
HAL Id: hal-01244237
https://hal.science/hal-01244237v1

Preprint submitted on 15 Dec 2015 (v1), last revised 28 Apr 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal convergence analysis of a locally implicit
discontinuous galerkin time domain method for

electromagnetic wave propagation in dispersive media
Stéphane Descombes, Stéphane Lanteri, Ludovic Moya

To cite this version:
Stéphane Descombes, Stéphane Lanteri, Ludovic Moya. Temporal convergence analysis of a locally
implicit discontinuous galerkin time domain method for electromagnetic wave propagation in dispersive
media. 2015. �hal-01244237v1�

https://hal.science/hal-01244237v1
https://hal.archives-ouvertes.fr


Temporal convergence analysis of a locally implicit

discontinuous galerkin time domain method for

electromagnetic wave propagation in dispersive media
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Abstract

This paper is concerned with the approximation of the time domain Maxwell’s
equations in a dispersive propagation media by a Discontinuous Galerkin
Time Domain (DGTD) method. The Debye model is used to describe the
dispersive behaviour of the media. We adapt the locally implicit time inte-
gration method from [1] and derive a convergence analysis to prove that the
locally implicit DGTD method for Maxwell’s equations in dispersive media
retains its second-order convergence.

Keywords: Maxwell’s equations, time domain, dispersive medium,
discontinuous Galerkin method, convergence analysis

1. Introduction

We consider the propagation of electromagnetic waves in dispersive media.
These are materials in which either or both of the electromagnetic material
parameters ε and µ are functions of frequency. We will focus on the much
more common case of frequency-dependent permittivity. A lot of practical
problems involve such propagation media, such as modeling the interaction
of an electromagnetic wave with biological tissues. The numerical modeling
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stephane.lanteri@inria.fr (Stéphane Lanteri), ludovic.moya@inria.fr (Ludovic
Moya)

Preprint submitted to Journal of Computational and Applied MathematicsDecember 15, 2015



of the propagation of electromagnetic waves through human tissues is at
the heart of many biomedical applications such as the microwave imaging
of cancer tumours and we need accurate and efficient numerical modeling
techniques, able to deal with the complex issues characterizing the associated
propagation problems.

Numerical simulation of wave propagation in dispersive media started in
early 1990’s in the framework of FDTD methods, for details and references
see e.g. [2] or [3]. FETD methods were not explored until 2001 [4] and DGTD
methods for solving Maxwell’s equations in dispersive media have been con-
sidered more recently. In [5, 6], a priori error estimates are proved for the
second-order formulation of Maxwell’s equations coupled to dispersive mod-
els discretized by an interior penalty DG formulation. Some two-dimensional
numerical tests are included for supporting their analysis. In [7], different dis-
persive media are treated, considering a locally divergence-free DG method.
The scheme is written and studied in its semi-discretized version, while the
fully discrete scheme is described but not analyzed. Finally, in [8], which
deals with the Debye model, a centered flux discontinuous Galerkin formu-
lation for the discretization in space is coupled with a second-order leap-frog
scheme for time integration. Stability estimates are derived through energy
conservation and convergence is proved for both the semi-discrete and the
fully discrete scheme. A two-dimensional artificial numerical problem is pre-
sented to validate the theoretical findings.

In this paper we still deal with the Debye model but in the presence of
a locally refined mesh. In Section 2 we present the formulation of Maxwell’s
equations for Debye dispersive media. The Debye model is most often used to
model electromagnetic wave interactions with water-based substances, such
as biological materials. In Section 3 Maxwell’s equations in dispersive media
are discretized according to a centered flux DG formulation and due to the
presence of a locally refined mesh we adapt the locally implicit time inte-
gration method from [1] and give a rigorous stability criterion. In Section
4 we derive a convergence analysis to prove that the locally implicit DGTD
method retains its second-order convergence. Finally, in Section 5, we present
some numerical results concerning three-dimensional microwave propagation
in biological tissues.
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2. The continous problem

Let Ω ⊂ R3 be a bounded, convex polyhedral domain, we denote by ~n
the normal outward to ∂Ω. We consider the time domain formulation of
Maxwell’s equations in Ω used to model the propagation of an electromag-
netic wave in a dispersive medium. In this dispersive medium, the effect
of the electric field ~E is described by the electric displacement ~D with the
formula

