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Abstract: The aim of this paper is to propose a methodology combing multi-temporal  

X-band SAR images (TerraSAR-X) with continuous ground thetaprobe measurements, for 

the retrieval of surface soil moisture and texture at a high spatial resolution. Our analysis is 

based on seven radar images acquired at a 36° incidence angle in the HH polarization, over 

a semi-arid site in Tunisia (North Africa). The soil moisture estimations are based on an 

empirical change detection approach using TerraSAR-X data and ground auxiliary thetaprobe 

network measurements. Two assumptions were tested: (1) roughness variations during the 

three-month radar acquisition campaigns were not accounted for; (2) a simple correction 

for temporal variations in roughness was included. The results reveal a small improvement 

in the estimation of soil moisture when a correction for temporal variations in roughness is 

introduced. By considering the estimated temporal dynamics of soil moisture, a methodology 

is proposed for the retrieval of clay and sand content (expressed as percentages) in soil.  

Two empirical relationships were established between the mean moisture values retrieved 

from the seven acquired radar images and the two soil texture components over 36 test 

fields. Validation of the proposed approach was carried out over a second set of 34 fields, 
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showing that highly accurate clay estimations can be achieved. Maps of soil moisture, clay 

and sand percentages at the studied site are derived. 

Keywords: TerraSAR-X; radar; soil moisture; texture; clay content soil moisture;  

soil roughness 

 

1. Introduction 

Physical soil parameters play an essential role in the functioning of the continental water cycle.  

Soil moisture is a key parameter that can be used for multi-domain applications, hydrology and 

agronomy in particular. In the case of semi-arid and arid regions, this parameter is particularly 

important for water resources and irrigation management decisions, understanding land surface 

processes, and estimating runoff and soil erosion potential [1]. Spatio-temporal soil moisture information 

is increasingly used as input or a means of validation for multi-hydrological water balance models [2]. 

The spatial distribution of water in the soil varies both vertically and laterally, as a consequence of 

variations in precipitation and evapotranspiration, and the influences of topography, soil texture, and 

vegetation. The temporal variability of soil water properties can arise from factors such as texture, 

tillage, cropping and other management practices. These can adversely affect yield and complicate 

irrigation scheduling [3,4]. In order to optimize and protect water resources, which are often very 

limited, an accurate estimation of the soil’s water content is needed, to determine the expected 

evapotranspiration flux. Considerable efforts are thus devoted to improving the evaluation of 

evapotranspiration, and to understanding its relationship with the vegetation cover and the soil’s water 

content [5]. Soil texture is also an essential parameter, allowing pedotransfer functions to be 

determined, from which hydrodynamic soil parameters such as the wilting point, field capacity and 

saturated hydraulic conductivity can be derived. Soil particle sizes are classified into three textural 

groups, based on their physical dimensions: sand (2.0–0.5 mm), silt (0.5 mm–2 µm), and clay (soil 

fraction <2 µm). The water retention characteristics of soils are highly dependent on their particle size 

distribution. The variability of a soil’s texture, its clay content in particular, thus has a significant 

influence on its spatial moisture distribution and can lead to difficulties when interpreting soil moisture 

measurements recorded over large areas for the purposes of irrigation scheduling decisions. 

Clay content is considered to be the most relevant parameter, since it is related to the exchange 

capacity of soils [6,7], has a strong influence on the soilʼs hydraulic properties such as water storage 

and availability for crop plants, field capacity and wilting point, and is the first statistical factor to be 

taken into account when building pedotransfer functions [8,9]. Soil property products could be 

integrated into intelligent irrigation algorithms in the field of smart agriculture, thereby contributing to 

an improvement in the accuracy of numerical model forecasting, or hydrological models used for water 

predictions [10]. 

