
HAL Id: hal-01243537
https://hal.science/hal-01243537v1

Submitted on 16 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

QoS-based Late-Binding of Service Invocations in
Adaptive Business Processes

Pierre Châtel, Jacques Malenfant, Isis Truck

To cite this version:
Pierre Châtel, Jacques Malenfant, Isis Truck. QoS-based Late-Binding of Service Invocations in
Adaptive Business Processes. ICWS 2010 - 15th IEEE International Conference on Web Services, Jul
2010, Miami, FL, United States. pp.227-234, �10.1109/ICWS.2010.74�. �hal-01243537�

https://hal.science/hal-01243537v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


QoS-based Late-Binding of Service Invocations
in Adaptive Business Processes

Pierre Châtel∗, Jacques Malenfant† and Isis Truck‡
∗Thales Communications France 1-5 avenue Carnot, Massy, 91883, France

Email: pierre.chatel@thalesgroup.com
†Université Pierre et Marie Curie-Paris 6 CNRS, UMR 7606 LIP6

104 av. du Président Kennedy, Paris, 75016, France
Email: Jacques.Malenfant@lip6.fr

‡LIASD – EA 4383, Université Paris 8
2 rue de la Liberté, Saint-Denis Cedex, 93526, France

Email: truck@ai.univ-paris8.fr

Abstract—Computing has reached the time of distributed
applications everywhere. Service-oriented architectures are more
and more used to organize such complex and highly dynamic
applications into business processes calling services discovered
in registries at load-time. In this context, Quality of Service
(QoS) and agility in business processes become key issues.
Instead of binding business processes to services at load-time,
this paper proposes to monitor sets of candidate services for
their current QoS and to choose among them at call-time. This
new form of late-binding paves the way to more agile and robust
applications called adaptive business processes. Besides the con-
ceptual background and implementation of this late-binding in
an industrial-strength web service platform, this paper presents
the LCP-net formalism introduced to provide programmers with
a mean to express qualitatively their preferences among the
different QoS properties of services, hence tackling the multi-
criteria decision making arising from the run-time choice among
candidate services given several unrelated QoS properties.

“Broadly speaking, the history of software development
is the history of ever later binding times. . . ” [1]

I. INTRODUCTION

Service-oriented architectures (SOA) deal with the growing
need for open distributed applications capable of evolving
and adapting continuously over their execution. To deal with
the high dynamicity of the Web and the large variations
in the QoS, the key proposal of this paper is to delay the
choice of services to the run-time and to use up-to-date QoS
information to perform this selection. To this end, usual service
offers are enhanced with QoS commitments, but instead of
dealing with this information statically, a loose coupling is
implemented at run-time by the late-binding of abstract service
requests (of Web processes) to concrete service offers. Central
to this approach is the assumption that QoS commitments
from the service providers express the QoS properties that
users are entitled to monitor at run-time to judge the current
performance of the service.

This paper focuses on the various steps involved in the
implementation of this novel calling process. After filtering
candidate services for each service call from registries upon

Work partly funded by the French ANR project SemEUsE (07-TLOG-018).

their QoS commitments, a connection is established with
their monitoring interfaces. During the whole execution of
the business process, up-to-date QoS values are received
asynchronously through a monitoring middleware. When the
business process calls a service, it gathers all of the current
QoS levels from all candidate services for that call and selects
the one to be called upon these.

The dynamic selection of Web services then leverages user
preferences to maximize the expected QoS from each call. In
this multi-criteria decision making context, to make the best
possible binding decisions between consumers and produc-
ers, preferences must be established among the various non-
functional properties of required services. Given the subjective
nature of these preferences, they are elicited by business pro-
cess programmers before running them. This paper recalls the
LCP-net formalism [2] to elicit and express user preferences
in a business-oriented qualitative way.

The rest of the paper is organized as follows. Section II
presents the conceptual background and related work. Sec-
tion III describes the different concepts and programming
abstractions adopted to implement the new kind of late-binding
of service calls in business process languages. Section IV
presents in more detail the LCP-net formalism, the cornerstone
of the approach since it enables programmers to express their
preferences in the service selection process, and its integra-
tion into the preceding programming abstractions. Section V
describes the current implementation. A conclusion ends the
paper, including a discussion of perspectives to this work.

II. BACKGROUND AND RELATED WORK

The section briefly details the related work concerning QoS-
awareness in SOA as well as preference modeling formalisms.

A. SOA and non-functional properties

SOA and Web services have recently gained broad industry
acceptance. However, current standards do not meet the dy-
namicity of the Web, where services appear, disappear and
exhibit large variations in their QoS even over a business
process execution. To tackle these, QoS-awareness must be



built into the run-time SOA platform to dynamically select
the best service available to fulfill each request.

Indeed, besides filtering services using non-functional con-
straints, most works on QoS-awareness have been done to
compose web services so to fulfill QoS commitments of the
business process [3], [4], [5], [6], [7]. However, this form
of composition implies a selection of a service for each
call, which is currently done at design- or load-time. In this
paper, dynamically measured non-functional levels are used to
further seek for the best offer just prior invoking the service;
completing a static filtering of candidate services with the run-
time selection of the one to be called among these.

