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NO RIEMANN-HURWITZ FORMULA FOR THE p-RANKS

OF RELATIVE CLASS GROUPS

GEORGES GRAS

Abstract. We disprove, by means of numerical examples, the existence of
a Riemann-Hurwitz formula for the p-ranks of relative class groups in a p-
ramified p-extension K/k of number fields of CM-type containing µp. In the
cyclic case of degree p, under some assumptions on the p-class group of k, we
prove some properties of the Galois structure of the p-class group of K; but we
have found, through numerical experimentation, that some theoretical group

structures do not exist in this particular situation, and we justify this fact.
Then we show, in this context, that Kida’s formula on lambda invariants is
valid for the p-ranks if and only if the p-class group of K is reduced to the
group of ambiguous classes, which is of course not always the case.

December 14, 2015

1. Generalities

In 1980, Y. Kida [Ki] proved an analogue of the Riemann-Hurwitz formula for
the minus part of the Iwasawa λ-invariant of the cyclotomic Zp-extension k∞ of an
algebraic number field k of CM-type with maximal totally real subfield k+:

λ−(K)− 1 = [K∞ : k∞] (λ−(k)− 1) +
∑

v∤p
(ev(K

+
∞/k+∞)− 1),

where K/k is a finite p-extension of CM-fields containing the group µp of pth roots
of unity and where ev denotes the ramification index of the place v. When K/k
is p-ramified (i.e., unramified outside p) and such that K ∩ k∞ = k the formula
reduces to:

λ−(K)− 1 = [K : k] (λ−(k)− 1).

Many generalizations where given as in [JaMa], [JaMi], [Sch], among many others.

An interesting question is to ask if such a formula can be valid for the p-ranks of
the relative ideal class groups in a p-extension K/k (e.g. K/k cyclic of degree p).

In a work, using Iwasawa theory and published in 1996 by K. Wingberg [W],
such a formula is proposed (Theorem 2.1, Corollary 2.2) in a very general framwork
and applied to the case of a p-ramified p-extension K/k of CM-fields containing µp.

As many people remarked, we can be astonished by a result which is not really
“arithmetical” since many of our class groups investigations (as in [Gr2], [Gr3]) show
that such a “regularity” only happens at infinity (Iwasawa theory). The proof of
Kida’s formula given by W. Sinnott [Sin], using p-adic L-functions, is probably the
most appropriate to see the transition from one aspect to the other.

Indeed, to find a relation between the p-ranks (for instance in a cyclic extension
K/k of degree p) depends for G := Gal(K/k) =: 〈σ〉 on non obvious structures of
finite Zp[G]-modules M provided with an arithmetical norm NK/k and a transfert

map jK/k (with jK/k ◦ NK/k = 1 + σ + . . . + σp−1), where the filtration of the

Mi := {h ∈ M, h(σ−1)i = 1} plays an important non-algebraic role because all the
orders #(Mi+1/Mi) depend on arithmetical local normic computations by means of
formulas, given in [Gr2], similar to that of the case i = 0 of ambiguous ideal classes
(see Section 3).
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2 GEORGES GRAS

To be more convincing, we have given numerical computations and we shall see
that it is not difficult to conjecture that there are infinitely many counterexamples
to a formula, for the relative p-ranks, such as r−K − 1 = p (r−k − 1) wich may be true
in some cases.

2. A numerical counterexample

Using PARI (from [P]), we give a program which can be used by the reader to
compute easily for the case p = 3 in a biquadratique field containing a primitive
3th root of unity j, and such that its 3-class group is of order 3.

2.1. Definition and assumptions. Consider the following diagram:

Q

k+=Q(
√
3.d )

k−=Q(
√
−d)

Q(j)

k=k+(j)

K+ K=k( 3
√
α )

[K : k]=3

s

We recall, in this particular context, the hypothesis of the statement of Corollary
2.2 (ii) of [W] and we shall suppose these conditions satisfied in all the sequel. For
any field F , let CℓF be its 3-class group and let Cℓ±F be its two usual components
when F is a CM-field. We denote by HF the 3-Hilbert class field of F .

