
Non-functional Data Collection for Adaptive Business
Processes and Decision Making∗

Bao Le Duc
Orange Labs

38-40 Av. du Général Leclerc
92794 Issy les Moulineaux,

France
bao.leduc@orange-

ftgroup.com

Pierre Châtel
Thales Communications

France
1-5 avenue Carnot

91883 Massy, France
pierre.chatel@

thalesgroup.com

Nicolas Rivierre
Orange Labs

38-40 Av. du Général Leclerc
92794 Issy les Moulineaux,

France
nicolas.rivierre@orange-

ftgroup.com

Jacques Malenfant
Université Pierre et Marie

Curie-Paris 6, CNRS, UMR
7606 LIP6

104 av. du Président Kennedy
75016 Paris, France

Jacques.Malenfant@lip6.fr

Philippe Collet
Université de Nice Sophia

Antipolis, CNRS, UMR 6070
I3S

Route des Colles, BP 145
06903 Sophia Antipolis

Cedex, France
Philippe.Collet@unice.fr

Isis Truck
Université Paris 8
2 rue de la Liberté

93526 Saint-Denis Cedex,
France

truck@ai.univ-paris8.fr

ABSTRACT
Monitoring application services becomes more and more a
transverse key activity in SOA. Beyond traditional human
system administration and load control, new activities such
as autonomic management as well as SLA enforcement raise
the stakes over monitoring requirements. In this paper, we
address a new monitoring-based activity which is selecting
among competitive service offers based on their currently
measured QoS. Starting from this use case, the late binding
of service calls in SOA given the current QoS of a set of
candidate services, we first elicit the requirements and then
describe M4ABP (Monitoring for Adaptive Business Pro-
cess), a middleware component for monitoring services and
delivering monitoring data to business processes wishing to
call them. M4ABP provides solutions for general require-
ments: flexibility as well as performance in data access for
clients, coherency of data sets and network usage optimiza-
tion. Lessons learned from this first use case can be applied
to similar monitoring scenario, as well as to the larger field
of context-aware computing.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Miscellaneous;

∗This work is supported by the French ANR (Agence Na-
tionale de la Recherche) through the SemEUsE research
project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4SOC ’09, November 30, 2009, Urbana Champaign, Illinois, USA
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

H.4 [Information Systems Applications]: Miscellaneous

General Terms
Measurement, Performance, Reliability, Management, Ex-
perimentation

Keywords
1. INTRODUCTION

Computing is now in the time of distributed systems ev-
erywhere. But, distributing tasks over a network of com-
puters entails not only the independent failure property, but
also large variations in the quality of service (QoS) enjoyed
by clients when calling distant applications and services. As
such distributed systems are more and more constructed in
a SOA settings where service offers can no longer abstract
away their QoS properties, as these become a competitive
argument among sometimes large numbers of equivalent ser-
vice offers, as in the recent evolution towards semantic SOA
where more services can be considered equivalent by relaxing
syntactic constraints.

Traditional monitoring of systems for performance and
human administration now becomes a much wider activity
where monitoring data collected on services are published,
widely or not, towards clients to provide for decision mak-
ing upon offers. In SOA, QoS commitments are published as
Service Level Agreements (SLA) along with service offers in
registries. Most QoS-aware SOA currently use this informa-
tion in a “static” way: by ensuring at service selection time
that the required QoS by business processes are matched by
the QoS offered by services, also to guarantee the overall
SLA offered by the business process to its clients. But such
static approaches are insufficient since they hardly take into
account the large variations in QoS that can be experienced
during business process execution, nor are they robust to
failures. Hence, adaptive business processes should use cur-

rent QoS and other run-time information made available by
services to adapt themselves to such variations and events.