B. Binding and binding times

First explored in the context of programming languages,
binding times and late-binding relates to the conceptual frame-
work which organizes the how and, more importantly, the
when decisions are made to bind identifiers of entities (proce-
dures, libraries, etc.) to their physical realizations to be used at
run-time. Besides the well-known and explored late-binding of
method calls in OOP, late-binding of remote calls in distributed
programming is the ability to choose the remote application
just prior to the call itself. Doing so provides not only for
more agility, but also for more robustness in the context of
failures. In this paper, we consider a new form of late-binding,
where decisions are made upon the current QoS of providers.
In SOA, this approach deals with the more competitive nature
of the service paradigms where numerous equivalent services
are competing in a highly dynamic environment.

In the context of SOA, work has been done to add dynam-
icity in service selection. Mosincat and Binder [8] implement
a binding manager that runs in background to rebind failed
services according to blackbox service selectors specifically
developed to work with the binding manager. Scene [6] pro-
poses similar ideas, but relies on user-defined rules to trigger
rebindings. The rules include user preferences but, as other
works [9], [4], do not address conflicting preferences among
QoS properties. The originality of this paper proposal lies in
the extension of the BPEL language allowing programmers
to provide for dynamicity at the business process language
level, instead of lower level libraries/middleware, and in the
LCP-net formalism providing programmers with an intuitive
tool to express their preferences among services through their
different QoS properties monitored at run-time.

C. Fuzzy Linguistic Approach and *CP-nets

Indeed, a major issue when dealing with QoS is the large
number of different dimensions (e.g. latency, precision, etc.).
Because offers are rarely the best for every QoS dimension,
preferences are needed to rank them given their relative
strength on the different dimensions. Preference elicitation and
expression have received attention in past years; several for-
malisms have been proposed. For SOA, a good formalism must
obey several requirements, among which usability by non-
specialists business process programmers, is of primary im-
portance. To this end, we have proposed a new formalism [2]

based on the combination of CP-nets and the fuzzy linguistic
approach [10] to qualitatively specify user preferences over
the different non-functional properties of offers.

Introduced by Zadeh [10], the linguistic variable concept
represents the qualitative aspect of a value, e.g. low, tall, etc.
Zadeh associates fuzzy sets to the variables, i.e. a temperature
value can be expressed by a fuzzy set whose membership
function is a mapping from [10◦C,30◦C] to [0,1]. Several
other representation models have been proposed, such as the
semantic [11], the symbolic [12] or the 2-tuple [13] ones.

Among the different models used to express the user prefer-
ences, we have chosen what we call the *CP-nets (“wildcard”
Conditional Preference Networks) family. *CP-nets are graph-
ical formalisms with several benefits such as ease of use for
the preference modeler, relatively low computation cost, and
easily extendable to support additional properties. In a CP-
net, the main elements are the nodes representing the problem
variables, the arcs denoting preferences among these vari-
ables for given values, and the conditional preference tables
(CPTs) attached to nodes [14]. CPTs indicate the preferences
depending on the other variable values (the linked nodes). CP-
nets allow for the preference modeling of statements such as
“I prefer the V1 value for property X over V2 if properties
Y = VY and Z = VZ”. They assume the ceteris paribus (all
else being equal) property. The highest node in the graph has
the highest preference. UCP-nets (Utility CP-nets) [15] replace
the binary relationships between node values by utility factors.
Thus, in this formalism, CPTs contain precise numerical
values instead of binary order relations. As for the TCP-
nets (Tradeoffs-enhanced CP-nets) [16], they implement the
conditional relative preference: “A better assignment for X
is more important than a better assignment for Y given that
Z = Vz”. New kinds of tables and arcs are introduced thereby
managing these tradeoffs.

The modeling of non-functional properties by *CP-nets has
been proposed in [17] and [18] but in the context of a static
composition of services and without considering qualitative
preferences nor continuous value domains.

III. LATE-BINDING OF SERVICE CALLS

While as late as possible service-process binding decisions
are sought, care must be taken not to overly compromise
performance. In a current QoS oriented decision, service
discovery and QoS values gathering could be done as late
as the service call-time, but this would result in very high
costs (delays). A traditional approach to mitigate the effects
of late-binding is to do preprocessing in order to avoid
inconvenient delays at call-time. Preprocessing can be done
as early as process design-time, or later on, at process load-
time. In both cases, this is static since it takes place before
process execution; be fully aware though that there is no
sharp separation between static and dynamic, but rather a
smooth transition between both ends of the spectrum, as shown
in Figure 1. This whole spectrum can be used to tune the
overall performance of the late-binding by keeping static the
most time-consuming operations (filtering and data adaptation



static dynamic

process
design

services 
orchestration
(process exec.)

process
loading

Fig. 1. From static to dynamic task execution.

generation) while making dynamic the necessary ones (QoS-
based selection and binding of the service to be called).

