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Abstract

This paper presents a data-driven hydrodynamic simulator based on the 1-D hydraulic1

solver dedicated to �ood forecasting with lead time of an hour up to 24 hours. The goal of2

the study is to reduce uncertainties in the hydraulic model and thus provide more reliable3

simulation and forecast in real time for operational use by the national hydrometeorological4

�ood forecasting center in France. Previous studies have shown that sequential assimilation5

of water level or discharge data allows to adjust the in�ows to the hydraulic network resulting6

in a signi�cant improvement of the discharge while leaving the water level state imperfect.7

Two strategies are proposed here to improve the water level-discharge relation in the model.8

At �rst, a modeling strategy consists in improving the description of the river bed geometry9

using topographic and bathymetric measurements. Secondly, an inverse modeling strategy10

proposes to locally correct friction coe�cients in the river bed and the �ood plain through11

the assimilation of in-situ water level measurements. This approach is based on an Extended12

Kalman �lter algorithm that sequentially assimilates data to infer the upstream and lateral13

in�ows at �rst and then the friction coe�cients. It provides a time varying correction of the14

hydrological boundary conditions and hydraulic parameters.15

The merits of both strategies are demonstrated on the Marne catchment in France for16

eight validation �ood events and the January 2004 �ood event is used as an illustrative17

example throughout the paper. The Nash-Sutcli�e criterion for water level is improved from18
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0.135 to 0.832 for a 12-hour forecast lead time with the data assimilation strategy. These19

developments have been implemented at the SAMA SPC (local �ood forecasting service in20

the Haute-Marne French department) and used for operational forecast since 2013. They21

were shown to provide an e�cient tool for evaluating �ood risk and to improve the �ood22

early warning system. Complementary with the deterministic forecast of the hydraulic state,23

an estimation of an uncertainty range is given relying on o�-line and on-line diagnosis. The24

possibilities to further extend the control vector while limiting the computational cost and25

equi�nality problem are �nally discussed.26
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1. Introduction27

Flooding causes important social, environmental and economic losses and is likely to be28

aggravated by climate change over the next decades. For example, �ooding of the Var river29

in the South-East of France in 2010 resulted in a 700 million euros loss and 25 victims (22).30

Worldwide, national or international operational �ood forecasting centers are in charge of31

providing water level predictions and �ood risks at short- to medium-range lead time (from32

several hours to a few days) that are of great importance for civil protection. To this end, op-33

erational centers aim at providing an accurate forecast of the hydraulic variables (i.e., water34

level and discharge) along the monitored network. This forecast relies on the complemen-35

tary use of numerical models and observations (18). For instance, the UK Environment36

Agency in collaboration with the Met O�ce has developed the National Flood Forecast-37

ing System (NFFS) in order to access to real-time forecasts from a large set of hydrologic38

modeling tools (38; 37). In the Philippines, the Metro Manila model is used operationally39

to issue 24-hour lead time forecasts using precipitation and water level measurements that40

are collected and transmitted in real time (20). In France, since 2006, the national and hy-41

drometeorological �ood forecasting center (SCHAPI � Service Central d'Hydrométéorologie42

et d'Appui à la Prévision des Inondations), in collaboration with the 22 local �ood forecast-43

ing services (SPC � Service de Prévision des Crues), produces a twice-daily vigilance map44

available for governmental authorities and general public (http://www.vigicrues.gouv.fr).45

Meteorological, hydrologic and geographic data (bathymetry, topography), are used as in-46

puts to hydraulic models that are integrated in forecast mode to describe water level and47

discharge at a limited number of observing stations over 22,000 km of rivers in France. These48

hydraulic variables are then translated into a colored �ood risk map available online. On49

a larger scale, the European Flood Awareness System (EFAS) as part of the Copernicus50

Emergency Management System provides probabilistic �ood alert information more than 4851

hours in advance to national authorities. This alert system covers the main European rivers52

on a 5-km grid using a distributed hydrologic rainfall-runo�-routing model (LISFLOOD) as53

well as ensemble weather forecasts and real-time weather observations (8; 34).54
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The capacity for real-time anticipation of extreme �ood events remains limited due to55

several sources of uncertainty in hydraulic models. On the one hand, forcing data that56

represent boundary conditions for hydraulic models usually result from the transformation57

of uncertain observed water levels into discharges with an uncertain rating curve (7; 3), or58

from discharges forecasted by uncertain hydrologic models. Another source of uncertainty is59

the description of the river channel and �ood plain geometry. This requires on-site measure-60

ments of topographic and bathymetric pro�les to provide a spatially-distributed geometry.61

On the other hand, the equations that are solved by models are based on simpli�cation and62

parametrization of the physics. The parametrization schemes are calibrated to adjust the63

model behavior to observed water levels, typically, through the calibration of friction coe�-64

cients. The calibration of the river bed and �ood plain friction coe�cients is usually achieved65

once for all using a batch of observations such as water level from a limited number of �ood66

events, thus providing time-invariant values for the model parameters. It is important to67

mention that errors in the model inputs and in the model equations are sometimes di�-68

cult to discriminate (35; 30). These uncertainties usually translate into errors in the model69

representation of the water level-discharge (H − Q) relation that is not coherent with that70

from the reality. In practice, this inconsistency can be reduced when complementary data71

become available to improve the model, for instance LIDAR data for bathymetry (horizontal72

resolution of one point per square meter; 10 to 30 cm of vertical accuracy). When no ad-73

ditional data are available to improve the model geometry, the error between the simulated74

and the observed hydraulic states must be accounted for by adjusting the model parameters75

and/or the model state itself. Many studies have attempted to account for uncertainties76

at varying levels (36; 19), for instance by analyzing the uncertainty in hydrologic predic-77

tion based on the Generalized Likelihood Uncertainty Estimation (GLUE) (5; 2; 25; 33),78

Markov chain Monte Carlo (MCMC) (16), Bayesian inference (27) and Data Assimilation79

(DA) (19; 24; 10; 9).80

DA o�ers a convenient and cost-e�ective framework, compared to MCMC and Bayesian81

inference, to overcome some limits of the classical calibration process for model parame-82

ters: observations and simulation outputs are combined along with their respective errors to83
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estimate an optimal set of model parameters and thereby reduce simulation uncertainties.84

