
HAL Id: hal-01243495
https://hal.science/hal-01243495

Submitted on 15 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dispersion relations in cold magnetized plasmas
Christophe Cheverry, Adrien Fontaine

To cite this version:
Christophe Cheverry, Adrien Fontaine. Dispersion relations in cold magnetized plasmas. Kinetic and
Related Models , 2017, 10 (2), pp.373-421. �10.3934/krm.2017015�. �hal-01243495�

https://hal.science/hal-01243495
https://hal.archives-ouvertes.fr


DISPERSION RELATIONS
IN COLD MAGNETIZED PLASMAS

CHRISTOPHE CHEVERRY AND ADRIEN FONTAINE

Abstract. Starting from kinetic models of cold magnetized collisionless plasmas, we
provide a complete description of the characteristic variety sustaining electromagnetic
wave propagation. As in [4, 12, 15], our analysis is based on some asymptotic calculus
exploiting the presence at the level of dimensionless relativistic Vlasov-Maxwell equations
of a large parameter: the electron gyrofrequency. Our method is inspired from geometric
optics [26, 30]. It allows to unify preceding results [8, 11, 34, 28, 33, 36], while incorporat-
ing new aspects. Specifically, the non trivial effects [5, 9, 10, 21] of the spatial variations
of the background density, temperature and magnetic field are exhibited. In this way,
a comprehensive overview of the dispersion relations becomes available, with important
possible applications in plasma physics [7, 25, 27].

Keywords. Relativistic Vlasov-Maxwell equations; Cold magnetized plasmas; Plasma
phenomena out of equilibrium; Electromagnetic wave propagation; Dispersion relations;
characteristic variety; Appleton-Hartree equations; eikonal equations.
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1. Introduction

The Appleton-Hartree equation, sometimes referred to as the Appleton-Lassen equation,
is a mathematical expression that describes the refractive index for electromagnetic wave
propagation in a cold magnetized plasma. Historically [13], it was developed in the context
of the magneto-ionic theory. The form that is still widely exploited in plasma physics
[11, 27, 33] is valid in the case of a uniform magnetic field. It resulted from the works of
E. Appleton [1] and D. Hartree [17] between 1929 and 1932. It was definitely established
during the 1960s, in a series of articles [19, 32], technical notes [35] and books [18, 27].

Despite the abundance of literature on the subject, more refined models are still the focus
of ongoing research. It is because numerous factors may be considered: the framework may
be relativistic [8, 36]; it may look at the oblique propagation [28, 34]; it can select a special
frequency range (to point out for instance whistler waves [7, 32]); it may incorporate the
influence of boundaries [2, 10]; and, last but not least, it can take into account the presence
of spatial inhomogeneities. The aim of the present article is to discuss this issue through
a new comprehensive approach that encompasses all the foregoing elements, while adding
significant additional information concerning the last one.

A complete mathematical formulation of the problem is available by coming back to the
original relativistic Vlasov-Maxwell (RVM) system. The general setting is as in [14], or
see directly at (2.7)-(2.8). It allows to take a principle-based approach. One challenge is
to fix adequately the physical framework. This must be done with a close link to concrete
situations and in accordance with the basic concepts of plasma physics. As a prototype of
a cold magnetized plasma, we will consider the earth’s magnetosphere. This choice allows
access to exhaustive, reliable and verifiable data. Simplifications come from three basic
requirements. As stated in Assumption 2.1, the temperatures and the densities of the
species are supposed to undergo only slight variations. As prescribed in Assumption 2.2,
partially or fully ionized space plasmas have almost the same number of positive (ions)
and negative (electrons) charges, and therefore behave quasineutral [16]. As indicated in
Assumption 2.3, most particles are in a state of local cold thermodynamic equilibrium
[8, 28]. There remains, however, a limited but very significant fraction of the plasma
which is out of equilibrium. The related nonthermal facets play a central role in many
applications. They are usually tackled through some stability analysis [23].

Another key aspect of astrophysical plasmas is the decisive intervention of some exterior
magnetic field B̃e. From this point of view, the situation is very similar to that of magnetic
confinement fusion [4, 12]. The charged particles are deflected by B̃e through the Lorentz
force. The strong influence of B̃e leads to the introduction of a small dimensionless pa-
rameter ε, with 0 < ε � 1, defined at the level of (2.48), and coming from the inverse of
the electron cyclotron frequency. In addition, the geomagnetic field B̃e is inhomogeneous.
More precisely, it can be approximated by a dipole model. With position x in some open
set Ω ⊂ R3, it takes the form B̃e ≡ ε−1 Be(x), where the function Be(·) is subjected to
Assumptions 2.4 and 2.5. As shown in (2.40), it follows that the Vlasov equation contains
the penalization term ε−1 (p×Be(x)

)
· ∇p, where p ∈ R3 is a momentum.