~D = ε0ε∞ ~E + ~P , (1)

ε0 and ε∞ being respectively the electric permittivity in vacuum and the
infinite frequency relative permittivity, ~P is the electric polarization. We
now assume that the medium is a single-pole Debye type dispersive medium
implying that ~P satisifes an ordinary differential equation of the form

~P + τ
∂ ~P

∂t
= ε0 (εs − ε∞) ~E, (2)

with εs, called the static relative permittivity, the permittivity at zero fre-
quency (εs > ε∞) and τ the Debye relaxation time constant, characteristic
of the material. We can now state Maxwell’s equations in a Debye dispersive
medium. Let T > 0, the magnetic field ~H, the electric field ~E and the electric
polarization ~P verify after normalization the following system of equations
in [0, T ] 

µ
∂ ~H

∂t
= −curl

(
~E
)
,

ε∞
∂ ~E

∂t
= curl

(
~H
)
− (εs − ε∞)

τ
~E − σ ~E +

1

τ
~P ,

∂ ~P

∂t
=

(εs − ε∞)

τ
~E − 1

τ
~P ,

(3)

µ and σ denoting respectively the relative magnetic permeability and the con-
ductivity. Concerning the boundary conditions we impose a metallic bound-
ary conditions i.e. ~n × ~E = 0 or a Silver-Müller condition, which is a first
order approximation of the exact absorbing boundary condition, given by

~n× ~E −
√
µ

ε
~n×

(
~H × ~n

)
= ~n× ~Einc −

√
µ

ε
~n×

(
~H inc × ~n

)
where

(
~Einc, ~H inc

)
is a given incident field.
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3. Locally implicit DGTD method

DG methods share almost all the advantages of FE methods (large spec-
trum of applications, complex geometries, etc.) and FV methods (ability to
capture discontinuous solutions). The DG method has other nice properties
which explain the renewed interest it gains in various domains in scientific
computing as witnessed by books or special issues of journals dedicated to
this method [9, 10, 11, 12]. Following the DG method discribed in [13], we
write the semi-discrete system as follow

µM
∂H

∂t
= −STE,

ε∞M
∂E

∂t
= SH − (εs − ε∞)

τ
ME − σME +

1

τ
MP,

M
∂P

∂t
=

(εs − ε∞)

τ
ME − 1

τ
MP,

(4)

H, E, P being column vectors and M and S two matrices. Using the
Cholesky factorization of the mass matrix M = LML

T
M , where LM is a tri-

angular matrix, introducing the new variables LT
ME, LT

MH and LT
MP still

denoted H, E, P and the new matrix L−1M S (L−1M )T still denoted S, we
rewrite (4) under the form

µ
∂H

∂t
= −STE,

ε∞
∂E

∂t
= SH − (εs − ε∞)

τ
E − σE +

1

τ
P,

∂P

∂t
=

(εs − ε∞)

τ
E − 1

τ
P.

(5)

The simplest time integration method that we can use to discretize the semi-
discrete system (5) is the explicit second order leap-frog scheme. Unfortu-
nately in the presence of a locally refined mesh this explicit time integra-
tion method can lead to a severe time step size restriction. An implicit
time integration scheme is a natural way to overcome this situation and we
can apply the second order Crank-Nicolson scheme to the semi-discrete sys-
tem (5). The inversion of a global linear system at each time step obliterates
one of the attractive features of discontinuous Galerkin formulations and an
implicit-explicit time integration scheme can be viewed as a better solution.
Extending the implicit-explicit method developped in [1] we blend the leap-
frog scheme and the Crank-Nicolson scheme written in a three-stage form
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to obtain the implicit-explicit time integration scheme for the semi-discrete
system (5)

µ
Hn+1/2 −Hn

∆t/2
= −STEn,

ε∞
En+1 − En

∆t
= S0H

n+1/2 +
1

2
S1 (Hn+1 +Hn)

−(εs − ε∞)

2τ
(En+1 + En)

−1

2
σ (En+1 + En) +

1

2τ
(P n+1 + P n) ,

P n+1 − P n

∆t
=

(εs − ε∞)

2τ
(En+1 + En)− 1

2τ
(P n+1 + P n) ,

µ
Hn+1 −Hn+1/2

∆t/2
= −STEn+1,

(6)

where S = S0+S1 is a matrix splitting. We adopt the splitting defined in [1],
i.e. S1 = SSH , where SH is the diagonal matrix of dimension the length of
H defined by

(SH)jj =

{
0, component Hj of H to be treated explicitly,

1, component Hj of H to be treated implicitly.