Furthermore, as the DA algorithm is sequentially applied, the analysis allows for a temporal85

variation of model parameters errors. The classical approach in DA for meteorology and86

oceanography is to directly correct the model output variables (also called state estimation).87

In the hydrology and hydraulic literature, the estimation of uncertainty in model parame-88

ters has been extensively investigated in addition to the more traditional state estimation89

approach. Sequential state estimation for hydraulic applications was indeed found to have90

a limited impact on the forecast performance due to the limited persistence of the model91

initial condition. In contrast, the forecast lead time can be signi�cantly improved via the92

correction of the hydrologic forcing (14; 1; 31) or of the model parameters (11). Through93

the inclusion of parameters in the DA process, it is assumed that the forecast uncertainty94

can be e�ciently reduced over a time window for which the errors statistics in the model95

parameters are stationary. State and parameter correction can be performed independently,96

or simultaneously (24; 23) with an augmented state as illustrated in (15). For example, (26)97

focused on state estimation and assimilated water level observation derived from spaceborne98

imaging and digital terrain model to estimate discharge in an un-gauged basin simulated99

by a coupled hydrologic and hydrodynamic model. (14) and (21) used ensemble-based ap-100

proaches (the Ensemble Kalman Filter � EnKF � and particle �lters, respectively) to update101

the state but also to infer the upstream boundary conditions. (4) explored the assimilation102

of hydrologic data into operational hydrologic forecast to correct several input parameters103

including river bed friction coe�cients.104

The present study illustrates how errors in the water level-discharge relation of a 1D hy-105

draulic model can be accounted for in the context of operational �ood forecasting following106

two di�erent approaches. The �rst method is based on the assumption that additional data107

on the river bed geometry are available to directly improve the model H − Q relation. In108

the following, this approach is referred to as experiment BATHY. For the second method,109

it is assumed that the only additional data available are in-situ water level measurements,110

which are used in real time to adjust the river bed and �ood plain friction coe�cients in the111

model using a DA algorithm. In the following, this approach is referred to as experiment112
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ASSIM. A time-dependent correction of the friction coe�cients is provided by DA in order113

to account for errors in the friction and bathymetry description that vary along with the114

�ow as water level reaches di�erent portions of the described geometry. It should be noted115

that the errors in the model H − Q relation are potentially larger at high �ow since the116

�ood plain topography is not well known and since the model is not well calibrated. Thus,117

this study aims at demonstrating that both approaches BATHY and ASSIM can signi�-118

cantly improve the model H − Q relation and subsequently the simulated hydraulic state.119

This work is carried out in the context of operational �ood forecasting at the SAMA (Seine120

Amont Marne Amont) SPC for the Marne catchment in France. SAMA uses the 1D hy-121

draulic model MASCARET (12) developed by LNHE (Laboratoire National d'Hydraulique122

et d'Environnement) from EDF-R&D (Electricité De France � Recherche et Développement)123

to simulate real-time discharge or water level forecasts at six observing stations on the up-124

stream part of the Marne river. Maximum forecast lead time for each site is between 5 and125

21 hours according to the transfer time along the hydraulic network. The reference model126

for this work, referred to as experiment REF in the following, results from a classical batch127

calibration procedure of the un-gauged upstream and lateral in�ows to the model as well128

as of the river bed and �ood plain friction coe�cients. In this context, (31) demonstrated129

that the assimilation, based on an Extended Kalman Filter (EKF) algorithm, of water level130

observations to correct hydrologic boundary conditions and hydraulic model parameters on131

the Adour catchment with MASCARET improves �ood forecasting by 60 % for 1-hour lead132

time and by 25 % for 12-hour lead time. A similar approach using discharge data was then133

applied to the Marne catchment to specify upstream and lateral in�ows (13), resulting in134

the signi�cant improvement of the simulated discharge state, while the simulated water level135

state remained imperfect. The correction of un-gauged lateral and upstream in�ows with136

DA o�ers an alternative solution to the classical batch calibration procedure by considering137

a time-varying estimation of the boundary conditions. In the present work, this corresponds138

to the �rst step of the DA method referred to as experiment ASSIM1 in the following. Fur-139

ther improvement on the river bed and �ood plain friction coe�cients in the neighborhood of140

the observing stations is obtained with water level assimilation. This represents the second141
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step of the DA method referred to as experiment ASSIM2 in the following. The method142

ASSIM is therefore a two-step DA procedure: ASSIM1 allows for the correction of upstream143

and lateral in�ows and ASSIM2 allows for the correction of river bed and �ood plain friction144

coe�cients. The sequential application of both steps in ASSIM is referred to as experiment145

ASSIM1+ASSIM2.146

The structure of the paper is as follows: Section 2 provides a description of the Marne147

catchment and of the materials (hydraulic model, DA method) used to perform �ood fore-148

casting. The evaluation of the linearity of the water level with respect to the friction coe�-149

cients is investigated. The limitations of the reference model REF are highlighted and the150

two-step DA strategy ASSIM is presented in detail. In Sect. 3, the results of both BATHY151

and ASSIM approaches are presented using the January 2004 �ood event as an illustrative152

example. The operational implementation of the ASSIM approach at the SAMA SPC is153

described in Sect. 4. Conclusions and perspectives for this work are given in Sect. 5.154

2. Materials and methods155

2.1. The 1D hydraulic model MASCARET156

The Marne river is an important tributary of the Seine river in France. Its source is157

located on the Langres plateau in the Haute-Marne department. A mono-dimensional hy-158

draulic model is used to simulate the hydrodynamics of the 180-km Marne river as presented159

in Figure 1. This study is carried out in the upstream part of the Marne river where �ash160

�oods frequently occur; for instance, in December 2011, the discharge at Condes raised161

from 25 to 125 m3/s in 24 hours. Upstream boundary conditions (black dots in Figure 1)162

for the hydraulic network are described with observed water levels that are translated into163

discharges with a local rating curve; the downstream boundary condition at Chamouilley164

is also described with a local rating curve. There are six observing stations located on165

the main stream of the river (black triangles in Figure 1) where water level is measured166

hourly. These data are provided by the DREAL (Direction Régionale de l'Environnement,167

de l'Aménagement et du Logement) hydrometeorological service in the Champagne-Ardenne168

region.169
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Figure 1: Schematic of the Marne model hydraulic network (Haute-Marne, France).

