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Abstract

The present study describes the assimilation of river water level observations and the resulting
improvement in flood forecasting. The Kalman Filter algorithm was built on top of a one-
dimensional hydraulic model which describes the Saint-Venant equations. The assimilation
algorithm folds in two steps: the first one was based on the assumption that the upstream flow
can be adjusted using a three-parameter correction; the second one consisted of directly correct-
ing the hydraulic state. This procedure was applied using a four-day sliding window over the
flood event. The background error covariances for water level and discharge were represented
with anisotropic correlation functions where the correlation length upstream of the observation
points is larger than the correlation length downstream of the observation points. This ap-
proach was motivated by the implementation of a Kalman Filter algorithm on top of a diffusive
flood wave propagation model. The study was carried out on the Adour and the Marne Vallage
(France) catchments. The correction of the upstream flow as well as the control of the hydraulic
state during the flood event leads to a significant improvement in the water level and discharge
in both analysis and forecast modes.

1 Introduction

River stream flow forecasting is a critical issue for the security of people and infrastructures,
the function of power plants, and water resources management. Many efforts have contributed
to the development of open channel flow modeling, based on mass, momentum and energy
conservation equations (Chow, 1959; Hervouet, 2003). Still, uncertainties in these models are
such that river stream flow modeling remains strenuous work. Major uncertainties come from
the model itself as the physics of the system are simplified and discretized, as well as from
hydrological boundary conditions (upstream flow or lateral inflow), meteorological boundary
conditions (precipitation, pressure and wind) and from hydrological initial conditions. Hy-
draulic models also rely on various parameterizations expressed as numerical parameters (sta-
bility conditions for the numerical scheme), geometric parameters (cross sections, gates and
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weir dimensions) and hydraulic parameters (flood plain storage, friction, discharge). Calibrat-
ing a hydraulic model often means adjusting Strickler coefficients, discharge coefficients at
cross or lateral devices, seepage values or cross sectional geometry. The calibration of these
parameters has been widely investigated (Durand et al., 2008;Geese et al., 2011; Malaterre et
al., 2010) by focusing either on calibration algorithms, sensitivity indications, or optimization
of the observation network.

Both parameter calibration and physical field description can be formulated as inverse prob-
lems (Tarantola, 1987). The formulation of inverse problems in hydrology fits into a wider
mathematical framework presented by Maclaughlin and Townley (1996). Data assimilation
combines model simulation and observational information of the system in order to provide a
better estimate of it (Ide et al., 1997; Boutier and Courtier, 1999; Kalnay, 2003). The benefit
of data assimilation has already been greatly demonstrated in meteorology (Parrish and Derber,
1992; Rabier et al., 2000) and oceanography (GODAE, 2009) over the past decades, especially
for providing initial conditions for numerical forecast. Data assimilation is now being applied
with increasing frequency to hydrology (Thirel et al., 2010, Part I; Thirel et al., 2010, Part II, )
and hydraulic problems with two main objectives: optimizing model parameters and improving
stream flow simulation and forecasting. Existing literature proposes several methods based on a
minimization technique (Atanov et al., 1999; Das et al., 2004; Honnorat et al., 2007; Bessières
et al., 2007). The filtering approach, e.g. Kalman Filter or Monte Carlo algorithms, also enables
the estimation of roughness coefficients (Sau et al., 2010; Pappenberger et al., 2005) and the
correction of physical fields (Jean-Baptiste et al., 2010).

The present study describes the assimilation of river water level observations and the result-
ing improvement in flood forecasting. The data assimilation algorithm was built on top of a
one-dimensional hydraulic model describing the Saint-Venant1 equations. The assimilation al-
gorithm folds in two steps: the first one was based on the assumption that the upstream flow can
be adjusted using a three-parameter correction, the second one consisted of directly correcting
the hydraulic state. The variables to correct are gathered in the control vector; the control vector
is indeed different in the two previously described assimilation steps. For both steps, a Kalman

1Shallow water equations
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Filter algorithm was applied. In order to decrease the cost of the data assimilation algorithm,
the background error covariance matrix for the second step was not propagated by the dynamics
of the hydraulic model. The impact of the analysis and propagation steps in the Kalman Filter
in this matrix was emulated: anisotropic correlation functions were used to represent the spatial
error correlations for water level and discharge. This choice results from the implementation of
the Kalman Filter algorithm on a simplified hydraulic model (representing the diffusive flood
wave propagation equations). This demonstrates that the analysis and dynamics of the physics
turns a Gaussian correlation function into an anisotropic function at the observation point. The
data assimilation study with MASCARET was performed on the Adour (France) and the Marne
Vallage (France) catchments. The improvement in river water level predictions, using data as-
similation, in analysis and forecast modes are presented within this paper.

The outline of the paper is as follows: Section 2 describes the assimilation system, paying
particular attention to the choice of the control vector for the data assimilation algorithm. Two
approaches to data assimilation were implemented: the correction of the hydraulic state and
the control of the upstream flow. The modeling of the background covariances matrix and the
parameterization used to control the upstream flow are highlighted in this section. Section 3
provides the theoretical framework explaining the choice of anisotropic correlation functions
for the spatial error correlations in the background error covariance matrix B. In Section 4,
the improvements in the river flood simulations and forecasting are presented. The evaluation
of the statistics describing the difference between the simulation results and the observations
in re-analysis or forecast modes is used to illustrate the assimilation scheme performance. A
summary and a discussion are finally given in Section 5.
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2 Context and implementation of the data assimilation

2.1 Modeling of the physics

MASCARET is a one-dimensional free surface hydraulic model developed by EDF2 and
CETMEF3, based on the Saint-Venant equations (Goutal and Maurel, 2002). MASCARET is
widely used for modeling flood events, submersion waves resulting from the failure of hydraulic
infrastructures, regulation of river infrastructures, and canal waves propagation.

The conservative form of the one-dimensional Saint-Venant equations reads:

∂S

∂t
+
∂Q

∂x
= qa,

∂Q

∂t
+
∂

∂x
(Q2/S)+gS

∂Z

∂x
=− gQ2

SK2
sR

4/3
H

. (1)

In this formula the stream cross section S is expressed in m2 and is, at each location x, a
function of the water height h=Z(x,t)−Zbottom(x,t) where Z(x,t) is the free surface height
in m and Zbottom(x,t) is the bathymetry in m. The discharge in m3s−1 is denoted by Q(x,t),
qa(x,t) in m2s−1 is the lateral inflow per unit length, Ks is the Strickler coefficient, RH is the
hydraulic radius and g is the gravity.

The unsteady kernel of MASCARET was used in this study. Significant uncertainties in the
input parameters of MASCARET, such as the Strickler coefficient or the upstream flow and
lateral inflow, result in errors in the simulated water level and discharge. The aim of the data
assimilation approach is to reduce the uncertainties in either the inputs or the outputs of the
simulation.

2.2 The data assimilation method

The Kalman Filter (KF) approach (Gelb, 1974; Todling and Cohn, 1994; Talagrand, 1997) iden-
tifies the optimal estimate of the true value of an unknown variable x. This estimate is optimal
when its variance is at a minimum, meaning, for Gaussian cases, that its probability density

2Electricité de France
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function is dense around the mean. Suppose that x is the control vector which can include the
hydraulic variables (water level and discharge for MASCARET), the model parameters (Strick-
ler coefficients), the boundary conditions (upstream flows), or the initial condition (initial water
level and discharge), or a mix of these. The solution of the KF algorithm is the analysis vector
xa. The a priori knowledge of the system is the background vector xb and the observation vec-
tor is yo. The background, observation and analysis error covariances are respectively gathered
in the matrices B, R and A. Assuming that the background, the observation and the analysis
are unbiased, the analysis at time i can be formulated as a correction to the background state
defined as:

xa
i =xb

i +Ki

[
yo
i −Hi(xb

i )
]
, (2)

where Ki is the gain matrix, di is the innovation vector

di =yo
i −Hi(xb

i ), (3)

and yi =Hi(xi) is the model equivalent of the observations, generated by the observation op-
erator Hi.