A first question concerns the stability of the fully discrete locally implicit
scheme (6). For this we define the discrete electromagnetic energy, denote
En, as

En =
1

2

(
µ‖Hn‖22 + ε∞‖En‖22 +

1

(εs − ε∞)
‖P n‖22 −

∆t2

4µ

〈
S0S

TEn, En
〉)

,

(7)
where 〈 · , · 〉 is the L2 inner product and ‖ · ‖2 the corresponding norm.
Following [14], defining by ρ(S0S

T
0 ) the spectral radius of S0S

T
0 , under the

assumption

∆t <
2
√
ε∞µ√

ρ (S0ST
0 )
,

the quadratic form En is a positive definite quadratic form of the numerical
unknowns Hn, En and P n. Moreover En is decreasing so that En ≤ E0 and
this clearly yields the stability of the fully discrete locally implicit scheme (6).
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4. Convergence analysis

In this section we are interested in the PDE convergence of the locally
implicit method (6). We will examine whether the method retains its second-
order ODE convergence under stable simultaneous space-time grid refinement
∆t v h, h → 0 towards the exact PDE solution. This is not a priori clear
due to the component splitting which can introduce order reduction through
error constants which grow with h−1, for h→ 0. An exemple of loss of order
can be found in [15].

The derivations in the remainder of this section follow a method of lines
analysis related to that of [1] for the locally implicit method which deals with
Maxwell’s equations but in non-dispersive media. The proof of second order
temporal convergence in the PDE sense presented here is organized in three
subsections. In Section 4.1 we will introduce the so-called perturbed scheme
obtained by substituting the true PDE solution restricted to the assumed
space grid into the locally implicit scheme (6). Herewith we introduce defects
(truncation errors) composed of a temporal and a spatial error part. Our
focus lies on temporal order, so for simplicity of derivation we will omit
the spatial error part after this subsection. Indeed for our purpose, the
spatial error part can be omitted without loss of generality. In Section 4.2
we derive the common temporal recurrence for the full global error which
is the difference of the PDE solution restricted to the space grid and the
numerical solution on this grid generated by scheme (6). Here we point
out that this global error scheme needs to be transformed to overcome a
spatial inconsistency in the local error emanating from component splitting.
The crucial observation hereby is that this spatial inconsistency enters the
temporal error by the negative power h−1 which kills one power of ∆t as we
assume ∆t v h, h→ 0 (order reduction). Fortunately, this order reduction is
present in the local error only and cancels in the transition from local to global
errors. The fact that this cancellation occurs can be proved by transforming
the global error scheme, which is shown in the third Section 4.3.

4.1. The perturbed scheme

Let Eh(t) denote at time t the exact solution of the PDE problem re-
stricted to the assumed space grid that we have approximated with the semi-
discrete system (5). Eh(tn) thus represents the vector that is approximated
by En. Assume the same notation for H and P . Substituting Eh(t), Hh(t)
and Ph(t) into (5) reveals the spatial truncation errors which we denote by
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ζEh , ζHh and ζPh
µ
d

dt
Hh (t) = −STEh (t) + ζHh (t) ,

ε∞
d

dt
Eh (t) = SHh (t)− (εs − ε∞)

τ
Eh (t)− σEh (t) +

1

τ
Ph (t) + ζEh (t) ,

d

dt
Ph (t) =

(εs − ε∞)

τ
Eh (t)− 1

τ
Ph (t) + ζPh (t) .