Hypothesis 2.1. (i) d > 0, d squarefree, d 6≡ 0 (mod 3),
(ii) p = 3 does not split in k/Q (hence d ≡ 1 (mod 3)),
(iii) K+/k+ is a 3-ramified cubic cyclic extension and K = K+(j),
(iv) K+ is not contained in the cyclotomic Z3-extension of k+,
(v) Cℓk+ = 1 & Cℓk− ≃ Z/3Z.

From (v), the ambiguous class number formula implies CℓK+ = 1 (Lemma 2.2).

Starting from a p-ramified cubic cyclic extensionK+/k+, the associated Kummer
extension K/k is defined by 3

√
α such that α ∈ k× \ k×3, (α) = a3 for an ideal a

of k, and αs+1 ∈ k×3 where s ∈ Gal(K/K+) is the complex conjugation (usual
decomposition criterion of a Kummer extension over a subfield).

If the 3-rank of the 3-class group Cℓ−k ≃ Cℓk− is r−, the 3-rank of the Galois
group of the maximal Abelian 3-ramified 3-extension of k+ is r− + 1 when 3 does
not split in k (see [Gr1], Proposition III.4.2.2 for the general statement). From (iv),
necessarily r− ≥ 1. Here we suppose #Cℓk− = 3, hence r− + 1 = 2 (this is also
equivalent to the non-nullity of the 3-torsion subgroup T3, of the above Galois group,
whose order is in our context #T3 ∼ log3(ε)/

√
3.d where ε is the fundamental unit

of k+, see [Gr1], Remark III.2.6.5 (i)). We shall precise the choice of the extension
K+/k+ (i.e., α) as follows:

Let α in k− be such that (α) = a3 (a must be a non-principal ideal since Ek− is
trivial); this defines a canonical cubic cyclic extension K+ of k+ and the numbers
α j, α j2 define the two other cubic cyclic extensions K+

1 , K+
2 of k+, distinct from

the first step of the cyclotomic Z3-extension K+
0 of k+ defined by j.

Lemma 2.2. (i) We have #CℓK+ = 1 & #CℓGK = #Cℓk = 3, where G = Gal(K/k).

(ii) We have #CℓHk
= 1.
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Proof. (i) Using the Chevalley’s formula in K+/k+ (see e.g. [Gr1], Lemma II.6.1.2)
with a trivial 3-class group for k+, the formula reduces to

#CℓGK+ =
3

3 . (Ek+ : Ek+ ∩ NK+/k+K+×)
= 1,

since the product of ramification indices is equal to 3 (CℓHk
= 1 implies that K+/k+

is necessarily totally ramified at the single prime above 3 of k+).

The same formula in K/k is #CℓGK =
#Cℓk × 3

3 . (Ek : Ek ∩ NK/kK×)
with Ek = 〈ε, j〉,

where ε is the fundamental unit of k+; but, as for K+/k+, there is by assumption a
single place of k ramified in K/k, thus, using the product formula, the Hasse norm
theorem shows that all these units are local norms everywhere hence global norms.
So #CℓGK = 3 since #Cℓk = #Cℓk− = 3.

(ii) We have #CℓG′

Hk
=

#Cℓk
3 . (Ek : Ek ∩NHk/k

H×

k )
= 1 where G′ := Gal(Hk/k). �

Corollary 2.3. We have CℓK = Cℓ−K since Cℓ+K ≃ CℓK+ = 1.

2.2. Numerical data. We have a first example with d = 211 ≡ 1 (mod 3) and

α = 17+
√
−211
2 where (α) = p35 for a non-principal prime ideal dividing 5 in k−.