Imaging Synthetic Aperture Radar (SAR) sensors have demonstrated their potential for the effective 

measurement and monitoring of soil surface characteristics at a high spatial resolution [2–8]. Over bare 

agricultural areas, the backscattered radar signal is very sensitive to the soil’s dielectric constant  

(soil moisture) [11–20]. For bare soils, various theoretical and empirical approaches have been 
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developed to analyze the relationship between surface parameters and radar signals [21–26]. Among 

these, the “linear approach” linking surface soil moisture to calibrated SAR measurements (SIRC, 

ERS, RADARSAT, ASAR, TerraSAR-X) is widely used [14,27,28]. In recent years, different 

operational algorithms based on a change detection approach have been proposed to map soil moisture. 

This is particularly relevant for low and medium spatial resolutions (active microwave) [29,30]. 

For the estimation of soil textures, different methodologies have also been proposed in recent 

decades, using specific multi- and hyper-spectral optical sensors [7,31–33]. Numerous experimental 

studies have shown that the soil texture has only a very limited influence on radar signals, such that it 

may not be possible to directly retrieve one component of soil texture from such data. However, in 

recent years qualitative relationships have been observed between soil texture and high frequency  

X-band radar measurements [18,19]. In this context, Zribi et al., (2012) [34] developed an empirical 

inversion approach, allowing the soil clay content to be estimated from processed TerraSAR-X radar 

signals. The proposed methodology evaluates the rate at which the observed surface dries following  

a rainfall event, and uses this to determine the percentage of clay in the soil. An accuracy equal to  

120 g/kg was retrieved. 

In recent years, various approaches have been proposed for soil moisture monitoring, whereas fewer 

studies have concentrated on the analysis of soil texture. The aim of this paper is to demonstrate that it 

is possible to retrieve both of these soil parameters (moisture and texture) from the same experimental 

campaign, using a single radar signal configuration (one incidence angle, one polarization). The present 

paper proposes an empirical algorithm based on the use of high-resolution radar TerraSAR-X 

observations, along with point-measurements based on coarse grid observations, to determine the soil 

moisture and texture at the spatial resolution of the radar data. A change detection method has been 

proposed and implemented in this study as a convenient way to determine these soil parameters. 

Our paper is organized into five sections. The next section presents the database and ground 

measurements used in the proposed study. Section 3 explains the methodologies used for soil moisture 

estimations, and validation of the results based on comparisons between the estimations and in situ 

measurements. Section 4 describes the approach used for soil texture retrieval. Conclusions and 

perspectives from this study are discussed in Section 5. 

2. Datasets and Study Site 

2.1. Study Site Description 

Our study site is situated in the Kairouan plain (9°23ʹ−10°17ʹE, 35°1ʹ−35°55ʹN, in Central Tunisia. 

The climate in this region is semi-arid, with an average annual rainfall of approximately 300 mm/year, 

characterized by a rainy season lasting from October to May, with the two rainiest months being 

October and March [17]. As is generally the case in semi-arid areas, the rainfall patterns in this area are 

highly variable over time and space. The mean temperature in Kairouan City is 19.2 °C (minimum of 

10.7 °C in January and maximum of 28.6 °C in August). The mean annual potential evapotranspiration 

(Penman) is close to 1600 mm. The landscape is mainly flat. The vegetation in this area is dominated 

by agriculture (cereals, olive trees, and market gardens). Various crops are grown, and their rotation is 

typical of semi-arid regions. 
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2.2. Satellite Images 

Seven TerraSAR-X images (X-Band ~9.65 GHz) were acquired (HH polarization, incidence angle 

of 36°). Table 1 summarizes the main characteristics of the SAR images recorded at the Kairouan site. 

All of the TSX images correspond to a “Single-look Slant Range Complex: SSC” TSX product with a 

Single-look complex format, having a ground pixel spacing of approximately 2 m. The SAR images 

were firstly multi-looked to reduce speckle using the NEST software (https://earth.esa.int/ 

web/nest/home/). For all images, five looks were used in the azimuth and range directions (resulting 

pixel size ~ 9 × 9 m2). The images were then radiometrically calibrated to derive the backscattering 

coefficients σ0, and then geo-referenced using the SRTM 3Sec as a DEM (Auto download in NEST 

software). The mean radar signals were computed for each test field. 