While this new form of late-binding paves the way to more
agile and more robust applications, we need to tackle issues
raised by its implementation. In order to do so, we focus on
the following sequential sub-steps (summarized in figure 2).

Current QoS 
monitoring
(initialization)

Filtering

S1 S3 S5

S2 S4

Functional Service Filtering

Late 
Binding

Non-Functional Service Selection

S1 S3

S1

Data adaptation

Service Invocation

static

dynamic

Data adaptation models computation

Non-Functional Service Filtering

A

B

C

Fig. 2. Services funneled through late-binding conceptual layers.

A. Service filtering

Sets of candidate services are obtained by filtering them
from the registry upon their functional and non-functional
properties. Rather than waiting until call-time, this can be
done for each call site either at process design- or load-time.
Considering computing and network-related bottlenecks, such
as the unavoidable delays to call the registry or the execution
times of the service matchmaking algorithms, static filtering
can minimize the impact of service discovery on the late-
binding process as a whole.

Data-adaptation is also impacted. Indeed, Moreau et al. [19]
have shown that design-time filtering provides for enough
time to compute elaborate data-adaptation schemes between
services requirements and selected offers sets. On the other
hand, the load-time approach forces to use simpler schemes,
but is particularly well suited when numerous functionally
equivalent services are competing in a highly dynamic en-
vironment. In this paper, as a compromise, the setting up of
the sets is postponed to process load-time where the pool of
available services is more up-to-date. The counterpart is that
data-adaptation adopts a more basic approach [20] to meet the

performance constraints. Indeed, unless requiring a very long
execution time, the business process should not wait much for
data-adaptation schemes to be computed.

Returning to the service filtering process itself, strict non-
functional requirements are injected to elect the final set of
candidate services to monitor, rejecting at the same time all the
non-conforming services upon the QoS offers they previously
registered. Another result of this filtering is to consider that the
information necessary for QoS monitoring setup is provided as
an output of the selection process. More precisely, the current
implementation uses negotiated SLA between processes and
services to carry this information to the business process.

B. Current QoS monitoring

Central to our approach is the assumption that non-
functional commitments from service offers express the QoS
properties that users are entitled to monitor at run-time,
through a specific service monitoring interface, in order to
judge the current performance of the service. After service
filtering, monitoring probes from these interfaces are identified
based on the information put in the SLA negotiated between
the business process and the candidate services. The goal is
to subscribe to the monitoring interfaces of every candidate
service for each call in the business process. Then, during
the whole execution, up-to-date QoS values will be received,
allowing for fast on-the-fly decision making.

As said earlier, QoS values could be tardily retrieved at
service call-time, but then the service call would be delayed
by the latency induced by the network for this remote query.
Indeed, a push-mode is preferable for QoS value transmis-
sion. With carefully chosen publish frequencies, the business
process can have immediately accessible “fresh” QoS values
for all candidate services to enable a fast decision at service
call-time. Optimizing this monitoring and providing for the re-
quired quality of information (precision, freshness, coherency,
...) is dealt with by a dedicated framework [21]

C. Non-functional service selection and invocation

At service call-time, five steps are required: QoS levels
gathering for candidate services, service selection, data adap-
tation for the parameters, service invocation, and finally data
adaptation of the result. QoS value gathering is done by call-
ing the montoring middleware, which provides them without
delay, thanks to the push-mode and asynchronous collection
of these data discussed above. Data adaptation amounts to
applying preprocessed transformations computed at service
filtering time, while the service call itself use standard business
process interpreters mechanisms.

Service selection requires to compare candidates services
upon several different QoS dimensions which comparisons can
contradict each other. As a multi-criteria decision problem, it
requires preferences, tailored before process execution to its
context, and applied to currently measured QoS values. These
non-functional preferences, fundamental to our approach and
which formalism is exposed in section IV, strive to maximize
the expected QoS from each call by enabling the consumer to



BS

R

very highvery low

SfullSnone

very high

BH

mediumvery low

BMBL

BH

BM

BL

very low very high

lowhigh

RH

very lowvery high

RL

Fig. 3. The imaging service QoS preferences with LCP-nets.

better specify its needs in an machine-interpretable way. They
are also very useful to deal with contradictory requirements
since they are established between the various QoS properties:
a total order over services can now be obtained at run-time,
and the final binding decisions made.

IV. LCP-NETS AND USER PREFERENCES

Selection upon non-functional properties is a multicriteria
decision making problem which is better dealt with in a qual-
itative framework, as the LCP-nets presented in this section.

A. Preference elicitation with LCP-nets

LCP-nets [2] uses qualitative assessments to allow for the
preference modeling of statements such as “I prefer the more
or less V1 value for X over exactly V2 if Y is approximately
VY and Z is a bit more than VZ”. LCP-nets allow users to
express preferences, relative importance and tradeoffs among
non functional properties quite easily with a graphical tool
using linguistic terms.