Observed upstream �ows are represented with black dots; additional in�ows are

represented with grey dots; and observing stations over the hydraulic network are

represented with triangles.

Along this hydraulic network, the 1D form of the Saint-Venant equations is solved with170

the MASCARET (12) software developed by EDF-R&D and CEREMA (Centre d'Etudes et171

d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement), widely used172

for modeling �ood events, submersion waves resulting from the failure of hydraulic infras-173

tructures, river control, and channel waves propagation. The 1D Saint-Venant equations174

read (non-conservative form):175

∂S

∂t
+
∂Q

∂x
= qa ,

∂Q

∂t
+
∂QV

∂x
+ gS(

∂Z

∂x
+ J + Js) = 0 with J =

Q2

S2K2
sR

4/3
H

. (1)

where S [m2] is the river section, Q [m3/s] is the discharge, qa(x,t) is the lateral lineic176
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discharge, Ks [m
1/3.s−1] is the friction coe�cient, RH is the hydraulic radius, g is the gravity,177

J and Js represents regular and singular head losses respectively. The river section S is, for178

each location x, a function of the water level H = Z(x, t)−Zbottom(x, t), where Z(x, t) [m] is179

the free surface height and where Zbottom [m] corresponds to the river bed bathymetry. The180

unsteady kernel of MASCARET was used in this study.181

The Marne terrain model was built with 110 topographic and bathymetric cross sections;182

it was calibrated in 2011 using a batch of water level and discharge measurements from ten183

�ood events at Chaumont, Condes, Saucourt, Mussey, Joinville and Chamouilley. The184

model was then validated over eight independent �ood events that occurred between 2004185

and 2013; these events can be classi�ed in three types: two events with a maximum discharge186

of 100 m3/s at Mussey, two events with a maximum discharge at Mussey ranging between187

115 and 240 m3/s, and three stronger events with a maximum discharge at Mussey above188

260 m3/s (among which the January 2004 �ood event used in this paper for illustrative189

purposes). Five upstream and lateral in�ows (grey dots in Figure 1) were added to the190

model to represent additional water input to the network. At these �ve locations, despite191

the lack of hydrologic rainfall-runo� model, the hydrograph is described as proportional to192

a mean upstream area hydrograph; the multiplicative coe�cients used for the model in the193

present work were optimized by a batch calibration procedure. Additionally, the river bed194

and �ood plain friction coe�cients (denoted respectively by m and n) were calibrated by195

minimizing simulated and observed discharge di�erences; the resulting calibrated friction196

coe�cients that have a straightforward in�uence on the H − Q relation in the model are197

given in Table 1. In the following, the model with batch calibration corresponds to the198

reference model denoted by REF.199

The Nash-Sutcli�e criteria for water level NH and discharge NQ were calculated for the200

eight validation �ood events for each observing station using the following formulation given201
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for Q:202

N = 1−

n∑
i=1

(Qobs
i −Qsim

i )2

n∑
i=1

(Qobs
i −Q

obs
)2

, (2)

where Qobs
i and Qsim

i correspond to the observed and simulated discharges at time indexed203

by i, and where Q
obs

denotes the time-averaged value of the observed discharges. The204

Nash-Sutcli�e criteria results are presented in Table 1. In general, the quality of the results205

decreases from upstream to downstream as the use of mean multiplicative coe�cients gener-206

ates errors in the lateral and upstream in�ows estimation. Additionally, the Nash-Sutcli�e207

criteria computed with respect to discharge Q are generally better than when computed208

with respect to water level H, especially at Mussey (Reach 4, Portion 1 in Table 1). It209

should be noted that there is no rating curve available at Joinville, thus no discharge data210

at this observing station. For the January 2004 �ood event used in this work for illustra-211

tive purposes, the Nash-Sutcli�e criteria associated with the REF model and presented in212

Table 2 are respectively 0.773 and 0.894 for water level and discharge. The criteria are here213

computed in re-analysis mode that corresponds to a 0-h forecast lead time (details are given214

in Sect. 2.2). REF (dashed lines) and observed (dotted lines) hydraulic states at Mussey215

are compared in Figure 2 over the January 2004 �ood event (thin lines correspond to water216

level, thick lines correspond to discharges). The di�erence between REF and observations217

varies over time for both water level and discharge, thus arguing for a time-dependent cor-218

rection as enabled by DA in Sect. 2.2. It is important to notice that the sign of the error219

in discharge and in water level are di�erent for high �ow conditions (�ood peak from day 4220

to day 5), while similar away from the �ood peak. For high water levels, the discharge is221

slightly overestimated (by 25 m3/s at day 5), whereas the water level is signi�cantly un-222

derestimated (by 0.4 m at day 5). During this period, the H − Q relation in the model is223

incorrect, a negative correction in the discharge would further deteriorate the water level224

state. Thus, for this event, the batch calibration process is to fail at providing parameters225

(friction coe�cients and upstream/lateral in�ows) that would improve both discharge and226
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water level at the �ood peak (the same assumption seems legitimate at Joinville). It is then227

obvious that the reference model (REF) should be improved as explained in the following.228

Reaches Portions Length m n
Observing

stations
NH NQ

1 1 5,172 24 14

2 1 21,753 24 14 Chaumont 0.922

3
1 660 36 22 Condes 0.821 0.835

2 44,842 24 14

4

1 578 20 13 Mussey 0.544 0.743

2 8,200 24 18

3 300 14 8 Joinville 0.531

4 26,383 24 14 Chamouilley 0.614 0.621

5 1 4,150 24 14

6 1 27,101 24 14

7 1 7,600 9 7

8

1 16,266 9 7

2 500 13 8 Saucourt 0.797 0.821

3 5,680 9 7

9 1 10,819 9 7

Table 1: Mean friction coe�cients obtained after calibration for the river bed (m) and the

�ood plain (n) in [m1/3.s−1], as well as Nash criteria for water level (NH) and discharge

(NQ) calculated for eight validation �ood events and for reaches 1 to 9 over the Marne

model hydraulic network. Reaches lenghts are in meters.