https://en.wikipedia.org/wiki/Appleton-Hartree_equation
http://www.nobelprize.org/nobel_prizes/physics/laureates/1947/appleton-facts.html
https://en.wikipedia.org/wiki/Douglas_Hartree
http://www3.mpifr-bonn.mpg.de/old_mpifr/imprs/bbl/bbl_downloads/jessner/Plasma%20Physics%20for%20Astronomers.pdf
https://en.wikipedia.org/wiki/Nonthermal_plasma
https://en.wikipedia.org/wiki/Electron_cyclotron_resonance
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A work of preparation allows to extract the dimensionless version of the RVM equations.
Then, the parameter ε can serve as a unit of measurement to which all the dimensionless
quantities can be compared. By this way, we are led to a singular version of the RVM
system. The corresponding asymptotic analysis is part of a long tradition of mathematical
works in gyrokinetics [4, 12], fast rotating fluids [6] and geometric optics [26, 30]. The
uniform case, that is when the function Be(·) is constant, has been extensively studied.
However, the realistic frameworks [5, 7] imply non-constant functions Be(·). Now, the
variations of Be(·) raise numerous difficulties. Their effects have not been investigated so
far; they remain poorly understood; and they do not fall under the scope of classical results.
The complications stem from the penalization term ε−1 (p × Be(x)

)
· ∇p that involves a

large skew-adjoint differential operator with variable coefficients.
The present article is starting to address this problem. It shows that the variations of Be(·),
both in amplitude and directions, play a crucial role in electromagnetic wave propagation.
In a logical order, they impact the dispersion relations, the eikonal equations, and finally
the ray tracing methods [22, 37]. They have therefore important practical implications.
To make our main results readable and usable, some notation is needed.
A propagating wave located at the position (t,x) ∈ M := [0, 1]× Ω may be characterized
by its temporal frequency τ ∈ R and its wave vector ξ ∈ R3, with (τ, ξ) ∈ R4 \ {0}. The
position (t,x, τ, ξ) ∈ T ∗M must satisfy restrictions. It must belong to a subset V of T ∗M
called the characteristic variety, and specified in Paragraph 3.2.1 (see Definition 3.1). In
practice, (t,x, τ, ξ) ∈ V if and only if τ and ξ are linked by dispersion relations. These
relations appear to depend on x ∈ Ω, on |τ | ∈ R+, on r := |ξ| ∈ R+ and on the angle
$ ∈ [0, π] between ξ and Be(x). On the other hand, they do not involve the time t ∈ [0, 1]
and the polar angle ω ∈ [0, 2π]. In other words, the relation (t,x, τ, ξ) ∈ V is equivalent
to impose (|τ |, r) ∈ V(x, $) for some subset V(x, $) of the quadrant R+ × R+.
In the magnetosphere, signals split up into two characteristic components. In the case of
oblique propagation ($ 6= 0), this translates into a partition V(x, $) = Vo(x, $)tVx(x, $).
The part Vo(x, $) is associated to ordinary waves (o -waves), whereas the subset Vx(x, $)
is related to extraordinary waves (x-waves). A precise definition of Vo(x, $) and Vx(x, $)
is given in the statement below.

Theorem 1. [oblique dispersion relations, when $ 6= 0(π)] Introduce as in Definition 3.3
the resonance frequencies τ±∞(·) with τ−∞(x, $) < τ+

∞(x, $), and as in Definition 3.2 the
cutoff frequencies τ±0 (·) with τ−0 (x) < τ+

0 (x). With the functions g±(·) of Definition 3.4,
both sets Vo(x, $) and Vx(x, $) consist of two connected components, namely:

Vo(x, $) = V+
o (x, $) tV−o (x, $) , Vx(x, $) = V+

x (x, $) tV−x (x, $) ,
with the explicit formulas:

V−o (x, $) :=
{
(τ, r) ∈ R+ × R+ ; τ ≤ τ−∞(x, $) , r2 = g+(x, $, τ)

}
,(1.1a)

V+
o (x, $) :=

{
(τ, r) ∈ R+ × R+ ; κ ≤ τ , r2 = g+(x, $, τ)

}
,(1.1b)

V−x (x, $) :=
{
(τ, r) ∈ R+ × R+ ; τ−0 (x) < τ < τ+

∞(x, $) , r2 = g−(x, $, τ)
}
,(1.1c)

V+
x (x, $) :=

{
(τ, r) ∈ R+ × R+ ; τ+

0 (x) ≤ τ , r2 = g−(x, $, τ)
}
.(1.1d)

https://en.wikipedia.org/wiki/Dispersion_relation
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The description of the characteristic variety V through (1.1) is directly applicable in a
large number of situations. That is why it is highlighted in this introduction. However,
this representation implies a special choice of parameterization, which is not appropriate
in the case $ = 0. Precisely, one important contribution of the present article is also
to provide a global and intrinsic view of V (Definition 3.1) that allows to study V in
its different facets (Section 3.4). In particular, in Paragraph 3.4.2, we investigate what
happens if we fix τ ∈ R∗+, that is if we consider sets given by