The KF analysis is optimal when the variance of its error is at a minimum. Minimizing
the variance of the error analysis comes down to minimizing the trace of the analysis error
covariance matrix which leads to the formulation of the gain matrix (Boutier and Courtier,
1999):

Ki = BiHT
i (HiBiHT

i +Ri)−1. (4)

In this formulation, Hi is the Jacobian matrix of Hi in the vicinity of the background state xb
i

which can be written as:

Hi =
∂yi
∂xi

=
∂Hi(xi)
∂xi

. (5)

The analysis error covariance matrix reads

Ai = (I−KiHi)Bi. (6)
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The analysis at time i is propagated in time by a dynamic model which defines the background
at time i+1:

xb
i =Mi,i+1(xa

i−1), (7)

where Mi,i+1 represents the model propagation between i and i+1.
The analysis error covariance matrix at time i is propagated in time by the dynamic model in

order to define the background error covariance matrix at time i+1 (when the model is assumed
to be perfect):

Bi+1 = Mi,i+1 Ai MT
i,i+1, (8)

where Mi,i+1 is the tangent linear approximation of Mi,i+1 in the vicinity of xb
i .

2.3 Implementation of the assimilation scheme

The water levels simulated with MASCARET (or any hydraulic model), may be significantly
different from the observed water levels. A two step data assimilation algorithm was imple-
mented to account for some of the uncertainties in the hydraulic model (inputs and outputs).
The first step was based on the assumption that the error in the simulated water level was mainly
due to an imperfect description of the upstream flows. The second step consisted of dynami-
cally correcting the water level and the discharge states for the entire catchment (discretized in
m cells) when observations were available. The two-step data assimilation procedure over the
time window [0,Tr] is described in Fig. 1.

2.3.1 Correction of the upstream flow

The first data assimilation approach is based on the assumption that a considerable part of the
error in the simulated water level can be attributed to uncertainty in the upstream boundary con-
dition (usually deduced from water level observations through a calibration procedure). This
first step is described in the top part of Fig. 1. In order to control this uncertainty with a data
assimilation procedure, a large control vector which contains the discharge boundary conditions
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at each time step of the simulation period, should be introduced. This would result in a compu-
tationally expensive data assimilation procedure, especially for the computation of the Jacobian
of the observation operator since the relation between the control space and the observation
space is given by an integration of the numerical model. In order to compute the Jacobian of
the observation operator, the numerical model should be partially differentiated with respect to
each element of the control vector, hence the size of the control vector should be reduced.

For this reason, the upstream flow forcing f was corrected through a three-parameter linear
transformation over a time window (assimilation window [0,Tr]):

f̃(t) = af(t−c)+b. (9)

This parametric correction enables a simple and physical control of the time series: homothetic
vertical transformation (a), shift in amplitude (b) and shift in time (c). For instance, at the
upstream stations, water levels are usually observed and a rating curve (extrapolated for high
discharge values) is used to describe the discharge time series used by the hydraulic model. The
parameters a,b,c allow for a correction of the uncertainty related to the use of this rating curve.
Additionally, the parametric correction allows for the estimation of an unknown intermediate
input flow, accounting for influents that are not modeled in the hydraulic network.

For this approach, the control vector is composed of the coeficients a,b,c for each of the
S upstream stations xi = (a1,b1,c1,···,as,bs,cs,···,aS ,bS ,cS). The characteristics of this data
assimilation approach are:

– The control parameters are assumed to be constant over the time window over which
the data assimilation is performed. Since no models for the temporal evolution of the
parameters are described, Mi,i+1 = I in Eq. (7) and Eq. (8). For this reason, the indice i
is dropped in the following of the Section 2.3.1.

– The background values for the control parameters are xb =
(ab

1 ,b
b
1 ,c

b
1 ,···,ab

s ,b
b
s ,c

b
s ,···,ab

S ,b
b
S ,c

b
S) = (1,0,0,···,1,0,0,···,1,0,0).

– The size of the background error covariance matrix is (3×S)2. The errors in the back-
ground parameters (ab

1 ,b
b
1 ,c

b
1 ,···,ab

s ,b
b
s ,c

b
s ,···,ab

S ,b
b
S ,c

b
S) are assumed to be uncorrelated
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and the variances are estimated statistically to represent the variability of the upstream
flow.

– The observation vector represents the water level at observation times at selected locations
in the hydraulic network. It is a vector of size p where p is the number of observations
over the data assimilation time window.

– The observation covariance matrix R is a p×p matrix. Its diagonal terms are the ob-
servation error variances at the observation points, which are estimated from statistics
using several sets of measurements. The off-diagonal terms are covariances between the
observation errors at different observation points; these correlations are assumed to be
negligible since the observation points are far enough from each other.

– The relation between the control space and the observation space is non-linear as it im-
plies the integration of the numerical model. The observation operator Hup consists of
two operations, the more costly of which is the integration of the hydraulic model given
the upstream flow conditions over the assimilation window. The second operation is the
selection of the calculated water level at the observation points and at the observation
times.

– Hup(xb) represents the water level at the observation points and times computed by MAS-
CARET using the background parameters (ab

1 ,b
b
1 ,c

b
1 ,···,as,bs,cs,···,ab

S ,b
b
S ,c

b
S).

– The Jacobian Hup of Hup is the tangent linear of the hydraulic model computed in the
vicinity of xb.

The Jacobian matrix Hup can be approximated in the vicinity of the background xb as fol-
lows:

Hup(xb +∆x)≈Hup(xb)+Hup|b∆x, (10)

where Hup|b is discretized using an uncentered finite difference scheme:

Hup,jk|b =
∂yj
∂xk

=
∂Hup,j(xb)

∂xk
≈ Hup,j(xb +∆x)−Hup,j(xb)

∆xk
=

∆yj
∆xk

. (11)
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In this study, ∆yj is the change in water level at the observation station j resulting from a change
∆xk in the k-th control variable (as, bs or cs) with s∈{1,···,S}. The ability of the observation
operator to represent, in an approximate sense, the response of the water level to changes in the
control vector is a crucial tenet of this algorithm. The computation of Hup requires an additional
integration of the hydraulic model for each control parameter. An efficient computation of the
operator Hup in the case of a larger control space was implemented by Thirel et al. (2010).

The small size of the control vector, as well as of the observation vector, enables the use
of a KF algorithm involving matrix operations for the computation of the gain matrix. Still,
the algorithm relies on the hypothesis that the observation operator can be approximated by
a linear operator on the [xb, xa] interval. The linearity of the hydraulic model response to a
perturbation in the control parameters (ab

s ,b
b
s ,c

b
s ) (with s∈ {1,···,S}) was investigated. The

difference between the right hand side and the left hand side of Eq. 10 should be quantified, and
idealy should not exceed a couple of percents, in order to assess the integrity of the linearity
assumption. It was found that the relation between an upstream flow perturbation (of the form
Eq. 9) and the hydraulic state response is reasonably approximated by a linear function in the
vicinity of xb.

The implementation of this algorithm allows not only for an improvement in the simulated
water level within the assimilation window but also for an improvement in the forecast since, in
forecast mode, the upstream flow is set equal to the last analyzed value.

2.3.2 Correction of the hydraulic state

The second data assimilation approach consists of dynamically correcting the water level and
discharge states for the entire catchment (discretized inm cells) when observations are available
(time i in Eqs.(2) to (8)). This second step is described in the bottom part of Fig. 1. The
observation vector is kept the same as the one previously described but in this case evaluated at
a given time tobsi

instead of over a time window (in the following, the subscript tobsi
is replaced

by the subscript i).
Here, the control vector at time i, is composed of the discretized water level and discharge

states x= (Zx1 ,···,Zxm ,Qx1 ,···,Qxm) = (Z,Q).
10



The background state is given by a previous integration of the model M describing the Saint-
Venant equations; it is composed of the simulated water level and discharge vectors and is
denoted by

(
Zb,Qb

)
. The size of the control and the background vectors is n = 2m.