2.2. Sequential DA method229

2.2.1. DA algorithm230

The DA method (ASSIM) is a two-step procedure using an EKF algorithm.231

The �rst step ASSIM1 consists in correcting the upstream and lateral in�ows to the232

model using discharge data, with the objective to improve the simulated discharge. The233
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Figure 2: Simulated water levels (thin lines) and discharges (thick lines) at Mussey for

REF (dashed line) and BATHY (dashed line with triangle � discharges are unchanged) for

the January 2004 �ood event. Observations are represented with small and large black

dots for water level and discharge, respectively. Circles represent the discharge

observations obtained with the Corrected Rating Curve (CRC).

ASSIM1 method is presented in details in (31) and (13). For the Marne applicative test234

case, discharge observations (Condes, Mussey, Chamouilley and Saucourt) are assimilated235

to correct the �ve upstream and lateral in�ows along the hydraulic network (represented by236

grey dots in Figure 1) in order to correctly represent discharge.237

In spite of the discharge improvement, when the model H − Q relation is incorrect (at238

high �ow), the simulated water level remains imperfect. These errors are here accounted239

for in the second step ASSIM2, which uses water level data to locally correct river bed and240

�ood plain friction coe�cients in the neighborhood of the observing stations. The batch241

calibration process leads to an estimate that allows, on average, the model to correctly242
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NH NQ

REF 0.773 0.894

BATHY 0.923 0.897

ASSIM1 0.784 0.976

BATHY+ASSIM1 0.986 0.987

ASSIM1+ASSIM2 0.97 0.978

Table 2: Nash-Sutcli�e criteria for REF, BATHY, ASSIM1 and ASSIM1+ASSIM2

experiments for water level (NH) and discharge (NQ) in re-analysis mode for the January

2004 �ood event at Mussey.

simulate a set of �ood events. Depending on the choice of this set of events, the calibrated243

friction coe�cients might be better �tted for low, medium or high �ow. Usually, high �ow244

are not well represented. It thus makes sense to look for a time-varying correction of the245

friction coe�cients during a �ood event. Additionnaly, the bathymetry is described from a246

limited number of measured cross sections. The correction of the friction coe�cients o�ers247

a way to also account for the uncertainty related to bathymetry. In the present study, the248

friction coe�cients are corrected over a 600-m section in the vicinity of the observing station249

at Mussey (Portion 1 of reach 4) and over a 300-m section in the vicinity of Joinville (Portion250

3 of reach 4). These coe�cients were chosen as their uncertainty has a signi�cant in�uence251

on the simulated water level at the observing stations; still the following method could be252

applied to any friction coe�cient for the hydraulic network. The friction coe�cients in the253

river bed and in the �ood plains, respectively denoted by m and n, are gathered in the254

control vector x of size s = 4 in the present case study. The background values in xb are255

those speci�ed from the calibration procedure (mb = 20 and nb = 13 for Mussey; mb = 14256

and nb = 8 for Joinville). The errors in m and n are supposed to be uncorrelated, and the257

respective standard deviation (STD) are set according to the variability in the calibration258

procedure (σb
m = 3 and σb

n = 4 at Mussey; σb
m = 3 and σb

n = 2 at Joinville). Hourly water259

level observations are assimilated over a time window at Mussey and Joinville and gathered260

in the observation vector yo of size p. The errors in the water level observations are supposed261
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to be uncorrelated; the observation error STD σo is set to 0.025 m to account for errors in262

the adjustment of the measurement pressure tube.263

Following the classical equations of the Kalman �lter (17), the analysis vector xa
k for264

cycle k can be formulated as a correction to the background vector xb
k as follows:265

xa
k = xb

k +Kk

(
yo

k − Hk(x
b
k)
)
, (3)

where Kk = BkH
T
k (HkBkH

T
k + Rk)

−1 is the gain matrix, Bk and Rk are respectively the266

background and observation errors covariance matrices, and Hk is the Jacobian of Hk at x
b
k.267

The analysis error covariance matrice is:268

Ak = (I -KkHk)Bk. (4)

The generalized observation operator Hk is used to describe the model counterpart of the269

observations yo
k = Hk(xk) associated with the control vector xk. It consists in, �rst integrat-270

ing the hydraulic model using the friction coe�cients in xb, then selecting the corresponding271

simulated water level at the observed point and time. This operator is non-linear with re-272

spect to x as it implies the integration of the hydraulic model; this issue will be further273

investigated in Sect. 2.2.2 as it is a limiting point for the EKF algorithm optimality. The274

Jacobian Hk of the observation operator Hk is a s × p matrix: each column represents the275

variation in the hydraulic variables at the observing locations and times that are due to the276

perturbation of an element of the control vector (corresponding to one friction coe�cient277

over a given location). In the present work, it is conveniently computed in the vicinity of278

the background vector at the analysis time k with a �nite di�erence scheme that requires279

additional hydraulic model integrations; these independent integrations are run in parallel280

using the Parasol functionality of the OpenPALM dynamic coupler (6), a framework that281

is convenient to develop DA methods in a modular way. The Jacobian matrix is computed282

for each analysis cycle as the impact of a perturbation in the friction coe�cients on the283

hydraulic variables depends on the hydraulic state itself.284

Since there is no explicit propagation model for parameters (29; 24; 28; 32), the usual285

propagation steps of the KF algorithm are irrelevant here; a persistence model is often286
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assumed for the parameters between the analysis cycles. In the present implementation, the287

background vector xb
k and the background error covariance matrix Bk are kept invariant288

between the cycles (for every cycle k). For that reason, the present EKF algorithm can289

be considered as an invariant EKF (relatively to the background information). It is worth290

noting that for a given cycle, the initial condition for the background simulation is derived291

from the analysis simulation obtained during the previous cycle; consequently, each cycle292

restarts with an improved initial condition. Thus, the background 78-hour run di�ers from293

the corresponding portion (in time) of the continuous reference run (REF) since both runs294

start from a di�erent model state at the cycle initial time. It is also worth mentioning that295

advanced pseudo-model for parameters could be implemented; this question will be addressed296

in further work. The small size of the control vector (less than 10 for the Marne test case)297

enables the use of an EKF algorithm, involving matrix operations for the computation of298

the gain matrix along with a �nite di�erence scheme for the computation of the generalized299

observation operator Jacobian.300

The cycling of the analysis is presented in Figure 3 for ASSIM1 and in Figure 4 for301