{
ξ ∈ R3 ; (t,x, τ, ξ) ∈ V

}
. By

this way, according to the values of τ , we can recover various pictures. This could include
one or two (more or less) nested spheres (Figures 12 and 13). This can also result in one
or two connected unbounded sets with conic shape (Figures 10 and 11).
Another significant aspect of our study is the topological decomposition (valid only in the
oblique case $ 6= 0) of V into connected components. From this perspective, the case of
parallel propagation ($ = 0), which is often presented as being indicative of the general
situation, appears rather to be a very singular situation. As revealed in Paragraph 3.3.3,
as can be seen by comparing Figure 7 ($ = 0) and Figure 8 ($ → 0), and as you can
guess by looking at Figure 9, it is a composite of ordinary and extraordinary waves. The
classical physical nomenclature (in terms of Alfvèn, whistler, ... and electrostatic waves)
which is recalled in Paragraph 3.3.1 does not take into account this mixture. As a matter
of fact, it is based on other considerations.
Theorem 1 gives access to rigorously justified eikonal equations (Lemmas 3.18 and 3.20)
governing the propagation of the phases φ. To this end, it suffices to replace in (3.40) the
variables τ and ξ respectively by ∂tφ(t,x) and ∇xφ(t,x). The variations of Be(·) come
into play through the dependence of $ and g±(·) on Be(·), see (3.38) and Definition 3.4.
As a by product, as shown in Section 3.4, purely parallel propagation cannot occur.
In the following text, special emphasis will be placed on frequencies which are in a range
around or below, but comparable to the electron cyclotron frequency ε−1. The reasons
for this are the following. First, this range is where the exterior magnetic field Be(·) has
the most influence by a clear separation between ordinary waves and extraordinary waves,
and by the appearance of exactly two cutoff frequencies and two resonance frequencies.
Secondly, as is well-known [19, 25, 36], this is where the propagation can be responsible
for the energisation of confined plasmas and particle loss [34] through a mechanism of
wave-particle interaction [7].
Now, when dealing with the plasmasphere, looking at such frequencies means to focus on
Very Low Frequency waves (VLF radio frequencies in the range of 100 Hz to 10 kHz).
Experimentally (Figure 17), there are a lower band and a upper band (corresponding to
the two resonance frequencies) where VLF emissions arise. The monochromatic elements
forming the fine structure of chorus have been mathematically interpreted in [7] as coming
from a mesoscopic caustic effect. It was done on the basis of the classical toy model of
[11, 27, 33], which is derived from parallel propagation ($ = 0) in the presence of a uniform
magnetic field. Beyond this preliminary approach, to fully understand the morphological
properties of chorus emissions, Theorem 1 is required. As outlined in Paragraph 3.4.5, a
lot of information about chorus emissions [24, 25, 31, 37] can be extracted from it.

https://en.wikipedia.org/wiki/Very_low_frequency
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2. Kinetic descriptions issued from plasma physics

To model the behavior of a real plasma, we may simplify its characteristics. This is what is
done in this Section 2. The basic equations are the Relativistic Vlasov-Maxwell equations
(RVM equations) recalled in Paragraph 2.1. Exact solutions can be produced by looking
at local thermodynamic equilibria (Paragraph 2.2). However, there are many situations
where complex plasma phenomena (Paragraph 2.3) play a decisive part.
In Paragraph 2.4, we present such a framework issued from near-Earth space plasmas.
This application involves a strong external magnetic field, satisfying special assumptions
(Paragraph 2.5). In Paragraph 2.6, we derive the dimensionless form of RVM equations.
By this way, we get a basic model (Paragraph 2.7) which can serve for the description of
electromagnetic waves (Paragraph 2.8).
2.1. Relativistic Vlasov-Maxwell equations. The topic of RVM equations has been
widely discussed [4, 7, 12, 14, 23]. The corresponding framework is recalled hereafter. The
speed of light is c0 ' 2, 99× 108ms−1. Let L ∈ R∗+ be a characteristic spatial length. The
original spatial variable is x̃ ∈ Ω̃, where Ω̃ is some non-empty open set of R3. We fix the
observation time T ∈ R∗+ as T := L/c0. The original time variable is t̃ ∈ [0, T ]. There are
corresponding rescaled versions:

(2.1) t := t̃
T
∈ [0, 1] , x = (x1,x2,x3) := x̃

L
∈ Ω :=

{ x̃
L

; x̃ ∈ Ω̃
}
.

The original space and momentum variables are (x̃, p̃) with:
x̃ = (x̃1, x̃2, x̃3) ∈ Ω̃ ⊂ R3 , p̃ = (p̃1, p̃2, p̃3) ∈ R3 .