(8)
Next, substituting the exact solutions Eh (t), Hh (t) and Ph (t) into the locally
implicit scheme (6) gives the perturbed scheme containing defects (truncation
errors) composed of a temporal and a spatial error part. Let δk denote the
defects for the stages k = 1, 2, 3 and 4, we then have the following perturbed
scheme

µ
Hh

(
tn+1/2

)
−Hh (tn)

∆t
= −1

2
STEh (tn) + δ1,

ε∞
Eh (tn+1)− Eh (tn)

∆t
= S0Hh

(
tn+1/2

)
+

1

2
S1 (Hh (tn+1) +Hh (tn))

−(εs − ε∞)

2τ
(Eh (tn+1) + Eh (tn))

−1

2
σ (Eh (tn+1) + Eh (tn))

+
1

2τ
(Ph (tn+1) + Ph (tn)) + δ2,

Ph (tn+1)− Ph (tn)

∆t
=

(εs − ε∞)

2τ
(Eh (tn+1) + Eh (tn))

− 1

2τ
(Ph (tn+1) + Ph (tn)) + δ3,

µ
Hh (tn+1)−Hh

(
tn+1/2

)
∆t

= −1

2
STEh (tn+1) + δ4.

(9)

From the first equation of (8) we write

−1

2
STEh (tn) =

µ

2
H
′

h (tn)− 1

2
ζHh (tn) ,

and

−1

2
STEh (tn+1) =

µ

2
H
′

h (tn+1)−
1

2
ζHh (tn+1) .
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From the second equation of (8) we write

−(εs − ε∞)

2τ
(Eh (tn+1) + Eh (tn))− 1

2
σ (Eh (tn+1) + Eh (tn))

+
1

2τ
(Ph (tn+1) + Ph (tn))

=
1

2
ε∞
(
E
′

h (tn+1) + E
′

h (tn)
)
− 1

2
S (Hh (tn+1) +Hh (tn))

−1

2

(
ζEh (tn+1) + ζEh (tn)

)
and from the third equation of (8) we write

(εs − ε∞)

2τ
(Eh (tn+1) + Eh (tn))− 1

2τ
(Ph (tn+1) + Ph (tn))

=
1

2

(
P
′

h (tn+1) + P
′

h (tn)
) 1

2

(
ζPh (tn+1) + ζPh (tn)

)
.

Inserting the previous expressions into the perturbed scheme (9) yields the
defect expressions

δ1 = µ
Hh

(
tn+1/2

)
−Hh (tn)

∆t
− µ

2
H
′

h (tn) +
1

2
ζHh (tn) ,

δ2 = ε∞
Eh (tn+1)− Eh (tn)

∆t
− ε∞

2

(
E
′

h (tn+1) + E
′

h (tn)
)

−S0

[
Hh

(
tn+1/2

)
− 1

2
(Hh (tn+1) +Hh (tn))

]
+

1

2

(
ζEh (tn+1) + ζEh (tn)

)
,

δ3 =
Ph (tn+1)− Ph (tn)

∆t
− 1

2

(
P
′

h (tn+1) + P
′

h (tn)
)

+
1

2

(
ζPh (tn+1) + ζPh (tn)

)
,

δ4 = µ
Hh (tn+1)−Hh

(
tn+1/2

)
∆t

− µ

2
H
′

h (tn+1) +
1

2
ζHh (tn+1) .

(10)

Herein we can distinguish the temporal error parts and the spatial error parts
contained in the ζEh , ζHh and ζPh contributions. Our interest lies in the tem-
poral errors. We therefore simplify our derivations by omitting these spatial
contributions. Carrying the spatial contributions along in the derivations
just complicates the formulas and will not lead to different conclusions for
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the temporal errors. Finally, the formal Taylor expansion at tn+1/2 delivers
the temporal defect expressions

δ1 = µ
∑
k=2

(
1

(k − 1)!
− 1

k!

)
(−1)k

2k
(∆t)k−1H

(k)
h ,

δ2 = ε∞
∑
k=2′

−k
2k (k + 1)!

(∆t)k E
(k+1)
h + S0

∑
k=2′

1

2kk!
(∆t)kH

(k)
h

= δ5 + S0δ6,

δ3 =
∑
k=2′

−k
2k (k + 1)!

(∆t)k P
(k+1)
h ,

δ4 = µ
∑
k=2

(
1

k!
− 1

(k − 1)!

)
1

2k
(∆t)k−1H

(k)
h ,

(11)

where k = 2′ means even values for k only, and E
(k)
h , H

(k)
h and P

(k)
h the k-th

derivatives of Eh (t), Hh (t) and Ph (t) at t = tn+1/2. Note that δ1 and δ4 start
with ∆t and δ3, δ5 and δ6 with ∆t2.