ASSIM2 following ASSIM1. The assimilation is performed over a cycle k of 66 hours with302

54 hours of re-analysis and 12 hours of forecast at Mussey. The forecast period is adjusted for303

each observing station and decreases going downstream. Over the 54-hour re-analysis period,304

the hydrologic upstream and lateral forcings are supposed to be known (either observed or305

calibrated). Over the forecast period, the forcings are supposed to be unknown and set306

constant to the last known value. The 54-hour re-analysis period corresponds to a 48-hour307

period over which the model adjusts to the initial state, plus a 6-hour period over which308

observations are assimilated using the EKF algorithm. Hence, the size of the observation309

vector in the present study is p = 12. The last observation time from which the forecast310

integration starts is the analysis time T . For cycle k, in ASSIM1 (Figure 3), over the 6-hour311

assimilation period (hatching area), the background issued from the previous analysis cycle312

(solid line) and observed discharges (black dots) are compared and a correction to the in�ows313

is obtained through the EKF analysis step. The correction is applied over the re-analysis314

and the forecast periods, thus assuming that the nature of the errors in the upstream and315
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Figure 3: Observed (black dots), background from previous cycle (BCK solid line) and

analyzed discharges (squared solid line) for the ASSIM1 approach at the �ood peak at

Mussey for the January 2004 �ood event for T = 417,600 s = 4.83 days.

lateral in�ows remains the same over the forecast period. The analyzed forcings are used316

to achieve a new model integration (over the 66-hour time period), which provides a better317

discharge state, while the water level can be either improved or degraded depending on the318

coherence between the model and the observation H −Q relation.319

The analyzed water level from ASSIM1 is then used as the background state for ASSIM2;320

it is compared to water level observations over the 6-hour assimilation period and the EKF321

update provides a correction to the river bed and �ood plain friction coe�cients m and n,322

which results in the water level improvement as shown in Figure 4 (squared solid line). The323

oscillations at the beginning of the cycle are due to the inconsistency between the initial state324

(stored from a previous cycle analysis) and the friction coe�cients for the current cycle. The325

assimilation window is shifted hourly and the sequential application of ASSIM1+ASSIM2326
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provides a corrected hydraulic state and forecast. This cycled DA procedure allows for327

a temporal variability of the friction coe�cients over a �ood event, which can be either328

associated to real changes in the river bed and �ood plain friction or geometry properties329

as well as to various types of errors that are arti�cially accounted for here by correcting m330

and n.
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Figure 4: Observed (black dots), background from ASSIM1 (solid line) and analyzed

(squared soline line) water levels for the ASSIM2 (following ASSIM1) approach at the

�ood peak at Mussey for the January 2004 �ood event for T = 417,600 s = 4.83 days.

Water level from ASSIM1 used as the background state for ASSIM2 is compared to water

level observations to provide analyzed friction coe�cients and subsequently, corrected

water level.

331
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2.2.2. Study on the linear assumption of the generalized observation operator332

The EKF algorithm relies on the hypothesis that the generalized observation operator can333

be approximated by a linear operator on the [xb,xa] interval. The linearity of the hydraulic334

model response to a perturbation in the river bed and �ood plain friction coe�cients m335

and n was thus investigated. Figure 5 presents the probability density function (pdf) of the336

simulated water level at Mussey for a permanent �ow (Q = 150 m3/s) when the friction337

coe�cient at Mussey for the minor bed is perturbed around the background mean value338

m = 20. The 10,000 perturbations are randomly chosen following a Gaussian function with339

a variance of 12.
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Figure 5: Water level pdf for 10,000 perturbations of the river bed friction coe�cient m

with a variance of 12. The solid line represents the analytical pdf corresponding to a

Gaussian model response; and the histogram represents the actual MASCARET hydraulic

model response reconstructed from the 10,000 model outputs.

340
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In Figure 5, the pdf in solid line is a Gaussian function built from the �rst two moments341

(mean and variance) of the system response assuming a linear relation in the model. The342

actual response is represented by the shaded histogram that is obviously non-symmetrical.343

First, there is a larger amount of water-level values that are smaller than the mean of the344

Gaussian pdf. This means that the (negative) water level anomaly resulting from a small345

positive perturbation δm of the friction coe�cient is bigger than the (positive) water level346

anomaly resulting from a negative perturbation −δm of the friction coe�cient. Secondly,347

the stochastic pdf is ampli�ed for extreme water level values, meaning that a large (negative)348

perturbation of the friction coe�cient m results into a large (positive) perturbation of the349

water level when a large (positive) perturbation of the friction coe�cient has a smaller350

impact. The same test was carried out with n; similar conclusions were drawn. It was also351

found that the impact of a perturbation of m and n increases when the discharge increases.352

Figure 6 assesses the impact of a perturbation δn (where xb = 13) between �12 and 12 on the353

simulated water level at Mussey for di�erent discharges. A perturbation of −6 for n leads to354

a variation of 0.01 m when Q = 80 m3/s and to a variation of 0.03 m when Q = 225 m3/s.355

Based on these results, it is assumed in the following that the relation between the friction356

coe�cients and the hydraulic state is reasonably approximated by a linear function in the357

vicinity of xb. The Jacobian matrix of the generalized observation operator Hk is computed358

around the background values for m and n for a perturbation δm = −2 and δn = −1 using359

a �nite di�erences scheme in consistency with the linearity study. In order to avoid non-360

physical values for the friction coe�cients as well as to limit the nonlinear impact, minimum361

and maximum threshold values are applied to the friction coe�cients with [14, 24] for m362

and [8, 20] for n.363

3. Correction of the model H − Q relation364

3.1. Bathymetric pro�les densi�cation (BATHY)365

This section presents the method for experiment BATHY; it is assumed that the H −Q366

relation in the 1D hydraulic model is improved by adding geometric data to the model.367
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Figure 6: Impact of the �ood plain friction coe�cient perturbations δn on the water

level [m] for di�erent simulated discharges [m3/s]. A -10 and +10 perturbation of n

generates a non equivalent variation of the water level but for low perturbations, the

relation between friction coe�cients and water level can be considered as linear.

