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Abstract—Video game is a very lucrative industry, unleashed
by the ubiquity of gaming devices, multi-player networks and
live broadcasting platforms. Games generate large amounts of
behavioural data which are valuable to face the new chal-
lenges of video game analytics such as detecting balance issues,
bugs and cheaters. In electronic sports (e-sports), cyberathletes
conceal their online training using different aliases or avatars
(virtual identities), which allow them not being recognized by
the opponents they may face in future competitions (with cash
prices challenging already most of the traditional sports). It was
recently suggested that behavioural data generated by the games
allows predicting the avatar associated to a game play with high
accuracy. However, when a player uses several avatars, accuracy
drastically drops as prediction models cannot easily differentiate
the player’s different avatar aliases. Since mappings between
players and avatars do not exist, we introduce the avatar aliases
identification problem and propose an original approach for alias
resolution based on supervised classification and Formal Concept
Analysis. We thoroughly evaluate our method with the video game
Starcraft 2 which has a very wide and active community with
players from diverse cultures and nations. We show that under
some circumstances, the avatars of a given player can easily
be recognized as such. These results are valuable for e-sport
structures (to help preparing tournaments), and game editors
(detecting cheaters or usurpers).

I. INTRODUCTION

Currently, video games are a popular and lucrative industry
generating more revenue than both Cinema and Music. This
recent and fast development has been catalysed by several
factors. First, an increasing part of the population has access to
connected electronic devices (computers, smart-phones, etc.),
and to the Web including a myriad of single and/or multi-
player games. Video games are now a popular leisure activity.
Furthermore, the recent development of competitive gaming
and live video game streaming platforms [8] makes electronic
sports (e-sports) a reality [15]. Professional players on contract
with teams and sponsors are taking part in competitions with
cash prices challenging already most of the traditional sports.
Cyberathletes are widely followed in so-called off-line events
and daily supported on the Web through their own live broad-
casts [8] generating the fourth largest stream of data in 2015 for
the platform, Twitch.tv. People not only enjoy playing, but also
enjoy watching the others for a variety reasons [3], [8]. Games
generate tremendous amounts of behavioural data, valuable
to face the many new industrial challenges such as detecting
balance issues [2], bugs and cheaters [18], but also valuable
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for several academic fields such as artificial intelligence [12],
computer human interactions [21] and cognitive sciences [16].

In this paper, we introduce a new problem: the avatar
aliases identification problem. In most of online competitive
games, players need an “avatar” (i.e., an online identity) to
log in the game network. Nothing forbids a player to have
several avatars and actually, it is a very common practice
for professional players, or cyberathletes, of several video
game franchises (e.g. League of Legends, Starcraft 2, Dota 2,
Counter Strike). Players generally have one official avatar for
official tournaments, and several others to conceal their tactics
while playing without being recognized by other players they
may meet online: global rankings and leagues are public just
as in chess and tennis, while game logs (called replays) are
available and prone to analysis by means of visualization1,
machine learning and data mining techniques [9], [14] just as
in standard sport analytics. Accordingly, we are facing a set
of players, generating behavioural data (game logs or traces),
in a one-to-many relationship with avatars (the many-to-many
relationship will be discussed later). Our goal is not to discover
this mapping, since players privacy is protected. Instead,
the avatar aliases identification problem aims at discovering
groups of avatars belonging to the same player. Solving this
problem is motivated by the growing need of e-sport structures
to study the games and strategies of the opponents (tournament
preparation), and the security challenges of game editors
(detecting usurpers).

Recently, it was suggested that behavioural data hide
individual identifying patterns [16], [21], (tested on the real
time strategy game Starcraft 2 ( c©Blizzard)). After choosing
features related to keyboard usage, Yan et al. showed that
a classifier can be trained to predict with high accuracy
the avatars involved in a game play [21]. Nevertheless, they
purposely considered datasets without players having several
avatars (what we call avatar aliases). Indeed, in presence
of such avatar aliases, the prediction accuracy drastically
degrades, since prediction models fail at differentiating two
avatars of the same player. We build on this work by proposing
an approach called DÉBROUILLE for answering the avatar
aliases identification problem: it relies on mining confusion
matrices yielded by a supervised classifier using Formal Con-
cept Analysis [5], and exploits the confusion a classifier has
in presence of avatar aliases when they belong to the same
player. Experimental evaluation shows very good results under
certain restrictions imposed to the set of players involved
in a dataset. The remainder of this paper is organized as

1For example, https://sites.google.com/site/sc2gears/ for Starcraft 2



follows. Section II introduces the problem settings, our claims
and goals. We formally present an original methodology in
Section III for discovering avatar aliases and the evaluation
strategy in Section IV. Our results are assessed through an
extensive evaluation in Section V. Related work is discussed
in Section VI before we conclude.

II. PROBLEM SETTINGS

A. Starcraft 2 in competitive gaming

We study the real-time strategy game (RTS) Starcraft 2,
a franchise released in 2010 which met success in compet-
itive gaming and e-sports [15]. A standard game involves
two players and each chooses a faction (Zerg, Protoss or
Terran) with different weaknesses and strengths (following a
rock/paper/scissors principle). Players control buildings and
units through an aerial view of the battleground map, collect
resources to build an army and achieve victory by destroying
the opponent’s forces. A player needs an avatar to enter
the dedicated multi-player system called Battle.net. In
the context of e-sport, our careful attention is given to the
avatar aliases identification problem that affects the game2.
Nothing forbids a user from having multiple avatars, which
is actually a common practice among professional players
for a variety of reasons. For example, as they compete in
international tournaments, they may need an avatar in each
different Battle.net server (USA, Europe, Korea, etc.). Another
important reason is that professional users may need to hide
their tactics while training before competitions. For this reason,
cyberathletes may create different avatars with names such as
lIlIllIlIlll called bar code avatars (as in Table III) for
practising on public servers without being recognized. Practise
on public networks corresponds to a major time of their
activity [15]. Currently, among the best 50 avatars in the global
Starcraft 2 ranking system, 46 avatars are bar code3. As argued
in the introduction, multi-aliases prompt several problems. Our
goal is to formalize and solve the avatar aliases identification
problem which consists in finding avatars belonging to the
same player without any information about the individual but
his game behaviour.