The class number of k+ is 1 and that of k− is 3, which is coherent with the fact
that the fundamental unit ε = 440772247 + 17519124

√
3.211 of k+ is 3-primary

(indeed, ε ≡ 1 + 3.
√
3.211 (mod 9)), which implies that Hk− is given via k( 3

√
ε)/k

which is decomposed by means of an unramified cubic cyclic extension of k−.

So all the five conditions (i) to (v) are fulfilled.

The PARI program (see Section 5) gives in “component(H, 5)” the class number
and the structure of the whole class group of K; the program needs an irreducible
polynomial defining K; it is given by “P = polcompositum(x2 + x + 1, Q)” where
Q = x6−17 x3+53 is the irreducible polynomial of 3

√
α over Q (the general formula

is Q = x6 − Trk−/Q(α)x
3 +Nk−/Q(α)); one obtains:

P = x12 − 6 x11 + 21 x10 − 84 x9 + 243 x8 − 432 x7 + 1037 x6 − 1896 x5 − 204 x4 −
966 x3 + 5949 x2 + 4905 x+ 11881.

2.3. Conclusion. The program gives CℓK ≃ Z/9Z×Z/3Z for a class number equal
to 27. This yields the 3-rank R− = 2 of Cℓ−K when the 3-rank r− of Cℓ−k is equal
to 1, which is incompatible with the formula

R− − 1 = 3× (r− − 1).

But, this “Riemann-Hurwitz formula” is valid if and only if CℓK = CℓGK ≃ Z/3Z
(no exceptional 3-classes). Such a case is also very frequent (see § 5.1).

3. Some structural results

Denote by M a finite Zp[Γ]-module, where we assume that Γ is an Abelian
Galois group of the form G × g, where G = Gal(K/k) =: 〈σ〉 is cyclic of order p
and g ≃ Gal(k/k0) (of order prime to p), where k0 is a suitable subfield of k (so
that K = kK0 with K0 := Kg). The existence of g allows us to take isotypic
components of M (as the ±-components when the fields are of CM-type). In our
example, g = 〈s〉, k0 = k+ and K0 = K+.

We have M/Mp = M/M1+σ+...+σp−1−Ω where Ω = u (σ−1)p−1 for an inversible
element u of the group algebra Zp[G] ([Gr3], Proposition 4.1); in our case p = 3,
Ω = σ2(σ − 1)2. We shall use:

ω := σ (σ − 1), such that ω2 ≡ 3 (mod ν), where ν := 1 + σ + σ2.

For our purpose we shall have M = Cℓ−K (we refere to [Gr3], Chap. IV, A, § 2).
By class field theory, when K/k is totally ramified at the unique p | 3, the

arithmetical norm NK/k : Cℓ−K −→ Cℓ−k is surjective.



4 GEORGES GRAS

Another important fact for the structure of CℓK , in our particular context, is that
the class of order 3 of k capitulates in K because the equality (α) = a3 becomes
( 3
√
α) = (a)K in K (the transfert map jK/k : Cℓ−k −→ Cℓ−K is not injective). This

has the following tricky consequence:

NK/k(Cℓ−K) = Cℓ−k & (Cℓ−K)ν = 1.

Return to the general case M = CℓK for any prime p and suppose #MG = p.

Put Mi := {h ∈ M, h(σ−1)i = 1}, i ≥ 0, and let n be the least integer i such that
Mi = M .

From the exact sequence 1 → M1 = MG −→ Mi+1
ω−−−→Mω

i+1 ⊆ Mi → 1,

with #MG = p, we obtain that Mω
i+1 = Mi and #(Mi+1/Mi) = p for i =

0, . . . , n − 1. From [Gr3], Proposition 4.1 and Corollaire 4.3, assuming Mν = 1
and #(Mi+1/Mi) = p for all i < n, we obtain the following structure of Z-module:

M ≃ (Z/pa+1Z)b × (Z/paZ)p−1−b,

where n = a (p− 1) + b, 0 ≤ b ≤ p− 2. This implies (assuming M+ = 1) that the
p-rank R− of M− is R− = p− 1 if a ≥ 1 and R− = b if a = 0 (i.e., b = n ≤ p− 2).