In Eq. (7), Mi,i+1 denotes the propagation of the hydraulic state by the non-linear equation
Eq. (1). In Eq. (8), Mi,i+1 denotes the tangent linear approximation of Mi,i+1. In the appli-
cation with MASCARET, as the computation of Mi,i+1 was too costly, the propagation of the
background error covariance matrix Bi was not explicitly implemented; it was assumed that
Mi,i+1 = I in Eq. (8) so that Bi = B. A parametrization for the B matrix was chosen to emu-
late the propagation of the covariance function by the hydraulic model. This parametrization,
presented in Section 3, results from the application of a full Kalman filter algorithm (where
Eq. (8) is solved) on a simplified propagation model with a steady observation network. The
propagated covariance matrix from this application was then used as the invariant B in the
Kalman Filter algorithm for MASCARET. This algorithm will be further referred to as IKF
(Invariant Kalman Filter). The background error matrix for this second step of assimilation is
denoted by Bstep2 in Fig. 1.

The background covariance matrix is a n×n symmetric positive-definite matrix that can be
represented by blocks:

B =
(

BZ,Z BT
Z,Q

BZ,Q BQ,Q

)
.

The n×n diagonal blocks BZ,Z and BQ,Q represent respectively the statistics of the errors εZ
in the water level and εQ in the discharge. Its diagonals represent respectively the variance
of the background error in the water level and discharge whereas the extra diagonal terms of
these blocks are the covariances between the error in the water level or discharge at different
locations on the grid. These covariances are commonly defined as univariate as opposed to
the multivariate covariances in the extra-diagonal blocks, BZ,Q and BT

Z,Q, which represent the
covariances between the errors in the water level and the errors in the discharge.

The innovation vector d (Eq. 3) expresses the difference between the observed water level
and the simulated water level at the nearest grid point. The observation operator is a selection
matrix with dimensions, p×n, denoted by Hsel. In this study, the observation network is
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stationary, thus the observation operator doesn’t vary over the assimilation cycles, the index i
is then dropped in the following. The water level correction vector at the observation points,
δ̃Z = (δ̃Z1,···,δ̃Z l,···,δ̃Zp) (with l∈{1,···,p}) is the product of the innovation vector and the
matrix product HT

sel(HselBHT
sel +R)−1 in Eq. (4):

δ̃Z = HT
sel(HselBHT

sel +R)−1d. (12)

Water level correction δZ over the entire domain results from the multiplication of δ̃Z by
BZ,Z. The water level variances translate as uncertainties in the simulated water level. An
anisotropic correlation function ρ was used to describe the spatial error correlations of δZ as
presented in Fig. (2).

In order to keep the anayzed control vector coherent with the Saint-Venant equations, the
discharge state should be corrected along with the water level state. This was done specifying
multivariate error covariances in BZ,Q. The discharge correction vector at the observation point
δ̃Q= (δ̃Q1,···,δ̃Ql,···) with l ∈ {1,···,p}, was deduced from δ̃Z at the observation points
using the local rating curve. Assuming the rating curve can be formulated as

Qrc(Z) =αZγ +β, (13)

the discharge correction at the observation point reads:

δ̃Ql =Qb
l

Qrc,l(Zb
l + δ̃Zl)−Qrc(Zb

l )
Qrc(Zb

l )
, for l∈ [1,p], (14)

whereQb
l and Zb

l are the background values for the water level and discharge at the observation
points.

A calibration procedure was used to evaluate the coefficients α,β,γ at each observation point.
However, because of the tidal influence at some observation points, the identification of a bijec-
tive function (valid for both high and low tides) was not always possible. In this case, the rating
curve was crudely approximated by the identity function, leading to

δ̃Ql =
Qb

l

Zb
l

δ̃Zl, for l∈ [1,p]. (15)
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As for the water level, the discharge correction δQ for the whole domain was determined from
the multiplication of δ̃Q by BQ,Q. The correlation function and length for δQ are the same as
those used for δZ.

2.3.3 Cycling of the analysis

The two previously described assimilation approaches are sequentially applied over the period
covering a flood event as described in Fig. 1. The assimilation is performed over a four-day
sliding window, also referred to as a cycle, with three days of re-analysis and one day of forecast.
The last observation time from which the forecast integration starts is the reference time Tr. The
sliding window is shifted every hour and a new assimilation performed. The forecasted state at
Tr is stored and used as the initial state for the following cycle. For the first three days of the
event, the simulation starts from a standard state for water level and discharge.

The implementation of the two-step assimilation and forecast procedure is schematically rep-
resented in Fig. 3. Over the four-day assimilation window, a free run integration of the model
is achieved (black curve). The upstream flow correction – correction of the parameters (a,b,c)
– is computed using observations from the second and the third days (blue dots). The observa-
tions from the first day are not used as the model is potentially not adjusted yet. The resulting
analyzed parameters are used to correct the upstream flows over the first, second and third
days.This is the first step of the analysis. The updated upstream flows are then used for a new
integration of the model (starting from the beginning of the four-day window), providing a new
integration. This integration (green curve) is intermediate as it describes the background state
for the hydraulic state correction procedure. During the third day of the integration, at each
observation time, the water level is adjusted; this correction is instantaneous and correspond to
the second step of the analysis. The model is then integrated starting from the corrected state at
the current observation time to the next observation time, leading to a discontinuous description
of the hydraulic state (discontinuous red curve). In this study, the observation time step is equal
to the model time step so that the resulting integration is no more discontinuous than any other
model integration.

For each cycle, beyond the reference time, the upstream flows are kept constant and the initial
13



condition for the forecast is given by the analysed water level and discharge states at Tr.
The data assimilation algorithm was implemented using the PALM (Parallel Assimilation

with a Lot of Modularity, Lagarde, 2000; Lagarde et al., 2001) dynamic coupler developed at
CERFACS. This software was originally developed for the implementation of data assimilation
in oceanography for use with the MERCATOR project. PALM allows for the coupling of inde-
pendent code components with a high level of modularity in the data exchanges and treatment
while providing a straightforward parallelization environment (Fouilloux and Piacentini, 1999;
Buis et al., 2006).

3 Modeling of B

As explained in Section 2.3.2, when the Kalman Filter algorithm is applied to correct the hy-
draulic state computed by MASCARET, the explicit propagation of the background error co-
variance matrix is not implemented because the computation of the tangent linear of the model
is too costly. The covariance functions initially described in B are kept constant instead of being
propagated by the dynamic model. For that reason, it is crucial to model covariance functions
that account for some of the physics of the dynamic model, rather than Gaussian functions.

The objective of the present Section is to provide a parametrization for the B matrix that em-
ulates the propagation of the covariance function by the hydraulic model. In order to find such a
parametrization, an initially Gaussian covariance function is used by a full Kalman Filter algo-
rithm applied to a simplified dynamic model. For the simplified model, which will be described
in Section 3.1 (diffusive flood wave approximation), the analysis and propagation steps of the
Kalman Filter are achieved since the computation of the tangent linear for a diffusive flood wave
propagation model on a restricted spatial domain is reasonable. With this experiment, it will be
demonstrated that the analysis and propagation steps of the Kalman Filter modify the covari-
ance function at the observation point. As will be shown in Section 3.2, the resulting covariance
function at the observation point is anisotropic, with a shorter correlation length downstream
of the observation point than upstream. A validation step for this parametrization will be per-
formed with the diffusive flood wave propagation model in Section 3.3. In this section, an
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anisotropic covariance function will be described for the IKF and the results of the assimilation
will be compared to those of the IKF with a Gaussian covariance function. It will be shown
that the emulation of the dynamics of the model with a parametrized covariance function for the
IKF is then equivalent to the full KF.