We consider a plasma which is confined inside Ω̃, and which consists of N distinct species
labelled by α ∈ {1, · · · , N}. The particles of the αth species have charge eα and rest mass
mα. The number α = 1 will be associated with electrons. Thus, the elementary charge is
e ≡ −e1 ' 1, 6× 10−19C and the electron rest mass is me ≡ m1 ' 9, 1× 10−31 kg. Recall
that the proton-to-electron mass ratio β ' 1836 is a dimensionless quantity, so that:

(2.2) ι1 := m1
me

= 1 , ια := m1
mα
. β−1 ' 10−3 , ∀α ∈ {2, · · · , N} .

On the other hand, the charge eα is an integer multiple of e. More precisely:
(2.3) ∀α ∈ {2, · · · , N} , ∃ kα ∈ N∗ ; kα ' 1 , eα = kα e .

The velocity ṽα of a particle of type α is limited by |ṽα| ≤ c0, and it is linked to the
momentum p̃ ∈ R3 through:

(2.4) ṽα(p̃)
c0

= p̃
mα c0

(
1 + |p̃|2

m2
α c

2
0

)−1/2

,
p̃(ṽα)
mα c0

= ṽα
c0

(
1− |ṽα|

2

c2
0

)−1/2

.

The kinetic distribution function (KDF) of the αth species is denoted by f̃k
α(̃t, x̃, p̃). It is

composed of:
- A dominant stationary part f̃d

α(x̃, p̃) ; - A smaller moving part f̃s
α(̃t, x̃, p̃).

http://www.plasma-universe.com/Plasma_classification_(types_of_plasma)#Pseudo-plasmas_vs_real_plasmas
https://en.wikipedia.org/wiki/Thermodynamic_equilibrium
https://en.wikipedia.org/wiki/Plasma_(physics)#Complex_plasma_phenomena
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The density ratio ν ∈ R∗+ between these two populations is assumed to be small and
independant of α:

(2.5) f̃k
α(̃t, x̃, p̃) = f̃d

α(x̃, p̃) + ν f̃s
α(̃t, x̃, p̃) , (̃t, x̃, p̃) ∈ R+ × Ω̃× R3 , ν � 1 .

The charge density ρ̃ and the current density ̃ are given by:

ρ̃ ≡ ρ̃(̃fk
1, · · · , f̃

k
N )(̃t, x̃) ≡ ρ̃(̃fk

α)(̃t, x̃) :=
N∑
α=1

ˆ
R3
eα f̃k

α(̃t, x̃, p̃) dp̃ ,(2.6a)

̃ ≡ ̃(̃fk
1, · · · , f̃

k
N )(̃t, x̃) ≡ ̃(̃fk

α)(̃t, x̃) :=
N∑
α=1

ˆ
R3
eα ṽα(p̃) f̃k

α(̃t, x̃, p̃) dp̃ .(2.6b)

We impose a (stationary, divergence and curl-free) external magnetic field B̃e : Ω̃ −→ R3.
We also take into account some collective self-consistent electromagnetic field (Ẽ, B̃)(̃t, x̃),
which is created by all plasma particles. Then, neglecting the collisional effects, the time
evolution of the KDF can be modelled through the Vlasov equation:

(2.7) ∂t̃ f̃k
α + ṽα(p̃) · ∇x̃ f̃k

α + eα
[
Ẽ(̃t, x̃) + ṽα(p̃)×

(
B̃(̃t, x̃) + B̃e(x̃)

)]
· ∇p̃ f̃k

α = 0 .

On the other hand, the self-consistent electromagnetic field (Ẽ, B̃)(̃t, x̃) is subjected to the
Maxwell equations:

∂t̃Ẽ− c2
0 ∇x̃ × B̃ = − ε−1

0 ̃(̃fk
α) , ∇x̃ · Ẽ = ε−1

0 ρ̃(̃fk
α) ,(2.8a)

∂t̃B̃ +∇x̃ × Ẽ = 0 , ∇x̃ · B̃ = 0 .(2.8b)

In (2.8), the physical constant ε0 ' 8, 8× 10−12 F m−1 stands for the vacuum permitivity.

2.2. A dominant stationary part in a state of local thermodynamic equilibrium.
The unknowns in (2.7)-(2.8) are the f̃k

α(·) and (Ẽ, B̃)(·). For ν = 0 and (Ẽ, B̃) = (0, 0), we
simply find:

(2.9)
(̃
fk
1 (̃t, x̃, p̃), · · · , f̃k

N (̃t, x̃, p̃), Ẽ(̃t, x̃), B̃(̃t, x̃)
)

=
(̃
fd
1(x̃, p̃), · · · , f̃d

N (x̃, p̃), 0, 0
)
.

This expression is assumed to satisfy (2.7) modulo some small term (to be specified later):

(2.10) ṽα(p̃) · ∇x̃ f̃d
α + eα

[
ṽα(p̃)× B̃e(x̃)

]
· ∇p̃ f̃d

α ' 0 , ∀α ∈ {1, · · · , N} .