Table 1. Main characteristics of the X-band SAR images: Pol: Polarization, Inc: Incidence 

Angle, Desc: Descendant and Asc: Ascendant. 

Nr Sensor 
Date of Acquisition  

(dd/mm/yyyy) 

Acquisition  

Time (UTC) 

Acquisition  

Mode 

Pol  

Mode 
Inci. Orbit 

Geometric  

Resolution (m) 

1 TSX 09/11/2013 17:13:34 Spotlight HH 36° Asc 1.8 

2 TSX 20/11/2013 17:13:34 Spotlight HH 36° Asc 1.8 

3 TSX 01/12/2013 17:14:17 Spotlight HH 36° Asc 1.8 

4 TSX 12/12/2013 17:14:17 Spotlight HH 36° Asc 1.8 

5 TSX 23/12/2013 17:14:16 Spotlight HH 36° Asc 1.8 

6 TSX 14/01/2014 17:14:15 Spotlight HH 36° Asc 1.8 

7 TSX 25/01/2014 17:14:15 Spotlight HH 36° Asc 1.8 

2.3. Ground Measurements 

All ground measurements of surface soil parameters were carried out over several bare soil reference 

fields located at the Kairouan site. Between November 2013 and January 2014 (three months), ground 

campaigns were carried out at the same time as the seven satellite acquisitions. Fifteen bare soil 

reference fields were considered for soil moisture ground measurements, with different types of 

roughness ranging from smooth to ploughed surfaces. The surface areas of these study fields ranged 

between 1.6 and 17 ha. The ground measurements made on the test fields involved the characterization 

of the following soil parameters: soil moisture using a theta-probe instrument, soil roughness using a 

pin profiler, soil bulk density and soil texture. 

2.4. Soil Moisture 

For each test field, approximately 20 handheld thetaprobe measurements were made at a depth of  

5 cm. The samples were taken from various locations in each reference field, within a two-hour  

time frame between 3:40 p.m. and 5:40 p.m., coinciding with the time of each overhead satellite 

acquisition. The thetaprobe measurements were calibrated with gravimetric measurements recorded 

during previous campaigns [17]. The volumetric moisture “mv” ranged between 4.7% and 31.6 vol. % 

for all the taprobe measurements (Table 2). 
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Over the studied site, in addition to the moisture measurements carried out in test fields, a network of 

seven continuous thetaprobe stations, installed in bare soil locations, provided moisture measurements 

every 3 h (Figure 1). At each station, the measurements were made at depths of 5 and 40 cm. 

 

Figure 1. Localization of the study site and the seven continuous thetaprobe stations. 

2.5. Soil Roughness 

The surface geometry was characterized by means of a 1 m long pin profiler with a resolution of  

2 cm. Ten roughness profiles, five parallel and five perpendicular to the tillage row direction, were 

established in all reference fields during three different ground campaigns. Two main surface roughness 

parameters, the root mean square surface height (Hrms) and the correlation length (l), were determined 

from the mean correlation function, which was computed from the digitized soil profiles. Table 2 

provides the ranges of soil roughness for three experimental campaigns. It is important to note that 

sowing is generally carried out after the first rainfall, between the end of October and the beginning of 

November. As a consequence, the soil roughness dynamics during experimental campaigns are 

generally related to soil degradation. Table 2 summarizes the results of the ground measurements made 

during the campaigns. 

Table 2. Ground measurements (volumetric moisture “mv” and roughness) ranges during 

experimental campaigns. 

Date (dd/mm/yy) Soil Moisture Range (%) Soil Roughness Range (cm) 

09/11/13 4 < mv < 9 
0.54 < s < 3.2  

2.5 < l < 6.4 

20/11/13 6 < mv < 12 - 

01/12/13 5 < mv < 11 - 

12/12/13 5 < mv < 9 
0.49 < s < 3.4  

2.3 < l < 7.4 

23/12/13 20 < mv < 30 - 

14/01/14 13 < mv < 23 - 

25/01/14 7 < mv < 18 
0.38 < s < 1.9  

3.5 < l < 8 
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2.6. Soil Texture 

Soil texture measurements were carried out not only in the fifteen test fields selected for the 

development of our soil moisture methodology, but also in 55 different fields, in order to take a large 

range of soil textures into consideration. For each test field, three soil samples were collected for 

texture characterization. Various measurements were made in the laboratory, to determine the 

percentages of sand, silt and clay particles, characterizing the soil’s texture. The clay percentages 

ranged between 2.4% and 53.1% and the sand percentages ranged between 4.4% and 84.3%. 