B. Behavioural data

During a game, a player performs a series of actions which
generates a trace. Basic actions rely on mouse usage, provided
with semantics: “selection of a unit”, “attack with selected
unit”, “collect resources with selected unit”, etc. Many (if not
all) of these actions can be performed with the mouse by
selecting a series of menus on the screen. However, to improve
the amount of actions a user can perform per minute (a critical
issue in this kind of video games), expert players prefer to
bind these actions directly to the keyboard through the use of
customized hotkeys, also called control groups [21]. As such,
any action, done through mouse or keyboard, is stored in replay
files that are available on the Web and usable for observing and
studying other players strategies. Replays constitute extremely
rich behavioural data, and we use them for answering our
problem. Table I shows two traces associated to a single game:
Player TAiLS starts by selecting with the mouse a building

2Multi-aliases are known as “smurfs” players within the gamer community.
3http://www.sc2ranks.com visited on 2015, May 28th

called Base, assigns it to hotkey 1 (a), selects some units with
the mouse (s), select units attached to hotkey 2 (s), etc.

Avatar Game trace Outcome
RorO s,s,hotkey4a,s,hotkey3a,s,hotkey3s, ... Lose
TAiLS Base,hotkey1a,s,hotkey1s,s,hotkey1s, ... Win

Table I: Traces of a match for two players

C. Predicting avatars from behavioural traces

Let us consider the following scenario. Given a trace, is it
possible to find its associated avatar? In Table I, given the trace
in the first row, is it possible to say that the avatar associated to
it is RorO? We can approach this question from a classification
point of view. Given a training set of traces labelled with their
associated avatars, we would like to classify new “instances”
(new traces) in the space of classes represented by the set of
avatars. As such, we can apply any supervised classification
technique in this direction. Recently, Yan et al. [21] suggested
that behavioural data, as presented in the previous subsection,
offer predictions with high accuracy, when there are no aliases
in the dataset. In presence of aliases however, the accuracy
drastically drops, as trained models are not able to differentiate
properly different avatars of a same individual.

The reason why game traces allow good avatar predictions,
when there are no aliases, is related to the cognitive process
involved in the activity of playing [16]. A game of Starcraft 2
is short (between 15 and 20 minutes in average), in real time,
and several tasks and strategies are repeated thousands of
time to be achieved instinctively: mastering the game requires
an intense multi-tasking activity (not sequential) and daily
practise. Novice’s traces will seem messy during the learning
process, but will converge with practise towards distinctive
patterns, or individual signatures.

D. Towards confusion clustering to identify avatars aliases

In general, players use several avatars that generate traces.
This is modelled in Figure 1. The mapping owns : Player →
Avatar is however not known (or very partially by the game
editor that keeps it private). The only information available
is the mapping generates : Avatar → Trace. Notice that
we make the assumption that an avatar belongs to a single
player (individual). This may not hold: nothing forbids two
persons from sharing an avatar. However, as an avatar is ranked
according to all its games (wins and loses) in a world ranking
system, it is fairly safe to assume in general that professional
players (our focus) do not share their avatars to protect their
reputations but also privacy when playing in secrecy.

The general intuition of our approach to tackle the avatar
aliases identification problem is now introduced. Our model
can be split in two sub-tasks, namely “finding Trace patterns
associated to Avatars” and “finding Avatar clusters associated
to Players”. For the first task, a classifier is built as explained in
the previous subsection, for predicting the avatar involved in a
game. In presence of avatar aliases, its accuracy drastically
drops. However, it is a fair hypothesis that the classifier
confusion shall be spread locally among avatar aliases. As
such, the second step involves a particular clustering of the
confusion matrix, that outputs avatar aliases candidates. We
formalize this step with FCA: a fuzzy set operator on class
memberships enables the finding of candidate patterns.



Player Avatar Traceowns generates

Figure 1: A simple model of game traces generations

III. METHOD FORMALIZATION

Let A be a set of avatars and T be a set of traces such that
for a given avatar a ∈ A, the set Ta ⊆ T is the set of all traces
generated by a. Consider a classifier ρ where labels are the
avatars to predict. Our method consists in using the confusion
matrix generated by a classifier ρ and analyse how confusion
between labels is spread to extract candidates of avatar aliases.
This process has two steps: firstly, specific patterns are ex-
tracted from the confusion matrix, secondly, they are scored,
ranked and post processed. The corresponding pseudo-code of
our approach, called DÉBROUILLE for unscramble in French,
is given in Algorithm 1 and is detailed hereafter.

A. Classifying Traces

A classifier is a function ρ : T → A that assigns the avatar
ρ(t) ∈ A to a given trace t ∈ T . Let n = |A| be the number of
avatars in A, from any classifier ρ, one can derive a confusion
matrix

Cρn×n = (ci,j)

where
ci,j = |{t ∈ Tai s.t. ρ(t) = aj}|

Each row and column of Cρ correspond to an avatar, while the
value cij is the number of traces of avatar ai that are classified
by ρ as of avatar aj . The normalized confusion matrix is given
by

C̃ρ = [ci,j/|Tai |]

where C̃ρi,i = 1 for any i ∈ [1, |A|] means all the traces of
avatar ai are correctly classified by ρ.

Table II gives an example of normalized confusion matrix
between five avatars. It is worth mentioning that we have
generalized the classifier to a given function ρ and thus, we
will treat it as a “black box” with an input (in the form of a set
of traces T and avatars A) and an output which corresponds
to the confusion matrix. Internally, features built from traces
can be chosen independently, and the classifier can split the
set of traces into train and test sets using different strategies.

Algorithm 1 DÉBROUILLE pseudo code

Require: C̃ρ: normalized confusion matrix, λ cluster score
threshold, s score threshold.