Two run-time activities can be associated with QoS: QoS
contract enforcement and QoS-based control. In the better-
known QoS contract enforcement settings, monitoring can
concentrate on the ranges of acceptable QoS values in or-
der to detect and notify only when values become out of
these ranges. Yet, this is not an easy task, as trade-offs are
often needed between the probability to detect such SLA vi-
olations against the cost of monitoring when too much mea-
surements impair system performance. QoS-based control is
even more demanding. In this case, the monitoring system
does not know the exact use of data, which are simply deliv-
ered to clients, most of the time distant, that process them
in a decision-making settings. In both cases, however, arises
the need for tackling the quality of information, that is the
quality of service of the monitoring system. These stringent
requirements, like flexibility and performance in data access,
the coherency of data, as well as network usage optimization,
call for full-fledged distributed monitoring and data delivery
middleware subsystem. In this paper, we propose M4ABP
(Monitoring for Adaptive Business Process), a middleware
component for monitoring services and delivering timely and
coherent monitoring data to business processes, so that they
can be used in run-time decision-making settings.

The rest of the paper is organized as follows. Section 2
presents the technical framework of our contributions. Sec-
tion 3 explicits the requirements for a service monitoring
middleware component using the late-binding viewpoint as
illustration. Section 4 shows how M4ABP responds to these
requirements with a set of well-integrated solutions. Sec-
tion 5 provides performance numbers from some experimen-
tal scenario validating these solutions. Related work are
discussed in Section 6 and Section 7 closes the paper by
describing future work.

2. TECHNICAL FRAMEWORK

2.1 Monitoring
Monitoring is as old as computing. It is mundane activity

for operating systems, databases, applications servers and so
on. Two major issues are raised in monitoring systems: mea-
surement, or data collection, and data access. The typical
trade-off in measurement is frequency of the measurement
against the probability to fail to observe some important
event. High frequencies entail high performance costs, while
the gravity of the failure to observe some events is often
usage-dependent. Hence, any monitoring system shall allow
for configuration of measurement frequencies to tailor them
to clients usage. When multiple clients need the same data,
the monitoring system must arbitrate the different needs to
keep measurement costs under acceptable levels. Precision
as well as the capability to provide for sets of coherently
measured data are also crucial aspects in measurement.

Data access was of less concern as long as clients where
connected to the observed systems through high speed lo-
cal data channels, like in system administration console for
centralized data centers. Nowadays, distant clients are more
and more the norm, such that the delivery of data and its
access by distant clients becomes an issue. Availability of
networks with guaranteed transmission delays is of course
the cornerstone of timely delivery of data to the clients. In
the context of best-effort networks, time-stamping provides

for at least being aware of the freshness of data when used on
the client-side. Both in time-guaranteed and best-effort net-
works, the delay in data transmission is a crucial issue. Too
long delays impair the freshness of data, but also can have a
very negative impact on clients if they have to wait for the
transmission of data. Provisioning for no-delay access on the
client side is therefore mandatory is most applications. An-
other important issue in the delivery is network bandwidth
consumption. Besides tailoring the frequency of transmis-
sion (as in measurement) to the needs of the client, being
able to transmit only once a data when required by multi-
ple clients on one site is another crucial feature. Multicast
transmission, thanks to the underlying network, to different
sites can also help in lowering the bandwidth consumption.

2.2 SOA and Web Services
SOA and Web services have recently gained broad indus-

try acceptance as established standards. They provide for
greater interoperability and some protection from lock-in
to proprietary vendor software. However SOA can be im-
plemented using any kind of service-based technology. In
this framework, two distinct roles are identified. Service
providers implement (generic) features made available to ap-
plications as Web services, thanks to SOA standards like,
e.g., service registries. Service consumers request and use
services available on the network according to their specific
requirements through service invocations made by business
processes.

To cope with the dynamism of the Web, the binding of
Web services (from providers) to business processes (of con-
sumers) should be established on the fly, at runtime. Fail-
ure or disconnections are likely, especially in the context of
pervasive SOA. Variations in the QoS of services is also a
concern, given the very large base of equivalent service of-
fers. To achieve this, and to provide for high interoperability
among heterogeneous service offers and requests, this bind-
ing must be done as late as possible, taking into account the
latest information of services when they are needed by the
business process to be adaptive.

Monitoring of services is the key of adaptive business pro-
cess. Yet, monitoring services is slightly different from the
traditional server or application monitoring. Web services
must be able to respond to very high demands, which forces
to put behind the service entry point applications deployed
on clusters of servers, and sometimes on several distant clus-
ters. Monitoring must therefore aggregate data coming from
a potential large number of measurements sites in a seman-
tically coherent way before providing them to the clients.
Mundane, but relevant issues are the form of connection of-
fered to clients to get the data. Should monitoring requests
and monitoring itself be seen as a web service? If push mode
transmission of data is probably the preferential one to get
the data, should a pull mode be also provided?