So, in the case r− = 1, we have the Riemann-Hurwitz formula R−−1 = p (r−−1)
if and only if b = n = 1 which is equivalent to M− = M−G. Otherwise, R− can
take any value in [1, p− 1], even if r− = 1.

This general isomorphism comes from the formula ([Gr2], Corollaire 2.8):

#
(

Mi+1/Mi

)G
=

#Cℓk ×
∏

ev
[K : k] .#NK/k(Mi) . (Λi : Λi ∩NK/k(K×))

,

where NK/k(Mi) := cℓk(NK/k(Ii)) for a suitable ideal group Ii such that cℓK(Ii) =

Mi, and where Λi = {x ∈ k×, (x) ∈ NK/k(Ii)}.
In our case there is a single ramified place p | 3 and the elements of Λi, being

norms of ideals, are everywhere local norms except perhaps at p; so (Λi : Λi ∩
NK/k(K

×)) = 1 under the product formula of class field theory and the Hasse

norm theorem, and #
(

Mi+1/Mi

)G
=

3

#NK/k(Mi)
.

In our numerical example with d = 211, we get necessarily a = b = 1, n = 3,
giving the structure Z/9Z× Z/3Z.

For more structural results when Mν 6= 1, see [Gr3], Chap. IV, § 2, Proposition
4.3 valid for any p ≥ 2. In our biquadratic case and p = 3, we obtain interesting
structures for which a theoretical study should be improved. From the general
PARI program we have obtained the following numerical examples:

(i) For d = 1759, for which #Cℓk+ = 1, Cℓk− ≃ Z/27Z, and α = 37 + 20
√
−d of

norm 893, the structure is Cℓ−K ≃ Z/27Z (i.e., Cℓ−K = (Cℓ−K)G).

(ii) For d = 2047, for which #Cℓk+ = 1, Cℓk− ≃ Z/9Z, and α = 332 + 11
√
−d of

norm 713, the structure is Cℓ−K ≃ Z/9Z× Z/3Z× Z/3Z.

(iii) For d = 1579, for which #Cℓk+ = 1, Cℓk− ≃ Z/9Z, and α = 1
2 (115 + 3

√
−d)

of norm 193, the structure is Cℓ−K ≃ Z/27Z× Z/9Z× Z/3Z.

4. The structure M ≃ Z/3aZ× Z/3aZ does not exist

Of course, we keep the same numerical assumptions about the 3-class groups
of k+ and k− (especially Cℓk− ≃ Z/3Z), the non-splitting of 3 in k/Q, and the
Kummer construction of the 3-ramified cubic cyclic extension K/k.

Theorem 4.1. Under all the Hypothesis 2.1, we get

CℓK = Cℓ−K ≃ Z/3a+1Z× Z/3aZ,

for some a ≥ 0. The case a = 0 is equivalent to CℓK = CℓGK.
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Proof. Let n ≥ 1 be the least integer such that Mn = M := CℓK . From the relations
Mi+1/Mi ≃ Z/3Z, for 0 ≤ i ≤ n− 1, we get #M = 3n.

Let hn ∈ M be such that NK/k(hn) generates Cℓk (equivalent to hn ∈ Mn\Mn−1).
Since Mω

i+1 = Mi for 0 ≤ i ≤ n− 1, Mn is the Zp[G]-module generated by hn and

for all i, 0 ≤ i ≤ n − 1, hn−i := hωi

n generates Mn−i. We have hω2

= h3 for all
h ∈ M .

Let m, 1 ≤ m ≤ n; the structure of Mm is given (as for M , see Section 3) by:

Mm ≃ (Z/3am+1Z)bm × (Z/3amZ)2−bm , m = 2 am + bm, bm ∈ {0, 1}.
(i) Case m = 2 e. Then Mm ≃ Z/3eZ× Z/3eZ.