Ensure: P list of pairs of avatar ranked by cluster score.
1: P ← ∅
2: C ←MineFuzzyConcepts(C̃ρ, s)
3: C ← rank C according to s
4: for all c ∈ C do
5: pairs← pairs from the pattern concept extent of c
6: for all p ∈ pairs do
7: if p 6∈ P and cluster score(p) > λ then
8: P ← P ∪ {p}
9: P ← rank P according to the cluster score

10: return P

B. Clustering Avatars

Our goal is to discover groups of avatars that belong to
the same player. Our intuition is that a classifier will hardly
differentiate these avatar aliases, hence the confusion matrix
values should be high and concentrated around them. This
is exemplified in Table II: avatars {a1, a2} are candidates to
belong to the same player, {a4, a5} shall belong to another
user, while a3 stays as singleton with a diagonal high value.
Hence, a reasonable clustering of avatars would be given by
the partition {{a1, a2}, {a3}, {a4, a5}}.

a1 a2 a3 a4 a5
a1 0.6 0.4 0 0 0
a2 0.4 0.55 0.05 0 0
a3 0 0 0.8 0.15 0.05
a4 0 0.05 0 0.7 0.25
a5 0 0 0 0.5 0.5

Table II: Confusion Matrix example

More formally, given a normalized confusion matrix C̃ρ,
we would like to find pairs of avatars ai, aj ∈ U such that
C̃ρij ' C̃

ρ
ji ' C̃

ρ
ii ' C̃

ρ
jj and C̃ρij+ C̃

ρ
ji+ C̃

ρ
ii+ C̃

ρ
jj ' 2. These

conditions come from the fact that, if ai, aj correspond to the
same player, traces in Tai have the same probability of being
classified as ai or aj (the same for traces in Taj ). Furthermore,
for a trace of avatar ai, it is required that the probability of
classification is spread between ai and aj only, meaning that
C̃ρij + C̃ρii ' 1 (similarly for aj).

Using this rationale, in what follows we propose (i) to
extract patterns from the confusion matrix, and (ii) to post
process them to provide groups of candidate avatar pairs. The
first step is achieved thanks to Formal Concept analysis (FCA
[5], [6]), while we define scoring functions and ranking for
the second step.

1) Fuzzy pattern structure: Let us define the fuzzy set
of membership degrees LA where L = [0, 1], such as the
mapping function δ : A → LA assigns membership values
for the avatar ai in the fuzzy set LA based on the normalized
confusion matrix. Simply, this is a mapping that assigns to ai
its corresponding row in C̃ρ which we denote C̃ρi .

We model accordingly a confusion matrix C̃ρ as a pattern
structure (A, (LA,u), δ). The operator u is a meet operator in
a semi-lattice (idempotent, commutative and associative), and
is defined as follows, given two avatars ai, aj ∈ A:

δ(ai) u δ(aj) = 〈min(C̃ρik, C̃
ρ
jk)〉, k ∈ [1, |A|]

δ(ai) v δ(aj) ⇐⇒ δ(ai) u δ(aj) = δ(ai)

Actually, u corresponds to the fuzzy set intersection and
(LA,v) is a partial order over the elements of LA which can
be represented as a semi-lattice.

The pattern structure (A, (LA,u), δ) is provided with two
derivation operators, forming a Galois connection [6]. For-
mally, we have, for a subset of avatars A ⊆ A and a fuzzy
set d ∈ LA such as:

A� =
l

a∈A
δ(a) d� = {a ∈ A | d v δ(a)}



A pair (A, d) is a pattern concept iff A� = d and d� = A.
Pattern concepts are ordered by extent inclusion such that for
(A1, d1) and (A2, d2) we have:

(A1, d1) ≤ (A2, d2) ⇐⇒ A1 ⊆ A2 (or d1 w d2)

Intuitively, a pattern concept (A, d) contains a fuzzy set d
which can be represented as a vector d = 〈dj〉 with length
|A| where each value dj is the minimum for all rows i in
column j of matrix C̃ρ such that ai ∈ A.

Example. The Table II illustrates a confusion matrix involving
five avatars. It has been obtained from a classifier ρ. We
illustrate first how pattern concepts are generated:

δ(a1) = {a0.61 , a0.42 , a03, a
0
4, a

0
5}

δ(a2) = {a0.41 , a0.552 , a0.053 , a04, a
0
5}

δ(a1) u δ(a2) = {a0.41 , a0.42 , a03, a
0
4, a

0
5}

2) Scoring concepts and extracting aliases: The scoring
function s : LA → [0, 1] is given as follows: for a pattern d,

s(d) =

|A|∑
j=1

dj

It is clear that function s is decreasing w.r.t. the order of pattern
concepts, i.e. (A1, d1) ≤ (A2, d2) =⇒ s(d1) ≤ s(d2). Thus,
pattern concepts can be mined up to a given score threshold
analogously as formal concepts can be mined up to a given
minimal support, as it is done in pattern mining [1]. We can
appreciate that the higher the score of a given pattern, the more
confused is the classification of traces of avatars a ∈ A by ρ
in C̃ρ and thus, they become candidates for merging. This
property directly follows from the choice of our similarity
operator u as a fuzzy set intersection, which behave as a
pessimistic operator (returning minimum values).

The pattern mining step is executed as follows and corre-
sponding to the MineFuzzyConcepts step (Line 2) in Algo-
rithm 1. From the confusion matrix we compute all possible
pattern concepts using the addIntent algorithm [17]. Pattern
concepts are then ranked according to their score (Line 3) and
converted into a list of pairs (Line 5). For example, if a pattern
concept extent contains three avatars a1, a2 and a3, we convert
this concept into pairs (a1, a2), (a1, a3) and (a2, a3). The order
among pairs of the same pattern is disregarded.

The addIntent algorithm is known to have a linear
complexity w.r.t. the number of possible pattern concepts [17]
which can grow exponentially w.r.t. the number of avatars in A.
In our case, experimental evidences suggest that the number of
pattern concepts in this setting is much lower than A2, given
the empty intersection between most pairs of avatars in A.
Finally, given that the scoring function is monotonous w.r.t.
the order v, it can be used as a filter to stop the calculation
of meaningless patterns.