2.3 Non-Functional Constraints
QoS and SLA are well-known in SOA. It is crucial for

business process architects to have methods and tools al-
lowing them to specify, compute and guarantee QoS of their
compositions both at static time and runtime. The need
for practical solutions for service selection based on differ-
entiated QoS is exacerbated by the number of functionally
equivalent services that is likely to grow larger over the Web
as well as pervasive environment where numerous services,

representing functionally equivalent devices spread over ar-
eas, shall be subject not only to static but also run-time
selection.

Classic approaches rely on static QoS information attached
to (SLAs) to handle QoS in service compositions. They
perform the selection of services whose advertised QoS of-
fers can satisfy the (potentially multiple) QoS requirements
of a composition before a composition is deployed on an
orchestration engine [12]. Some works leverage these ap-
proaches with domain specific languages which provide a
better separation of concern to allow an architect specifying
QoS and behavioral constraints, and associated mechanisms
over parts of their compositions [6, 4, 5].

Few works make the transition to run-time usage of QoS
data, even though the variations in QoS as well as failures
become issues in SOA, paving the way to adaptive busi-
ness processes. No doubt that QoS management in adaptive
business processes presents numerous challenges, which pre-
vented from a larger availability of such tools in currently
deployed SOA platforms. The policy-based constructs pro-
posed in [4] for example allow a business process to react to
QoS variations and to enact the re-planning of service selec-
tion at runtime. These constructs are executed by a plat-
form that cooperates in a non-intrusive way with a BPEL
orchestration engine. However, re-planning is good when
not done too often. When QoS variations or service failures
(including disconnections) occur frequently, it is better to
plan for adaptation rather than taking a repairing approach
afterward.

3. MONITORING REQUIREMENTS
This section explicits the different requirements for a mon-

itoring middleware component in the light of the QoS-aware
late-binding use case deployed in the SemEUsE platform1.
In this platform, the aim of the late-binding approach is to
establish pairings between a process and services on the fly.
This should overcome the limitation of many orchestration
engines, in which services are selected upon requests to reg-
istries at the beginning of execution, and never reconsidered
unless error handling is called upon a failure or SLA viola-
tion.

Whilst late-binding could be used to verify that candi-
date services observe their SLA before calling them, it is
not its primary role in our context. This verification is left
to other specific tools. In fact, QoS-aware late-binding re-
ally cares about selecting the best service according to their
current QoS, and on the way, caters for failures by preferring
services where QoS data are available to others. Coarsely
speaking, each service invocation point is equipped with a
capability to point several candidate services, to subscribe
to monitoring of these services and to a decision-making en-
gine. This engine will consider the current QoS data of all
candidate services, emanating from the monitoring middle-
ware, in order to elect the one to be invoked, given service
consumers preferences. From our late binding use case, we
have provided a first list of requirements on a monitoring
middleware for such QoS-based control. We now analyze
these requirements.

Coherency of data. Every piece of data used in one
decision must reflect the same state of the system. As data
providers are potentially heterogeneous, it is hard for data

1http://www.semeuse.org

consumers to reason on. The data collection component
should then provide a way to quantify the quality of a given
data set. In the specific case of late binding, as well as in
more general cases, we consider that this quality is especially
characterized by the obsolescence of data and the temporal
correlation between multiple QoS dimensions.

Flexibility in data access. For a single feature or
QoS requirement, each service provider could respond us-
ing its own “vocabulary” or measurement units (ex. mul-
tiple functionally-equivalent weather Web service providing
temperature in either Fahrenheit or Celsius values). On top
of that, a service consumer is very likely to simultaneously
work with multiple service providers. To improve flexibil-
ity, words, monitoring should overcome discrepancies over
syntactic and semantic aspects of collected data, while ef-
ficiently shielding its clients from such concerns. This is
especially true in a late binding context, where the primary
concern is on optimal service selection, independently of the
apparent heterogeneity between a service request and the
pool of available candidates.

