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Abstract

We study the anisotropic dynamic formation of photo-induced waveguide in biased photorefractive media by means of a time
resolved three-dimensional numerical model of the space-charge field formation. Specific features of the dynamic creation of
1D-confined planar and 2D-confined channel waveguides are elucidated and confirmed experimentally. Thanks to a transient
space-charge field overshooting in both 1D and 2D geometries, light confinement in the first dimension occurs at a very early stage
in the formation of the space-charge field. In the 2D channel type waveguides, the final shape of the waveguide index contrasts and
modes depend not only on the illumination geometry and intensity distribution, but also on the anisotropy of the charge mobility
along the two transverse directions.
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1. Introduction

Reconfigurable or semi-permanent optical waveguides can
be realized by means of the photoinduced refractive index
changes arising from the photorefractive (PR) effect either in a
longitudinal [1, 2, 3], or a lateral illumination configuration of
an appropriate biased crystal [4, 5, 6, 7]. The former technique
is based on the self-focusing mechanism of the recording light
and leads to waveguides, which are essentially straight or only
slightly bended. In contrast, for the lateral illumination tech-
nique the shape of the waveguides are defined by an external
mask or spatial light modulator, that permits to design specific
structures allowing for instance to test analogies between quan-
tum physics and optics [8], or to realize broadband integrated
multiple beam splitters [9]. With lateral illumination, 1D planar
type waveguide can be realized by using a single illumination
light stripe [4], while 2D-confined channel-type waveguides re-
quire a more complex control illumination of the crystal sample
from two perpendicular directions, one of which through trans-
parent electrodes [7, 10]. It was observed that the dynamics of
formation of such 2D waveguides exhibit a strong anisotropic
character. The guided light confines first along the direction of
the applied electric field and reaches a nearly round shape only
at a much later stage [7]. A qualitative explanation of this be-
havior was given in [7] on the base of a highly simplified argu-
mentation that assumed a purely one dimensional charge trans-
port and neglected the effects of charge diffusion in the photore-
fractive material. Nevertheless, a deeper understanding of the
observed dynamics can only be obtained by a more complete
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model that takes into account charge transport in all possible
directions as well as the anisotropic properties of the material.

Indeed the creation of a space-charge electric field and a re-
fractive index modulation by the PR process is a highly com-
plex phenomenon that depends on several anisotropic tensorial
properties of the involved material, such as the dielectric, the
mobility, or the electro-optic tensor, just to name a few [11].
In addition, the experimental use of a bias electric field (or the
presence of an intrinsic photogalvanic effect) leads to an ad-
ditional symmetry breaking that favors the charge transport in
that particular direction with respect to the others. All this leads
to a complex build-up dynamics of the space-charge distribu-
tion [12, 13, 14, 15], which, will depend also on the spatial
geometry of the writing beam.

In this paper we aim at understanding the anisotropic dy-
namics of formation of photoinduced 2D channel waveguides
recorded by lateral illumination with the procedure described
in [7]. For this purpose we use a full 3D numerical model
that was successfully applied to describe complex dynam-
ics of photorefractive self-focusing beams in different materi-
als [16, 17, 18]. Section 2 deals with the theoretical background
and the numerical model used to simulate the PR waveguide
formation. The results of the transient simulations comparing
the various cases (1D-, 2D- confinement, lateral vs. longitu-
dinal illumination) are presented in section 3. Finally, section
4 discusses the influence of various parameters on the shape
and guiding properties of photo-induced channel waveguides
obtained by a crossed lateral illumination. An anisotropy of
the conductivity as well as the intensities of the control light
beams are shown to influence these properties both in the tran-
sient dynamic regime and at steady-state. It is shown that the
experimentally observed anisotropy of the formation dynam-
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ics is enhanced by an initial overshooting of the space-charge
field on both sides of the waveguide in the direction of the ex-
ternally applied electric field (direction x). This overshooting
leads to a transient dip of the refractive index on both sides
of the waveguide core and contributes to accelerate the guided
wave confinement in this direction with respect to the perpen-
dicular y-direction. On the other hand, charge-diffusion along
the transverse y-axis partially washes out the index variation in
this direction, specially if the transverse charge mobility µy is
large. All these features cannot be extracted from the simple
argumentation presented earlier in [7].

2. Theoretical background and numerical model

We base our description of charge transport and creation of
a space-charge electric field by the PR effect on the standard
Kukhtarev-Vinetskii model [19, 20], which assumes the pres-
ence of a single impurity level in the band gap of the mate-
rial as well as a single charge carrier. We neglect the influ-
ence of photogalvanic currents, which is justified in the case
of the Sr0.61Ba0.39Nb2O6 (SBN) used in our experiments. The
crystal is assumed to possess a total deep donor density ND, of
which N+

D are initially ionized. In the virgin state, charge neu-
trality is insured by an equivalent number of acceptors NA, with
N+

D = NA at the initial time t = 0. We also assume that the
density of conducting electrons Ne is small compared to NA at
all times, and that the creation time of conducting electrons is
much faster than the characteristic evolution time of the space
charges in the deep level. Both these assumptions are very well
satisfied for our experimental conditions in SBN.