4.2. The global error recursion

We introduce the global errors EEn = Eh (tn)−En, EHn = Hh (tn)−Hn and
EPn = Ph (tn)− P n and the intermediate global error EHn+1/2 = Hh

(
tn+1/2

)
−

Hn+1/2. Subtracting (9) from (6) gives the global errors

EHn+1/2 = EHn −
∆t

2µ
STEEn +

∆t

µ
δ1,

EEn+1 = EEn +
∆t

ε∞
S0EHn+1/2 +

∆t

2ε∞
S1

(
EHn+1 + EHn

)
−(εs − ε∞) ∆t

2ε∞τ

(
EEn+1 + EEn

)
− ∆t

2ε∞
σ
(
EEn+1 + EEn

)
+

∆t

2ε∞τ

(
EPn+1 + EPn

)
+

∆t

ε∞
δ2,

EPn+1 = EPn +
(εs − ε∞) ∆t

2τ

(
EEn+1 + EEn

)
− ∆t

2τ

(
EPn+1 + EPn

)
+∆tδ3,

EHn+1 = EHn+1/2 −
∆t

2µ
STEEn+1 +

∆t

µ
δ4.

(12)
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From the first and fourth equations of (12) we get

EHn+1/2 = EHn −
∆t

2µ
STEEn +

∆t

µ
δ1,

EHn+1/2 = EHn+1 +
∆t

2µ
STEEn+1 −

∆t

µ
δ4.

(13)

Eliminating the intermediate error in the second equation of the global error
scheme by inserting half of each expression of (13) yields

EEn+1 − EEn =
∆t

ε∞
S0

[
1

2

(
EHn+1 + EHn

)
+

∆t

2µ

(
ST
(
EEn+1 − EEn

)
+ (δ1 − δ4)

)]
+

∆t

2ε∞
S1

(
EHn+1 + EHn

)
− (εs − ε∞) ∆t

2ε∞τ

(
EEn+1 + EEn

)
− ∆t

2ε∞
σ
(
EEn+1 + EEn

)
+

∆t

2ε∞τ

(
EPn+1 + EPn

)
+

∆t

ε∞
δ2,

= −
(

(εs − ε∞) ∆t

2ε∞τ
+

∆t

2ε∞
σ

)(
EEn+1 + EEn

)
+

∆t2

4ε∞µ
S0S

T
(
EEn+1 − EEn

)
+

∆t

2ε∞
S
(
EHn+1 + EHn

)
+

∆t

2ε∞τ

(
EPn+1 + EPn

)
+

∆t

ε∞

(
δ2 +

∆t

2µ
S0 (δ1 − δ4)

)
.

We also eliminate the intermediate error in the fourth equation of (12) by
using the first expression of (13) to obtain the following global errors scheme

EEn+1 = EEn −
(

(εs − ε∞) ∆t

2ε∞τ
+

∆t

2ε∞
σ

)(
EEn+1 + EEn

)
+

∆t2

4ε∞µ
S0S

T
(
EEn+1 − EEn

)
+

∆t

2ε∞
S
(
EHn+1 + EHn

)
+

∆t

2ε∞τ

(
EPn+1 + EPn

)
+

∆t

ε∞
+ ∆tδEn ,

EPn+1 = EPn −
∆t

2τ

(
EPn+1 + EPn

)
+

(εs − ε∞) ∆t

2τ

(
EEn+1 + EEn

)
+ ∆tδPn ,

EHn+1 = EHn −
∆t

2µ
ST
(
EEn+1 + EEn

)
+ ∆tδHn ,

(14)
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where

δEn =
1

ε∞

(
δ2 +

∆t

2µ
S0 (δ1 − δ4)

)
=

1

ε∞

(
δ5 + S0

(
∆t

2µ
(δ1 − δ4) + δ6

))
,

δPn = δ3,

δHn =
1

µ
(δ1 + δ4) .

(15)

From the expressions of δk with k = 1, 2, 3, 4, 5 in (11) we observe that these
three new defects contain only even terms in ∆t and start with ∆t2. At this
stage we assume that Eh (t), Hh (t) and Ph (t) belong to C3 [0, T ]. It follows
from the remainder in Taylor’s theorem that for ∆t v h, h→ 0,

δ5 = O
(
∆t2
)
,

∆t

2µ
(δ1 − δ4) + δ6 = O

(
∆t2
)
, δPn = O

(
∆t2
)
, δHn = O

(
∆t2
)
.