Performance in data access. Decision-making on the
client-side shall not suffer from delays in accessing data so
that it has the slightest possible impact on business process
performance. In the case of late binding, performance is
deeply impacted by the time from late binding sends out a
data query to it received query results. We therefore con-
sider as crucial to optimize this metric, rather than the net-
work overhead and computational overhead, which also af-
fect overall performance. These latter metrics are affected
by the number of monitored data sources, the number of
queries, and the amount of generated data over a time unit.

It is also obvious that a system cannot perform well in
both performance and constraints on the quality of infor-
mation (QoI): design choices affect performance - QoI trade-
offs. A monitoring service can be considered perfectly scal-
able when it can maintain low query response time, low
resource consumption and high information quality, in the
large number of monitored resources and a large number of
queries.

Network usage optimization. Transmitting monitor-
ing data shall have the slightest possible impact also on net-
work performance. This aspect meets the previous require-
ment as trade-offs must also be realized between requested
data and their associated qualities (freshness, correlation...).

Besides, in our web-based distributed context, some level
of data protection, or security at large, should be consid-
ered. Indeed, the answer to a specific QoS monitoring re-
quest should be delivered only to its rightful consumer(s)
by implementing, for example, some kind of secured identi-
fication protocol. By design, in SemEUsE, security is built
upon the underlying framework, the PeTals Open Source
ESB2 and is not directly integrated in the monitoring or
late-binding components.

4. SYSTEM DESIGN AND ARCHITECTURE
Facing the above requirements the M4ABP middleware

component provides the following solutions. Data collected
from several sources are timestamped with a global clock
(with sufficient precision) and are temporally filtered to pro-
vide a set of data taken in the same narrow time window.

2http://petals.ow2.org/

Consequently, coherency is provided through temporal fil-
tering (cf. Section 4.1). Required QoS data are matched
with offered ones using equivalence relationships defined by
QoS ontologies, so that flexibility is provided by ontology-
based access (cf. Section 4.2). Data are transmitted to the
client-side in push mode, and then buffered until the busi-
ness process fires data requests. This ensures performance
in data access through a form of colocalization (cf. Sec-
tion 4.3). When several clients on the same node requires the
same data from the same services, the middleware pushes
the data and buffer it once for all of them. This mutual-
ization in data buffering enables some optimization in
network usage (cf. Section 4.4).

The system architecture of the monitoring service is shown
in the figure 1. Service providers typically expose data sources
which advertise a set of QoS dimensions representing current
QoS levels of their services.

QoS-aware late binding queries QoS data of relevant ser-
vices and executes its binding algorithm. The monitoring
service, collects QoS data from data sources and then pro-
cesses and stores this data. It provides a data query inter-
face which allows late binding to retrieve monitored data as
it needs. Considering that services are associated with SLA
contracts defining, among other things, QoS meta-data, such
as data source information. The monitoring service can be
optimized by only observing those metrics relevant to SLAs.

Late bindingLate binding
subscribe

data

update

data query

subscribe

Data sources

Late binding

client interface

server interface

Monitoring service

attribute interface

SLA
management

Figure 1: System architecture of M4ABP

When designing our monitoring framework, we followed a
component-based approach in order to benefit from charac-
teristics such as component self-containment and hierarchi-
cal decomposition. An overview of all components involved
in the monitoring service is given in figure 2.

The following subsections discuss our response to the pre-
viously established monitoring requirements and constraints.

4.1 Temporal Filtering
Intuitively, the QoI-based approaches introduce the idea

of how to quantify the degree of exhibited data in relation to
the reality. There are various definitions concerning different
concepts and metrics, which are mainly due to the different
objectives of the system where they are used. We handle the
coherency of data requirement by using a temporal filter
over sequenced and timestamped QoS data. From a data
consumer point of view, we distinguish two QoI dimensions
of our temporal filter:

∙ Age: A QoS data is obsolescent during the time evo-
lution. This measure specifies the minimum temporal
precision of a QoS data . The age of a QoS data di at
time t is defined as:

Data collector

View View Manager

subscribe

(remote)
data
update

(local) data query

Data Buffer

Data Adaptation

SLA
management

subscribe

View

composition

Figure 2: Component diagram of M4ABP

A(di, t) = t− di.ts

where di.ts denotes timestamps of QoS data di.