Figure 3 shows an LCP-net for an imaging service (e.g.
a security camera) where QoS properties are: security (S),
bandwidth (B) and image resolution (R). As the overall goal
is to get images as fast as possible, the user always prefers
bandwidth over security, and if the bandwidth is low, prefers
low-resolution images to get them as fast as possible. As this
example shows, the elicitation of the preferred assignments for
a specific QoS domain (or interdependent ones) is performed
using CPTs and assigning weights to the nodes, depending
on their position in the graph. Specifically, for each node, a
CPT expresses the qualitative utility of QoS values for this
dimension (e.g. very high, low, etc.), given the QoS values of
graph-related dimensions which influence this node utilities.

The semantic of the linguistic terms used to constrict QoS
values in a particular CPT is given by a prior fuzzy partitioning
of the pertaining domains normalized over [0,1], as is also the
one of the linguistic terms used to express utilities in the tables.
Figure 4 shows the discretization for the bandwidth domain.

B. Service selection led by LCP-nets and current QoS levels

With preferences elicited and expressed into an LCP-net,
several steps are required to evaluate the preference network
at run-time. Considering a service with current QoS values
over S, B and R, the focus is on the computation of its
global utility by injecting these values into the LCP-net. With

bandwidth
0

1

1

BL BM BH

0.50.3

Fig. 4. Bandwidth QoS domain fuzzy partitioning.

multiple services involved, the ultimate goal is indeed to select
the service offering the best utility.

As a preprocessing step of LCP-net evaluation, CPTs are
translated and mapped to fuzzy rules (e.g. in Figure 3: “if
R = RL and B = BL then preference is very high”), then
aggregated into corresponding Fuzzy Inference Systems (FIS)
for each table. At service call-time, QoS values are injected
in the evaluation process after normalization and fuzzification
(e.g. a 0.3 singleton fuzzy subset for a crisp 30Kb/s bandwidth
value, as shown in figure 4). For each preference table, the
corresponding FIS allows for the computation of the local node
utility. Utilities are obtained as crisp or fuzzy values.

Nodes have weights capturing their importance (position)
in the graph, which are distributed (summing to 1) according
to a decreasing function (see [2] for details). In the example,
they are: (B, 0.529), (S, 0.235) and (R, 0.235). The global
utility value is then the weighted aggregation of the local
utility values. After applying this process to every considered
service, the one offering the largest global utility is selected
and passed-on to the late-binding framework for invocation.

C. A new feature: incremental definition of LCP-nets

Pragmatically, programmers often have similar preferences
applying to several service call sites, with eventually slight
changes to cope with the specifics of each call. Instead of
repeating most of the preference network each time, a nice
feature is to be able to factor common preferences into a shared
base LCP-net, and to locally add the specific preferences. To
this end, we introduce LCP-net fragments, constructs, built
over an existing LCP-net, describing unambiguously additions,
deletions (with anti-fragments) or modifications (with modifier
fragments) to any base LCP-net element. The general form of
a fragment follows the same pattern and graphical nature of a
classic LCP-net construct, each base LCP-net construct (nodes,
arcs and tables) having a corresponding derived fragment type.

Possible integrations of this new feature of the LCP-net
formalism can be envisioned for BPEL, where LCP-nets
and fragments could be attached to specific activities and
their lexical scope exploited to link fragments to the base
LCP-net. It should therefore optimize preference usage by
reducing repetitions, the direct consequence being savings on
development costs by fostering reusability across the board,
as highlighted by the SOA philosophy.

To illustrate the incremental definition process, we com-
pose the previous LCP-net ImagingPref with a fragment
ImagingPref frag to obtain a new LCP-net NewImagingPref .



Imaging Service LCP-net modifier

Modifier fragment
Anti-fragment

Standard LCP-net element
Base LCP-net reference

high

ZH

mediumlow

ZMZL
Z

R

B
high

BH

low

BL

B

B

Fig. 5. Imaging service preference fragment.

This fragment removes the preference on resolution (R) and
replaces it by ones on a newly introduced zoom (Z) QoS
property. It also changes the type of arc between B and Z, and
the utility values from the bandwidth (B) CPT table. Finally,
the NewImagingPref preference resulting from its application
is given in its graphical form in Figure 6.

BS

Z

very highvery low

SfullSnone

high

BH

mediumlow

BMBL

high

ZH

mediumlow

ZMZL

Fig. 6. Modified imaging service QoS preferences..

V. IMPLEMENTATION

QoS-based late-binding has been implemented in the three-
year SemEUsE project funded by the French National Agency
for Research. Started in 2008, it brings together several
academic and industrial partners (Thales, Orange Labs, EBM
Websourcing, LIP6, INSA, INRIA, INT) with the goal of
fostering a “Semantic Middleware” that allows for the imple-
mentation of “pervasive, flexible and reliable applications”.