Example. Continuing the previous example, we have:

s({a1, a2}�) = 0.8 (1)

s({a4, a5}�) = 0.75 (2)

s({a1, a2, a4}�) = 0.05 (3)

3) Post-processing candidates: Consider the clustering
condition previously formalized as C̃ρij ' C̃ρji ' C̃ρii ' C̃ρjj
and C̃ρii+C̃

ρ
ij+C̃

ρ
ji+C̃

ρ
jj ' 2. Consider that the pair of avatars

(ai, aj) respects these conditions. It is easy to see that (ai, aj)
will necessarily be a candidate pair highly ranked from the
previous step.

C̃ρij ' C̃
ρ
jj ' min(C̃

ρ
ij , C̃

ρ
jj)

C̃ρii ' C̃
ρ
ji ' min(C̃

ρ
ii, C̃

ρ
ji)

=⇒ min(C̃ρij , C̃
ρ
jj) +min(C̃ρii, C̃

ρ
ji) ' 1

Thus, the set of avatar clusters we are looking for are
contained within the set of candidate pairs and moreover, they
are highly ranked. In order to filter the list of candidates
from pairs that do not hold the avatar cluster definition, we
propose a cosine similarity measure between a couple of
vectors calculated for each avatar as follows. Let (ai, aj) be a
candidate pair, the cluster score is defined as:

cluster score(ai, aj) = cosine(〈C̃ρii, C̃
ρ
ij〉, 〈C̃

ρ
jj , C̃

ρ
ji〉)

The cluster score establishes a measure of how close is a
candidate pair from being an avatar cluster. The logic of this
follows from the following scenario. Consider that the traces
of avatar ai were all correctly classified meaning that C̃ρii = 1
and that the traces of avatar aj were all incorrectly classified as
ai, meaning that C̃ρji = 1, thus we have the following section
of the normalized confusion matrix:

ai aj
ai 1 0
aj 1 0

We can observe that the pair (ai, aj) will be contained
in the set of candidate pairs and will be highly ranked, even
though it is not an avatar cluster since it violates the first
condition. The cluster score for this particular case can be
calculated as:

cluster score(ai, aj) = cosine(〈1, 0〉, 〈0, 1〉) = 0

meaning that this candidate pair is not an avatar cluster. Notice
that for the pair of avatars such that aii = 1 and ajj = 1, the
cluster score is 1 (cosine between parallel vectors) while the
pair is not an avatar cluster. Indeed, this is true, however this
pair would have a score s equal to 0 and would be at the bottom
of the ranked candidate pairs. A third kind of pair occurs when
the traces of ai and aj are all incorrectly classified as a third
avatar ak. In such a case, the cluster score is 0.

The post processing step is executed as follows as depicted
in Algorithm 1. Given a ranked list of candidate pairs yielded
from the previous step (Line 2 and 3), each pair is evaluated
using the cluster score. Given an arbitrary threshold λ, if the
cluster score of the candidate pair is below this threshold, then
it is rejected (Line 7 and 8). Candidate pairs are re-ranked into
a final list of avatar clusters (Line 9).

IV. EVALUATION

In this section, we provide a detailed evaluation procedure
used in the experiments for assessing the ability of our
approach at finding avatar aliases.



Account: (eu,2452136)
Avatar URL
MinChul http://eu.battle.net/sc2/en/profile/2452136/1/MinChul/
SKMC http://eu.battle.net/sc2/en/profile/2452136/1/SKMC/
Account: (eu,4233584)
Avatar URL
INnoVation http://eu.battle.net/sc2/en/profile/4233584/1/INnoVation/
lIlIllIlIlll http://eu.battle.net/sc2/en/profile/4233584/1/lIlIllIlIlll/
Account: (us,288081)
Avatar URL
Minigun http://us.battle.net/sc2/en/profile/288081/1/Minigun/
ROOTMinigun http://us.battle.net/sc2/en/profile/288081/1/ROOTMinigun/
Account: (us,2929052)
Avatar URL
ROOTheognis http://us.battle.net/sc2/en/profile/2929052/1/ROOTheognis/
Account: (us,3023756)
Avatar URL
MinChul http://us.battle.net/sc2/en/profile/3023756/1/MinChul/

Table III: An example of five Battle.net accounts and their
respective avatars

A. Avatars matching

As we do not have information about the users behind the
avatars, it is not possible to actually evaluate the candidate
pairs for merging using a “ground truth”. Instead, we perform
an indirect evaluation of our approach using three different
strategies one being specific to the game Starcraft 2. Indeed,
as illustrated in Figure 2, the avatar system of Starcraft 2 is
more elaborated than our general model given in Figure 1. The
Table III exemplifies this model.

User Account Avatar Traceowns contains generates

Figure 2: The trace generation model in Starcraft 2

1) Nicknames: Each avatar is associated with a non-unique
(nick-)name. Names are chosen by users and can be changed
at any time. To change the name, users have to pay a fee to
the videogame company. This means that, even when changing
the name is possible, users do not change their name often.

We can identify three situations for the change of name.
Firstly, users want anonymity and thus, they change their name
to avoid being recognized by other users. We can consider this
as a “cheap” way to achieve anonymity, since it is actually
cheaper than creating a new account, and the user does not
have to re-classify her new account into a top-league (actually,
quite expensive in terms of play-hours). Since changing the
name does not require a change in the account, even with
a new name users are actually easily recognizable. We will
discuss this in the following section. Secondly, users may join a
team. Teams are groups of avatars that frequently play together
collaboratively against other teams. Teams also have associated
names which users usually add to their names as a suffix.
Thirdly, users may change their name by any other reason.