(ii) Case m = 2 e+ 1. Then Mm ≃ Z/3e+1Z× Z/3eZ.

With the previous notations we have, for the two cases:

Mm = 〈hm〉 ⊕ 〈hm−1〉, as Z-module.

Indeed, suppose that h = hA
m = hB

m−1, A,B ∈ Z. Then hA−B ω
m = 1. Since hm is

anihilated by ωm and not by ωm−1, we get A−B ω ∈ (ωm).

In the case m = 2e, ωm ≡ 3e (mod ν) giving in the algebra Z3[G] = Z3[ω], the
relations A ≡ B ≡ 0 (mod 3e), hence h = 1. Since #M2e = 32e, the elements hm

and hm−1 are independent of order 3e.

In the case m = 2e+ 1, ωm ≡ 3eω (mod ν) and A−B ω ≡ 0 (mod 3eω), giving
A = 3eA′ and B = 3eB′, then A′ − B′ω ≡ 0 (mod ω Z3[ω]), which implies A′ ≡ 0
(mod 3) hence the result in this case with hm of order 3e+1 and hm−1 of order 3e.

Suppose that the structure of M is M2e ≃ Z/3eZ × Z/3eZ, e ≥ 1, and let F be
the subfield of HK fixed by M2(e−1) = M3; so F is a cubic cyclic extension of KHk

and Gal(F/K) ≃ Z/3Z× Z/3Z.

The 3-extension F/k is Galois: indeed, if σ is a generator of Gal(K/k), the action
of σ on Gal(F/K) = Gal(HK/K)/M3 is given, via the correspondence of class field
theory, by the action of σ on h2e := h2eM

3 and on h2e−1 := h2e−1M
3. From

ω = σ (σ − 1) = σ−2 (σ − 1), we have h
σ

2e = h2e × h
σ2

2e−1, and σ acts on h2e−1 by

h
σ

2e−1 = hσ
2e−1M

3; but h
σ(σ−1)
2e−1 = h2(e−1) ∈ M3, so hσ−1

2e−1 ∈ M3 and h
σ

2e−1 = h2e−1,

hence the result and the fact that F/Hk is Galois. But a group of order p2 (p prime)
is Abelian and F/Hk is the direct compositum of KHk and L such that L is the
decomposition field at 3 giving a cyclic extension L/Hk, unramified of degree 3. But
we know (Lemma 2.2) that the 3-class group of Hk is trivial (contradiction). �

Remarks 4.2. (i) Since 3 is non-split in k/Q, the unique prime ideal P | 3 in K
is principal: indeed, P1+s = P2 gives the square of the extension of P+ | 3 in K+

which is 3-principal (Lemma 2.2); so cℓK(P) = 1. By class field theory, P splits
completely in HK/K.

(ii) In the case n even for the above reasoning, an analog of the field F does not
exist as Galois field over Hk.

(iii) Note that the parameter a can probably take any value; we have for instance
obtained the following example:

For d = 12058, for which #Cℓk+ = 2, Cℓk− ≃ Z/3Z, and α = 989 + 26
√
−d of

norm 2093, the structure is Cℓ−K ≃ Z/34Z× Z/33Z. A polynomial defining K is:

P = x12−6 x11+21 x10−4006 x9+17892 x8−35730 x7+22212821 x6−66531354 x5−
113482743 x4−35777798264 x3+54059937672 x2+54106942656 x+83308554531904.

For d = 86942, for which #Cℓk+ = 4, Cℓk− ≃ Z/3Z, and α = 557 + 3
√
−d of

norm 1033, the structure is Cℓ−K ≃ Z/35Z× Z/34Z. A polynomial defining K is:

P = x12−6 x11+21 x10−2278 x9+10116 x8−20178 x7+3449985 x6−10289502 x5−
8954865 x4 − 2399550304 x3 + 3642928674 x2 + 3641624304 x+ 1191621124996.