It is also an equilibrium from the viewpoint of waves, meaning that:

ε−1
0 ̃(̃fd

α)(x̃) = 0 ,(2.11a)
ρ̃(̃fd

α)(x̃) = 0 .(2.11b)

The aim of this subsection 2.2 is to give a detailed description of special functions f̃d
α(·)

satisfying (2.10) and (2.11), together with a number of other relevant physical constraints.
As a matter of fact, the two paragraphs 2.2.1 and 2.2.2 will consider (2.11b). On the other
hand, the paragraph 2.2.3 will give a precise description of f̃d

α(·), complemented by the
examination of (2.10) and the verification of (2.11a).
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2.2.1. Cold, warm and hot plasma temperatures. A plasma which turns to be spatially in
Local Thermodynamic Equilibrium (LTE) can be characterized at the position x̃ with a
few parameters, like the temperatures θ̃d

α(x̃) and the densities ñd
α(x̃) of the αth species.

Both θ̃d
α(·) and ñd

α(·) are building blocks in the construction of f̃d
α(·). Retain for instance

that ñd
α(·) can be recovered from f̃d

α(·) through the integral formula:

(2.12) ñd
α(x̃) :=

ˆ
R3

f̃d
α(x̃, p̃) dp̃ , x̃ ∈ Ω̃ , α ∈ {1, · · · , N} .

Denote simply by θd
α ∈ R∗+ and nd

α ∈ R∗+ typical sizes of θ̃d
α(·) and ñd

α(·). We require that
the two quantities θ̃d

α(x̃) and ñd
α(x̃) do not deviate too far from θd

α and nd
α. In other words:

Assumption 2.1. [possible but slight variations in temperatures and densities] There is a
constant c ∈ ]0, 1[ such that:

(2.13) 0 < c θd
α ≤ θ̃d

α(x̃) ≤ c−1 θd
α , 0 < c nd

α ≤ ñd
α(x̃) ≤ c−1 nd

α , ∀ x̃ ∈ Ω̃ .

Recall that kB ' 1, 38× 10−23m2 kg s−2K−1 stands for the Boltzmann constant, and also
retain the relationship 1 eV ' 1, 16 × 104 kBK. The electron temperature (Te ≡ T1) and
the ion temperatures (denoted by Tα for α > 1) can be expressed either in kelvin (K)
or in electronvolt (eV ). Because of the large difference in mass, the electrons will come
to thermodynamic equilibrium amongst themselves much faster than they will come into
equilibrium with the ions or neutral atoms. For this reason, the ion temperatures may be
very different from (usually much lower than) the electron temperature:

(2.14) Tα ≤ Te ≡ T1 , ∀α ∈ {1, · · · , N} .

Based on the relative temperatures of the electrons, ions and neutrals, plasmas are classified
as thermal or non-thermal. Introduce the thermal speed:

(2.15) vthα :=
(kB Tα
mα

)1/2
∈ R∗+ .

It is linked to the dimensionless parameter θd
α through:

(2.16) θd
α := vthα

c0
∈ R∗+ .

These two quantities vthα and θd
α can also be viewed as measures of temperature. Combining

(2.2) and (2.14), we get:

(2.17) vthα
vth1

= θd
α

θd
1

=
(Tα
T1

)1/2
×
(m1
mα

)1/2
.
(Tα
T1

)1/2
×
( 1
β

)1/2
� 1 .

As a rule of thumb, temperatures Tα well below 100 eV are said cold ; those which are about
100 eV (θd

α ' 10−2) are considered warm ; those with Tα ranging from 100 eV to 10 keV
(10−2 . θd

α . 1) become progressively hot ; particles with higher energies (1 . θd
α) are

termed energetic or relativistic.

https://en.wikipedia.org/wiki/Plasma_(physics)#Temperatures
https://en.wikipedia.org/wiki/Nonthermal_plasma
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2.2.2. Quasi-neutrality. A plasma consists of approximately equal numbers of positively
charged ions and negatively charged electrons. This property is expressed by (2.11b). In
view of (2.6a) and (2.12), this can also take the following equivalent form.
Assumption 2.2. The plasma is quasi-neutral in the sense that:

(2.18) e ñd
1(x̃) =

N∑
α=2

eα ñd
α(x̃) , ∀ x̃ ∈ Ω̃ .

The interpretation of (2.18) is the existence of a background neutralizing ion population.
In view of (2.3), (2.13) and (2.18), we can infer that:

(2.19) e nd
1 '

N∑
α=2

eα n
d
α , nd

α ' nd
1 , ∀α ∈ {2, · · · , N} .

2.2.3. Velocity distribution function. Several existing models can be used to describe f̃d
α(·).

The basic descriptions rely on the following choice.
Definition 2.1. The Maxwell-Boltzmann distribution is given by:

(2.20) f̃d
α(x̃, p̃) = ñd

α(x̃)
m3
α c

3
0
Mb

θ̃d
α(x̃)

( |p̃|
mα c0

)
, Mb

θ(r) := 1
π3/2

1
θ3 exp

(
− r

2

θ2

)
.