∙ Coherency : QoS data are temporally correlated. This
measure specifies the minimum temporal correlation in
a tuple of QoS data. The coherency of a n-tuple QoS
data (d1, ..., dn) is defined as:

C(d1, . . . , dn) = max(∣di.ts− dj .ts∣), ∀i = 1 . . . n, j =
1 . . . n, i ∕= j

A n-tuple (d1, ..., dn) of n-QoS dimensions is conformed to
the QoI constraints of a given couple <age, coherency> at
time t iif

A(di, t) ≤ age,∀i = 1 . . . n and C(d1, . . . , dn) ≤ coℎerency

The timestamps associating each data requires clock syn-
chronization3 between data providers.

A View encompasses a temporal filter to guarantee co-
herency of data before delivering to data consumers. This
temporal filter takes a streaming data of QoS dimensions
of services in the enclosed view and temporally produces a
sequence of QoI-conformed tuples. Note that there are dif-
ferent strategies for implementing the temporal filter. For
example, if there are multiple QoI-conformed tuples, then
an average value or latest tuple may be applied.

4.2 Ontology-based access
QoS ontology, which is instructed from SLAs, allows defin-

ing semantic matching between QoS providers and QoS con-
sumers in using their equivalence relationships. For exam-
ple, an equivalent measurement units can be made equal
using conversion functions provided by their ontology.

The flexibility in data access requirement is resolved by
integrating ontology-based data adaptation inside the mon-
itoring service. Data Adaptation aims at (1) transforming
QoS ontology to executable data adapter and (2) executing
data adapter to represent QoS data in consumer require-
ment. The former is done once after data consumers issue
data queries. The later is executed during time evolution
over sequenced QoS data before entering the Data Buffers.

3Network Time Protocol [14] can maintain time to within
10 milliseconds over the public Internet

4.3 Colocalization
We tackle the data query response time by colocalizing

the monitoring service with its consumer late binding. This
architectural strategy comes into Data Buffers which tem-
porally buffer QoS data transmitted from data sources until
late binding issues data queries. Conceptually, each Data
Buffer is responsible to cache current QoS data of a data
source.

When late binding subscribes its candidate services to be
monitored, the View Manager gets a list of concerned data
sources from associated SLA contracts, then configures Data
Collectors which are in charge to synchronize remote data
sources with the Data Buffers. The data transmission be-
tween remote data sources and Data Collectors is open to
both push and pull modes. The push mode is encouraged
due to its efficiency. Finally, the View Manager composes a
View which includes a set of Data Buffers and Data Collec-
tors relating to concerned services.

To answer the data query of late binding during decision
making time while guaranteeing the QoI constraints, a View
locally accesses QoS data from its enclosed Data Buffers and
returns to late binding after applying temporal filter.

4.4 Mutualization in data buffering
Multiple clients interested in the same candidate service

leads the intersection between multiple data queries. Mutu-
alization in data buffering aims at establishing mutual com-
munication channels and data processing spaces for common
data sources.

Indeed, during View composition for a new QoS data sub-
scription, the View Manager first looks up in the existent
Data Buffers for each concerned data source. If one has al-
ready synchronized with that data source, then it reuses this
buffer and associated communication channel rather than es-
tablishes new collectors and buffers. This simple algorithm
allows several data consumers in the same node to share the
same data from the same services. In consequence, the mon-
itoring service can optimize resource consumption in both
network bandwidth and computational resources.

5. EXPERIMENTAL EVALUATION
The prototype of M4ABP has been implemented to a

large extent on top of COSMOS4, a framework for manag-
ing context data in ubiquitous applications, and Fractal [7],
a generic component model. It interacts with Orchestra5, a
WS-BPEL 2.0 orchestration engine which allows extending
activities with late binding capabilities [9], and Dragon6, an
SOA governance solution which supports SLA management
based on the standard WS-Agreement7.

The prototype allows users to configure the synchroniza-
tion between M4ABP and its QoS data sources. In our ex-
periment, we use a parameter p = age - d to set the period
of synchronization, where age is the temporal filtering set-
ting discussed in section 4.1 and d is the guaranteed network
latency (d = 650 ms in our experiments). We now discuss
preliminary results of our experiments with the late binding
use case.