Under the above assumptions, following the treatment given
in [16], the Kukhtarev-Vinetskii equations can be brought in the
normalized form

Ñe =
ξ(I + Id)(ÑD − Ñ+

D)

Ñ+
D

, (1)

Ñ+
D = 1 + ρ̃, (2)

∂ρ̃

∂t
= −∇ ·

(
Ñe[µ]E

)
−

kBT
e
∇ ·

(
[µ]∇Ñe

)
. (3)

Here Ñe << 1 is the free electron density normalized to the
acceptor density NA, and ÑD and Ñ+

D are the total and empty
donor densities normalized in the same way. The quantity ρ̃
is the space charge density normalized to eNA (with e the el-
ementary charge of an electron). The driving quantity in the
above equations is the light intensity I = I(x, y, z) which gives
the light intensity distribution associated to the control beams
that initiate the charge redistribution process. The quantity Id is
the equivalent dark intensity giving free electrons in absence of
the control beams, due to thermal excitation and/or the presence
of a homogeneous background illumination. The constant ξ is
defined as ξ ≡ s/γNA, where s is the photo-excitation coeffi-
cient that describes the probability of photo-excitation from the
donors to the conduction band, and γ is the recombination con-
stant proportional to the probability of recombination from the

conduction band to the deep level. Note that the anisotropy of
the electron mobility is taken explicitly into account by using
a tensorial mobility [µ]. Finally, kB and T are the Boltzmann
constant and the absolute temperature, respectively.

In order to obtain the evolution of the space charge field E
for a given light distribution, the above set of equations is iter-
atively solved starting from initial conditions. To begin with,
Ñe is calculated from Eq. (1) assuming Ñ+

D(0) = 1. From
Eq .(3) the space charge variation is then calculated at a time
step ∆t. The corresponding ionized donor density is then calcu-
lated from Eq. (2).

The next step is the calculation of the space charge field dis-
tribution E. This is done by using the classical electrostatic
equation for the electric displacement field D created at a point
r = (x, y, z) of the crystal by the charge distribution ρ(r′)d3r′ in
the medium volume V,

D(r) = ε0[ε]E(r) =
1

4π

∫∫∫
V
ρ(r′)

r − r′

|r − r′|3
d3r′ , (4)

where ε0 is the vacuum permittivity and [ε] is the material static
dielectric tensor. This approach has the advantage of an easier
numerical implementation in an anisotropic medium than the
Poisson equation frequently used in PR models. Equation. (4) is
solved by numerical integration over the crystal volume thanks
to 3D numerical Fourier transforms (FFT). Specifically, the
convolution of Eq. (4) is found by taking an FFT of both consti-
tuting functions, multiplying pointwise, and then performing an
inverse FFT, which finally permit to determine the three com-
ponents of the electric field vector E = (Ex, Ey, Ez) at the time t.

Finally the space-charge field E induces a change in the index
ellipsoid through the Pockels effect given by

∆

(
1
n2

)
i j

=
∑

k

ri jkEk (5)

where Ek are the electric field components and ri jk the linear
electro-optic coefficients of the considered material. The mod-
ified refractive index distribution is finally used to determine
the spatial evolution of the light beam guided in the waveg-
uide structure being formed. This is done by means of a Beam
Propagation Method algorithm (FFT-BPM) that simulates the
propagation of a probe beam in the crystal under the PR pertur-
bation.

The whole procedure is repeated at each temporal steps ∆t
until the final time. A normalized time τ is defined by τ =

t/Td where Td is the (x-oriented) dielectric response time of the
material under illumination [21] given as

Td =
ε0εxx

σ0
x

=
ε0εxx

eµxN0
e
, (6)

with εxx the permittivity of the material along x (which is the
principal charge drift direction), σ0

x the electric conductivity in
this direction given by eµxN0

e , with µx the corresponding mobil-
ity, and N0

e , the electron density. The latter is calculated from
Eq. (1) with I = I0, where I0 is the light intensity of the control
beam in the center of the illumination.
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Figure 1: Illumination of the PR crystal for recording and testing light-
induced waveguides by lateral illumination according to the procedure devel-
oped in [7, 10]. For the realization of a planar waveguide only the control beam
1 is switched on. Both control beams are required to realize a channel waveg-
uide. Note that the control beam 2 is composed of two light stripes. The electric
field is applied along the crystal c-axis through semi-transparent electrodes.