The parallel between SemEUsE architecture and abstract
concepts such as service filtering, selection and invocation
is illustrated in Figure 7 through a simple abstract example.
Multiple services from a registry, ranging from S1 to S5,
are funneled through each implemented logical step until one
service (S1) selected upon its current QoS values and stati-
cally defined LCP-net preferences, is invoked. In SemEUsE,
functional and non-functional service filtering is being taking
care of by the service registry, while non-functional service
selection and invocation is implemented by the late-Binding
component alongside dynamic orchestration.

A. LCP-net preferences definition

The LCP-net model, including all its core constructs, has
been defined using the Eclipse Modeling Framework (EMF),

Service 
Registry

Dynamic Orchestration

Late Binding

Monitoring

S1

S2

S3

S4

S5

S1 S3

Current QoS of
S1 and S3

User
Preferences S1

Functional & 
Non-Functional 
Service Filtering 

1

SemEUsE Architecture Logical StepsData

Non-Functional 
Service Selection

2

Service Invocation

3

Fig. 7. SemEUsE architecture overview.

an Eclipse-based modeling and code generation facility for
building tools based on a structured data model. Our partic-
ular model is an ecore file serialized under the XMI OMG
standard, which should ensure its sustainability and provides
the foundation for interoperability with other modeling tools.

This model specification produces a set of correspond-
ing Java classes and a set of adapter classes that enable
viewing and command-based editing of the model. As such,
LCP-net can be constructed programmatically by an external
software component. However, in our context, LCP-nets are
manually defined before run-time. As a result, building over
this set of Java classes, a basic graphical editor has been
implemented to ease both preference elicitation and definition.
Its GUI is reproduced in a compact way by figure 8: the
monitoring_preferences.lcpnet file is editable as a tree, each
constitutive element being selectable to edit its properties (e.g.
name, linked elements, etc.) in a dedicated Properties panel.
The next logical step will be to enable a “real” graphical

Fig. 8. LCP-net editor GUI.



representation for each core LCP-net construct in the editor,
using the Graphical Modeling Framework (GMF).

Listing 1. Imaging service LCP-Net – XML excerpt

<LCPnet:LCPnet name="Imaging_Service" (...)>
<nodes xsi:type="LCPnet:LNode" name="bandwidth"

outArcs="(...)">
<domain xsi:type="LCPnet:LNodeValue" name="

Bandwidth_Low" linguisticValue="(...)"/>
<domain xsi:type="LCPnet:LNodeValue" name="

Bandwidth_Medium" linguisticValue="(...)"/>
<domain xsi:type="LCPnet:LNodeValue" name="

Bandwidth_High" linguisticValue="(...)"/>
<domain xsi:type="LCPnet:CNodeValue" name="

Bandwidth_measured_value" crispValue="1.0"/>
<linguisticTable> ... </linguisticTable>

</nodes>
<nodes xsi:type="LCPnet:LNode" name="resolution"

inArcs="(...)">
<domain xsi:type="LCPnet:LNodeValue" name="

Resolution_Low" linguisticValue="(...)"/>
<domain xsi:type="LCPnet:LNodeValue" name="

Resolution_High" linguisticValue="(...)"/>
<domain xsi:type="LCPnet:CNodeValue" name="

Resolution_measured_value" crispValue
="0.51"/>

<linguisticTable> ... </linguisticTable>
</nodes>
<arcs xsi:type="LCPnet:IArc" name="BtoS" startNode

="//@nodes.1" endNode="//@nodes.0"/>
<arcs name="BtoR" startNode="//@nodes.1" endNode

="//@nodes.2"/>
<valueDomains name="Bandwidth">
<subsets name="Bandwidth_Low">

<fuzzySubset y="1.0"/>
<fuzzySubset x="0.5"/>

</subsets>
(...)

</valueDomains>
(...)
</LCPnet:LCPnet>

In any event, there is no need from a preference modeler
perspective to directly manipulate an XML document: serial-
ization is handled by the editor and EMF support framework.
Should this be required anyway later on, it is currently possible
to directly write or modify a LCP-net instance at the XML
level, by obeying the same fairly simple syntax used for
automatic serialization: listing 1 provides an excerpt of the
XML document for the imaging service LCP-net.

Listing 2. Imaging service LCP-net fragment – XML excerpt

<fragments:LCPnetFragment (...)
fragmentName="imaging_service_fragment">

<baseLCPnet href="imaging_service.lcpnet#/"/>
<nodes xsi:type="fragments:LNodeFragment"

name="" fragmentName="R_antifragment"
antiFragment="true">

<baseLNode href="monitoring_preferences.lcpnet#//
@nodes.2"/>

</nodes>
<nodes xsi:type="LCPnet:LNode" name="Z" inArcs

="//@arcs.1" valueDomain="//@valueDomains.0">
<domain xsi:type="LCPnet:LNodeValue"

name="Zoom_Low" linguisticValue=(...)/>
<domain xsi:type="LCPnet:LNodeValue"

name="Zoom_Medium" linguisticValue=(...)/>
<domain xsi:type="LCPnet:LNodeValue"

name="Zoom_High" linguisticValue=(...)/>

<linguisticTable name="zoom_cpt">
(...)