It is clear that, when finding two candidate avatars for
merging, we cannot rely simply in comparing their names.
On the one hand, very popular names such as “Batman” or
“Superman” may be used by several users. On the other hand,
even if a user has different accounts, and we successfully
identify them for merging, nothing forbids the user to use
different avatar names for those accounts. Thus, names will
be used as weak indicators for avatar merging.

2) URL: In Starcraft 2, as described in Table III, an avatar
is associated with a unique account. This account can be
identified by the URL associated to the avatar which contains
information about the location of the avatar (European Union,
USA, Korea, etc.), the ID number and the avatar’s name.
As we have discussed, users are free to change the name of
their avatars by paying a fee. When this is done, the URL
changes by removing the old name and including the new one.
However, since it is the same account, the location and the
ID number remain the same.

The URL is a strong indicator for avatar merging since it is
quite obvious that, given two avatars with the same associated
account, they correspond to the same user. Usually, we would
integrate the traces of these avatars into a single one before
the trace classification step (and actually, we do this for the
first of our experiments). Instead, we will leave them as they
are since they provide us with a sort of “ground truth”. That
is, if our system is able to merge avatars of different accounts,
it should be able to merge avatars of the same account.

3) Surrogate Avatars: Given the set of traces T and the
set of avatars A, we generate a partition of A in two different
subsets Aγ and Aθ (a partition means that A = Aγ ∪Aθ and
Aγ ∩ Aθ = ∅). For each a ∈ Aθ, we generate a partition
in Ta with components Ta1 and Ta2 where a1, a2 are called
the surrogate avatars of a. Let Ãγ be the set of all surrogate
avatars, we build the set Ã = Ãγ ∪Aθ.

Intuitively, surrogate avatars are known to belong to the
same user. Thus, they provide a “ground truth” to evaluate our
approach.

In Figure 4 the chart at left shows the long-tail distribution
of the number of games played by avatar. We assume that
professional players (those we are looking to disambiguate) are
those that belong to the head of the curve, i.e. those that play
the most. We consider this assumption fair since, in order to
become professionals, players have to practice and perform in
several competitions yielding a high number of games played.
Thus, the set Aγ is built from a fraction γ of the avatars with
the highest number of games played.

Similarly, we consider a minimal number of games (traces)
to actually include the avatar a in Aθ. We assume that a user
that has played a few games with an Avatar has no reasons to
create a different one. We are well aware that this may not be
the case for users that already have a different avatar and are
just starting with their second. However, as we will discuss
next, this induces an “imbalance” issue that may affect the
classifiers’ ability to group avatars of the same user. For an
avatar with a few traces, the classifier will fail to provide a
good prediction and the confusion matrix will present values
which are explained by randomness rather than by the fact that
two avatars belong to the same user. For example, consider an
avatar a such as |Ta| = 2. Its row in C̃ρ will contain two non-
zero values 0.5 in two different columns. It is easy to see that
this avatar would likely conform a pattern concept with the
avatars corresponding to those columns. In order to avoid this,
we use a threshold θ such as for all a ∈ Tθ we have |Ta| ≥ θ.

The problem of balance refers to the fact that we are not
certain about the distribution of time spent by a user among
her different avatars. Put more simply, given that a user has



two avatars, the question is if she prefers one over the other
(meaning that one of her avatars has more traces associated
than the other) or if she plays equally with one or the other
(meaning that both of her traces have a similar number of
traces associated). This is an important issue since it affects
directly the efficacy of our approach. If in general, users play
many more games with one of their avatars than the others,
the classifier applied to the traces will be less effective and
will tend to classify the traces of the avatars with fewer games
on the avatar with more games. To study this issue in a deeper
way, we introduce the parameter β as a balance between the
traces distributed over the surrogate avatars. Consider that for
an avatar a we have that |Ta| = 100, this is the avatar has
100 associated traces. When creating the surrogate users a1
and a2 a β = 0.5 yields that both surrogate users will have 50
associated traces, i.e. |Ta1 | = |Ta2 | = 50. With β = 0.7 we
will have |Ta1 | = 70 and |Ta2 | = 30 and so on.

B. Evaluation Metrics

To evaluate our approach we will measure the precision,
recall and f-measure of the first 100 ranked avatar clusters.
Given the ranking r (after cluster score filtering using λ), we
have:

precision(r) =
TP

TP + FP

recall(r) =
TP

TP + FN

F -measure(r) =
2 · precision(r) · recall(r)
precision(r) + recall(r)

Where TP, FP and FN stand for true positives, false
positives and false negative, respectively. We will consider
true positives as combinations of avatar names (NAMES),
URL and surrogate avatars (SUG). False positives will be any
candidate pair which does not belong to the true positive set in
a given ranking. It is worth noticing that a pair considered as
a false positive under this definition may not actually be one.
We consider them false positives since we do not have enough
information to consider them as true positives, meaning that
their avatar names do not match, their URL is different and
they are not part of our own set of surrogate avatars. They are
in fact the kind of pairs we are looking for. False negatives
are those candidate pairs that should have been considered as
true positives, but that do not appear in the ranking.

The figure at left in Figure 3 shows the initial candi-
date pairs extracted from a confusion matrix generated by
a Sequential Minimization Optimization (SMO) classification
algorithm implemented in Weka. The classifier parameters
were left as default, while the parameters of our approach for
this particular figure are γ = 0.05 (top 5% of users were
converted into surrogates) and θ = 5 (users with less than 5
games were extracted from the dataset). Within the figure, a
point represents a pair of avatars. If the avatars are surrogates,
the point is represented with a red circle. If they have the same
account, the point is represented with a green triangle and,
in the case they have the same name, the point is a yellow
star. In any other case (false positive), the point is a blue
cross. False positives are annotated with the nick-names of
the avatars. Figure 3 shows the top 20 without cluster score
filtering (λ = 0) and presents very bad results. Only 8 out 20

points are not false positives (40% of precision). The figure at
right in Figure 3 shows the top 20 after cluster score filtering
(λ = 0.9) with very good results. Actually, only 1 out of 20
points is a false positive and it represents a couple of avatars
that belong to the player known as aLive4. It is clear that in
this particular case, our system is able to provide a precision
of 100%, even though we just report 95% (19/20).