In conclusion, the structure of Cℓ−K strongly depends on the hypothesis on the

order of Cℓ−k and not only of its 3-rank.
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5. Numerical results

We give explicit numerical computations of CℓK , for various biquadratics fields
k satisfying the conditions (i) to (v) assumed in the Hypothesis 2.1.

The following PARI program gives in “component(H, 5)” the class number and
the structure of the whole class group CℓK of K in the form

[classnumber, [c1, . . . , cλ]]

such that the class group is isomorphic to
λ
⊕

i=1
Z/ciZ.

For simplicity we compute an α being an integer without non-trivial rational
divisor. So (α) is the cube of an ideal if and only if Nk−/Q(α) ∈ Q×3. Then the

irreducible polynomial defining K is given by P = polcompositum(x2 + x + 1, Q)
where Q = x6 − 2 a x3 + (a2 + d b2) or Q = x6 − a x3 + (a2 + d b2)/4, where

α = a+ b
√
−d or

a+ b
√
−d

2
, respectively.

In all the examples, we recall that the 3-class group of k+ is trivial, and that of
k− is of order 3 exactely. Thus, the 3-class group of K+ is trivial and Cℓ−K = CℓK ;
moreover, CℓGK is of order 3. So the case n = 1 yields to a = 0, b = 1 (CℓK = CℓGK),
the case n = 3 yields to a = 1, b = 1, and so on.

allocatemem(1000000000)
{d = 1;while(d < 5 ∗ 103, d = d+ 3; if(core(d) == d,
D = 3 ∗ d; if(Mod(D, 4)! = 1,D = 4 ∗D); h = qfbclassno(D); if(Mod(h, 3)! = 0,
Dm = −d; if(Mod(Dm, 4)! = 1, Dm = 4 ∗Dm); hm = qfbclassno(Dm);
if(Mod(hm, 3) == 0&Mod(hm, 9)! = 0,
for(b = 1, 102, for(a = 1, 103, if(gcd(a, b) == 1, T = 2 ∗ a;N = a2 + d ∗ b2;
if(Mod(−d, 4) == 1&Mod(a ∗ b, 2)! = 0, T = T/2;N = N/4);

if(floor(N(1/3))3 −N == 0, Q = x6 − T ∗ x3 +N ;
P = polcompositum(x2 + x+ 1, Q);R = component(P, 1);
H = bnrinit(bnfinit(R, 1), 1);F = component(H, 5);G = component(F, 1);
if(Mod(G, 3) == 0&Mod(G, 9)! = 0,
print(””); print(”d = ”, d); print(”a = ”, a); print(”b = ”, b);
print(”hm = ”, hm, ”h = ”, h); print(P );
print(”classgroup : ”, F ); a = 103; b = 102)))))))))}

The instruction “if(Mod(G, 3)==0 & Mod(G, 9)!=0” must be adapted to the rel-
evant needed structure (3a+1, 3a).

We give below an extract of the numerical examples we have obtained; for a com-
plete table, please see the Section 5 of:

https://www.researchgate.net/publication/286452614

5.1. Case CℓK ≃ Z/3Z (a = 0). This implies CℓK = CℓGK ≃ Z/3Z:

d = 31
a = 1, b = 1
#Cℓk− = 3, #Cℓk+ = 1
P = x12−6x11+21 x10−52x9+99x8−144 x7+179 x6−186x5−33x4+268 x3−87 x2−24x+64
classgroup : [3, [3]]

d = 61
a = 8, b = 1
#Cℓk− = 6, #Cℓk+ = 2
P = x12 − 6x11 +21x10 − 82x9 +234x8 − 414x7 +983x6 − 1788x5 − 393x4 − 506x3 +5394x2 +
4620 x+ 12100
classgroup : [12, [6, 2]]

...