</linguisticTable>
</nodes>
<arcs xsi:type="LCPnet:IArc" name="BtoZ" startNode

="//@nodes.2" endNode="//@nodes.1"/>
(...)
</fragments:LCPnetFragment>

The new fragment construct also benefits from an EMF
specification and implementation. The same tools used for
LCP-net elicitation are used for fragment definition. As such,
an excerpt from the XML definition of the previously in-
troduced ImagingPref frag , as in section IV-C, is given in
listing 2, putting an emphasis on:

• the initial import of the imaging_service.lcpnet base
LCP-net (that would be deduced automatically from the
lexical scope in our envisioned BPEL integration);

• the deletion of the node R and its attached CPT, through
a node anti-fragment.

• the introduction of a new Z node and BtoZ arc by the
definition of their fragments;

• the use of XPath expressions to refer to any elements
from imaging_service.lcpnet .

Our LCP-nets framework is now available as a free
download under the GPLv3 license at Google Code
http://code.google.com/p/lcp-nets/.

B. Service filtering: from abstract to extended BPEL business
process

In SemEUsE, a UDDI [22] like service registry has been
implemented. It supports both functional and non-functional
service requests at the syntactic and semantic levels. Filtering
is driven by a matchmaking algorithm using the relationships
between the various ontological concepts used to annotate
the more common syntactic information (method or operation
names, data types and QoS properties). OWL-DL [23] has
been chosen to define the related ontologies since it gives some
guarantees on the outcome of the reasoning process.

Functional service requests (and offers) are provided to the
registry as SAWSDL [24] specifications, while non-functional
ones are given by WS-agreements [25]. Final negotiated WS-
agreements computed by the registry for each filtered service
contain all the necessary information for monitoring probe
deployment, and defines, inside an inline QML-based spec-
ification [26], all the QoS constraints fulfilled by the service.

The registry is queried, and services filtered, when abstract
business processes are translated into extended BPEL pro-
cesses. In SemEUsE, this translation is made at abstract pro-
cesses load-time. In these abstract processes, service binding
parts have been left out, since available services are not known
at design-time. They are filled in with information provided
by the registry, and then a runnable extended BPEL process
is obtained and can be evaluated.

Listing 3. Resulting extended BPEL process excerpt

<process name="semeuse" (...) >



<!-- (...) Import client WSDL, define partner links
, define variables -->

<sequence name="main">
<extensionActivity>

<semeuse:lateBindingConfigure invocationID="
invocation1" preference="prefs.lcpnet">

<semeuse:candidateServices>
<semeuse:service EPR="service1" portType="

service1PT" operation="getVideo"
contract="wsag1.xml"/>

<semeuse:service EPR="service3" portType="
service3PT" operation="getVideo"
contract="wsag3.xml"/>

</semeuse:candidateServices>
</semeuse:lateBindingConfigure>

</extensionActivity>
<extensionActivity>
<semeuse:monitoring state="start" />

</extensionActivity>
<!-- (...) Receive input from requester. -->
<extensionActivity>
<semeuse:lateBindingInvoke invocationID="

invocation1" inputVariable="invoke_in"
outputVariable="invoke_out"

preference="prefs.lcpnet"/>
</extensionActivity>
<!-- (...) Generate reply to request -->
<extensionActivity>
<semeuse:monitoring state="stop" />

</extensionActivity>
</sequence>
</process>

In this extended BPEL process, three new late-binding
centric extended activities can be found: lateBindingConfig-
ure, responsible for setting up monitoring; monitoring, for
launching and controlling it; and finally lateBindingInvoke, for
initiating service selection and invocation. The BPEL process
excerpt given in listing 3 integrates these activities in the
previous imaging service scenario. Since its is obtained after
selection, only candidate services are mentioned (service1 and
service3, as in figure 7).

In SemEUsE, Orchestra has been chosen as the business
process orchestration engine and Petals as its service bus. The
engine, which provides an accomplished implementation of the
BPEL extension mechanism, allows us to write three dedicated
classes to process these required activities when encountered
during process execution. These classes act as proxies to
the LCP-net decision engine and monitoring framework: they
retrieve the necessary configuration arguments, pass them on,
and trigger the corresponding actions (monitoring configura-
tion, launch, and service invocation) in these modules.

The Java classes are extensions of the abstract class org.

ow2.orchestra.definition.activity.AutomaticActivity

which itself inherits from AbstractActivity. This method
allows for the implementation of advanced business logic
alongside the usual BPEL workflow, with a certain level
of visibility and interaction over the execution context
made possible through a org.ow2.orchestra.runtime.

BpelExecution variable.

C. Current QoS monitoring with the M4ABP middleware

Probes and monitoring interfaces are provided by an exter-
nal middleware designed with adaptive business processes and

decision making in mind: M4ABP (Monitoring for Adaptive
Business Process) [21]. Configuration of M4ABP is made with
the information contained in lateBindingConfigure activities,
as can be seen in Listing 3, where needed technical (such
as the End Point Reference, Port Type or operation name)
and non-functional information (LCP-net preferences and WS-
agreements URLs) is provided. At this point, the LCP-net
preference file is only used to determine which QoS properties
should be monitored; most of the related technical information
needed for probe deployment is contained in the negociated
WS-agreements (wsag1.xml and wsag3.xml). An excerpt of the
second one is given in Listing 4.