These parametrization and validation exercises seek to justify the choice of an anisotropic
covariance function at the observation points as opposed to Gaussian functions. This result
will later be used to model the background error covariance function for the hydraulic state
correction procedure performed on MASCARET with IKF as represented in Fig. 1.

3.1 The diffusive flood wave approximation

In this study, it is to assumed that the solution of the propagation of a given initial condition by
the MASCARET equations is close to the one propagated by the diffusive flood wave approx-
imation equations. More precisely, it is assumed in the following, that the covariance function
of a signal (and thus its correlation length l) propagated by MASCARET is similar to the co-
variance function of the same signal propagated by the diffusive flood wave approximation
equations.

In the framework of the diffusive flood wave approximation (S(x,t) =Lh(x,t), where L is
a constant river width), the diffusive Saint Venant equations (Eq. 1) of MASCARET can be
crudely approximated as

∂h̃

∂t
+

5Un
3

∂h̃

∂x
=κ

∂2h̃

∂x2
, (16)

where Q= hU , h= hn+ h̃ and U =Un+ Ũ , with (h̃,Ũ) representing small perturbations to
the equilibrium (hn,Un) and κ= Unhn

2tanγ for a constant slope γ. The state (hn,Un) is such that

Un =KsI
1/2h

2/3
n is a solution of the flood wave approximation equations, where I = sin γ.

The equilibrium state (hn,Un) for the diffusive flood wave propagation model is chosen as a
representative mean state for the following simulations with MASCARET over each catchment.
Eq. (16) is a classical advection-diffusion equation where κ is the diffusion coefficient and
c= 5Un

3 is the advection speed. In order to use this model as a support for data assimilation,
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an open boundary condition for Eq. (16) is imposed downstream with ∂eh
∂t (L,t)+c∂

eh
∂x(L,t) = 0.

The upstream boundary condition is imposed by h̃(0,t) = q̃(t), where q̃ is a random Gaussian
function of zero mean < q̃ >= 0. The auto-correlation function of q̃(t)

R(τ) =< q̃(t)q̃(t+τ)>= δq2mexp
(
− τ

2

2l2q

)
(17)

is assumed to have the shape of a Gaussian function. Using the theory of random function
diffusion, the spatial covariance function of h̃(x,t) can be approximated by a Gaussian function.

3.2 Kalman Filter algorithm applied to the diffusive flood wave propagation model

The Kalman Filter algorithm was implemented on the 1-D diffusive flood wave propagation
model described by Eq. (16), using the identical-twin experiment framework (also known as
OSE4). The identical-twin experiment was set up with t∈ [0,T ] and x∈ [0,L]. The 1-D do-
main was discretized in m cells and Eq. (16) was integrated using an explicit Euler scheme
in time and a first order centered finite difference scheme in space. A reference run was inte-
grated using a set of parameters and forcing (ctrue,κtrue,q̃true(t)), to simulate the true water
level h̃true. The observation h̃obs(t) = h̃true(t)+ εo(t) was calculated in the middle of the 1-D
domain (xobs = L

2 ) where εo(t) is a Gaussian noise defined by its standard deviation σo. The
background trajectory hb(x,t) was integrated using a perturbed set of parameters and forcing
(cper,κper,q̃per(t)) where < q̃per(t)q̃per(t+τ)>= δq2m,perexp(− τ2

2l2q
).

In this context, the background error covariance matrix was updated by the analysis and
propagated in time, to the next observation time, by the tangent linear of the diffusive flood wave
propagation model (Eqs. 7–8). As a consequence, the gain matrix evolves over the assimilation
cycles.

As described in Section 3.1, the initial covariance function at the observation point, for the
signal h̃(x,t), is close to a Gaussian as represented in black in Fig. 4. Appendix A describes how
this isotropic covariance function is modified along the assimilation cycles by the analysis and

4Observing System Experiment
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propagation steps of the Kalman Filter algorithm. Considering a steady observation network,
the shape of the covariance function converges to an anisotropic function as represented in red
in Fig. 4. The covariance between the observation point and its neighbours is reduced since
information at the observation point was introduced at this location by the analysis procedure
through the innovation vector. The background error covariance matrix for the next assimilation
cycle results from the propagation of the previous cycle analysis error covariance matrix by the
tangent linear of the model M and its adjoint MT as formulated in Eq. (8). After several KF
cycles, the covariance function at the observation point is characterized by a shorter correlation
length scale downstream of the observation point than upstream (see Appendix A for further
details).

3.3 Invariant Kalman Filter algorithm applied to the diffusive flood wave propagation
model

The covariance function computed with the Kalman Filter algorithm in Section 3.2 was used
to parameterize the invariant covariance function of the IKF; here applied to the diffusive flood
wave propagation model, for validation. The results of the IKF using this parametrisation of B
will be compared to those of a IKF using an isotropic Gaussian function.

By default, the spatial correlations in B are represented by the Gaussian function

ρ(x,x′) = exp
[
− (x−x′)2

2lB(x,x′)

]
(18)

meaning that B(x,x′) = σ2
bρ(x,x′). The length lB(x,x′), is an isotropic function of x and

x′ which represents the local correlation length for the pair (x,x′). For this study, only the
correlations ρ(x,xobs) between the errors at xobs and the rest of the domain are relevant. The
length lB(x,xobs) is assumed to depend only on the observation location and is denoted by
l(xobs).

Fig. 5(a,b,c) shows the true h̃t, the non-assimilated h̃s, background h̃b and analysed h̃a wa-
ter level state over the 1-D domain at t= T = 500× 103 s where the analysis is performed
every ∆t= 10×103 s, for different functions lB(x,xobs). When lB(x,xobs) = l(xobs) for all x
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(Fig. 5a), the data assimilation corrects the water level over the interval [xobs−l(xobs)/2,xobs+
l(xobs)/2]. Still, the analysis (red curve) is closer to the true state (blue dotted curve) than
the background (green curve) only upstream of the observation point. To the contrary, when
lB(x,xobs) = l(xobs)/10 for all x, in Fig. 5b, the analysis is closer to the true state only down-
stream of the observation point. Finally, as it appears in Fig. 5c, a better fit to the true state
is obtained with an anisotropic function ρ(x,xobs) as predicted by the full Kalman Filter algo-
rithm. An optimal value for the reduction factor of the length scale was identified by trial and
error; the best results were obtained with

l−= lB(x,xobs) = l(xobs) when x<xobs,
l+ = lB(x,xobs) = l(xobs)/10 when x>xobs.

(19)

3.4 Parameterization of the covariance function for the MASCARET application.

The application of a full Kalman Filter on a diffusive flood wave propagation model enabled
the understanding of the impact of the analysis and the physics on an initial Gaussian corre-
lation function. It was shown that the correlation length scale is reduced downstream of the
observation point and that the initial Gaussian correlation function evolves into an anisotropic
correlation function. These results were used to model the correlation function for the water
level and discharge computed in the MASCARET data assimilation procedure. An approximate
reduction factor of ten was applied between the correlation lengths upstream and downstream
of the observation points.

In order to complete the modeling of the background error covariance function, the value of
the correlation length l(xobs) was then estimated. The estimation of the correlation length of
the spatial correlation function for the errors in the water level and the discharge simulated with
MASCARET occured in two steps. First a diffusion coefficient κ based on the dynamics of
the diffusive flood wave approximation model (Eq. 16) was graphically estimated by studying
the propagation of a perturbation of the hydraulic state. Then, this diffusion coefficient was
used to formulate the spatial correlation length of the state perturbation covariance function.
This procedure was used to predict the correlation length at each observation point for the data
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assimilation in MASCARET. The details for the estimation of the correlation length l(xobs) are
given in Appendix B.