3. Anisotropic dynamics of waveguide formation: 1D vs 2D

The model presented in the previous section is now applied
to predict the anisotropic build-up dynamics of the PR space-
charge field under different illumination configurations. For
our numerical simulations we consider parameters for a bi-
ased Sr0.61Ba0.39Nb2O6 (SBN:61) crystal illuminated by spa-
tially structured 532-nm light beam(s) to create the refractive
index distribution. For the simulations we use the parameters
s = 4× 10−6 m s−1W−1, γ = 10−6 m3s−1 [22] and for the accep-
tor and donor concentrations we choose NA = 2× 1022 m−3 and
ND/NA = 50. The anisotropy of electron mobility is considered
with µx = 2.7 × 10−6 m2V−1s−1 and µy = µz = 0.42µx [23].
The dark intensity Id is fixed at 3 mW cm−2. This high value
models the experimentally used incoherent background illumi-
nation that illuminates the crystal to limit the saturation of the
PR index change.

The effect of the photo-induced index change on the propa-
gation of a light beam is simulated by a low intensity cw laser
beam at 633 nm which doesn’t induce any PR effect when trav-
eling in the z-direction. Its linear polarization is oriented along
the crystal c-axis (direction x), parallel to the direction of the
applied electric field E0 set to 3 kV cm−1. The latter is required
in order to obtain an optimum waveguide with a local maxima
of the refractive index in the waveguide region. For this con-
figuration the largest electro-optic coefficient (r33) coefficient
of SBN:61 plays the major role for the index perturbation, but
smaller coefficients r13 and r42 are also considered since we take
into account the vectorial orientation of the space-charge field
E in the three dimensions.

A schematic 3D representation of the system under investi-
gation is shown on Fig. 1, where the control beams are used to
generate the waveguide which is tested by the probe beam. Pla-
nar and channel waveguides will be analyzed. For a 1D waveg-
uide only the control beam 1 is switched on, both control beams
coming through perpendicular crystal surfaces are required to
realize a 2D waveguide. The case of a circular longitudinal

control beam, corresponding to a beam inducing a PR effect su-
perposed to the probe beam, will be also considered (but not
shown on Fig. 1). All control beams are invariant upon trans-
lation in z-direction for the realization of straight waveguides.
Therefore, the parameters and variables associated to the PR
effect, such as the control beam intensity I, the space-charge
field E or the refractive index change ∆n will have no depen-
dence on z. Only the probe beam amplitude distribution will
explicitly depend on the z-coordinate.

3.1. Planar waveguide
We first consider the realization of a planar-type waveguide

obtained by the simultaneous application of the electric field
and of the control beam composed of a light stripe parallel to
the yz-plane (control beam 1 on Fig. 1). The shape of the control
beam is chosen as a super gaussian, I(x) = I0 exp(−(x/w0)4))
with w0 = 20 µm and I0 = 5 mW cm−2, in order to approximate
the experimentally realized shape. The calculated build-up of
the space-charge and of the related electric field distribution
is illustrated in Fig. 2, where ρ̃, Ex, Ey and I are depicted in
the transverse xy-plane. The control beam profile is shown on
Fig. 2(f). The normalized charge distribution ρ̃ is represented at
two characteristic times: t = 0.2Td (early stage of the process)
and t = 3Td (close to the stationary state) in Fig. 2(a) and in
Fig. 2(c), respectively. As expected, the resulting charge distri-
bution ρ̃ is anti-symmetric relative to the center of the control
beam, as a result of the drift-dominated (electron) charge trans-
port. The strongest component Ex of the space-charge field is
the one parallel to the externally applied field and is shown in
Fig. 2(b) for τ = 0.2 and in Fig. 2(d) for τ = 3. For com-
pleteness, at this final time the transverse Ey component is also
shown (Fig. 2(e)), however, in the present 1D configuration this
component vanishes everywhere. As expected by the 1D ana-
lytical model of the PR effect, at steady state (Fig. 2(d)) a min-
imum of Ex is found in the center of the control illumination,
where the light intensity is maximal, due to the screening of
the applied field E0. The choice of a ratio I0/Id close to one
leads nevertheless to a partial screening of the applied electric
field. In contrast the component Ex stays close to E0 far from
the illuminated region because the distance between the elec-
trodes is much larger than the extension of the control beam in
x-direction.

A peculiar and less expected behavior is observed in the tran-
sient regime at the beginning of the process. Indeed a local
overshooting of the space charge field occurs at both edges of
the control beam, where the component Ex becomes signifi-
cantly stronger than E0 (red part in Fig. 2(b)). Even though
a 1D situation is considered, these local maxima of Ex remind
the characteristic profile along the polar axis expected at steady-
state in the case of a 2D-type illumination [24]. However, in the
presently discussed 1D configuration the transient maxima dis-
appear in the steady state. This is seen in Fig. 2(d), where the
profile of Ex(x) corresponds to the one expected by steady-state
analytical models, for which the space-charge field is expected
to follow Ex(x) = E0Id/(Id +I(x)). This means that Ex(x) finally
reaches a profile that essentially mimics the lateral illumination
I(x). The time-resolved simulations of the 1D illumination of
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Figure 2: Build-up of a planar type PR waveguide under 1D stripe illumination
and a bias field of E0 = 3 kV cm−1. Two particular times are considered: the
beginning of the process at τ = 0.2 (a,b) and the quasi-steady-state regime at
τ = 3 (c,d,e). For these two instants, the normalized charge density distribution
ρ̃ is reported on (a) and (c), and the main component of the space charge field
Ex in (b) and (d). The second, transverse component Ey of the space-charge
field is given at the final time in (e). The configuration of the control beam I is
shown in (f). All diagrams are invariant with respect to z.