3. Soil Moisture Retrieval 

We propose an algorithm based on the change detection method for the retrieval of surface bare soil 

moisture at a high spatial resolution. This approach takes advantage of the approximately linear 

dependence of radar backscattering signals (in decibels) on soil moisture [28,35]. The linear 

relationship is modeled as: 

 0

0dB S mv f R    (1) 

where S0 is the radar signal’s sensitivity to soil moisture (mv) and f(R) is a function of the roughness R. 

In this study, two approaches to the implementation of the change detection method are considered. 

With the first of these, roughness variations are assumed to be negligible during the radar acquisition 

campaigns. In the second approach, a simple correction is introduced in order to take the temporal 

variations in roughness into account. 

3.1. Methodology Description 

3.1.1. Negligible Roughness Effect 

We make the assumption that, during the experimental campaign, changes in soil roughness are 

insignificant in terms of any temporal change in the co-polarized, backscattered radar signal at the 

local scale. Soil roughness variations are mainly due to surface degradation that occurs after sowing, 

generally at the beginning of autumn (from the end of October to early November). Under this 

assumption, the difference between radar signals obtained by subtracting consecutive radar backscatter 

images acquired over a given area would be: 

0

0S mv    (2) 

where mv is the difference in soil moisture between two successive image acquisitions (11 day period 

for the present study). 

This can be rewritten as: 

0

0

vm
S


   (3) 

The change in soil moisture ∆𝑚𝑣,𝑡𝑜𝑡𝑎𝑙  
at the scale of a TerraSAR-X image, between two successive 

acquisitions, can be expressed as the average change over all of the image pixels: 
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where ∆𝑚𝑣,𝑥 is the moisture variation for each pixel. This can be rewritten as: 
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(6) 

S0 is estimated using Δσ0 derived from TerraSAR-X images, and ∆𝑚𝑣,𝑡𝑜𝑡𝑎𝑙 derived from moisture 

measurements produced by the network of seven thetaprobe stations covering the image scene.  

For each pair of successive images, we estimate the difference between the mean radar signals 

calculated for each of the entire radar images, over a bare soil mask. Figure 2 shows the global land 

use map estimated from an optical SPOT/HRV image acquired on 25 November 2013. In order to 

retrieve the appropriate bare soil class, an empirical NDVI offset equal to 0.21 was applied. 

 

Figure 2. Land use map. 

In this case, as a consequence of the small number of radar acquisitions (seven), we divide the full 

image into three sub-images with appreciably different soil textures, in order to increase the number of 

conditions. Figure 3 illustrates the linear relationship between the change in mean radar signal and   

∆𝑚𝑣,𝑡𝑜𝑡𝑎𝑙 
applied to the three sub-images for all successive radar images (11 days), and corresponding to a 

total of eighteen combinations. S0 is, thus, computed to be equal to 0.21 dB/vol. %. 
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This value of S0 at the studied site can be applied at the spatial resolution of the radar images, and 

for each pixel within the studied region. 
0

,

0

x
v xm

S


   (7) 

 

Figure 3. Mean radar signal difference separated into three sub-images, between two 

successive radar images (over bare soil) Δσ (dB) as a function of moisture variations 

Δmv(%), applied to 7 successive radar images. 

3.1.2. Considered Roughness Effect 

It has been shown that the accuracy with which soil moisture can be retrieved by inverse 

backscattering models is affected by the influence of the surface roughness parameter on backscattered 

radar signals [11,30,35–39]. When only one radar configuration is used (HH, 36° incidence angle), it is 

not possible to extract both soil moisture and roughness, without making additional assumptions.  