Retain that:

(2.21) ∂θMb
θ(r) = 1

θ
mb
θ(r) Mb

θ(r) , mb
θ(r) := − 3 + 2

(r
θ

)2
.

Moreover,Mb
θ(·) is a smooth probability density function (for the measure 4π r2 dr):

(2.22)
ˆ
R3
Mb

θ(|p|) dp = 4 π
ˆ +∞

0
Mb

θ(r) r2 dr = 1 , ∀ θ ∈ R∗+ .

Assumption 2.3. [the dominant stationnary parts of all species are in a state of local
cold thermodynamic equilibrium] For all α ∈ {1, · · · , N}, we have (2.20) and the relation
(2.13) is satisfied for some θd

α . 10−2.
In the scientific literature [20, 36], the term cold plasma is sometimes associated with a Dirac
mass in the momentum p̃, in which case θ = 0 or equivalently M(r) ≡ (4π)−1 r−2 δ|r=0.
However, the temperatures are not zero. The use of (2.20) is therefore more refined, while
keeping track of concentration effects through the (possible) smallness of θ.
Electrons are lighter than ions and neutral atoms. This is why they can easier reach
higher energies. This is especially true in the case of the outer Van Allen belt as it will
be explained in Paragraph 2.4. It follows that the dominant populations can inherit more
complex structures than (2.20). As long as θd

α . 10−2, we can keep (2.20) to describe f̃d
α(·).

But beyond, that is for hot plasmas (10−2 . θd
α . 1) and all the more so for relativistic

beams (1 . θd
α), it might be preferable to select a Maxwell-Jüttner distribution function.

Such relativistic aspects will be examined in a forthcoming publication. Here, we will stay
in the context of (2.20). Assuming (2.20), we find that:

(2.23)

[
ṽα · ∇x̃ + eα (ṽα × B̃e) · ∇p̃

]
(ln f̃d

α) = ṽα · ∇x̃(ln f̃d
α)

= ṽα · ∇x̃(ln ñd
α) + ṽα · ∇x̃(ln θ̃d

α) mb
θ̃d
α

( |p̃|
mα c0

)
.

http://www.plasma-universe.com/Quasi-neutrality
https://en.wikipedia.org/wiki/Maxwell?J�ttner_distribution
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If the temperature and the density are constant, that is if θ̃d
α(·) ≡ θd

α and ñd
α(·) ≡ nd

α, the
right-hand term of (2.23) disappears. Then, the expression (2.20) yields exact solutions
to the equation (2.10). On the contrary, when ∇x̃(ln θ̃d

α) 6≡ 0 or when ∇x̃(ln ñd
α) 6≡ 0, this

term is sure to contribute (more or less strongly). As revealed by the dimensionless version
of the equations (see Paragraph 2.6), the induced effect depends on the variations of θ̃d

α(·)
and ñd

α(·) in x̃, but also on the size of the temperature θd
α.

The expression f̃d
α(·) issued from (2.20) involves even functions. It makes no contribution

to the current density in (2.6b). When dealing with (2.20), the constraint (2.11a) is sure
to be satisfied.
2.3. Plasma phenomena out of equilibrium. Collisionless plasmas are characterized
by a Knudsen number Kn larger than one. It follows that the possible discrepencies from
the Maxwell-Boltzmann distributions are not immediately relaxed. Expressions like (2.9),
where the f̃d

α(·) are adjusted as in (2.20), are therefore not sufficiently exhaustive to fully
describe the realistic plasmas. In particular, in connection with some observed phenomena,
the following aspects may need to be incorporated:

- Spatial variations in the position x̃ : As already taken into account, most concrete
situations involve non constant functions ñd

α(·)−nd
α and θ̃d

α(·)−θd
α. A perturbative

approach is required to absorb the remainders obtained when computing (2.7), see
the right-hand term of (2.23).

- Anisotropic effects in the momentum p̃ : There is a plethora of factors that produce
inhomogeneities according to the different directions |p̃|−1 p̃ ∈ S2 of p̃. Examples
include lighting strikes, solar flares, ohming heating, neutral beam injections, high-
frequency and radio-frequency waves. Obviously, such features cannot be included
inside (2.20), because this expression depends only on |p̃|.

- Dynamical aspects : The anisotropy in p̃ can be enhanced by the external magnetic
field B̃e(·) through the Lorentz force. This results in microscopic time-dependent
instabilities, known as anomalous transport.

- Electromagnetic perturbations : In practice, fluctuations of the electric field and of
the magnetic field (near B̃e) are recorded. In contrast with (2.9), the self-consistent
field (Ẽ, B̃)(·) is in general non-trivial.