4http://picoforge.int-evry.fr/projects/svn/cosmos/
5http://orchestra.ow2.org
6http://dragon.ow2.org/
7https://forge.gridforum.org/projects/graap-wg/

Data acquisition with/without M4ABP. First, we
evaluate the data query performance of M4ABP. We simu-
late data queries of business processes nodes equipped with
QoS-aware late binding capabilities in two cases. In the
first case, the nodes acquire QoS data directly from service
providers without the use of M4ABP. In the second case,
QoS data are acquired through the M4ABP component in-
tegrated into the orchestration engine. In both cases, the
response time of QoS data queries is measured from the
nodes while the number of queries per time unit changes
gradually. The result is shown in the figure 3. Compared to
direct data acquisition, M4ABP improves significantly QoS
data query response time. This gain is mainly from network
delay time.

0

250

500

750

1000

20 60 100 140 180 220 260 300

Number of queries (per time unit)

Q
u

e
ry

 r
e

s
p

o
n

s
e

 t
im

e

(m
ili

s
e

c
o

n
d

s
)

with M4ABP without M4ABP

650

Figure 3: QoS data query response time

System performance. Next, we simulate how the tem-
poral filtering and mutualization factors impact on the sys-
tem performance. We subscribe 60 data queries, 5 data
sources per query, and oscillate the period p, and then report
the number of message exchanged over the network. The re-
sult of the experiment is given in figure 4. The different lines
in the graph correspond to a rate of mutualized services of
0%, 20% and 50% between late binding queries. We observe
that (1) the network overhead increases when the age con-
straint decreases, (2) the network overhead is significantly
reduced when the rate of multiple clients required QoS data
from the same services increases.

0,0

2,5

5,0

7,5

10,0

0,5 1,0 2,0 3,0 4,0 5,0

Period of synchronization (in minute)

n
u
m

b
e
r

o
f

m
e
s
s
a
g
e
s

(i
n

1
0
0
0
 u

n
it
)

0% mutualized services

20% mutualized services

50% mutualized services

Figure 4: Network usage of monitoring service

6. RELATED WORK
Significant research work has focused on adaptive moni-

toring. A key idea is to carefully drop some tuples [3, 15] or
to tune data sampling frequency [1] in order to reduce net-
work bandwidth and processing load but at the expense of
reducing accuracy of query answers and losing transient in-
formation. Other techniques have been proposed to address

the problem of minimizing bandwidth utilization or query
latency for refreshing updates in presence of constraints on
the age or accuracy of cached data [10, 11]. Pre-fetching
or caching [15] techniques have also been proposed, like our
data buffering system, to reduce data query response time.
Our work has some similarities to these results. However, by
employing a component-based approach, we provide an open
infrastructure to design (self-)adaptive monitoring services
addressing requirements such as coherency of data, perfor-
mance and flexibility in data access.

Research in context-aware management systems is con-
cerned with the acquisition of information to perceive sit-
uations and to adapt applications based on the recognized
context. The quality of context information has been well
studied in [8, 13, 2]. Many QoI related dimensions have been
proposed including accuracy, freshness and consistency. The
difference between these works and our system is that they
focus on context information for a specific client. Our system
provides support for performance optimization in data ac-
cess by multiple clients, as represented by the various nodes
of business processes, and intends to manage different QoI
requirements on the same information.

As discussed in section 2.3, several works have proposed
advanced Domain Specific Languages (DSL) to deal with
QoS management concern and behavioral constraints over
parts of Business Processes [6, 4, 5]. These works, however,
focus on specific constraints and are limited in the measure-
ments and metrics they can address. In contrast, our system
supports flexibility in data access. Furthermore, our con-
cepts have been presented using a late binding use case, but
we believe they are sufficiently generic to capture a diverse
range of adaptive data collection use cases. Future work are
intended to confirm this.