In order to take the roughness effect into account, we initially analyzed radar images acquired on the 

driest days. For these images, it was assumed that the soil moisture was approximately constant, and 

that any spatial variability in the radar signals was produced by differences in surface roughness. 

During the experimental campaign, two TerraSAR images were acquired under very dry conditions  

(9 November, and 12 December 2013). Low moisture values, equal to approximately 5 vol. %, were 

recorded on these two dates by the thetaprobe stations. Ground measurements in the fifteen test fields 

also indicated low soil moistures, associated with a standard deviation of less than 1 vol. %. We, thus, 

consider that on these two dates, the spatial heterogeneity was related to roughness variations only, such 

that the difference between the two images acquired on these two dates arise from changes in  

roughness only. 

 0 0σ (09 /11/ 2013) σ (12 /12 / 2013)x x g R    (8) 

Figure 4 illustrates the relationship between Δσ (between the two acquisition dates) and ΔR (∆Hrms), 

for the different test fields. An approximately linear relationship is observed between the radar signals 

and roughness variations. When significant changes are observed in the radar signals from the test 

fields, these are due to a decrease in roughness resulting from soil degradation with erosion and runoff. 
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Figure 4. Relationship between temporal variations in radar signal (σX
°) and soil 

roughness changes (rmsX) over test fields, between the two driest images (9 November, 

and 12 December 2013). 

We then considered local roughness variations, making the assumption that the global mean roughness 

level in the region remained almost stable during the experimental campaigns. This assumption could be 

validated by comparing the radar signal distributions corresponding to the two driest images recorded 

over bare soils. Almost the same mean (respectively −11.2 and −11.1 dB) and RMS (respectively 1.6 dB 

and 1.5 dB) were observed for the signals in these two images. The influence of roughness is, thus, 

introduced without modifying the sensitivity (S0) retrieved from the thetaprobe stations. 

Using Equations (1) and (6), the local moisture variation at the scale of a single pixel can be  

written as: 

0

,

0

( )x
v x

f R
m

S

 
   (9) 

where f(R) is the difference in radar signal resulting from roughness contributions, between  

two successive radar images. 

For the present application, g(R) is the substation of radar signals corresponding to the two driest 

images. The difference between these two images is assumed to correspond to a simple, linear temporal 

variation in radar signal (measured in dB) over the period of time separating these image acquisitions. 

This can be written: 

   
t

f R g R
T

   (10) 

where t (days) is the period between two successive images, and T is the period between the two  

driest images. 

3.2. Soil Moisture Mapping and Validation Results 

3.2.1. Moisture Estimation 

For each date dt and each pixel (i, j), the soil moisture was estimated as: 
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where 𝑚𝑣(𝑖, 𝑗, 𝑑𝑡)  is the soil moisture at pixel (i,j) and date dt , 𝑚𝑣(𝑖, 𝑗, 𝑑𝑡−1) is the soil moisture at 

pixel (i,j) and date dt-1 ,and  ∆𝑚𝑣(𝑖, 𝑗, 𝑑𝑡 , 𝑑𝑡−1)  is the temporal difference in soil moisture between the 

dates 𝑑𝑡 , 𝑑𝑡−1 at pixel (i,j). 

As discussed in Section 1, the soil moisture is considered to remain constant on the driest day. This 

is taken to be the mean value of the soil moisture measured by the ground thetaprobes. In the present 

case, the driest date (9 November 2013) is considered to represent the initial level of soil moisture, for 

the purposes of estimating soil moistures on other dates through the use of Equation (11). 

3.2.2. Validation and Mapping 

The proposed algorithms are validated by comparing the radar estimations with ground-truth 

measurements made in test fields characterized by soil moistures ranging between dry and wet 

conditions. Figure 5 shows the results of validation of the soil moisture retrieval algorithm, using  

two approaches, i.e., with and without the use of corrections for roughness variations. A very good 

agreement is found between the radar signal estimations and the ground measurements for both cases, 

with the RMSE equal to 3.3% (3.8%), and the bias equal to −0.3% (0.5%) respectively, when the 

roughness is (is not) taken into account. 