We also report on other three measures, namely P@10
(precision in the first 10 elements of the ranking), mean
average precision (MAP), the receiver operating characteristic
(ROC) (and the ROC area under the curve - AUC). For the
sake of brevity, we do not provide a description of them. For
further information on these metrics we refer the reader to [10].

V. EXPERIMENTS

This section reports a thorough evaluation of our approach,
for answering the avatar aliases identification problem. We
begin by introducing our datasets and by highlighting the
prediction ability of game traces when there are no aliases
in the dataset.

A. Rough replay collections

Any game of Starcraft 2 is recorded into a file called replay
which contains all data necessary for the game engine to replay
the game. Replays are shared on dedicated websites5. Along
with replays, a set of parsing tools which allows extracting
information from the replays are openly available6. Using these
tools we have created two collections for our study.

COLLECTION 1 – Replays without avatar aliases: This
collection has been chosen for studying the efficacy of classi-
fiers to recognize avatars of traces. Thus, we have purposely
selected a collection of game replays which cannot contain
avatar aliases. This is the case for the 2014 World Champi-
onship Series (second season7) in which users are forced to
register their real names. The collection contains a total of
955 one-versus-one high level games and 171 unique players.

COLLECTION 2 – Replays with possible avatar aliases:
We gathered all the replays available on the website Spawning
Tool8 on the month of July 2014, for a total 10,108 one-versus-
one games and 3,805 players. This collection corresponds to
a real world situation, and is used for evaluating our avatar
alias resolution approach according to Section IV. Figure 4
shows the distribution of the number of games by avatar
for both replay collections. The distribution for Collection 2
corresponds to a long tail where 10% of players participate in
more than 67% of the games. The distribution for Collection 1
is explained by the elimination process of the WCS qualifiers,
meaning that the distribution of game played by user gradually
increments as they go up the classification ladder. Respectively,
in average each player participates in 5 and 9 games in
Collections 1 and 2. Charts at center and right in Figure 4
illustrate the proportion of each type of action used as feature
for avatar classification in our approach. Particularly, these
figures show the actions for the first ten and thousand seconds

4http://wiki.teamliquid.net/starcraft2/ALive
5http://wiki.teamliquid.net/starcraft2/Replay Websites
6http://sc2reader.readthedocs.org/
7http://wcs.battle.net/sc2/en/articles/wcs-2014-season-2-replays
8http://spawningtool.com/



Figure 3: Candidate pairs ranking with λ = 0 (left) and with λ = 0.9 (right)

Figure 4: Distribution of the number of games by avatar, proportion of executed actions for first ten (resp. thousand) seconds

of the game, respectively. The object selection is the most
prominent event in the first seconds of the game (the warm
up phase), totalling 80% of the actions, after which the use of
hotkeys becomes the most important action. This is the main
reason why we will use object selection frequencies as features
(in previous work, only hotkeys were used as features [21]).
The chart at right in Figure 4 can be explained as follows. In
the first minutes of the game there are not many options for
the player to execute leading to a high proportion of clicking
and selection events. After the 2 or 3 minutes, the user has
built up a wider variety of options to execute which leads to
hotkey bindings. The major part of bindings are made only
once in the game, thus the highest proportion of hotkey events
around 200 seconds. In the rest of the game, these proportions
stabilize.

B. Experimental set up

Two main experiments were conducted. In Collection 1, we
apply a set of classifiers to test the efficacy of predicting the
avatar of a trace. In Collection 2, we apply classification and
clustering to perform avatar alias resolution. Both experiments

share the steps of (i) parameter selection, (ii) dataset creation
and (iii) classification. The second experiment also considers
a fourth step (iv) clustering, scoring and post processing.

1) Parameter selection: Throughout this document we have
described a range of parameters which compensate for the
fact that we know very little of the users we are looking
for. For example, the parameter γ compensates for the fact
that we do not know which is the proportion of avatars in
a dataset that correspond to aliases of the same user. The
parameter β compensates for the fact that we do not know
in which proportion aliases are used. For example, β = 0.5
represents the fact that users may use their aliases in an equal
proportion, while β = 0.8 represents the fact that users may
use one alias much more than the other. The parameters in our
approach are a manner of discovering under which conditions
the notions of avatar alias resolution holds. For this reason,
we have selected a wide spectrum of parameter combinations
for our experiments. The following list present the names and
meaning of each parameter.



τ : a time threshold for traces. Only the actions of the first
τ seconds are considered in the dataset for classification.
We also use a threshold for the number of actions, thus
only the first τ actions can be considered

γ: proportion of users converted into surrogates aliases
θ: minimum number of games played by an avatar to be

retained in the dataset
β: surrogates’ balance is the proportion of games attributed

to one of the two surrogates derived from an avatar
λ: cluster score threshold (see Section III)

2) Dataset creation: Having defined a set of parameter
value, we generate datasets for classification from Collections
1 and 2. Each dataset contains traces as instances and avatars
as class labels. Features of traces are a vector of numerical
attributes and a couple of categorical attributes. Vector dimen-
sions are associated with a canonical order over the repertory
of events in the game. The value of each dimension for a
given trace is the number of times the event was executed in
the trace. A final dimension considers the average actions per
minute (APM) associated with that trace. Categorical attributes
correspond to the race used by the player (possible values:
Protoss, Terran or Zerg) and the final status of the game
(possible values: Win or Lose). Datasets are stored in the
attribute-relation file format (ARFF) for the Weka system.

A single dataset is built for each different provided selec-
tion of attributes. For collection 1 we created 92 datasets, while
for collection 2 we created 64 datasets.

3) Classification: Each dataset is classified using the Weka
machine learning software and evaluated using 10-fold cross
validation from which we obtain a confusion matrix. To rep-
resent the generality of our approach, we chose four different
classifiers, namely K Nearest Neighbours (KNN), Naive Bayes
(NBAYES), J48 decision tree (J48) and Sequential Minimiza-
tion Optimization (SMO). Parameters for each of the classifiers
were left as default.