Additional measurements of the river bed and �ood plain geometry were made available near368

Mussey: 4 topographic and bathymetric measurements were performed in the surrounding369

of the observing station. The batch calibration of the local friction coe�cients was then370

re-processed on sections 1 and 2 for reach 4. The friction coe�cients for these two sections371

were set to m = 30 and n = 8. Figure 2 illustrates the positive impact of the cross-section372

densi�cation for the January 2004 �ood event for water level (dashed line with triangles). As373

presented in Table 2, for experiment BATHY, the Nash-Sutcli�e criterion for H is improved374

from 0.773 to 0.923, even though a 10-cm underestimation remains. The discharge results375

are left unchanged by this local bathymetry correction with a 0.897-Nash-Sutcli�e coe�cient376

for BATHY (compared to 0.894 for REF); a small overestimation at the �ood peak remains377
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(10 m3/s) for this event. As shown in Table 3, the Nash-Sutcli�e criteria values computed378

for water level over the eight validation �ood events in re-analysis mode for BATHY are379

better than those computed for REF, especially at Mussey where the additional geometry380

measurements were made; in contrast, the impact at Joinville is small.
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dashed line) and obtained through the BATHY approach (thin solid line). Recent gaugings

are represented with black triangles.

381

In Figure 7 the H − Q relation for REF is represented by the thin dashed line, and382

the H − Q relation for BATHY is represented by a thin solid line. It is shown that the383

BATHY H − Q relation is in better agreement with all available gauging (black dots and384

triangles) than the REF H −Q relation. As a consequence, the new model H −Q relation385

should be used to produce discharge data from water level measurements at Mussey, in386

place of the experimental rating curve (thick solid line) that is in good agreement with low387
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Observing stations
Mussey Joinville

NH NQ NH

Forecast lead time 0h 0h 0h

REF 0.601 0.722 0.653

BATHY 0.681 0.721 0.661

ASSIM1 0.754 0.854 0.779

BATHY+ASSIM1 0.858 0.853 0.784

ASSIM1+ASSIM2 0.859 0.842 0.992

Forecast lead time 12h 12h 12h

REF 0.135 0.238 0.154

BATHY 0.272 0.241 0.158

ASSIM1 0.689 0.807 0.695

BATHY+ASSIM1 0.781 0.802 0.698

ASSIM1+ASSIM2 0.832 0.807 0.907

Table 3: Nash-Sutcli�e criteria for REF, BATHY, ASSIM1, ASSIM1+ASSIM2 and

BATHY+ASSIM1 computed over eight �ood events for 2004-2013 at maximum lead time

(12 hours) at Mussey and Joinville.

�ow measurements but can lead to an underestimation of up to 60 m3/s for high �ow. It388

should be noted that the experimental rating curve was built from numerous gaugings below389

150 m3/s (black open dots) and only two gaugings above 150 m3/s. Additionally, two recent390

gaugings for high �ow (black triangles) allow to validate the BATHY model H −Q relation391

over the entire range of discharge values at the observing station. Figure 2 presents the392

corrected observed discharges that are derived from water level measurements at Mussey393

using the BATHY densi�ed model H − Q relation (black circles). Using these corrected394

measurements, the model now slightly underestimates both water level (thin dashed line)395

and discharge (thick dashed line) at the �ood peak. The sign of the errors in discharge and396

water level are now the same over the entire �ood event, meaning that the optimization of397

upstream and lateral in�ows as proposed in (13) is an appropriate solution for further �ood398
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forecast improvement for both discharge and water level states.399

3.2. Data assimilation for friction coe�cients correction (ASSIM)400

In this section, it is assumed that no additional geometric measurement is available. The401

reference model H −Q relation is improved accounting for errors in friction coe�cients and402

by arti�cially accounting for local bathymetry error with the sequential estimation of the403

river bed and �ood plain friction coe�cients m and n in the surrounding of the observing404

stations at Mussey and Joinville (experiment ASSIM).
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�ood plain (n) from DA analysis are represented with triangles and diamonds respectively.

405

Figure 8 illustrates that the water level can be e�ciently increased at Mussey, compared406

to that of REF (m = 20 and n = 13 represented with a thin dashed line), when decreasing the407
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river bed friction coe�cient to m = 10 (thick solid line), while discharges are left unchanged408

(not shown). The value m = 10 is appropriate for high �ow but leads to a water level409

overestimation for low �ow condition. The friction coe�cient estimation should then be �ow410

dependent and provide time-dependent friction coe�cients that account for varying errors in411

the friction and bathymetry river bed as the �ow occupies a varying portion of the river and412

the �ood plain. For this purpose, the DA method ASSIM detailed in Sect. 2.2 is cycled over413

the entire �ood event to estimate upstream and lateral in�ows (ASSIM1), and river and �ood414

plain friction coe�cients (ASSIM2) over time using hourly observed discharge and water level415

at Mussey. Corrected lateral and upstream forcings from ASSIM1 are used to provide the416

background state (thin solid line) for the friction coe�cient estimation in ASSIM2. It should417

be noted that while ASSIM1 leads to a signi�cant correction of discharge, the water level in418

ASSIM1 remains close to that of REF. The ASSIM1+ASSIM2 DA analysis for water level is419

presented for time T from day 2.25 to the end of the �ood event in Figure 8 (squared line).420

For instance, at day 3, REF overestimates the water level, ASSIM1+ASSIM2 increases the421

friction coe�cients in order to decrease the simulated water level. On the contrary, over422

the �ood peak period (days 4-7), REF underestimates the water level, ASSIM1+ASSIM2423

decreases the friction coe�cients in order to increase the simulated water level.424