A small improvement in the accuracy of the soil moisture estimations is observed when roughness 

variations are taken into account. The test fields used for validation of our algorithm are classed into 

two different datasets, with the first corresponding to low moisture values and the second to high 

values. This behavior is related to the climatic conditions of semi-arid regions, with a limited number 

of rainfall events and very high evaporation, leading to fast drying of the soil surfaces and a low 

probability of retrieving medium moisture levels. 

All of the pixels in the bare soil class are considered to be valid candidates for soil moisture mapping. 

However, a radar signal from a small number of neighboring pixels is needed in order to minimize the 

addition of speckle noise to the results. We, thus, considered 3 × 3 pixel windows (approximately  

0.07 ha) for the computation of effective radar signals in the bare soil class, and these were then used 

to estimate the soil moisture. 

Approximately the same behaviors are also observed when moisture changes between successive 

radar acquisitions are considered (Figure 6). We observe a high level of agreement between estimations 

and ground measurements, with and without the use of corrections for variations in roughness. 

Figure 7 shows the resulting soil moisture maps computed over bare soils at different dates. For wet 

days corresponding to rainfall events, such as that of 23 December 2013 (38.6 mm recorded by  

rain-gauges on 23 December 2013), a high soil moisture level is observed for all bare soil fields, with a 

mean value equal to 25.8%. On dates characterized by medium values of soil moisture, such as  

14 January 2014 (18%), highly heterogeneous moisture values are observed. On dry dates, such as 20 

November 2013, the spatial variations of soil moisture are less significant. 
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(a) 

 
(b) 

Figure 5. Validation of the two proposed change detection approaches over 15 test fields 

(each point corresponds to one moisture condition in one test field): (a) assuming no 

change in roughness; (b) taking roughness changes into account. 

a) b)  

Figure 6. Validation of the two proposed change detection approaches over 15 test fields 

(each point corresponds to one moisture change between two successive images in one test 

field): (a) assuming no change in roughness; (b) taking roughness changes into account. 
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Figure 7. Soil moisture mapping on six different dates. 
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4. Soil Texture Retrieval 

4.1. Methodology 

Soil texture is a function of the composite fractions of clay, silt and sand, from which it is made up. 

Fine-textured soils, especially clay soils, have a good water retention capacity. The size distribution  

of the voids in a soil depends mainly on the size distribution of the mineral particles it contains.  

For example, a soil comprising mainly sand-sized particles will have a high percentage of macro pores, 

which can drain freely. Soils having predominately sand-sized particles can hold the least amount of 

water, whereas soils having predominately clay-sized particles retain a much higher volume of water 

as a result of the predominance of micro-pores. In general, the smaller the size of a soil’s particles, the 

greater its volumetric water capacity [1,4,6,7,31,40]. In Zribi et al., (2012) [34], it was shown that 

there is a relationship between the measured decrease in intensity of backscattered radar signals due to 

evaporation and infiltration, and the fraction of clay present in the soil. This can be explained by the 

fact that clay soils dry more slowly than sandy soils. In the present study, seven soil moisture maps are 

derived from radar signals, over a period of three months. On the basis of the aforementioned 

characteristics and interactions of soil texture with soil moisture, we propose to develop a simple 

relationship between the soil’s mean level of moisture content and its texture (clay or sand), using the 

data corresponding to these seven maps. Figure 8 shows the linear relationship between the soil 

moisture determined from radar signals and the corresponding texture components (clay and sand) 

over 36 test fields. 

It can be seen that the mean soil moisture clearly increases with increasing clay fraction, and 

decreases with increasing sand fraction, with correlations of R2 = 0.62, and R2 = 0.48, respectively.  

We observe a difference of approximately 5% in mean soil moisture for soils having a clay fraction 

between 10% and 48%, or a sand fraction between 7% and 58%. These results are of course coherent 

with the soil’s properties, as previously discussed. 