a PR crystal indicates therefore a richer dynamic than expected
by commonly used 1D stationary type models.

An alternative representation of the dynamic PR-waveguide
formation can be gained by plotting the evolution of the x- and
y-profiles of the PR-field-induced refractive index change ∆n
(extracted from Eq. (5)). For a probe wave polarized along
x, that gives the largest index contrast, and a 1D stripe illu-
mination, these profiles are shown at different chosen times in
Fig. 3(a) for the same parameters as in Fig. 2. The progressive
screening of the field E0 modifies the variation ∆n at the loca-
tion of the beam (around (x, y) = (0, 0)). In the present specific
situation the y-profile ∆n(0, y) is always flat and its constant
value gets close to zero by approaching the steady-state. Zero
is not rigorously reached due to the partial screening of the field
because of the high dark intensity. The refractive index tends
to go back to the unperturbed one in this region. Indeed, even
if all the components of the electro-optic tensor are taken into
account in the calculations (with Eq. (5)), the main contribution
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Figure 3: Time evolution of the PR-induced refractive index change profiles ∆n
under different types of illuminations. (a) 1D stripe illumination in the condi-
tions of Fig. 2. (b) Circular 2D illumination as in Fig. 5. (c) 2D side illumi-
nation as in Fig. 6. The refractive index change is calculated for a x-polarized
probe beam. The value ∆n = 0 corresponds to the unperturbed refractive index
n ≡ ne of the material. The ∆n profiles are plotted along x for y = 0 (bottom
bue curves) and along y for x = 0 (top red curves). (x, y) = (0, 0) corresponds
to the center of the transverse representations of Figs. 2, 5 and 6.

of the electro-optic effect, for the considered polarization, can
be approximated by ∆n ≈ −1/2n3

er33Ex. This show that the ap-
plied field E0 leads to a reduction of the extraordinary refractive
index ne all over the crystal, but in the regions where this field is
being screened. The transient overshooting of Ex(x) discussed
above is translated here in the two dips in the x-profile ∆n(x, 0)
seen in Fig. 3(a) for the earlier times. Dynamically these dips
get deeper until approximately t = 0.2Td. Then they tend to de-
cay before they finally disappear completely in the steady-state.
A focus on this behavior is illustrated on Fig. 4 that shows the
time evolution of the minimum of ∆n(x, 0) for the three specific
illumination situations considered in this paper. The 1D illumi-
nation case (red dashed line in Fig. 4), discussed in this section,
shows that the depth of the dip reaches nearly 10−4 (as referred
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Figure 4: Temporal evolution of the minimum of ∆n for the three considered
types of illuminations used for Fig. 3. The minimum of ∆n corresponds to the
difference between ∆n in the dark regions far from the beam and the minimum
of ∆n(x, 0) along x for y=0.

to the difference between ∆n in the dark regions and the mini-
mum of ∆n) before approaching again zero at very long times.

The above simulations show that an efficient refractive index
contrast is obtained much earlier than the steady-state regime,
even if the profile of ∆n continues to evolve. Indeed even
though in the initial part of the build-up the field in the center of
the illuminated region is not yet fully screened (refractive index
not yet at its maximum), the appearance of the two transient in-
dex depressions on the edges of the waveguide allow to reach a
sufficient refractive index contrast for a strong confinement of
the probe wave already at early times.

3.2. Longitudinal 2D circular illumination

For comparison, the PR characteristics obtained created by
a circular symmetric 2D illumination are reported on Fig. 5.
The same conditions as in Fig. 2 are used. Only the ge-
ometry of the illumination I(x, y) is changed to I(x, y) =