The Nash-Sutcli�e criteria for water level and discharge computed at Mussey for January425

2004 in re-analysis mode are presented in Table 2. ASSIM1 improves the discharge Nash426

value from 0.894 (REF) to 0.976; it is not signi�cantly a�ected by ASSIM2 (0.978). The427

water level Nash value is not signi�cantly modi�ed by ASSIM1 (0.773 for REF compared to428

0.784 for ASSIM1); it should be noted that ASSIM1 can either lead to an improvement or429

a degradation of the water level (as it is the case at the �ood peak). However, it is greatly430

improved with ASSIM2 to 0.97. These results are also obtained over the eight validation431

�ood events: the Nash-Sutcli�e criteria computed at Mussey and Joinville in re-analysis432

mode (0-hour forecast lead time) as well as at the maximum lead time forecast (12 hours)433

are presented in Table 3 for REF, BATHY and ASSIM. In re-analysis mode, ASSIM1 greatly434

improves the discharge results, while ASSIM2 provides improved water level states at Mussey435

and Joinville since the friction coe�cients are corrected in the vicinity of both observing436
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stations. In forecast mode, the upstream and lateral hydrologic forcings are supposed to437

be unknown and set constant to the last observed value. As a consequence, the Nash-438

Sutcli�e coe�cients for REF and BATHY decrease as the forecast lead time increases. The439

correction of upstream and lateral in�ows from ASSIM1 enables a correction of the forcing440

over the forecast period, thus allowing for a signi�cant improvement of the results at a 12-441

hour forecast lead time. The water level Nash criteria is further improved by ASSIM2 for442

Mussey and Joinville. For ASSIM1 and ASSIM2, it is assumed that the correction computed443

over the analysis period can be applied over the forecast period; as the nature of the errors444

varies in time, this assumption is less and less valid as the forecast lead time increases and445

the merits of ASSIM decrease.446

It should be noted that the local densi�cation of the geometric description (BATHY)447

when applied sequentially with ASSIM1, leads to similar results to ASSIM1+ASSIM2 at448

Mussey but not at Joinville, where no additional bathymetric measurements were available.449

ASSIM thus appears as an e�cient approach for improving and forecasting both discharge450

and water level given no additional data on the river bed and �ood plain geometry. Fol-451

lowing these tests, the approach ASSIM1+ASSIM2 has become recently operational at SPC452

SAMA: the assimilation of discharge measurements used in real-time mode to better quan-453

tify upstream and lateral in�ows (ASSIM1) has successfully run since December 2013; the454

extension of the control vector to the river bed and �ood plain friction coe�cients (ASSIM2)455

has recently been added into the operational �ood forecasting chain and has shown very good456

results. The details for the ASSIM implementation in the framework of operational �ood457

forecasting are given in Sect. 4.458

4. Operational implementation at SPC SAMA459

The SPC SAMA transfers a vigilance map to SCHAPI twice a day at 8:45 a.m and 2:45460

p.m so that the national vigilance map can be issued at 10:00 a.m and 4:00 p.m. The real-461

time forecast operational chain for the Marne Amont Global (MAG) hydraulic model using462

DA from the ASSIM1+ASSIM2 previsouly described approach is presented in Figure 9 and463
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Figure 9: Operational organigram for DA applied to the Marne Amont forecast model

divided in eight tasks.

is broken down in three modules. This chain should be computationally e�cient to allow464

for the use of recently acquired data while providing informed forecasts.465

The �rst module, named DATA, is composed of three tasks. In task 1, in-situ mea-466

surement of water levels are made at approximately 50 observing stations with automatic467

instruments over the SAMA catchment. In task 2, these data are gathered at SPC through468

telephone network four times a day, up to hourly during a �ood event. The quality of these469

data is controlled and, when not observed, discharge data are computed using a local rating470

curve. Task 3 consists in pre-processing the observed data to provide to input �les for the471

hydraulic model. Depending on the average �ow conditions in the network, an initialisation472
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�le for the MAG model is chosen amongst a pre-computed input �les data base for low,473

medium and high �ow. Using data from the upstream observing stations, 9 �les for the474

boundary conditions for the hydraulic network are automatically generated for each analy-475

sis time T over [T -54h,T ], with a constant extension over [T ,T+21h] (maximum lead time476

at Chamouilley). Water level and discharge observations �les are automatically generated477

at the assimilation station of Condes, Mussey, Joinville, Chamouilley and Saucourt over478

[T -6h,T ] for the assimilation analysis.479

The second module, DA STEPS, gathers two tasks that launch the DA steps. Task 4480

represents the ASSIM1 step of the DA procedure : observed discharges are assimilated at481

Condes, Mussey, Chamouilley and Saucourt to correct upstream and lateral in�ows. The482

corrected forcing �les are stored for use in task 5.Task 5 represents the ASSIM2 step of the483

DA procedure: observed water levels at Joinville are assimilated to correct the local friction484

coe�cients. The improved bathymetry from BATHY in the neighboring of Mussey is used485

in the operational model MAG, thus improving the model H − Q relation locally. As a486

consequence, there is no need to assimilate observed water level at Mussey.487

The third module is dedicated to POST-PROCESSING of the analysis. The REF and488

ASSM1+ASSIM2 result �les are exported in task 6 to a server for post-treatement using a489

supervision software that provides the forecaster with an integrated hydrological situation490

of the catchment. In task 7, based on the provided forecast and his expertise, the forecaster491

is �nally able to characterize the �ood risk within the risk-color panel.492

In the third module, this information is then published by SCHAPI on the vigicrues493

web site and communicated to the Civil Services. Task 8 is dedicated to quantifying the494

uncertainty (UQ) related to the forecasted water level. Considering a gaussian-shaped error495

on the controled friction coe�cients and forcing corrective parameters, the analysis error496

is used to de�ne a so-called analysis interval between the 10th and the 90th quantiles.497