d = 913
a = 321, b = 4
#Cℓk− = 12, #Cℓk+ = 8
P = x12 − 6x11 + 21 x10 − 1334 x9 + 5868 x8 − 11682 x7 + 661085 x6 − 1948290 x5 + 702561 x4 −
149227072 x3 + 227288688 x2 + 224655360 x+ 13690872064
classgroup : [768, [24, 4, 4, 2]]

https://www.researchgate.net/publication/286452614
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d = 970
a = 563, b = 20
#Cℓk− = 12, #Cℓk+ = 4
P = x12−6x11+21x10−2302x9+10224 x8−20394 x7+2701601 x6−8043702 x5−2977323 x4−
1568242964 x3 + 2378397756 x2 + 2373361968 x+ 495396376336
classgroup : [600, [30, 10, 2]]

5.2. Case CℓK ≃ Z/9Z× Z/3Z (a = 1).

d = 211
a = 17, b = 1
#Cℓk− = 3, #Cℓk+ = 1
P = x12−6x11+21x10−84x9+243x8−432 x7+1037 x6−1896 x5−204x4−966 x3+5949 x2+

4905 x+ 11881
classgroup : [27, [9, 3]]

d = 214

a = 89, b = 6
#Cℓk− = 6, #Cℓk+ = 2
P = x12−6x11+21 x10−406 x9+1692 x8−3330 x7+66813 x6−190530 x5−45783 x4−5155600 x3+
8296296 x2 + 8156544 x+ 238640704
classgroup : [54, [18, 3]]

...

d = 4531
a = 403, b = 5
#Cℓk− = 12, #Cℓk+ = 2
P = x12 − 6x11 + 21x10 − 856x9 + 3717 x8 − 7380 x7 + 308855 x6 − 904506 x5 − 62898 x4 −
53921936 x3 + 83258895 x2 + 82428357 x+ 4694853361
classgroup : [1728, [36, 12, 4]]

d = 4639
a = 361, b = 2
#Cℓk− = 51, #Cℓk+ = 1
P = x12 − 6x11 + 21 x10 − 1494 x9 + 6588 x8 − 13122 x7 + 834341 x6 − 2463738 x5 + 888141 x4 −
212657184 x3 + 323349156 x2 + 320016960 x+ 21950200336
classgroup : [7344, [612, 12]]

5.3. Case CℓK ≃ Z/27Z× Z/9Z (a = 2).

d = 1141
a = 449, b = 8
#Cℓk− = 24, #Cℓk+ = 4
P = x12 − 6x11 +21 x10 − 1846 x9 +8172 x8 − 16290 x7 +1374653 x6 − 4075170 x5 +711057 x4 −
487867520 x3 + 740542656 x2 + 735780864 x+ 74927017984
classgroup : [7776, [216, 18, 2]]

d = 1174
a = 21, b = 5
#Cℓk− = 30, #Cℓk+ = 2
P = x12−6x11+21x10−134 x9+468x8−882 x7+62369 x6−184542 x5−436569 x4−1322320 x3+
3316650 x2 + 3570000 x+ 885062500
classgroup : [2430, [270, 9]]

...

d = 4087
a = 357, b = 8
#Cℓk− = 30, #Cℓk+ = 2
P = x12 − 6x11 +21x10 − 1478 x9 +6516 x8 − 12978 x7 +1302965 x6 − 3870042 x5 − 2782815 x4 −
543509224 x3 + 830485104 x2 + 829417344 x+ 150779996416
classgroup : [19440, [270, 18, 2, 2]]

d = 4567
a = 195, b = 1
#Cℓk− = 33, #Cℓk+ = 7
P = x12−6x11+21 x10−440 x9+1845 x8−3636 x7+63557 x6−179844 x5+66765 x4−3988930 x3+
6294021 x2 + 6052866 x+ 109286116
classgroup : [18711, [2079, 9]]
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5.4. Case CℓK ≃ Z/81Z× Z/27Z (a = 3).