4 Results of the IKF analysis

4.1 Experimental procedure

4.1.1 Description of the catchments

The Adour maritime catchment area is located in Southwestern France, from the Pyrenean
Piedmont to the Aquitain coast. The drainage area (16 890 km2) covers the departements of
Atlantic Pyrenees and Landes. The Adour river rises in the Pyrenees at an altitude of 2600 m
and reaches the Atlantic ocean at Bayonne 312 km further. The Adour catchment is one of
the wettest in France due to heavy precipitations in the upper part of the basin. The Adour
catchment is divided in two regions: the mouth of the river which is mostly influenced by the
tide and the upstream region which is mostly influenced by influents. A schematic description of
the Adour catchment is shown in Fig. 6. The Adour river has three main influents (responsible
for 65% of the total discharge at Bayonne during flood conditions). The Gaves de Pau and
d’Oloron, respectively draining 5226 km2 and 608 km2, are often affected by flash floods and
join with the main influent of the catchment Gave Réunis. The Nive drains 980 km2 and joins
up with the Adour close to Bayonne. The hydrological data at the upstream stations (Dax,
Escos, Orthez and Cambo-les-bains) are provided in real time by the SPC5. The discharge
time series are used as boundary conditions for the hydraulic model. The maritime boundary
conditions are given by the SPC tide gauge located in the estuary. Tide forecasts are given
by the SHOM6. The uncertainty in the maritime boundary condition is smaller than that in the
hydrological upstream station, as a consequence, only upstream stations were controled by the
data assimilation algorithm. Sensitivity tests revealed that the tangent linear model (Eq. 11)

5Service de Prévision des Crues
6Service Hydrographique et Océanographique de la Marine
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is valid for a pertubation up to 20% in a, 6 m3s−1 in b and 6 h in c. Additionally, tide gauge
observations located at Lesseps, Urt and Peyrehorade stations display the water level every
five minutes or hourly. These observations were used for the data assimilation process. The
correlation lengths were set, using the procedure described in Section 3, to 20 km, 6 km and
34 km at Peyrehorade, Urt and Lesseps, respectively.

The Marne Vallage catchment is located East of the Paris basin. The Marne river is the main
influent of the Seine river and is 525 km long. This study focuses on the Marne Vallage drainage
area that lies between Condes and Chamouilley. This karstic basin is characterized by slow flood
rises, long flooding periods and a strong sensibility to local precipitations. The Marne river has
two main influents, of which the Rognon is responsible for 50% of the Marne discharge. A
schematic description of the Marne Vallage catchment is shown in Fig. 7. The hydrological data
at the upstream stations (Condes and Saucourt) are provided in real time by the Champagne-
Ardenne DIREN. The downstream boundary condition in Chamouilley is described by a rating
curve. Only the upstream stations were controled by the data assimilation algorithm. Sensitivity
tests revealed that the tangent linear model (Eq. 11) is valid for a pertubation up to 20% in a,
6 m3s−1 in b and 6 h in c. The hourly tide gauge observations at Joinville and Chamouilley were
used for the data assimilation procedure. The correlation lengths were set, using the procedure
described in Section 3, to 51 km and 55 km at Joinville and Chamouilley, respectively.

In this study, the observed water level reached a maximum of several meters and the ob-
servation error standard deviations were set to 0.1 m. The observation error covariances were
neglected, assuming that the observation stations are far enough apart for the spatial errors to be
weakly correlated. The background error variances were chosen to be two to three times larger
than the observation error variances. At each observation point, only the observations above a
minimum value were taken into account for the assimilation process in order to avoid represen-
tativeness errors. The observed values that were found to be too far from the simulated values
were not assimilated; thus was accomplished by applying a threshold to the misfit between the
observed and the simulated water levels.

The MASCARET model was chosen by the SCHAPI7 to simulate the physical processes of
7Service Central d’Hydrométéorologie et d’Appui à la Prévision des Inondations
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the study catchments. A preliminary calibration procedure of several model parameters was
performed by the SCHAPI and the SPC using data from twelve flood events of varying in-
tensity. The geometry of the hydraulic network, the computation time step and the Strickler
coefficient were adjusted so that the flood events were, on average, well represented at the ob-
servation stations. Globally, at Peyrehorade (Adour), the simulation tends to overestimate the
flood peak for extreme flood events and underestimate the flood peak for moderate events. In the
Marne catchment, a constant lateral inflow was ajusted so that the flood events were, on aver-
age, well represented at Joinville and Chamouilley. The simulated water levels at Joinville were
globally correct, though often overestimated while the flood peak was often underestimated at
Chamouilley.

4.1.2 Criteria for the interpretation

The baseline scenario was chosen as the simulation without assimilation (Free run). A post-
treatment scenario for the Free run forecast was also explored: at the reference time Tr, the
increment between the observation and the Free run is computed and added to the Free run
water level. A correction that linearly decreases to zero over a 6-hour forecast period is then
applied. This post-treatment correction scenario (Interp run) allows for a perfect fit with the
observation at Tr, for the water level at the observation locations. By construction, the Interp
run merges with the Free run after 6 hours of forecast.

The comparison of the Free run, Interp run and assimilation run (Assim run) with the obser-
vation was performed at the observation locations and times for the water level. The difference
between the simulation and the observations is denoted by MmO (Model minus Observation)
where the model run is either the Free run, the Interp run or the Assim run. MmO is computed
at a given lead time in re-anaysis and forecast: 24 hours before the reference time, and hourly,
up to 12 hours, after the reference time. The mean and standard deviation of MmO, respectively
denoted by C1 and C2, are computed over the analysis cycles, at each observation station and
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for each flood event. The criteria C3 (in %) is defined as

C3 =
100
Nobs

Nobs∑
1

|h
M−hobs

hobs
|, (20)

where Nobs is the number of observations over a period of time and hM is the simulated water
level for either the Free run, the Interp run or the Assim run. C3 is a cumulative criteria as
opposed to C1 and C2.

In practical terms, when the simulation is close to the observations, the criteria C1, C2 and
C3 are small. C1, C2 and C3 were computed for the Free run, the Interp run and the Assim run.
The percentage of reduction for each criteria was computed twice : 1) comparing the Free run
and the Interp run and 2) comparing the Free run and the Assim run.

4.2 Flood events simulation with data assimilation

4.2.1 Interpretation of the November 2002 event in the Adour catchment

Fig. 8 shows the water level over a four-day period (Day 19 to Day 22 of a flood event starting
11/02/2002) at the observation station at Peyrehorade in the Adour catchment. The reference
time for this cycle is Tr = Day 22. The Free run integration of MASCARET starting from a
previously calculated state is plotted in black and the hourly observations are plotted in blue.
The difference between these two curves reaches 15% of the observation at the beginning of
Day 22. The assimilation procedure was applied to improve the water level over the first three
days (re-analysis period) as well as over the forecast period (Day 22). The analysis with the
instantaneous correction of the water level (green dashed curve) shows an excellent fit with
the observations over the re-analysis period but leads only to a minor improvement over the
forecast period. The model is constrained to the observed state by the hydraulic state correction
procedure from Day 19 to Day 22. Though the analyzed state is almost equal to the observed
state at the beginning of Day 22, over the forecast period, the analysis remains far from the
observation. This shows that the improvement of the initial condition at the reference time Tr =
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Day 22 is not enough to improve the simulation during the following day. The improvement is
only significant over a couple of hours as the simulation is also degraded by other uncertainties.
The analysis after the correction of the upstream flow (green curve) shows a good fit with
the observation over the re-analysis period as well as over the forecast period. The difference
with the observation only reaches 9% of the observed value at Day 22.5. The upstream flow
was corrected over the two-day period (Day 20 to Day 22) allowing for a better simulation
of the water level over this period. Additionally, over the forecast period, the upstream flow
is held equal to the last analysed value (which is better than the non-analysed one) allowing
for an improvement in the water level simulation during Day 22. In summary, the water level
hydraulic state correction procedure plays a major role in the re-analysis mode and the upstream
flow correction plays a major role in forecast mode. The analysis after the two-step assimilation
procedure is plotted in red and shows an improvement over the re-analysis period as well as
during the forecast period. It should be noted that after a couple of hours of forecast, only the
upstream flow correction is still effective as the green curve merges with the red curve.