Listing 4. WS-agreement excerpt for service3

<agreement:Agreement (...) >
<name>wsag3</name><agreementId>id</agreementId>
<context/>
<terms><all>
<serviceDescriptionTerm name="getVideo"

serviceName="getVideo" />
<serviceProperties name="getVideo" serviceName="

getVideo">
<variableSet>
<variable name="resolution">
<location xsi:type="semeuse:WSBinding"
mode="pull" type="ws"
epr="http://localhost:8080/services/Camera3"
operation="getResolution" />

</variable>
<variable name="bandwidth">
<location xsi:type="semeuse:WSBinding"
mode="pull" type="ws"
epr="http://localhost:8080/services/Camera3"
operation="getBandwidth" />

</variable>
(...)
</variableSet>
</serviceProperties>

</all></terms>
</agreement:Agreement>

Following directly, monitoring of services is launched by the
monitoring extended activity with the start argument. Since
both the lateBindingConfigure and monitoring activities are
placed at the very beginning of the BPEL process, current
QoS monitoring effectively starts before the evaluation of the
BPEL process “business” body, at load-time.

D. Late-binding in Orchestra

The lateBindingInvoke activity implements the run-time
service selection over candidate service sets, using the current
QoS values being provided by M4ABP and the LCP-net
specified preferences. Indeed, the binding decisions between
processes and services are made upon service utilities through
the LCP-net evaluation process explained in section IV.

The LCP-net engine, which is the component responsible
for outputting the global utility for each considered service,
has also logically been implemented in Java, to maximize its
integration with the whole framework. At its core, the jFuzzy-
Logic library processes QoS levels inputs through computed
Fuzzy Inference Systems in order to obtain local utilities for
each monitored QoS dimensions. Indeed, it implements the



standardized Fuzzy control language (FCL) specification (EC
61131-7) under which our FISs are serialized.

After selection, the remote invocation of the bound service
is passed on to the underlying Orchestra and Petals support in-
frastructure, leaving only data adaptation concerns on services
inputs and outputs to be solved. Since service filtering has
been made at process load-time, the necessary data adaptation
schemes have also been computed at the same time, leaving
only their application at invocation-time. As indicated earlier,
generating data adaptation at load-time forces to use simpler
matching schemes than the ones used offline, which are too
computationally involving. The objection that fewer services
can then be matched is largely offset by the vast offering of
functionally-equivalent services promoted by Semantic SOAs
giving more choices for matching.

VI. CONCLUSION

In this paper, a new programming abstraction, QoS-based
late-binding of service invocations, has been proposed to
provide for more agility to business process execution. Based
on current QoS values of a set of services and user preferences
expressed in a qualitative way, the service selection elects
and calls the current best offer among equivalent concrete
candidate services capable of answering a call to an abstract
service functionality. A new formalism, called LCP-nets [2],
is used to allow non-specialist programmers to qualitatively
express their preferences among values of the different QoS
properties in this multi-criteria decision making process.

This new programming abstraction has been implemented
as BPEL extended activities for the Orchestra engine. These
extended activities use an implementation of LCP-nets in EMF
providing for both the creation of LCP-nets by programmers
and their use at run-time in the decision making. QoS data are
gathered by a monitoring middleware [21], which organizes
and optimizes the regular flow of data from services to the
business process and provides for their buffering for immediate
access and gathering when the late-binding decisions must be
made upon them. This data mediation layer also provides some
means to ensure the temporal coherence of the monitoring data
bundled for each late-binding decision, a key dimension in the
quality of information for such middleware.

Perspectives and future work are numerous. More exper-
iments and performance measurements are needed to fine
tune the current implementation. Currently, the incremental
definition of LCP-nets is limited to two levels, and it is
implemented in a statically scoped way in BPEL. Allowing
more levels and providing them as first-class entities would
provide for even more flexibility to programmers in order to
share common preferences among decision sites in complex
business processes. The monitoring shall be extended to cope
with more quality of information properties for monitoring
data, such as its freshness, its precision, etc.

REFERENCES

[1] M. Halpern, “Binding,” in Encyclopedia of Computer Science, 3rd ed.,
A. Ralston and E. Reilly, Eds. Chapman & Hall, 1993, p. 125.

[2] P. Châtel, I. Truck, and J. Malenfant, “A linguistic approach for non-
functional preferences in a semantic SOA environment,” in Proc. of the
8th Int. FLINS Conf., 2008.

[3] L. Zeng et al., “QoS-aware middleware for web services composition,”
IEEE Trans. Software Engineering, vol. 30, no. 5, pp. 311–327, 2004.

[4] G. Canfora et al., “Service composition (re) binding driven by
application-specific qos,” LNCS, vol. 4294, p. 141, 2006.

