

}vh}1,h
À ν}uh ´ I

k
hu}1,h ` $ À $.

The above velocity and pressure estimates show that it suffices to bound $ for all vh P U
k
h,0. Using the

fact that f “ ´ν4u`∇p a.e. in Ω, we can decompose the consistency error as follows:

Ehpvhq “
ÿ

TPTh

ν
!

´p4u,vT qT ´ aT pIkTu,vT q
)

`
ÿ

TPTh

!

pπkT p,D
k
TvT qT ` p∇p,Rk

T pvT qqT

)

`
ÿ

TPTh

νp4u,vT ´Rk
T pvT qqT :“ T1 ` T2 ` T3. (53)

For the first term, integrating by parts the first addend, we obtain

T1 “
ÿ

TPTh

ν

#

p∇u,∇vT qT `
ÿ

FPFT

p∇u¨nTF ,vF ´ vT qF ´ aT pIkTu,vT q

+

,

where, to insert vF in the second term, we have used the regularity assumption (30) on the velocity (in
fact that u P H2

pΩq) and the fact that vF “ 0 on boundary faces. Using the optimal approximation
properties of prk`1

T ˝ IkT q and sT , see (6) and (10), respectively, the term T1 can then be estimated as

|T1| À νhk`1}u}Hk`2pΩq}vh}1,h.

For the term T2, integrating by parts the second summand and using the fact that Rk
T pvT q has contin-

uous normal component at mesh interfaces and that p is continuous across interfaces (since the normal
components of both pν∇u´ pIdq and ν∇u are continuous across interfaces), we infer that

T2 “
ÿ

TPTh

!

pp,Dk
T pvT qqT ´ pp,divpRk

T pvT qqqT

)

“ 0,
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where we have used Dk
T pvT q P PkdpT q to replace πkT p by p in the first summand and concluded using (17).

For the term T3, using (16a) followed by the Cauchy–Schwarz inequality, mesh regularity, and (18) yields

T3 “
ÿ

TPTh

ν
´

∆u´ πk´1
T p∆uq,vT ´R

k
T pvT q

¯

T
À νhk`1}u}Hk`2pT q}vh}1,h.

Collecting the above estimates yields the assertion.

Remark 11 (Standard treatment of right-hand side). Using `hpvhq “
ř

TPThpf ,vT qT instead of (25)
in the right-hand side of (24a), the consistency error rewrites as Ehpvhq “ T1 ` T12 with T1 as above,
while

T12 “
ÿ

TPTh

#

pπkT p,D
k
T pvhqqT ´ pπ

k
T p,div vT qT ´

ÿ

FPFT

ppnTF ,vF ´ vT qF

+

“
ÿ

TPTh

ÿ

FPFT

ppπkT p´ pqnTF ,vF ´ vT qF ,

where we have used the fact that div vT P Pk´1
d pT q Ă PkdpT q to replace p by πkT p in the second summand

on the first line and the definition (13a) of Dk
T in the second line. Hence, assuming the additional

regularity p P Hk`1pΩq, we obtain

|T2| À hk`1}p}Hk`1pΩq}vh}1,h,

and this readily leads to the bound (33) on the velocity error.

7.3 Proof of Theorem 7

Proof of Theorem 7. Let pz, θq be the solution of the Stokes problem (35) with right-hand side eh. Set
eh :“ uh ´ I

k
hu and observe that eT “ eh|T for all T P Th. A direct calculation shows that

}eh}
2
L2pΩq “ peh,´ν4z `∇θq “ T1 ` T2 ` T3,

where

T1 :“
ÿ

TPTh

ν

#

p∇eT ,∇pz ´ rk`1
T pIkTzqqqT `

ÿ

FPFT

peF ´ eT ,∇pz ´ rk`1
T pIkTzqq¨nTF qF

+

,

T2 :“
ÿ

TPTh

#

´pdiv eT , θqT ´
ÿ

FPFT

peF ´ eT , θnTF qF

+

,

T3 :“
ÿ

TPTh

νp∇rk`1
T puT q ´∇rk`1

T pIkTuq,∇rk`1
T pIkTzqqT .

Using (6) (for a function in H2
pT q), it is readily seen that

|T1| À ν}eh}1,hh}z}H2pΩq.

Furthermore, since Dk
T peT q “ 0, we infer that

T2 “
ÿ

TPTh

#

´pdiv eT , θ ´ π
0
T θqT ´

ÿ

FPFT

peF ´ eT , pθ ´ π
0
T θqnTF qF

+

,

so that
|T2| À }eh}1,hh}θ}H1pΩq.