Integrating a limited number of additional model runs for these interval limits thus provides498

an on-line envelope for forecasted water level. An additional information on the forecasted499

water level is given by a set of abacus that are set up o� line. The di�erence between the500

simulated and observed water level for the eight validation �ood events are computed and501
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classi�ed in quantiles for each forecast lead time. The median, 10th and 90th quantiles are502

identi�ed and used in the operational chain to provide an uncertainty range for the analysed503

water level. The computational cost of the full chain is about 4 minutes on a mono processor504

work station. Both uncertainty ranges are represented in Figure 10 for the Decembre 2011505

event at Joinville. On December 18th at 1 p.m, the REF model (dashed line) overestimates506

the observed water level (black dots) reaching the orange threshold. ASSIM1+ASSIM2507

analysis (squared solid line) provides a water level that is below the threshold with an508

uncertainty range that remains below (or extremely close to) the orange threshold for both509

o�-line and on-line UQ methods (grey and hatched envelopes).510
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Figure 10: Observed water level (black dots) and forecasts for REF (dashed line),

background from ASSIM1 (thin solid line) and ASSIM1+ASSIM2 (squared solid line) at

Joinville for the December 2011 �ood event. Uncertainties computed with on-line and

o�-line methods are represented with grey-colored and hatched areas.
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5. Conclusion511

This paper addressed the errors in the water level-discharge relation of a 1D hydraulic512

model (MASCARET) in order to improve the forecasted water level state in the context of513

operational �ood forecasting; this water level is used to generate a colored �ood risk map514

at the French national level by SCHAPI. This improvement is obtained over the Marne515

catchment through the integration of additional bathymetry data and water level measure-516

ments. In this work, it was �rst exhibited that a local densi�cation of the description of the517

river bed geometry leads to an improved water level simulation compared to the reference518

model issued from a batch calibration process. The corrected bathymetry is used in the519

model to build a rating curve that is found to be in good agreement with recent high �ow520

gauging. In operational context, this new rating curve is used to provide discharge from521

hourly observed water level. At high �ow, both water level and discharge are slightly under-522

estimated. The model can thus be improved by sequentially correcting the upstream and523

lateral inputs to the models that are known to be imperfect approximation of hydrologic524

�ows for the hydraulic network. In an alternative strategy, it was assumed that no addi-525

tional bathymetry measurement could be made and that the water level-discharge relation526

was improved by sequentially correcting the river bed and �ood plain friction coe�cients.527

An extended Kalman �lter (EKF) algorithm assimilates �rst hourly discharge observations528

to correct in�ows, then water level observations are assimilated to locally correct the friction529

coe�cients. This sequential approach provides a time-dependent correction of the friction530

coe�cients that accounts for errors in the friction and bathymetry description that vary531

along with the �ow as water level reaches di�erent portions of the described geometry. A532

sensitivity study showed that the model response is weakly nonlinear with respect to the533

friction coe�cients when the perturbation in the friction coe�cient values remains bounded.534

Both methods were applied in operational context and the Nash-Sutcli�e coe�cient for both535

water level and discharge was computed over eight validation �ood events and greatly im-536

proved compared to the reference model.537

At SPC SAMA, both approaches are currently used for operational �ood forecasting. The538
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densi�ed bathymetry description is used in the neighboring of the Mussey observing station539

and water level data are assimilated to improve the water level-discharge relation in the540

model in the neighboring of the Joinville observing station. An estimation of the analyzed541

water level is also provided based on o�-line abacus computed from a set of comparisons542

between the model and the observations over past events. The two-step EKF-based data543

assimilation approach also provides an error analysis variance for the river bed and �ood544

plain friction coe�cients that are used to describe a con�dence interval for the forecasted545

water level.546

In further work, the control vector should be extended to bathymetry pro�les using547

parametric correction, in order to limit the equi�nality issue as well as the size of the control548

vector to remain compatible with operational framework. The friction coe�cients correction549

will be extended to long-distance reaches; it should allow for a temporal adjustment over a550

�ood event and thereby for a signi�cant improvement of the forecast lead time. A spatially551

and time varying correction of the hydraulic parameters is the next challenge in line. For552

that purpose, the use of spatially distributed data such as remote sensing data should be553

investigated. High-resolution data with global coverage such as those from the upcoming554

SWOT (Surface Water and Ocean Topography) mission will provide a new way to fully555

describe the river hydrodynamics. Operational �ood forecasting centers should thus be556

prepared to make the most of the combination of remote sensing and in-situ data to design557

future vigilance products.558
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This paper presents a data-driven hydrodynamic simulator based on the 1-D hydraulic

solver dedicated to �ood forecasting with lead time of an hour up to 24 hours. The goal of

the study is to reduce uncertainties in the hydraulic model and thus provide more reliable

simulation and forecast in real time for operational use by the national hydrometeorological

�ood forecasting center in France. Previous studies have shown that sequential assimilation

of water level or discharge data allows to adjust the in�ows to the hydraulic network resulting

in a signi�cant improvement of the discharge while leaving the water level state imperfect.

Two strategies are proposed here to improve the water level-discharge relation in the model.

At �rst, a modeling strategy consists in improving the description of the river bed geometry

using topographic and bathymetric measurements. Secondly, an inverse modeling strategy

proposes to locally correct friction coe�cients in the river bed and the �ood plain through

the assimilation of in-situ water level measurements. This approach is based on an Extended

Kalman �lter algorithm that sequentially assimilates data to infer the upstream and lateral

in�ows at �rst and then the friction coe�cients. It provides a time varying correction of the

hydrological boundary conditions and hydraulic parameters.

The merits of both strategies are demonstrated on the Marne catchment in France for

eight validation �ood events and the January 2004 �ood event is used as an illustrative

example throughout the paper. The Nash-Sutcli�e criterion for water level is improved from

0.135 to 0.832 for a 12-hour forecast lead time with the data assimilation strategy. These

developments have been implemented at the SAMA SPC (local �ood forecasting service in

the Haute-Marne French department) and used for operational forecast since 2013. They

were shown to provide an e�cient tool for evaluating �ood risk and to improve the �ood

early warning system. Complementary with the deterministic forecast of the hydraulic state,

an estimation of an uncertainty range is given relying on o�-line and on-line diagnosis. The

possibilities to further extend the control vector while limiting the computational cost and

equi�nality problem are �nally discussed.
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