(16)
Let

En =


EHn
EPn
EEn

 , δn =


δHn

δPn

δEn

 ,

and

ε1 = 1 +
(εs − ε∞) ∆t

2ε∞τ
+

∆t

2ε∞
σ, ε2 = 1− (εs − ε∞) ∆t

2ε∞τ
− ∆t

2ε∞
σ.

From (14) we can write the global error in a more compact form (one-step
recurrence relation)

En+1 = REn + ∆tρn, R = R−1L RR, ρn = R−1L δn, (17)

where

RL =


I 0

∆t

2µ
ST

0

(
1 +

∆t

2τ

)
I −(εs − ε∞) ∆t

2τ
I

− ∆t

2ε∞
S − ∆t

2ε∞τ
I ε1I −

∆t2

4ε∞µ
S0S

T

 ,
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RR =


I 0 −∆t

2µ
ST

0

(
1− ∆t

2τ

)
I

(εs − ε∞) ∆t

2τ
I

∆t

2ε∞
S

∆t

2ε∞τ
I ε2I −

∆t2

4ε∞µ
S0S

T

 ,

and En, ∆tρn and δn are respectively the (space-time) global, local and trun-
cation errors. The recursion (17) has the standard form featured in the
convergence analysis of one-step integration methods, see e.g. [16]. Assum-
ing Lax-Richtmyer stability, whereby we include RL inversely bounded for
∆t v h, h → 0, it transfers local errors to the global error by essentially
adding all local errors. It reveals second-order ODE convergence for a fixed
spatial dimension since then S0 within the defect δEn is bounded and hence
ρn = O (∆t2) for ∆t → 0, because (15) and (16) yield δEn , δPn and δHn are
O (∆t2). However, for a simultaneous space-time grid refinement, the local
error component δEn must have components which will grow with h−1. This
growth is unavoidable, since by definition of S1 = SSH we have

S0 = S − S1 = S (I − SH) , (18)

and S = O (h−1). Therefore we have δEn = O (∆t) for ∆t v h, h → 0.
The local errors δPn and δHn cause no problem as they contain only solution
derivatives, thus δPn and δHn are O (∆t2), for ∆t v h, h→ 0.

Fortunately, this order reduction by one unit of ∆t manifests itself only in
the local error and cancels in the transition from the local to the global error.
This cancellation can be proven by transforming the global error scheme (17)
into one where local errors remain second-order for ∆t v h, h→ 0.

4.3. A transformed global error recursion

The transformation emanates from [16], Lemma II.2.3. and reveals that
the second-order will be maintained for any stable space-time grid refinement
∆t v h, h→ 0. From this lemma we can assume that if the local error ∆tρn
allows a decomposition

∆tρn = (I −R) ξn + ηn, (19)

such that ξn = O (∆t2) and ηn = O (∆t3), for ∆t v h, h → 0, then we
have the desired second-order convergence for En. Therefore, there remains

12



to check (19), which amounts to examining ∆tρn = ∆tR−1L δn = (I −R) ξn +
ηn =

(
I −R−1L RR

)
ξn + ηn, or equivalently,

∆tR−1L


δHn

δPn

δEn

 = R−1L (RL −RR)


ξHn

ξPn

ξEn

+R−1L RL


ηHn

ηPn

ηEn

 ,

which yields
∆tδHn

∆tδPn

∆tδEn

 = (RL −RR)


ξHn

ξPn

ξEn

+RL


ηHn

ηPn

ηEn

 ,

or

∆tδHn =
∆t

µ
ST ξEn + ηHn +

∆t

2µ
STηEn ,

∆tδPn =
∆t

τ
ξPn −

(εs − ε∞) ∆t

τ
ξEn +

(
1 +

∆t

2τ

)
ηPn −

(εs − ε∞) ∆t

2τ
ηEn ,

∆tδEn = −∆t

ε∞
SξHn −

∆t

ε∞τ
ξPn +

(εs − ε∞) ∆t

ε∞τ
ξEn +

∆t

ε∞
σξEn

− ∆t

2ε∞
SηHn −

∆t

2ε∞τ
ηPn + ηEn +

(εs − ε∞) ∆t

2ε∞τ
ηEn

+
∆t

2ε∞
σηEn −

∆t2

4ε∞µ
S0S

TηEn .