For this event, the two-step analysis was cycled every hour (Tr varies from Day 18 to Day 26)
so that, at an observation point, the water level is forecasted over the whole flood event. Fig. 9
shows the six-hour forecast for the Free run (black curve) and the Assim run (red curve) as well
as the non assimilated observations (blue curve). For this lead time, the average C3 criteria
for the flood event is 4.98% for the Free run and 2.21% for the Assim run, meaning that this
criteria is improved by 55% with the two-step data assimilation algorithm. For the Interp run,
the average C3 criteria is equal to 3.5% and is only improved by 29 % when compared to
the Free run. At a six-hour forecast range, on average over the flood event, the assimilation
procedure brings the simulation significantly closer to the observation. The accuracy of the
assimilation procedure was therefore found to be better than the accuracy of the post-treatment
procedure (Interp run).

Fig. 10 displays the criteria C3 for the flood event at Peyrehorade, computed 24 hours before
the reference time (dashed curves) and 6 hours after the reference time (solid curves), for the
Free run (black curves) and the Assim run (red curves). It appears that during the re-analysis
and the forecast period, the assimilation procedure brings the analysis closer to the observations
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than the Free run. As expected, C3 remains larger in forecast mode than in re-analysis mode
because of the uncertainties in the boundary conditions at the controlled upstream stations (as
well as other boundary conditions such as the maritime water level forcing as forecasted by tide
models at SHOM).

4.2.2 Interpretation of the April 2006 event in the Marne catchment

The two-hour and the six-hour forecasted water levels in the Marne Vallage catchment, at
Joinville, for the April 2006 event are presented in Figs. 11 and 12, respectively. The Free
run significantly overestimates the flood peak at Joinville and Chamouilley (not shown) how-
ever the two-step data assimilation procedure allows for a good simulation of the peak at the
two-hour forecast. The simulated peak at the six-hour forecast is also in better agreement with
the observations than the Free run, though an overestimation of the peak remains. For the 2-
hour forecast, the average C3 (for the whole flood event) was improved by 35% at Joinville and
32% at Chamouilley. For the 6-hour forecast, the average C3 was improved by 33 % at Joinville
and 26% at Chamouilley. During this flood event in forecast mode, the assimilation procedure
brings the simulation significantly closer to the observation. It should be noted that in Figs. 11
and 12, the Assim run merges with the Free run when all the observations are under a minimim
value as explained in Section 4.1.1.

Further analyses were carried out for flood events in the Marne Vallage catchment. Glob-
ally, the results were not as satisfying as in the Adour catchment. The main reason for this
dampened performance is an incomplete calibration of the numerical model (namely for the
Strickler coefficient and lateral input flow) in the Marne Vallage catchment before the assimi-
lation procedure. It was shown during some events, that in order to improve the simulation at
one observation station, the data assimilation algorithm must degrade the simulation at the other
observation location. The application of the two-step data assimilation procedure enabled the
detection of a model incoherence in the Marne Vallage that could not be satisfactorily accounted
for with the present control vector. Further work towards the improvement of the calibration of
the model for the Marne Vallage catchment is ongoing at the SPC Seine-aval Marne-amont and
will be used with the data assimilation procedure when available.
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4.2.3 Statistical interpretation

Fig. 13 shows that the forecasting ability of the model with data assimilation decreases with
lead time. The mean reductions in criteria C1, C2 and C3 between the Free run and the As-
sim run (red curves) as well as between the Free run and the Interp run (black curves) were
computed over seven flood events in the Adour catchment, at Peyrehorade. The dashed-dotted,
dashed and solid curves represent the improvement in C1, C2 and C3 respectively. The two-
step assimilation algorithm improves C1 by 72% and C2 by 67% at the reference time where
as the Interp scenario improves C1 and C2 by 100% as the simulated water level is literally
corrected to the observed values at Tr. The improvement of C3 over the first hour of forecast
with the two-step assimilation algorithm is 60 % and 70% for the Interp scenario. Even though
the Interp scenario gives the best results at short forecast range (up to 3-hour forecast), it should
be kept in mind that this scenario only corrects the water level at observation locations and thus
describes a hydraulic state that is not coherent with the physical equations. In this case, water
level state is discontinuous in space and discharge values are not corrected according to water
level values. Therefore, the resulting hydraulic state from the Interp run can not be used as
an initial condition for a forecast integration of the MASCARET model. Additionally, the im-
provement of C1 and C2 for the Interp run is negligible for a lead time equal 6 hours and above
(by construction) whereas the improvement with the assimilation approach remains between
13% (at +6h) and 4% (at +12h). For a lead time equal to 3 hours and above, the improvement in
C3 is significantly larger with the two-step assimilation approach than with the post-treatment
approach.

The average improvement of C1, C2 and C3 was computed for each observation station
in the Adour catchment (over seven events) and in the Marne catchment (over four events)
showing that the overall effect of the assimilation improves the description of the water level
and discharge for all the observation stations.

The improvement in C1, C2 and C3 is displayed in Table 1 for the three Adour stations
(Peyrehorade, Urt and Lesseps) for the 24 hours before the reference time and, in Table 2, for
the 6 hours after the reference time. For the three stations, the criteria were improved, with
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the improvement being larger in re-analysis mode than in forecast mode. The evaluation of the
criteria at Urt and Peyrehorade are similar as both stations are influenced by hydrological condi-
tions. The Lesseps station which is closer to the maritime boundary, is significantly influenced
by the tides that are not controled; as a consequence, the results of the assimilation are not as
good at Lesseps as at Peyrehorade and Urt.

The improvement in C1 is shown in Table 3 for the two Marne stations (Joinville and
Chamouilley) for the 24 hours before the reference time and for the 6 hours after the refer-
ence time. Again, for both stations, the criteria are improved and the improvement is larger in
re-analysis mode than in forecast mode. Still, the improvement at the Marne stations is smaller
than that described at the Adour stations, especially at Joinville. As previously stated, the cal-
ibration of the model parameters for the Marne catchment should be revised. For example, a
lateral inflow could be added to represent additional inputs from the karstic drainage area. With
a more physical model for the Marne catchment, the two-step data assimilation algorithm would
then lead to better results.

5 Summary and conclusions

This paper presented the improvement in river flood forecasting when assimilating water level
observations. The study was carried out with the one-dimensional hydraulic model MAS-
CARET, on the Adour and Marne Vallage catchments. Representative events were presented
for both catchments and statistics of the results were computed. The water level data were as-
similated using a Kalman Filter algorithm to control the upstream flow and dynamically correct
the hydraulic state. The first step of the analysis was based on the assumption that the upstream
flow can be adjusted using a simple three-parameter correction. These three control parameters
were adjusted over a two-day time window after one day of free run. The second step of the
assimilation consisted of correcting the hydraulic state every hour (the observation frequency)
during one day. The simulation was then integrated in forecast mode for an additional day.
With this algorithm, the background error covariance matrix is not explicitly propagated by the
dynamics of the system. Still, a particular effort was made to model background error covari-
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ance functions which were coherent with the dynamics of the hydraulic model. Anisotropic
functions were used to represent the background error spatial correlations for the water level
and the discharge, respectively. The justification for this choice was made by applying a full
Kalman Filter algorithm on a diffusive flood wave propagation model. It was shown that the
analysis turns a Gaussian correlation function into an anisotropic correlation function where the
correlation length scale is shorter downstream of the observation point. This approach enabled
a realistic modeling of the spatial error correlations for the data assimilation algorithm with
MASCARET.