I0 exp(−(
√

x2 + y2/w0)4). This means that, in this case, the con-
trol beam is launched in the same longitudinal direction than the
probe beam represented on Fig.(1). Figure 5(b) shows that the
overshootings of the component Ex along the vertical x-axis are
present also in this case. However, unlike for the case of the 1D-
illumination, here they persist also in the final state (Fig. 5(d)).
In contrast, Ex is always smaller than E0 on the horizontal line
passing through the center of the beam (x = 0), at any time
during the dynamics. This character of the distribution for a
2D illumination has long been known [15, 25, 24]. Note that
the quadrupole character of the profile of Ey, seen in Fig. 5(e)
is associated with two current loops from each side of the light
beam [24]. As mentioned above, here the dips remain present
in the steady-state as seen clearly in the bottom blue x-profiles
∆n(x, 0) in (Fig. 3(b)). The green dashed-dotted line in Fig. 4
shows indeed that a minimum of ∆n is reached at almost the
same time than for the case of a 1D illumination, but at longer
time it remains almost unchanged. We may define the refractive
index contrast useful for waveguide confinement in x direction
as ∆nx ≡ ∆n(0, 0) − min[∆n(x, 0)]. Interestingly we find that
for identical peak intensities for the 1D and 2D configurations,
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Figure 5: Build-up of space charges and space-charge field in the case of a
2D circular symmetric illumination. The same representations and the same
times as in Fig. 2 are given. Except for the illumination represented in (f), all
parameters are identical to those in Fig. 2. Note that the color scales for Ex and
Ey are not the same.

this refractive index contrast is nearly the same in both config-
urations, even though ∆n(0, 0) in the center part of the beam is
different: the field screening is less efficient for the 2D config-
uration but this is compensated by deeper minima.

The 2D light distribution that we have discussed in this sec-
tion merits some comments. Indeed this 2D illumination in-
duces a refractive index change suitable for the realization of
a channel waveguide, but this distribution cannot be obtained
by a lateral illumination of the PR crystal. The above circu-
lar intensity distribution can be obtained only by a longitudinal
illumination of the crystal along z by using a focused beam.
Experimentally, illumination patterns being invariant in the z
direction are easily produced by lateral illumination but can-
not be so easily obtained by a longitudinal illumination, where
diffraction of the focused beam will occurs during the propaga-
tion over centimeter-long-crystals. Propagating non-diffracting
beams can be realized if the conditions are set to realize a PR
spatial solitons, but this will add supplementary constrains to
the shape of the waveguide. On the one hand, 2D waveguides
induced by lateral illumination require a more sophisticated
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structuring of the illumination than required by self-focused
beam techniques. On the other hand, lateral illumination gives
more freedom and versatility to the 3D structured geometry of
the waveguide. In the next section our discussion will concen-
trate on channel waveguides formed by such a 2D lateral illu-
mination method [7].

3.3. Channel waveguide with lateral illuminations
The realization of a channel waveguide by side illuminations

is obtained by a second control beam entering the crystal per-
pendicularly to the first one (see Fig. 1) [7] and composed of
two light stripes parallel to the xz-plane. Since the x-direction
is parallel to the crystal c-axis and to the applied electric field,
transparent electrodes are required. The role of the orthogo-
nal control beam 2 is very different to the one of control beam
1. Photo-induced free charges generated by the beam 2, get-
ting through the entire crystal, will essentially create a kind of
optically induced pseudo-short circuit between the electrodes
and no refractive index change is therefore obtained by a sin-
gle stripe of light in this plane. Nevertheless when crossing
two light stripes parallel to the xz-plane with one parallel to the
yz-plane as illustrated in Fig. 1, in the central part (where the
probe beam propagates) one gets a local minimum of the space
charge field (corresponding to a local maximum of the refrac-
tive index). This is due to the fact that the transverse beam 2
can be seen as an additional local dark intensity for the beam
1. As a consequence the field screening is less effective where
both control beams are present. This leads to a lower refractive
index where both beam intersect than where only control beam
1 is present. Therefore in the central part, at (x, y, z) = (0, 0, z),
a local maximum of refractive index is obtained with respect
to both transverse directions, which gives a channel waveguide.
This has been explained in more detail in Ref. [7] and will be
discussed further here by means of our 3D numerical calcula-
tions.

For the modeling of the present configuration we use the light
intensity distribution I(x, y) = I1 exp(−(x/w0)4) + I2[exp(−((y−
y0)/w2)4) + exp(−((y + y0)/w2)4)], with w2 = 13.5 µm, w0 =

20 µm and y0 = 2.25w0. The intensity I1 is associated to control
beam 1, while I2 is associated to control beam 2. In this section
we will limit our discussion to analyze the situation where the
two control beam peak intensities are identical (I1 = I2 = I0 =

5 mW cm−2) (Fig. 6(f)). The results are depicted in Fig. 6 for
the distributions of ρ̃ and E and in Fig. 3(c) and Fig. 4 for the
index change.

As seen in Fig. 6(a) and Fig. 6(c), the presence of the con-
trol beam 2 partially and locally erases the charge distribution
accumulated in a 1D geometry due to the light stripe of the con-
trol beam 1. In the transient state, the overshooting of Ex along
x can be observed again (Fig. 6(b)). This overshooting disap-
pears in the steady-state as for the 1D waveguide, except near
the light stripe of beam 2, where the illumination is not of 1D
type anymore (Fig. 6(d)). So in these locations, in the steady-
state regime, the profile of the space charge field conserves a
2D character. This is confirmed by the distribution of the Ey

component (Fig. 6(e)) which is associated again with current
loops, and has the form of double quadrupole.
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Figure 6: Build-up of space charges and space-charge field in the case of 2D
waveguide induced by crossed lateral illumination. The same representations
and the same times as in Fig. 2 are given. Except for the illumination repre-
sented in (f), all parameters are identical to those in Fig. 2.