To grasp plasma instabilities or plasma processes which are not in thermal equilibrium,
we can perform a stability analysis in the vicinity of (2.9). This amounts to take ν ∈ R∗+
with ν � 1 in (2.5). From now on, the focus will be on (2.7)-(2.8) in the context of the
perturbative regime (2.5). With a dominant stationary part adjusted as in (2.20), we look
at the extra part f̃s

α(·), which is governed by:

(2.24)


∂t̃ f̃s

α + ṽα(p̃) · ∇x̃ f̃s
α + eα

[
Ẽ + ṽα(p̃)× (B̃ + B̃e)

]
· ∇p̃ f̃s

α

= − ν−1 ṽα(p̃) · ∇x̃ f̃d
α − ν−1eα Ẽ · ∇p̃ f̃d

α ,
∂t̃B̃ +∇x̃ × Ẽ = 0 ,
∂t̃Ẽ− c2

0 ∇x̃ × B̃ = − ε−1
0 ν ̃(̃fs

1, · · · , f̃
s
N ) ,

together with:
(2.25) ∇x̃ · Ẽ = ε−1

0 ν ρ̃(̃fs
1, · · · , f̃

s
N ) , ∇x̃ · B̃ = 0 .

https://en.wikipedia.org/wiki/Knudsen_number
http://fusionwiki.ciemat.es/wiki/Anomalous_transport
https://en.wikipedia.org/wiki/Plasma_stability#Plasma_instabilities
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2.4. Some concrete situation. The description through (2.20) of the underlying medium
can be further specified with regard to the applications in physics. We will consider the
case of Near-Earth space plasmas [21], inside the exosphere (where Kn > 1). In the inner
magnetosphere, we can distinguish two types of particle structures, which can involve
special values of temperatures and densities, falling into the context of the description of
cold plasmas from Paragraph 2.2.
• C1. The plasmasphere is a doughnut-shaped region which rotates with the Earth. It
is a cold plasma (' 1 eV) made of H+ (nominally about 80%), He+ (10 − 20%) and O+

(a few percent). As noted in [9], the average electronic temperature is Te ' 6 × 103K, so
that θd

1 ' 10−3. As a result, the selection of (2.20) for all α ∈ {1, · · · , N} is adequate. The
plasmaspheric concentration is around a mean value which is close to nd

1 = 108 electons/m3.
The functions ñd

α(·) may vary slightly from place to place, especially when crossing the slot
region. Global realistic profiles for ñd

α(·) are suggested in [9, 21]. ◦
• C2. The outer Van Allen belt partly overlaps with the plasmasphere. It is a concentric,
tyre-shaped belt containing ionic and neutral species which may be globally cold, warm,
or possibly hot (but certainly not beyond). This belt can also implicate highly energetic
(' 1MeV) electron fluxes which may be trapped [5, 7] by the geomagnetic field. These
fast charged parcticles travel along the field lines. They stay approximately at a fixed
L-shell, where the density is almost constant. We can therefore take ñd

α(·) ≡ nd
α for all

α ∈ {1, · · · , N}. In particular, as in C1., we can fix nd
1 = 108 electrons/m3. Moreover, as

long as the fraction of hot and energetic particles remains small, even for α = 1, we can
still select (2.20) and incorporate the relativistic aspects inside f̃s

1. ◦
In what follows, the two above contexts will be systematically tested. This will appear
throughout the text inside paragraphs that will be preceded by the title Discussion.

2.5. Inhomogeneous magnetized plasmas. Most cold plasmas [4, 7, 12, 16] are under
the influence of a strong external magnetic field which can be prescribed through some
adequate function B̃e : Ω̃ −→ R3, with amplitude b̃e(x̃) := |B̃e(x̃)|. The function b̃e(·) is
assumed to be of the order be ∈ R∗+. More precisely, we can find c ∈ ]0, 1[ such that:

(2.26) 0 < c be ≤ b̃e(x̃) ≤ c−1 be , ∀ x̃ ∈ Ω̃ .

In view of (2.1), we can consider the following rescaled version of B̃e(·):

(2.27) Be(x) := B̃e(Lx)
be

, be(x) := |Be(x)| .

Then, the condition (2.26) becomes:

Assumption 2.4. [nowhere-vanishing external magnetic field] There is c ∈ ]0, 1[ such that:

(2.28) 0 < c ≤ be(x) ≤ c−1 , ∀x ∈ Ω .

The function Be(·) generates a unit vector field:

(2.29) e3(x) := be(x)−1 Be(x) ∈ S2 :=
{
x ∈ R3 ; |x| = 1

}
.

https://en.wikipedia.org/wiki/Exosphere
https://en.wikipedia.org/wiki/Plasmasphere
https://en.wikipedia.org/wiki/Plasmasphere
http://science.nasa.gov/science-news/science-at-nasa/2014/28nov_vanallengap/
http://link.springer.com/chapter/10.1007/978-0-387-69532-7_14#page-1
http://holbert.faculty.asu.edu/eee560/spacerad.html
http://www.johnstonsarchive.net/physics/ps-paper.html
http://www.johnstonsarchive.net/physics/ps-paper.html
https://en.wikipedia.org/wiki/Van_Allen_radiation_belt
http://www.pnas.org/content/58/6/2154.full.pdf
https://en.wikipedia.org/wiki/L-shell
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Complete e3(x) into some right-handed orthonormal basis (e1, e2, e3)(x), with:

(2.30) ej(·) = t(e1
j , e

2
j , e

3
j )(·) ∈ C∞(Ω; S2) , ∀ j ∈ {1, 2, 3} .