4) Clustering, scoring and post processing: Each confusion
matrix was processed by the Sephirot addIntent implementa-
tion9 to obtain a set of pattern concepts. Scoring and post
processing were implemented in ad-hoc python scripts.

C. Experimental results

1) Classifying avatars: Figure 5 shows the precision and
the ROC area obtained for 92 datasets created for Collection
1. The parameter τ ranged over 23 values in an exponential
scale, initially from 10 to 90 seconds then from 100 to 900
and finally from 1000 to 5000 seconds (the longest game
in this collection has around 5300 seconds) and thus, the x
axis of each figure is in logarithmic scale. For each measure,
four figures corresponding to four different settings of θ are
presented. Each line corresponds to a different classifier.

The figures present an empirical evaluation that the initial
assumption, that avatars are very easily recognizable based in
the signatures left in the traces they generate while playing,
is true. For each different setting, ROC area is always around
100% showing the robustness of the approach under different

9https://code.google.com/p/sephirot/
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Figure 5: Classification results for Collection 1: precision and
ROC area under the curve (AUC) distribution on 23 points of

τ for four θ values. τ points were varied exponentially
(10-90, 100-900, 1000-5000).

parametrizations. Precision is always maintained over 60%,
achieving it minimal value for the SMO classifier with θ = 5
and τ > 1000. Actually, this also confirms two of our previous
assumptions. Firstly, it is hard to recognize users that have
played a few games, meaning that the larger the value of
the θ threshold, more discriminative power has the classifier.
Secondly, users are recognizable in the first few minutes of the
game. The precision curves show a slight concave behaviour
hinting a maximum of the precision w.r.t. the time cut used
for traces. Indeed, this agrees with the hotkey use description
given for Figure 4 in the chart at right. Users can be efficiently
discovered by their hotkeys binding settings. As the game
progress, traces may differ given that the number of options
in the game greatly increase and vary in execution regarding
different opponents.

2) Identifying multiple aliases: The goal of experiment 2
is evaluating our approach for finding avatar aliases. We have
generated 48 datasets considering different parametrizations.
As already discussed in the previous experiment, the efficacy
of the classifiers achieves its best in the first few minutes of the
game. Thus, we have selected three different τ values, namely
30, 60 and 90 seconds. We have picked the same values for
θ as in the previous experiments. Surrogates were generated
for the first 5, 10, 15 and 20 percent of the most active users
in the dataset (γ). For this particular experiment, we have set



the balance β = 0.5. All 48 datasets were processed using
the four classifiers previously mentioned yielding a total of
192 confusion matrices. The top part of the Table IV shows
a summary for the evaluation results using the top 100 pairs
of avatar clusters found with parameters τ = 90, θ = 20
(248 avatars including surrogates), γ = 0.2 (41 surrogates) and
λ = 0.9. The top, medium and bottom parts of the table contain
the evaluations when looking for surrogates only, surragates
and URLs, surrogates, URLs and names, respectively.

Results indicate that our approach is very efficient at
identifying surrogate avatars under this parametrization. This
is particularly true for KNN and the J48 classifiers achieving
very high recall values. In the upper table, while precision is
low it is worth noticing that in the top 100, there are only 41
surrogates meaning that the maximum achievable precision is
0.41. The classifier KNN is particularly good in this measure
achieving an almost perfect value (0.4 of 0.41). All four
classifiers achieve a very high precision in the first 10 results
(P@10) while two of them get a perfect score. Indeed, one of
the main characteristics of our approach is the good ranking
it generates over the avatar pairs. This fact is confirmed by
the good MAP and ROC area under the curve (AUC) values
achieved by all four classifiers. Both these measures slightly
degrade when including in the set of true positives URLs and
names. In the case of the latter, this can be understood since
not all avatars with the same name necessarily belong to the
same user (as we have previously stated, same nick-names is
a weak indicator). Thus, pairs of avatars with the same name
will be more evenly distributed over the ranking or can even be
found at the bottom indicating that they do not belong to the
same user. This fact is reflected in the gap between the high
grow of precision and low degradation of recall, i.e. avatars
with the same name are evenly distribute between the pairs
retrieved and those that were not.

A special mention deserve the URL true positives. As we
have discussed, avatars with the same URL necessarily belong
to the same user. Hence, we would have expected that in the
first 10 pairs retrieved we could find an even distribution of
surrogates and URLs. Instead, for all classifiers, P@10 is more
than 80% surrogates (while the rest is always URLs - P@10
in the medium part of the table). The reason behind this is that
we have purposely selected a balance of 0.5 for the surrogate
distribution of traces, while we do not have control over this
value for the URL pairs. The lower part of Table IV shows
a summary of results when looking for just surrogates while
varying the balance in the distribution of traces between them.
We can clearly observe that the performance of the approach
quickly degrades as more imbalanced gets the distribution
(the higher the β value). Actually, for some classifiers it
is not possible to obtain a single good result, even when
we have lowered the λ threshold to 0.8. As URLs are not
necessarily balanced, classifiers tend to predict the label of a
trace belonging to an avatar with less traces to one with more
traces. Issues related to learning from imbalanced datasets are
reviewed in [7] and need to be considered when selecting a
proper classifier for our particular application.