(20)
Thus, our task is now to identify error vectors ξEn , ξHn , ξPn and ηEn , ηHn , ηPn in
accordance with (19) such that (20) are satisfied. Let us first define

ηHn =
∆t

µ
(δ1 + δ4) , η

P
n = ∆tδ3 and ηEn =

∆t

ε∞
δ5. (21)

From (16), we observe that ηHn , ηPn and ηEn behave like O (∆t3). Next
from (20) we identify error vectors ξEn , ξHn , ξPn . From the first equation
of (20) and the definition of δHn (see (15)) we write

∆t

µ
(δ1 + δ4) =

∆t

µ
ST ξEn + ηHn +

∆t

2µ
STηEn .
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Substituting (∆t/µ) (δ1 + δ4) = ηHn into (4.3) reveals the error vector ξEn

ξEn = −1

2
ηEn

(
= − ∆t

2ε∞
δ5

)
,

hence ξEn = O (∆t3). Now from the second equation of (20) and the definition
of δPn (see (15)) we write

∆tδ3 =
∆t

τ
ξPn −

(εs − ε∞) ∆t

τ
ξEn +

(
1 +

∆t

2τ

)
ηPn −

(εs − ε∞) ∆t

2τ
ηEn . (22)

Substituting ∆tδ3 = ηPn into (22) reveals the error vector ξPn

ξPn = −1

2
ηPn

(
= −∆t

2
δ3

)
,

hence ξPn = O (∆t3). Thus, it remains to identify ξHn and to check if ξHn =
O (∆t2). From the third equation of (20) and the definition of δEn (see (15))
we have

δ5 + S0

(
∆t

2µ
(δ1 − δ4) + δ6

)
= −SξHn −

ξPn
τ

+
(εs − ε∞)

τ
ξEn + σξEn

−Sη
H
n

2
− ηPn t

2τ
+
ε∞
∆t

ηEn +
(εs − ε∞)

2τ
ηEn

+
σηEn t

2
− ∆t

4µ
S0S

TηEn .

(23)

Substituting
∆t

ε∞
δ5 = ηEn and the expressions of ξEn and ξPn into (23) yields

ηEn +
∆t

ε∞
S0

(
∆t

2µ
(δ1 − δ4) + δ6

)
= −∆t

ε∞
SξHn +

∆t

2ε∞τ
ηPn

−(εs − ε∞) ∆t

2ε∞τ
ηEn −

∆t

2ε∞
σηEn

− ∆t

2ε∞
SηHn −

∆t

2ε∞τ
ηPn + ηEn

+
(εs − ε∞) ∆t

2ε∞τ
ηEn +

∆t

2ε∞
σηEn

− ∆t2

4ε∞µ
S0S

TηEn ,

(24)
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hence,

SξHn = −1

2
SηHn −

∆t

4µ
S0S

TηEn − S0

(
∆t

2µ
(δ1 − δ4) + δ6

)
. (25)

Then we are done if we can choose ξHn to satisfy (25) such that ξHn = O (∆t2).
Inserting S0 = S (I − SH) yields

ξHn = −1

2
ηHn −

∆t

4µ
(I − SH)STηEn − (I − SH)

(
∆t

2µ
(δ1 − δ4) + δ6

)
. (26)

The first term is O (∆t3), due to ∆tST = O (1) for ∆t v h, h→ 0, the sec-
ond term is also O (∆t3). Finally, from (16) the third term is O (∆t2), conse-
quently ξHn = O (∆t2), which completes the error analysis. Consequently, we
have proven that the subdivision into coarse and fine elements is not detri-
mental to the second-order ODE convergence of the method (6), under stable
simultaneous space-time grid refinement towards the exact underlying PDE
solution. We summarize this convergence result with the following theorem.