d = 12058
a = 989, b = 26
#Cℓk− = 42, #Cℓk+ = 2
P = x12−6x11+21x10−4006x9+17892 x8−35730 x7+22212821 x6−66531354 x5−113482743 x4−
35777798264 x3 + 54059937672 x2 + 54106942656 x+ 83308554531904
classgroup : [30618, [1134, 27]]

d = 15607
a = 534, b = 1
#Cℓk− = 39, #Cℓk+ = 1
P = x12 − 6x11 +21x10 − 2186 x9 +9702 x8 − 19350 x7 +1764719 x6 − 5236188 x5 +2322777 x4 −
638361238 x3 + 965957748 x2 + 958427808 x+ 89817692416
classgroup : [28431, [1053, 27]]

..

.

d = 45517
a = 845, b = 6
#Cℓk− = 120#Cℓk+ = 4
P = x12−6x11+21x10−3430x9+15300 x8−30546 x7+7597005 x6−22699458 x5−18168075 x4−
7877764840 x3 + 11909686236 x2 + 11905200672 x+ 5526956498704
classgroup : [174960, [3240, 54]]

d = 47194
a = 293, b = 2

#Cℓk− = 120#Cℓk+ = 4
P = x12 − 6x11 +21 x10 − 1222 x9 +5364 x8 − 10674 x7 +905093 x6 − 2683338 x5 − 2064183 x4 −
313267016 x3 + 480721224 x2 + 480118080 x+ 75097921600
classgroup : [699840, [3240, 54, 2, 2]]

Acknowledgments. I thank Christian Maire for telling me about difficulties with
the techniques developed in [W], Thong Nguyen Quang Do and Jean-François
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[Gr3] G. Gras, Sur les ℓ-classes d’idéaux dans les extensions cycliques relatives
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http://sagemath.org/

[Sch] J. Schettler, Generalizations of Iwasawa’s “Riemann-Hurwitz” Formula
for Cyclic p-Extensions of Number Fields, arXiv:1211.4140v3 (2013).
http://arxiv.org/pdf/1211.4140v3.pdf

[Sin] W. Sinnott, On p-adic L-functions and the Riemann-
Hurwitz genus formula, Comp. Math. 53 (1984), 3–17.
http://archive.numdam.org/ARCHIVE/CM/CM_1984__53_1/CM_1984__53_1_3_0/CM_1984__53_1_3_0.pdf

[W] K. Wingberg, A Riemann–Hurwitz Formula for the p-Rank of Ideal
Class Groups of CM-Fields, J. of Number Theory 56 (1996), 319–328.
http://www.sciencedirect.com/science/article/pii/S0022314X96900219

Villa la Gardette, chemin Château Gagnière, F–38520 Le Bourg d’Oisans.

E-mail address: g.mn.gras@wanadoo.fr url:http://www.researchgate.net/profile/Georges_Gras

http://projecteuclid.org/euclid.jmsj/1227104692
http://www.numdam.org/item?id=AIF_1973__23_3_1_0
http://www.math.u-bordeaux1.fr/~jjaulent/
http://www.sciencedirect.com/science/article/pii/0022314X80900426
http://sagemath.org/
http://arxiv.org/pdf/1211.4140v3.pdf
http://archive.numdam.org/ARCHIVE/CM/CM_1984__53_1/CM_1984__53_1_3_0/CM_1984__53_1_3_0.pdf
http://www.sciencedirect.com/science/article/pii/S0022314X96900219
http://www.researchgate.net/profile/Georges_Gras

	1. Generalities
	2. A numerical counterexample
	2.1. Definition and assumptions
	2.2. Numerical data
	2.3. Conclusion

	3. Some structural results
	4. The structure M Z/3aZZ/3aZ does not exist
	5. Numerical results
	5.1. Case CK Z/3Z (a=0)
	5.2. Case CK Z/9ZZ/3Z (a=1)
	5.3. Case CK Z/27ZZ/9Z (a=2)
	5.4. Case CK Z/81ZZ/27Z (a=3)
	Acknowledgments

	References