The solid line in Fig. 4 shows that the temporal evolution of
the depth of the refractive index dips closely resemble the one
found for the 1D planar situation, which confirms that in the
central part, the temporal dynamics is close to the one for the
1D case. However, comparison of the solid and the dashed line
shows that the relaxation is now partial. This is due to the re-
maining local 2D character associated with the breaking of the
translational symmetry along the y axis. Finally, Fig. 3(c) visu-
alizes how a local maximum of the refractive index is obtained
in both the x and y dimensions, thus inducing the wished chan-
nel waveguide. The index contrast of the waveguide along y
direction, ∆ny ≡ ∆n(0, 0) − min[∆n(0, y)], is smaller than ∆nx

(defined in the previous section). A highly simplified model
such as the one proposed in Ref. [7] predicts that for the same
peak intensity I1 = I2 � Id and for rectangular illumination
profiles ∆ny = 0.5∆nx. The waveguide refractive index contrast
ratio C = ∆ny/∆nx obtained here is smaller due to several pa-
rameters, taken into account in our more realistic simulations
and is analyzed in the following section.
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4. Characteristics of PR channel waveguides by lateral illu-
minations

4.1. Influence of dark intensity and tensorial conductivity

We first note that the above ratio C depends on the value of
the “dark intensity” Id, which is related either to a thermal dark
conductivity or to a homogeneous photoconductivity induced
by a background illumination, or by a combination of the two.
Using the proper value for Id is important in order to avoid the
widening of the induced waveguides into regions where only
spurious intensities of the control beams exist, which happens
for too small value of Id. If its value is too large, it limits
the waveguide refractive index contrast both along the x and
y-directions. And then as shown in our simulations the value of
C decreases. This feature was already revealed in the simplified
model of Ref. [7] which predicted ∆nx ∝ 1/Id and ∆ny ∝ 1/I2

d
for large Id � I(x, y). In the simulations of section 3 a high
value of the dark intensity, Id = 3 mWcm−2 has been used to
fit the experimental conditions. This has the consequence that
the obtained ratio between ∆ny and ∆nx is roughly C = 0.11
(see Fig. 3(c)), which is significantly smaller than 0.5, the value
expected from [7] by considering only the ratio of the control
beam intensities I1 and I2 with Id = 0. For the realistic case
simulated in Fig. 3(c) the predicted ratio from [7] is C = 0.38,
the discrepancy with the above value C = 0.11 is due to both the
effect of the dips on the side of the waveguide discussed above
and the effect of diffusion in the transverse y-direction allowed
by a finite mobility µy taken into account with µy/µx = 0.42 .

Indeed one key parameter to the build-up of PR dynamics
is obviously the electrical conductivity. We show below that
the conductivity not only dictates the speed of the PR build-
up dynamics but its anisotropy also influences the ratio C. In
photorefractive models treating one dimensional situations, for
instance when recording a grating by interference of two plane
waves, the transverse carrier mobility can be ignored due to
symmetry considerations. In contrast, in the 2D situations cor-
responding to Fig. 5 and Fig. 6 the transverse charge transport
by diffusion as well as drift in the field Ey cannot be neglected
anymore. Therefore the role of the quantity µy must be analyzed
in more detail. Simulations have been conducted by varying the
value of µy to observe its influence on the ratio C in the steady
state regime (τ = 10). The dark intensity Id has been reduced
to 0.1 mW cm−2 in order to limit the effect of the background
illumination. The results are summarized on Fig. 7. The nearly
exponential decrease of C upon increasing ratio µy/µx confirms
how the charge transport along y is detrimental to the index con-
trast in this direction. A large µy leads to a less effective field
screening in the center of the guiding region since the refractive
index does not fully recover the value in absence of the applied
field. This is also connected to a much weaker modulation of
the refractive index in the transverse direction (see the inset for
µy/µx = 2 on Fig. 7). On the contrary, by imposing µy = 0 one
finds that C reaches its highest value, and the value of ∆n(0, 0)
in the center of the waveguide recovers the value of the unbi-
ased material. For the parameters of Fig. 7 with no transverse
mobility (µy = 0) one obtains C = 0.34, which differs from the
value C = 0.5 predicted for I1 = I2 � Id by the simple model of
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Figure 7: Influence of the transverse mobility µy on the waveguide refractive
index contrast ratio C = ∆ny/∆nx at τ = 10. The control beam illuminations,
E0 and the crystal parameters are identical to Fig. 6 except Id = 0.1 mW cm−2

and µy that varies. The refractive index profile corresponding to µy/µx = 0; 0.42
and 2 are represented in the insets. ∆n(0, y) is represented with the solid red line
and ∆n(x, 0) is the blue dash profile.