7. CONCLUSION AND FUTURE WORK
In this paper, we have described M4ABP (Monitoring

for Adaptive Business Process), a middleware component
for monitoring services and delivering timely and coherent
monitoring data to business processes using them in run-
time decision-making settings. The proposed system pro-
vides several complementary features: temporal filtering en-
sures data coherency, ontology-based access enables flexibil-
ity, colocalization increases performance in data access, and
mutualization in data buffering allows for optimization in
network usage.

Preliminary experiments with the late binding use case
have been illustrated. They show that the requirements
have been met with good performance as well as resource
efficiency.

Regarding future work, a short term goal is to cross-
validate current requirements with more use cases, taking
into account different scenarios and more QoI dimensions, as
well as stressing the genericity of the proposed middleware
component. Moreover, QoI should become part of a full-
fledged monitoring request DSL, and the monitoring com-
ponent shall be able to accommodate requests for different
QoI on the same data without loosing on data mutualiza-
tion. In the long term, we plan to tackle scalability issues by
providing self-adaptive capabilities to M4ABP itself and by
enabling several monitoring components to be distributed.

8. REFERENCES

[1] S. Agarwala, Y. Chen, D. Milojicic, and K. Schwan.
Qmon: Qos- and utility-aware monitoring in enterprise
systems. In Autonomic Computing, 2006. ICAC ’06.
IEEE International Conference on, June 2006.

[2] M. Anwar Hossain, P. Atrey, and A. El Saddik.
Context-aware qoi computation in multi-sensor
systems. In Mobile Ad Hoc and Sensor Systems, 2008.
MASS 2008. 5th IEEE International Conference on,
pages 736–741, 29 2008-Oct. 2 2008.

[3] B. Babcock, M. Datar, and R. Motwani. Load
shedding for aggregation queries over data streams. In
ICDE ’04: Proceedings of the 20th International
Conference on Data Engineering, page 350,
Washington, DC, USA, 2004. IEEE Computer Society.

[4] F. Baligand, N. Rivierre, and T. Ledoux. A declarative
approach for qos-aware web service compositions.
Lecture Notes in Computer Science, 4749:422, 2007.

[5] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti.
Run-time monitoring of instances and classes of web
service compositions. In Web Services, 2006. ICWS
’06. International Conference on, pages 63–71, Sept.
2006.

[6] L. Baresi, S. Guinea, and P. Plebani. WS-Policy for
service monitoring. Lecture Notes in Computer
Science, 3811:72, 2006.

[7] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. The fractal component model and
its support in java: Experiences with auto-adaptive
and reconfigurable systems. Softw. Pract. Exper.,
36(11-12):1257–1284, 2006.

[8] T. Buchholz, A. Küpper, and M. Schiffers. Quality of
context information: What it is and why we need it.
In In Proceedings of the 10th HPŰOVUA Workshop,
2003, Geneva, Switzerland, 2003.

[9] P. Chatel. Decision framework. Technical report,
Laboratoire d’informatique de Paris 6, 2009.

[10] J. Cho and H. Garcia-Molina. Synchronizing a
database to improve freshness. In SIGMOD ’00:
Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pages 117–128,
New York, NY, USA, 2000. ACM.

[11] N. Jain, P. Yalagandula, M. Dahlin, and Y. Zhang.
Self-tuning, bandwidth-aware monitoring for dynamic
data streams. In ICDE ’09: Proceedings of the 2009
IEEE International Conference on Data Engineering,
pages 114–125, Washington, DC, USA, 2009. IEEE
Computer Society.

[12] Z. Liangzhao, B. Benatallah, A. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-aware middleware
for Web services composition. IEEE transactions on
Software Engineering, 30(5):311–327, 2004.

[13] A. Manzoor, H.-L. Truong, and S. Dustdar. On the
evaluation of quality of context. In EuroSSC ’08:
Proceedings of the 3rd European Conference on Smart
Sensing and Context, pages 140–153, Berlin,
Heidelberg, 2008. Springer-Verlag.

[14] D. Mills. Simple network time protocol (sntp) version
4 for ipv4, ipv6 and osi, 2006.

[15] X. Zhang, J. Freschl, and J. Schopf. A performance
study of monitoring and information services for

distributed systems. In High Performance Distributed
Computing, 2003. Proceedings. 12th IEEE
International Symposium on, pages 270–281, June
2003.