VI. RELATED WORK

Recently, Yan et. al [21] suggested that behavioural pat-
terns discriminating skills, but also player themselves, can be

Parameters:: γ = 0.2, θ = 20, λ = 0.9, τ = 90

Surrogates
Classifier F1 MAP Recall AUC Precision P@10
j48 0.468 0.824 0.805 0.904 0.33 1.0
naivebayes 0.226 0.740 0.390 0.915 0.16 0.8
smo 0.312 0.971 0.536 0.993 0.22 1.0
knn 0.567 0.822 0.976 0.882 0.4 0.9
Surrogates & URLS
Classifier F1 MAP Recall AUC Precision P@10
j48 0.588 0.907 0.606 0.866 0.57 1.0
naivebayes 0.443 0.857 0.457 0.864 0.43 1.0
smo 0.257 0.912 0.266 0.945 0.25 1.0
knn 0.670 0.937 0.691 0.874 0.65 1.0
Surrogates & URLS & Names
Classifier F1 MAP Recall AUC Precision P@10
j48 0.689 0.983 0.606 0.935 0.8 1.0
naivebayes 0.560 0.943 0.492 0.906 0.65 1.0
smo 0.258 0.949 0.227 0.960 0.3 1.0
knn 0.758 0.967 0.667 0.792 0.88 1.0

Parameters:: γ = 0.2, θ = 20, λ = 0.8, τ = 90

J48
Balance F1 MAP Recall AUC Precision P@10
β = 0.5 0.925 0.996 0.929 0.955 0.920 1.0
β = 0.6 0.545 0.927 0.632 0.921 0.480 1.0
β = 0.7 0.053 0.695 0.077 0.977 0.040 0.3
Naive Bayes
Balance F1 MAP Recall AUC Precision P@10
β = 0.5 0.472 0.902 0.475 0.953 0.470 0.9
β = 0.6 0.273 0.923 0.316 0.973 0.240 1.0
β = 0.7 0.197 0.9 0.288 0.978 0.150 0.9
β = 0.8 0.048 0.533 0.120 0.983 0.030 0.3
SMO
Balance F1 MAP Recall AUC Precision P@10
β = 0.5 0.392 0.983 0.394 0.992 0.390 1.0
KNN
Balance F1 MAP Recall AUC Precision P@10
β = 0.5 0.905 0.964 0.909 0.732 0.9 1.0
β = 0.6 0.750 0.957 0.868 0.929 0.660 1.0
β = 0.7 0.184 0.706 0.269 0.949 0.140 0.7

Table IV: Summary of evaluation measures over the resulting
avatar cluster list yielded by the alias resolution approach (at
top), and avatar clustering when varying the balance (β) (at
bottom). Each entry represents a confidence matrix yielded

by the respective classifier

discovered in the way they use their keyboard when playing
Starcraft 2. They gathered 3,316 replays and took as features
the frequencies of each control group key were used (30
features) for the whole game. They showed that these features
allow predicting with high accuracy the league in which an
avatar is playing10. A second result tells that a basic SVM
classifier can predict the avatars involved in a game with high
accuracy (≥ 0.95 accuracy with a leave-one-out validation),
even when the avatar has few numbers of samples (between 2
and 20). Yan et. al showed that hotkeys (control groups) yield
unique behavioural patterns of a user, but they did not present
a way to discover avatar aliases: they even removed avatars
with high probability of being aliases (e.g., bar code names).

Using control groups as features is actually inspired by
several works in software and security applications. Indeed,
typing patterns allow identifying users by their typing charac-
teristics [13]. The tedious task is to determine the appropriate
behavioural metrics and features [20]. For example, keystroke
dynamics and typing rhythm are crucial for authenticating a
user based on habitual patterns [11]. Recently, an investigation
around Starcraft 2 [16] highlighted that the predictive impor-

10Leagues regroup players by level, following an ELO-like ranking system,
from bronze, silver, gold, platinum, diamond, master, to grand master, the later
involving the best 200 players of each continent.



tance of features is not constant across levels of expertise,
while Yan et al. [21] ensured that complex features, even
spatio-temporal, are not important: only the frequency of
hotkeys is enough to output highly accurate classifiers; we
emphasized this fact by showing that only the first few minutes
of game play are enough to recognize the player.

Starcraft 2 and other real time strategy games (RTS) in
general, face several research challenges in artificial intelli-
gence [12] including opponent modelling and learning. Game
traces/logs from replay files tend to be more and more used to
tackle these problems since this information is easy and free
to gather. We can notice several works focusing especially
on tactical and strategic aspects, such as predicting army
locations and opponents actions [19], [14] and automatically
discovering build orders [9], [2]. All these works focus on
effective actions made by players (build orders, micro/macro
management) while we use here only the very first few actions
of the warm up phase that one could consider as noise.

VII. CONCLUSION AND FUTURE WORK

Video game analytics is a growing field of data science, cru-
cial, if not vital, for the biggest game producers and editors. It
comes with many challenges, the holy grail being to find all the
ingredients that could assure an indisputable success of a game
directly at its release. Pragmatically however, behavioural big
data is gathered and analysed to answer several problems,
including the design of better artificial agents, game balancing,
bugs and cheaters and usurpers detection, etc. Games are
then patched, cheaters are banned, and this cycle restarts.
Behavioural data is also a gold mine in the context of electronic
sports and competitive gaming, for reaching the same goals as
in standard sport analytics11.

We introduced the problem of avatar aliases identification,
when there exists no mapping between individuals and their
avatars. This is an important problem for game editors, but
also for e-sport structures. Our method relies on the fact
that behavioural data hide individual characteristic patterns,
which allows making predictive approaches very accurate.
Nevertheless, this good performance quickly degrades when
data hides avatar aliases, which is why we based our analysis
on confusion matrices.

Our results are encouraging, and suggest several perspec-
tives of further development. Firstly, we assumed the mapping
between players and avatars to be one-to-many. While this
assumption is reasonable in the case of expert players in
Starcraft 2, a general model suggests a many-to-many mapping
in general. Secondly, we focused on expert players (having
many historical samples), and it may be that predictive models
are less powerful for novice players, since they use hotkeys
in a smaller proportion. New features could be introduced in
this case. For example, one could consider sequential features
with sequential classifiers like in [4]. However, we believe that
novice players do not hide behind aliases. How the method
can be adapted for other video games is also challenging:
the competitive games Dota 2 and League of Legends do not
propose customizable hotkey systems as in Starcraft 2, thus
one needs to find good features from behavioural data. Finally,
we proposed an approach in the context of formal concept

11http://www.sloansportsconference.com

analysis, but it is clear that other methods can be used and
compared, relying on spectral clustering or biclustering.
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