Theorem 1. Let Hh(t), Eh(t) and Ph(t) denote the exact solutions of the
Maxwell problem in dispersive media under consideration, restricted to the
space grid, i.e. the exact solutions of the system of ODEs

µ
d

dt
Hh (t) = −STEh (t) + ζHh (t) ,

ε∞
d

dt
Eh (t) = SHh (t)− (εs − ε∞)

τ
Eh (t)− σEh (t) +

1

τ
Ph (t) + ζEh (t) ,

d

dt
Ph (t) =

(εs − ε∞)

τ
Eh (t)− 1

τ
Ph (t) + ζPh (t) .

(27)
where ζHh , ζEh and ζPh denote the spatial truncation errors. Assume a Lax-
Richtmyer stable space-time grid refinement ∆t ∼ h, h→ 0. On the interval
[0, T ] the approximations Hn, En and P n of method (6) then converge with
order two to Hh(t), Eh(t) and Ph(t).

5. Numerical simulations : microwave propagation in head tissues

The method has been validated with artificial two and three-dimensional
problems in [17] and [14] and we only present here numerical results for
a realistic problem demonstrating the application of the proposed locally

15



implicit DGTD method (6) to microwave propagation in biological tissues.
For that purpose, we consider an heterogeneous geometrical model of the
head consisting of four tissues namely, the skin, the skull, the Cerebro Spinal
Fluid (CFS) and the brain. The surface meshes of the different tissues are
shown on Figure 5 and the Debye model parameters that we have used for
the tissues are given in the table 1.

Figure 1: Surface meshes of the skin, the skull and the CSF

Tissue Skin Skull CSF Brain

ε∞ 1.0 1.0 2.0 1.0

εs − ε∞ 38.0 10.5 66.0 43.0

τ (ps) 10.0 20.0 10.0 10.0

σ (S·m−1) 0.7 0.1 2.0 0.7

Table 1: Debye model parameters for the different tissues.
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The computational domain is artificially bounded by a sphere on which
a Silver-Müller condition is imposed

~n× ~E − ~n×
(
~H × ~n

)
= ~n× ~Einc − ~n×

(
~H inc × ~n

)
on ∂Ω,

where ∂Ω denotes the boundary of the sphere, ~n the unit outward normal

to ∂Ω and
(
~Einc, ~H inc

)
is a given incident field. Overall we use a rela-

tively coarse unstructured tetrahedral mesh consisting of 61, 358 vertices and
366, 208 tetrahedra.

The incident field is a plane wave propagating in the z direction, with a
temporal evolution given by a modulated gaussian pulse,

s (t) = e
−
(

t−4tp
tp

)2

sin (2πfc (t− tp)) , (28)

We perform a simulation with the locally implicit DGTD-P1 method (6) using
the above-mentioned incident field. The total simulation time is equal to 9 h
57 min. Time evolution of the electric component Ez is shown on Figure 2.
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Figure 2: Microwave propagation in head tissues: time evolution of the Ez component
of the electric field at selected spatial locations, ~P1 = (−0.1962, −0.0027, −0.0032), ~P2 =

(−0.1013, −0.0009, 0.0000) and ~P3 = (0.0985, −0.0019, −0.0004).

On Figures 3 we show the contour lines of the local SAR (Specific Ab-
sorption Rate) normalized by the maximal local SAR, in logarithmic scale,
for the calculations with the locally implicit DGTD-P1 method (6). We recall
that the SAR is a measure of the rate at which electric energy is absorbed
by the tissues when exposed to a radio-frequency electromagnetic field. It
represents the power absorbed per mass of tissue and has units of watts per
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kilogram (W·kg−1). The SAR is then defined as σ| ~Efour|2/ρ, where ~Efour de-
notes the electric field in the frequency-domain, resulting from the discrete
Fourier transform of the temporal field, and ρ is the density which depends
on the tissues.

Figure 3: Microwave propagation in head tissues: calculation using a pulse in time plane
wave as the incident field. Contour lines of the local SAR normalized by the maximal local
SAR (logarithmic scale).

6. Conclusion

In this work we have conducted a study of a locally implicit discontinu-
ous galerkin time domain method for electromagnetic wave propagation in
dispersive media. We have shown the stability of the method and derive a
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convergence analysis to prove that the method retains its second-order con-
vergence. Numerical simulations in 3D problems show the efficiency of this
method. Following the techniques developed in the recent prepint [18] we
think that it is also possible to give a bound of the error between the exact
solution and the DG discretization.
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