This procedure was applied on a four-day sliding window over the entire period of each
flood event. It was shown that the simulation with data assimilation is significantly closer to the
observation than the free run over the re-analysis period as well as over the forecast period. This
conclusion is evidenced by the fact that the mean and standard deviation of the distance between
the simulation and the observation at a given time (as well as the sum of this difference over a
time period) are reduced by the data assimilation procedure. It was shown that the instantaneous
correction of the hydraulic state leads to a significant improvement in re-analysis mode and for
short forecast range. It was also shown that the sensitivity to an initial condition for the forecast
mode is negligible compared to the sensitivity to the upstream flow, except at very short forecast
range. For this reason, the upstream flow correction leads to a larger correction in forecast
mode. On average, the correction of the hydraulic state is not as predictive as the upstream flow
correction and is not sufficient to constrain the simulation over an interesting forecast period.
This justifies the need for the two-step data assimilation approach. This two-step procedure was
applied to the Adour and Marne catchments (France) and the results were interpreted for several
events in each catchment.

The assimilation procedure presented in this paper could potentially be applied to other catch-
ment areas. Yet, a careful estimation of the data assimilation statistics must be carried out as they
are representative of the local physics. The relation between the water level and discharge errors
should also be further investigated. This aspect would be enriched by the use of local (Z,Q)
calibration functions. Additionally, the approximation of a state independent background error
covariance matrix, was validated with the flood wave propagation model. Further work could be
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done to assess the integrity of this assumption using the Saint-venant equations model. Also, the
impact of the observation frequency and the observation error statistics could be investigated:
on going work suggests that when the observation frequency is low, the propagation of the co-
variance function is negligible and the covariance matrix remains state independent. Beyond
this study, the extension of the control space could be useful as other sources of uncertainties
or model errors (for example the simplification of the flood plain representation) result in errors
in the hydraulic state. For example, the correction of the Strickler coefficients or of the lateral
discharge could be investigated.
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Appendix A

Evolution of the local covariance functions with the Kalman Filter algorithm in a
1-D diffusive flood wave propagation model.

The Kalman Filter algorithm was implemented on a 1-D diffusive flood wave propagation model
and the covariance matrices were updated following Eqs. (7–8).

The initial background covariance matrix8 Bc1 was modeled by spatially constant variances
and correlation lengths for a Gaussian correlation function. For this analysis, σ2

b(x) = 0.25 for
all x. The covariances Bc1(x1,x), Bc1(x2,x) and Bc1(x3,x) between respectively x1,x2,x3

and any point x are displayed in Fig. 14a (x2 is the observation point in this example). It should
be noted that Bc1(xi,xi) = σ2

b(xi) = 0.25 for i∈ {1,2,3}. By construction, Bc1 is symmetric
and isotropic.

After one assimilation cycle, the error covariances are locally modified. The analysis error
covariances in Ac1 are computed from Eq. (6) and shown in Fig. 14b for x1, x2 and x3. It
should be noted that, as expected, the analysis error variance σ2

a at the observation point x2 is
smaller than σ2

b. At the observation point, the covariance function Ac1(x2,x) remains isotropic.
Conversely, at the upstream point x1 and at the downstream point x3, the covariance functions
Ac1(x1,x) and Ac1(x3,x) are anisotropic. The covariance between x1 and the observation
point x2, as well as between x3 and the observation point x2, is reduced since information
at the observation point was introduced at this location by the analysis procedure through the
innovation vector. The covariance functions at x1 and x3 are isotropic around x2. It should also
be noted that the analysis covariance matrix modeled with the represented covariance function is
symmetric, for example, Ac1(x1,x2) = Ac1(x2,x1) = 0.0057; these two values are represented
by dots in Fig. 14b.

The background error covariance matrix Bc2 = MTAc1M for the next (the second so far) as-
similation cycle is computed from Eq. (8), meaning that the previous cycle analysis background

8The subscript ci denotes the number of the assimilation cycles
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covariance matrix is propagated by the tangent linear of the model M and its adjoint MT .
The columns of the updated Bc2 for x1, x2 and x3 are shown in Fig. 14c. The anisotropic

covariances and correlation functions at all the upstream and downstream locations were
propagated to the observation points so that the covariance and correlation functions become
anisotropic at the observation point. The spatial covariances in Bc2 for xobs, here Bc2(x2,x),
for this second assimilation are fundamentally different from those initially described in Bc1 for
the first assimilation, here Bc1(x2,x). Still, the symmetric property of the covariance matrix
is conserved and Bc2(x1,x2) = Bc2(x2,x1) (these values are represented by dots in Fig. 14c).
The initially described isotropic correlation function at the observation point x2 has been mod-
ified into a local and anisotropic function. At the observation point x2, the correlation function
is anisotropic with a shorter correlation length downstream than upstream.

Fig. 15a represents the diagonal terms of the first analysis covariance matrix σ2
a(x) =

Ac1(x,x) (in red dashed curves) and the second background covariance matrix σ2
b(x) =

Bc2(x,x) (in black dashed curves). As expected, the analysis error variance is smaller than
the initial background error variance (Bc1(x,x) = 0.25) in the vicinity of the observation point.
The size of the area is controled by the correlation length initially described in Bc1. The vari-
ances which were initially set to the spatially constant value 0.25 are now local, for example
σ2

b(x2) = 0.0497 and σ2
b(x1) = 0.2474. Additionally, the variances in the updated Bc2 (in black

dashed curves) are also local, they correspond to the propagation of the variances in Ac1 by M
and its adjoint MT . The update of the background error covariances by the analysis and the
propagation of the background error covariances matrix by the tangent linear model consists of
the evolution of both the variances and the correlations. It appears that the correlation lengths
tend to shorten downstream of the observation point. After several iterations (7 in this exam-
ple) of the Kalman Filter, the variances are globally reduced downstream of the observation
point as shown in Fig. 15a for Ac7 and Bc8. Effectively, the uncertainty at the observation
point is reduced by the data assimilation algorithm, allowing the information to be propagated
downstream.

The covariances Ac7(x1,x), Ac7(x2,x) and Ac7(x3,x) between respectively x1,x2,x3, after
seven iterations of the Kalman Filter, are shown in Fig. 15b in solid curves. For comparison,
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the covariances from cycle 1 were also plotted in dashed curves in Fig. 15b. It is worth noting
that at x3 = 320, the amplitude of the variance has been divided by approximately two over the
seven assimilation cycles. The shape of the covariance function evolves over time, especially
downstream of the observation point. The correlation functions are clearly anisotropic with
a shorter correlation length scale downstream than upstream of the observation point. The
local correlation function for x2 =xobs in Bc1 and Bc8, respectively denoted by ρc1(x2,x) and
ρc8(x2,x), are shown in Fig. 15c. The correlation length is divided by approximately five in this
plot along the 7 assimilation cycles of the Kalman Filter. This factor doesn’t vary significantly
when the Kalman Filter is further iterated.

Appendix B

Estimation of the local correlation length in B for the hydraulic state
correction procedure

The objective here was to determine the correlation length of the spatial correlation function for
the errors in the water level and the discharge errors produced with MASCARET. This determi-
nation was two-fold. First a diffusion coefficient κ, based on the dynamics of the diffusive flood
wave approximation model (Eq. 16), was graphically estimated by studying the propagation of
a perturbation of the hydraulic state. Then, this diffusion coefficient was used to calculate the
spatial correlation length of the state perturbation covariance function.