Ref. [7]. Again, the reason is principally due to the remaining
dip in the x-profile which has the effect of decreasing the value
as already mentioned.

4.2. Theoretical and experimental guiding properties vs. inten-
sity ratio

We now focus our attention on the guiding properties of
the photo-induced waveguides generated by crossed lateral il-
lumination discussed above where a small value of C is ob-
tained even at steady-state. A probe beam at the wavelength
of 633 nm is launched in the 2D waveguide. In simulations it
is assumed that this beam does not affect the refractive index
distribution. Experimentally this hypothesis is insured by us-
ing a sufficiently weak cw He-Ne laser beam. The probe beam
is focused at the input face of the crystal (Full-Width-at-Half-
Maximum, FWHM=17 µm) at the location where the waveg-
uide is induced. The propagating beam is linearly polarized
along x to get the maximum refractive index change. It is in-
jected simultaneously to the application of the control beams
and of the applied field E0 to monitor the dynamic formation of
the waveguide.

The charge distribution, the electric field and the refractive
index change calculated in section 3.3 and depicted in Fig. 6
and Fig. 3(c) are used to simulate the evolution of the probe
beam by the BPM algorithm. This allows us to predict the
beam size at the output after propagation in a 1-cm long crys-
tal. Results are reported on Fig. 8(a) for both transverse dimen-
sions. The plots in Fig. 8(a) show the beam width evolution
until t ≈ 0.18Td, which corresponds approximately to the dura-
tion of the experimental evolution described below. After this
time there is almost no further evolution of the output beam
profile even though the index distribution has not yet reached
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Figure 8: Time evolution of the probe beam size after propagation in the 1-cm-
long SBN sample during the formation of a channel waveguide with a lateral
illumination of I2 = I1 = 5 mW cm−2 and E0 = 3 kV cm−1. The probe beam
is focalized on the input face of the crystal at the location of the waveguide. (a)
Theory. (b) Experiments.

its steady-state regime. In fact, as explained in section 3.1, the
refractive index contrasts ∆nx and ∆ny are already well devel-
oped at early times (see curve for τ = 0.2 on Fig. 3(c)). Later
in time, the main effect is a global increase of the index while
the moderate change of ∆nx and ∆ny influences very little the
guiding properties. Fig. 8(a) has been obtained for three light
stripes possessing the same peak intensities of 5 mW cm−2 as
in Fig. 6(f). Since the refractive index contrast is higher along
x, the probe beam is first focused in this dimension and a longer
time is required to also guide the beam in the second transverse
y-dimension. Nevertheless an efficient guiding is obtained for
both dimensions at the final state.

The theoretical expectations are compared to experimental
demonstrations in Fig. 8(b) for E0 = 3 kV cm−1. The exper-
imental setup follows the architecture of Fig. 1 and more de-
tails can be found in Ref. [7]. The SBN crystal dimensions are
a × b × c = 10 × 5 × 5 mm3. Thin Cr-Au transparent electrodes
are deposed in order to permit to shine light through them and
to apply the electric field. The two control beams, at the wave-
length λ=532 nm, are represented on Fig. 1 without considering
the effects of diffraction or absorption. To avoid these practical
limitations the waveguides are realized close to the crystal sur-
faces. The control beam 1 is the light structured by a Spatial
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Figure 9: Time evolution of the probe beam size as for Fig. 8 but with I2 =

0.5I1 = 2.5 mW.cm−2. (a) Theory. (b) Experiments.

Light Modulator and imaged by a cylindrical lens onto a plane
inside the crystal. The imaged light stripe has a width of 25 µm
along the c-axis and is aligned parallel to the z-axis. The control
beam 2 is composed by a dark region (produced by a thin wire)
and is also imaged on the crystal to get a 25 µm dark line. It
propagates in direction nearly parallel to the crystal c-axis and
is partially transmitted through the transparent electrodes. The
intensities of the control beams can be separately adjusted to get
similar illuminations as in the section 3.3 or to get other ratios
between I2 and I1. A white incoherent light is used as the back-
ground illumination. The output face of the crystal is imaged on
a CCD camera. Its images permit to determine the probe beam
transverse profile in x and y directions after propagation in the
2D photo-induced waveguides. The experimental parameters
(SBN properties and dimensions, light shapes and intensities,
applied voltage) are therefore in accordance with the ones used
in the simulations. Especially, the super-gaussian shape of the
control beams in the simulations has been chosen to closely ap-
proximate the shape of the experimental light stripes.