 

(a) 

Figure 8. Cont. 
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(b) 

Figure 8. Relationship between mean soil moisture, estimated from 7 radar moisture maps, 

and soil texture characteristics, for 34 test fields: (a) clay content (%); (b) sand content (%). 

4.2. Validation 

A second set of 34 test fields was used to validate the proposed empirical linear relationships 

between mean moisture content and clay or sand contents. Figures 9 and 10 illustrate this validation by 

comparing radar-estimated values and ground measurements, over these test fields. In the case of the 

clay content a strong correlation is observed, with an RMSE equal to 10.8% (108 g/kg). In the case of 

the estimated sand content, the accuracy is lower with an RMSE equal to 18.6% (186 g/kg). 

Following the process described above, it was possible to apply our validated model to the clay 

percentage map of these soils. On the basis of a land-use map, we took only bare soils into account.  

In order to eliminate the effects of local terrain heterogeneities and speckle in the radar signals, the soil’s 

clay content was estimated over cells defined by 3 × 3 pixel areas, corresponding to 27 × 27 m cells.  

Figure 11 shows the resulting soil clay map over the studied area. As confirmed by ground 

measurements, a generally lower percentage of clay and higher percentage of sand are observed in the 

soil of the olive groves. 

 

Figure 9. Comparison between estimated and ground truth measurements of clay content 

over 34 test fields. 
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Figure 10. Comparison between estimated and ground truth measurements of sand content 

over 34 test fields. 

 

Figure 11. Map of soil clay content. 

5. Conclusions 

This paper proposed and implemented a simple algorithm based on a change detection approach at 

the spatial resolution of the TerraSAR-X radar sensor, with auxiliary low-resolution estimates of soil 

moisture provided by a thetaprobe station network (seven points) installed on the studied site. The 

proposed approach allows the bare soil moisture and texture to be estimated, using multi-temporal 

radar acquisitions with just one configuration (one incidence angle, one polarization). 

The first originality of this approach lies in the retrieval of two soil parameters (moisture and 

texture) using just one short wavelength SAR configuration. 
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A change detection methodology is applied, through the use of two different methods. The first of 

these considers moisture variations only, during the studied period, whereas the second includes the 

influence of temporal changes in roughness on the variability of soil moisture. In this case, it is 

assumed that variations in roughness make a linearly variable contribution to soil moisture over time. 

This effect is identified by using the driest images, for which roughness is the only parameter able to 

produce spatial variations in the radar signal. 

For the two considered approaches, the soil moisture estimations were validated using ground 

measurements acquired over fifteen test fields, under different moisture conditions. These comparisons lead 

to a volumetric moisture RMSE equal to 3.8% and 3.3%, and a bias equal to 0.5% and 0.3%, respectively. 

A small improvement in estimation accuracy is achieved with the approach using roughness corrections. 

A linear relationship was then established between ground-truth measurements of clay and sand 

content over 36 fields, and the mean value of moisture estimations from the seven processed dates, 

with a correlation coefficient, R2, equal to 0.62 and 0.48, respectively. This algorithm was validated by 

comparing radar estimations and ground truth observations over 34 fields. For clay and sand, we 

retrieve an rms error equal to 10.8% (equivalent to 108 g/kg) and 18.6% (equivalent to 186 g/kg), 

respectively. It is, thus, possible to accurately map the soil’s clay content. Optimal use of this approach 

could be made during the autumn, at the beginning of the rainy season: during this period, following 

the dry season, a high proportion of bare soils can be identified. As shown by other studies, although 

these empirical relationships are adapted to the proposed site, they would need to be calibrated for use 

at other test sites. In the case of surfaces having a vegetation cover, it should also be possible to 

implement the proposed algorithm, provided the vegetation is not affected by any changes during the 

experimental campaigns. This approach could also be applied to SENTINEL1 data, allowing moisture 

estimations to be made at a higher repeat rate. High-resolution data could be considered in synergy 

with low-resolution satellite moisture products (SMOS, ASCAT, SMAP, etc.), rather than with 

auxiliary products derived from ground measurements. 
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