The diffusion coefficient κ is estimated by simulating the response to an upstream perturba-
tion along the water line. For a stationary discharge and water level, for each stretch of the river,
a small but steep perturbation is added to the upstream flow. This perturbation is propagated
and diffused over time to the observation points. A perturbation of the form

h̃(x,0) =
1
2

erf(
x√

2 ltemp,0

)+
1
2
, (B1)

that sums up to a Heaviside function if l0→ 0, was added at the upstream flows q̃(t). This
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perturbation is propagated by Eq. (16) towards the observation points where, at time t, the state
is described by h̃(x,t) given by:

h̃(x,t) =
1
2

erf

[
x−ct√

2 ltemp(t)

]
+

1
2

(B2)

with ltemp(t)2 = l2temp,0 +2κt.
The parameters κ and c are estimated from the numerical solution h̃(x,t) of MASCARET as

follows:

– c≈ sr
tr

where sr is the curvilinear distance between the upstream station and the observa-
tion point and tr is the time between the upstream perturbation and the arrival of the step
perturbation at the observation point,

– ltemp(tr)≈ cT where T is the time between the +20% of the initial discharge and −20%
of the final discharge. T is graphically estimated for the simulated discharge at the obser-
vation points,

– κ=

q
ltemp(tr)2−l2temp,0

2tr
with l2temp,0 = 0 for the Heaviside initial condition which is close

to the conditions described in this case.

Using these three relations when the perturbation reaches the observation point, κ is estimated
by T 2s2r

2t3r
where sr is known when as T and tr are graphically estimated for the simulated dis-

charges.
Like the initial and boundary conditions, the temporal covariance function R(τ) of q̃(t) is

also propagated by the diffusive flood wave propagation equation Eq. (16). Since the temporal
covariance function R(τ) is Gaussian and because the theory of random function diffusion
applies, the spatial covariance function of h̃(x,t) can be approximated as Gaussian. Assuming
that the spatial covariance function for the boundary condition is chosen to be Gaussian and
denoted by B0, the covariance function for the solution at time t is given by Bt = MtB0MT

t

where Mt stands for the advection-diffusion processes. Since advection process no effect on the
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covariance function, this formula can be written in the advected referential. In this referential,
B̃t = LtLTt = L2t where Lt represents the diffusion operator. The spatial correlation length in
B̃t decreases with the distance:

l2(x) = l20 +4κ
x

c
. (B3)

The correlation length l(x) is locally defined for any location in the domain. For the IKF assim-
ilation algorithm, only the correlation length at the observation point xobs is needed. The local
correlation length at the observation point is then calculated using Eq. (B3). For an application
with MASCARET, a realistic upstream flow is described from which l20 could be determined or
when the observation point is far enough from the upstream stations l20� 4κxobs

c .
This graphical approach leads to the estimation of a local correlation length l2(x) at each

observation point based on the perturbation of the upstream flow at one upstream station. Since
there are several upstream stations for this study, there are several resulting signals h̃(x,t) reach-
ing the observation point, leading to several estimations of l(xobs). At the observation point,
the spatial correlation function is approximated as Gaussian, resulting from the sum of Gaus-
sian functions of respective correlation length li and amplitude ai. The correlation length of the
resulting Gaussian can be approximated by:

l(xobs) =
∑

iaili(xobs)∑
iai

(B4)

where the subscript i denotes the number of the upstream station (i∈ [1,4] for the Adour catch-
ment and i∈ [1,4] for the Marne Vallage catchment).
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Jean-Baptiste, N., Doré, C., Sau, J., and Malaterre, P.-O.: Data assimilation forthe real-time update of a

34



1D hydrodynamic lodel, fault detection – Application to the automatic control of hydropower plants
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Ph.D. thesis, Université Paul Sabatier, 246 pp., 2000.

Lagarde, T., Piacentini, A., and Thual, O.: A new representation of data assimilation methods: the PALM
flow charting approach, Q. J. R. M. S., 127, 189–207, 2001.

Maclaughlin, D. and Townley, L.: A reassessment of the groundwater inverse problem, Water Resour.
Res., 32, 1131–1161, 1996.

Malaterre, P.-O., Baume, J.-P., and Jean-Baptiste, N.: Calibration of open channel flow models: a system
analysis and control engineering approach, in Proceedings of SimHydro: Hydraulic modeling and
uncertainty, 2010.

Pappenberger, F., Beven, K., Horrit, M., and Blazkov, S.: Uncertainty in the calibration of effective
roughness parameters in HEC-RAS using inundation and downstream level observations, Journal of
Hydrology, 302, 46–69, 2005.

Parrish, D. F. and Derber, J. C.: The national meteorological center’s spectral statistical interpolation
analysis system, Mon. Weather Rev., 120, 1747–1763, 1992.

Rabier, F., Jarvinen, H., Kilnder, E., Mahfouf, J.-F., and Simmons, A.: The ECMWF operational im-
plementation of four-dimensional variational assimilation. Part I: Experimental results with simplified
physics, Quarterly Journal of The Royal Meteorological Society, 126, 1143–1170, 2000.

Sau, J., Malaterre, P.-O., and Baume, J.-P.: Sequential MonteCarlo hydraulic state estimation of an
irrigation canal, Comptes Rendus de l’académie des Sciences, 338, 212–219, 2010.

Talagrand, 0.: Assimilation of observations, an introduction, J. Meteorol. Soc. Jpn., 75(1B), 191–209,
1997.

Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM: Society
for Industrial and Applied Mathematics, 1987.

Todling, R. and Cohn, S. E.: Suboptimal schemes for atmospheric data assimilation based on the Kalman
Filter, Mon. Weather Rev., 122, 2530–2557, 1994.

Thirel, G., Martin, E., Mahfouf, J.-F., Massart, S., Ricci, S., and Habets, F.: A past discharges assimila-
tion system for ensemble streamflow forecasts over France – Part 1: Description and validation of the
assimilation system, Hydrol. Earth Syst. Sci., 14, 1623–1637, doi:10.5194/hess-14-1623-2010, 2010.

Thirel, G., Martin, E., Mahfouf, J.-F., Massart, S., Ricci, S., Regimbeau, F., and Habets, F.: A past

35



discharge assimilation system for ensemble streamflow forecasts over France – Part 2: Impact on the
ensemble streamflow forecasts, Hydrol. Earth Syst. Sci., 14, 1639–1653, doi:10.5194/hess-14-1639-
2010, 2010.

36



Table 1. C1, C2, C3 improvement between Free run and Assim run over the twenty four hours before the
reference time. Average of seven flood events in the Adour catchment, at Peyrehorade, Urt and Lesseps.

-24h re-analysis (Adour) Peyrehorade Urt Lesseps

C1 improvement (%) 72 60 54
C2 improvement (%) 67 58 50
C3 improvement (%) 80 65 54
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Table 2. C1, C2, C3 improvement between Free run and Assim run over the six hours after the reference
time. Average of seven flood events in the Adour catchment, at Peyrehorade, Urt and Lesseps.

+6h forecast (Adour) Peyrehorade Urt Lesseps

C1 improvement (%) 15 15 0.5
C2 improvement (%) 13 11 0
C3 improvement (%) 36 25 3
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Table 3. C3 improvement between Free run and Assim run over the twenty four hours before the ref-
erence times and the six hours after the reference time. Average of four flood events in the Marne
catchment, at Joinville and Chamouilley.

C3 improvement (%) Chamouilley Joinville

-24h re-analysis 41 24
+6h forecast 24 10
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Fig. 6. The Adour catchment with the measurement stations in red and the upstream stations in blue.
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Fig. 11. April 2006 event, Marne Vallage catchment. Two-hour forecasted water level at Joinville for the
Free run (black curve), the observation (blue curve) and the analysis of the Assim run with the two-step
assimilation (red curve).
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Fig. 12. April 2006 event, Marne Vallage catchment. Six-hour forecasted water level at Joinville for the
Free run (black curve), the observation (blue curve) and the Assim run (red curve).
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