Finally, turning to T3, we observe that

T3 “
ÿ

TPTh

 

pf ,Rk
T pI

k
TzqqT ´ bT pI

k
Tz, pT q ´ νsT puT , I

k
Tzq ´ νp∇rk`1

T pIkTuq,∇rk`1
T pIkTzqqT

(

.
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Since Dk
T pI

k
Tzq “ 0, we infer that pf ,Rk

T pI
k
TzqqT “ ´νp4u,Rk

T pI
k
TzqqT and that bT pIkTz, pT q “ 0.

Re-arranging terms leads to

T3 “
ÿ

TPTh

ν
 

p∇pu´ rk`1
T pIkTuqq,∇pz ´ rk`1

T pIkTzqqqT ` p4u, z ´R
k
T pI

k
TzqqT ´ sT puT , I

k
Tzq

(

,

whence we infer, proceeding as above, that

|T3| À ν}eh}1,hh}z}H2pΩq.

Collecting the above bounds and using the regularity estimate on z yields (37). Let us now show that (38)
holds. For all T P Th, setting quT :“ quh|T “ r

k`1
T uT , we have by application of the triangle inequality

}quh ´ u}
2 “

ÿ

TPTh

}quT ´ u}
2
T À

ÿ

TPTh

´

}rk`1
T puT ´ I

k
Tuq}

2
T ` }r

k`1
T IkTu´ u}

2
T

¯

:“ T1 ` T2.

Applying the triangle inequality to the function wT :“ rk`1
T puT ´ I

k
Tuq and using for }wT ´π

0
T pwT q}T

the local Poincaré inequality for zero-average functions on each mesh cell, we have

T1 À
ÿ

TPTh

´

h2
T }∇rk`1

T puT ´ I
k
Tuq}

2
T ` }π

0
T puT ´ π

k
Tuq}

2
T

¯

À hk`2}u}Hk`2pΩq,

where the last bound follows using (31a) combined with (27) and the H1-stability of rk`1
T to estimate the

first term in parentheses and the stability of π0
T followed by (37) to estimate the second. An application

of (6) readily yields, on the other hand, T2 À hk`2}u}Hk`2pΩq, thereby concluding the proof of (38).

7.4 Proof of Proposition 8

Proof of Proposition 8. (i) Momentum conservation. Let T P Th. We infer using the definition (7) of aT
followed by (39), (40), and the definition (5) of rk`1

T , that

aT puT ,vT q “ ãT pc
k
T puT q,vT q ´ jT puT ,vT q

“ p∇rk`1
T pckT puT qq,∇rk`1

T pvT qqT ` jT pδ
k
T puT q,vT q

“ p∇r̃k`1
T puT q,∇rk`1

T pvT qqT ` jT pδ
k
T puT q,vT q

“ p∇r̃k`1
T puT q,∇vT qT `

ÿ

FPFT

p∇r̃k`1
T puT q¨nTF ,vF ´ vT qF ` jT pδ

k
T puT q,vT q.

Moreover, owing to (16a), we infer that

pf ,Rk
T pvT qqT “ pf ´ π

k´1
T f ,Rk

T pvT q ´ vT q ` pf ,vT qT ,

and using the definition (16) and the linearity of Rk
T leads to

pf ´ πk´1
T f ,Rk

T pvT q ´ vT q “
ÿ

FPFT

pf ´ πk´1
T f ,Rk

T pεTF pvF ´ vT |F qqqT

“
ÿ

FPFT

pLkTF pf ´ π
k´1
T fq,vF ´ vT qF ,

since Rk
T ppvT , pvT |F qFPFT

qq “ vT . Consider now the discrete momentum equation (24a). Take first
a test function vh with zero face-based velocities for all F P Fh, and zero cell-based velocities for all
T 1 P Th with T 1 ‰ T , while vT is arbitrary in PkdpT qd. Recalling that the global bilinear forms ah and
bh result from the assembly of local contributions (cf. (23)), plugging the above expressions into (24a),
and using the definitions (15) of bT and the definition (13a) of Dk

T to express bhpuh, phq, equation (44a)
follows. Fix now F P Fh and take a test function vh with zero cell-based velocities for all T P Th, and
zero face-based velocities for all F 1 P Fh with F 1 ‰ F , while vF is arbitrary in Pkd´1pF q

d. Then, equation
(43a) follows.
(ii) Mass conservation. Equation (44b) is readily obtained by replacing the definition (13b) of Dk

T into
the expression (15) of bT , while (43b) is obvious since uF is single-valued at F .
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