Fig. 8(b) shows a good qualitative agreement with the the-
oretical predictions and with earlier experimental observa-
tions [7] and confirm the strong anisotropy in the dynamic of
the guiding properties. Note that the upper axis in Fig. 8(b)
allows direct comparison with the normalized time τ = t/Td.
The dielectric response time Td of our weakly Ce-doped SBN
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Figure 10: Time evolution of the probe beam size as for Fig. 8 but with I2 =

2I1 = 10 mW cm−2. (a) Theory. (b) Experiments.

crystal was estimated by observing the dynamics of erasure of
photorefractive holographic gratings recorded at small interfer-
ing angles in the same crystal and for x-oriented charge trans-
port [21]. It was found that Td ≈ 4400/Itot in the range of
intensities used for our waveguide experiments. Here Td is in
seconds and Itot is the total intensity expressed in mW/cm2.

It should be noted that anisotropic dynamics of self-focusing
of spatial solitons has also been reported for a circular sym-
metric 2D illumination [26]. In our case, in contrast to soliton
experiments, the intensities of the control beams 1 and 2 can
be adjusted separately, which gives an additional flexibility to
control this anisotropic dynamic. Other experiments with vari-
ous contrast ratio I2/I1 have been tested and two examples are
shown on Fig. 9 with I2 = 0.5I1 = 2.5 mW cm−2 and on Fig. 10
with I2 = 2I1 = 10 mW cm−2, all the others parameters being
unchanged. Both simulations and experiments shows that for
I2 < I1 the confinement of the probe beam is smaller in y, con-
firming that C is too weak in this case for an efficient channel
waveguide. A slightly better confinement with I2 = 2I1 than
with I2 = I1 is observed. Moreover, as expected theoretically,
the formation time in y-direction is reduced when increasing
I2. We note also that our simulations indicate that an increase
of the ratio I2/I1 permits to increase the index contrast ratio C
if this is necessary. However, for a finite transverse mobility
this increase is weaker than expected by the simplified model

of Ref. [7] which predicts C ≈ 1 for I2 � I1 and µy = 0.
The influence of the applied electric field has also been stud-

ied. Both simulations and experiments show that a stronger
voltage than the 3 kV cm−1 used throughout this paper tends to
accelerate the temporal dynamic in both waveguide dimensions,
but there is a low impact on the mode size of the waveguide at
the final stage. Calculations also show that a modification of the
electric field around the value of 3 kVcm−1 has no influence on
C since both ∆nx and ∆ny are modified in the same proportion.

5. Conclusion

A numerical 3D model of the PR effect has been successfully
used to model the formation dynamics of waveguides induced
by lateral illumination of a biased PR crystal, both for planar
and channel waveguides. The theoretical time-resolved study
of a 1D-type illumination has shown an interesting transient
dynamics. The formation of 1D waveguides reveals the emer-
gence of a lower index region on each sides of the waveguide,
similar to the one characteristic of a 2D illumination of a PR
crystal. This leads to a faster confinement of the probe beam.
This minima disappear in the steady-state regime as expected
by standard 1D models, but the waveguide guiding properties
remain almost unchanged during this evolution.

For the realization of 2D waveguides by lateral illumination,
a complex structured illumination of the crystal is required,
therefore a complete model was essential to reproduce the in-
ducing rich build-up dynamics. Several parameters, such as
a background intensity, the anisotropy of the conductivity, or
the intensity ratio of the crossed control beams, were shown to
influence the anisotropic dynamics as well as the final steady-
state refractive index distribution. This improved understanding
allows a better adjustment of the experimental parameters for
generating efficient channel waveguides with similar confine-
ment in both transverses dimensions. We have to stress that the
transverse charge mobility (perpendicular to the direction of the
applied electric field) not only influences the build-up process,
but also limits the steady-state refractive index contrast of the
waveguide in the transverse direction. This could offer a way to
evaluate the mobility tensor by observing the steady state field
distribution under different conditions.
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[10] M. Gorram, P. Thévenin, V. Coda, N. Fressengeas, G. Montemezzani,
Reconfigurable one and two dimensional waveguides in strontium barium
niobate induced by lateral illumination, Ferroelectrics 390 (2009) 10–17.

[11] G. Montemezzani, Optimization of photorefractive two-wave mixing by
accounting for material anisotropies: KNbO3 and BaTiO3, Phys. Rev. A
62 (2000) 053803–053815.

[12] N. Fressengeas, J. Maufoy, G. Kugel, Temporal behavior of bidimen-
sional photorefractive bright spatial solitons, Phys. Rev. E 54 (1996)
6866–6875.

[13] S. Lee, H. R. Yang, E. J. Kim, Y. L. Lee, C. H. Kwak, Kinetics of
two wave mixing gain for moving grating technique in photorefractive
BaTiO3 crystal, Opt. Express 16 (24) (2008) 19615–19628.

[14] F. Kalkum, K. Peithmann, K. Buse, Dynamics of holographic recording
with focused beams in iron-doped lithium niobate crystals, Opt. Express
17 (2009) 1321–1329.
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