[5] G. Chafle et al., “Adaptation in web service composition and execution,”
in Int. Conf. on Web Services, 2006.

[6] M. Colombo, E. D. Nitto, and M. Mauri, “SCENE: A Service Composi-
tion Execution Environment Supporting Dynamic Changes Disciplined
Through Rules,” in ICSOC’06, ser. LNCS, no. 4294. Springer-Verlag,
2006, pp. 191–202.

[7] D. Chiu, S. Deshpande, G. Agrawal, and R. Li, “A Dynamic Approach
toward QoS-Aware Service Workflow Composition,” in Int. Conf. on
Web Services. IEEE Computer Society, 2009, pp. 655–662.

[8] A. Mosincat and W. Binder, “Transparent Runtime Adaptability for
BPEL Processes,” in Service-Oriented Computing - ICSOC’08, ser.
LNCS, no. 5364. Springer-Verlag, 2008, pp. 241–255.

[9] J. Siljee, I. Bosloper, J. Nijhuis, and D. Hammer, “DySOA: Making
Service Systems Self-adaptive,” in ICSOC’05, ser. LNCS, no. 3826.
Springer-Verlag, 2005, pp. 255–268.

[10] L. Zadeh, “The Concept of a Linguistic Variable and Its Applications to
Approximate Reasoning,” Inf. Sci., Part I, II, III, vol. 8,8,9, pp. 199–249,
301–357, 43–80, 1975.

[11] R. Degani and G. Bortolan, “The Problem of Linguistic Approximation
in Clinical Decision Making,” International Journal of Approximate
Reasoning, vol. 2, pp. 143–162, 1988.

[12] I. Truck and H. Akdag, “A Tool for Aggregation with Words,” Inf. Sci.,
Special Issue: "Linguistic Decision Making: Tools and Applications",
vol. 179, no. 14, pp. 2317–2324, 2009.

[13] F. Herrera and L. Martínez, “A 2-tuple fuzzy linguistic representation
model for computing with words,” IEEE Transactions on Fuzzy Systems,
vol. 8, no. 6, pp. 746–752, 2000.

[14] C. Boutilier et al., “CP-nets: A tool for representing and reasoning
with conditional Ceteris Paribus Preference Statements,” J. of Artificial
Intelligence Research, vol. 21, pp. 135–191, 2004.

[15] C. Boutilier, F. Bacchus, and R. I. Brafman, “UCP-Networks: A directed
graphical representation of conditional utilities,” in Proc. of the 17th
Conf. on Uncertainty in Artificial Intelligence, 2001, pp. 56–64.

[16] R. I. Brafman and C. Domshlak, “Introducing variable importance
tradeoffs into CP-nets,” in Proc. of the 18th Conf. on Uncertainty in
Artificial Intelligence, 2002, pp. 69–76.

[17] C. Schröpfer et al., “Introducing preferences over NFPs into service
selection in SOA,” in Proc. Non Functional Properties and Service
Level Agreements in Service Oriented Computing Workshop (NFPSLA-
SOC’07), 2007.

[18] G. R. Santhanam, S. Basu, and V. Honavar, “TCP - Compose* - A TCP-
Net Based Algorithm for Efficient Composition of Web Services Using
Qualitative Preferences,” in ICSOC’08, ser. LNCS, no. 5364. Springer-
Verlag, 2008, pp. 453–467.

[19] A. Moreau, J. Malenfant, and M. Dao, “Data Flow Repair in Web
Service Orchestration at Runtime,” in 4th Int. Conf. on Internet and
Web Applications and Services, ICIW 2009. IEEE Computer Society
Press, 2009, pp. 43–48.

[20] P. Châtel, “Toward a Semantic Web service discovery and dynamic
orchestration based on the formal specification of functional domain
knowledge,” in Proc. of the 20th Int. Conf. on Software & Systems
Engineering and their Applications, 2007.

[21] B. Le Duc et al., “Non-functional Data Collection for Adaptive Business
Process and Decision Making,” in Proc. of MW4SOC’09 Workshop,
2009, pp. 7–12.

[22] F. Curbera et al., “Unraveling the Web Services Web: an introduction to
SOAP, WSDL, and UDDI,” IEEE Internet computing, pp. 86–93, 2002.

[23] D. McGuinness et al., “OWL web ontology language overview,” W3C
recommendation, vol. 10, pp. 2004–03, 2004.

[24] J. Kopeckỳ, T. Vitvar, C. Bournez, and J. Farrell, “SAWSDL: Semantic
annotations for WSDL and XML schema,” IEEE Internet Computing,
vol. 11, no. 6, pp. 60–67, 2007.

[25] A. Andrieux et al., “Web services agreement specification (WS-
Agreement),” in Global Grid Forum, 2004.

[26] S. Frølund and J. Koistinen, “QML: A Language for Quality of Service
Specification,” Software Technology Laboratory, Hewlett-Packard, Tech.
Rep. HPL-98-10, 1998.