With the preceding ingredients, we can define some orthogonal matrix O(x) and some
constant skew-symmetric matrix Λ according to:

(2.31) O :=

 e1
1 e1

2 e1
3

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3

 = tO−1 , Λ :=

 0 1 0
−1 0 0
0 0 0

 = − tΛ .

Assumption 2.5. [divergence and curl-free external magnetic field] The function Be(·) is
smooth, with Be ∈ C∞(Ω;R3). It is such that:

∇x ·Be(x) = 0 , ∀x ∈ Ω ,(2.32a)
∇x ×Be(x) = 0 , ∀x ∈ Ω .(2.32b)

Generally, magnetic field lines are curved. In most concrete situations, the function Be(·) is
a well-known non constant function of x ∈ R3. As depicted below, cylindrical coordinates
(ρ, ϕ, z) ∈ R∗+×R2 can be used to mark the position of x. Recall that, for any vector field
A = Aρ eρ +Aϕ eϕ +Az ez, the divergence and the curl are given by the dipole model:

∇ ·A = 1
ρ

∂

∂ρ
(ρAρ) + 1

ρ

∂Aϕ
∂ϕ

+ ∂Az
∂z

,(2.33a)

∇×A =
(1
ρ

∂Az
∂ϕ
− ∂Aϕ

∂z

)
eρ +

(
∂Aρ
∂z
− ∂Az

∂ρ

)
eϕ(2.33b)

+1
ρ

(
∂

∂ρ
(ρAρ)−

∂Aρ
∂ϕ

)
ez .

Discussion 2.1. [external magnetic field] In the case of Near-Earth plasmas, just take
L = Re, where Re ' 6, 3× 106m is the Earth radius. The plasmasphere and the two Van
Allen belts occupy some area between altitudes of 2Re and 8Re. We can work with:

Ωe :=
{

(ρ, ϕ, z) ∈ R∗+ × R2 ; 2 < ρ2 + z2 < 8
}
.

The magnitude of the geomagnetic field, as it can be measured at the surface of the earth,
is about be ' 10−5 T . The Earth’s magnetic field Be ≡ Be

e does not depend on the angle ϕ.
As mentioned for instance in [5, 7], it can be approximated by:

(2.34) Be
e(ρ, z) := 1

(ρ2 + z2)5/2

 − 3 ρ z
0

ρ2 − 2 z2

, bee ≡ |Be
e| =

(ρ2 + 4 z2)1/2

(ρ2 + z2)2 .

Observe that the two functions Be
e(·) and bee(·) are homogeneous in (ρ, z) of degree −3.

We can recover (2.28) with c = 8−3. Applying (2.33a) and (2.33b), we see easily that both
conditions (2.32a) and (2.32b) are met. ◦

http://sci.esa.int/cluster/52831-earth-plasmasphere-and-the-van-allen-belts/
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2.6. Dimensionless equations. The aim here is to write the system (2.24)-(2.25) in
dimensionless form (Paragraph 2.6.1). By doing so, we have to take into account the
effects induced by the spatial variations of ñd

α(x̃), θ̃d
α(x̃) and B̃e(x̃). Then, it is useful to

straighten the field lines (Paragraph 2.6.2 ). Moreover, in connection with the application
to the earth’s context, it is important to give (Paragraph 2.6.3) a precise description of
(the relative sizes of) the various physical parameters.
2.6.1. Rescalings. Let us recall (2.27), and define rescaled versions of ñd

α(·) and θ̃d
α(·) :

(2.35) nd
α(x) := (nd

α)−1ñd
α(Lx) ' 1 , θd

α(x) := (θd
α)−1θ̃d

α(Lx) ' 1 .
This says nothing about the comparison of the selfconsistent magnetic field B̃ to the typical
size be of b̃e(·). From the Ampère’s law in (2.24), we can infer that B̃ ' ν θd

α be. With this
in mind, we can further define new unknowns by the relations:

vα(p) := (c0)−1ṽα(p̃) , pα := (mα c0 θ
d
α)−1p̃α , ∀α ∈ {1, · · · , N} ,(2.36a)

fα(t,x,pα) := (nd
α)−1m3

α c
3
0 (θd

α)3 f̃s
α(̃t, x̃, p̃) , ∀α ∈ {1, · · · , N} ,(2.36b)

E(t,x) := (ν θd
1 c0 be)−1 Ẽ(̃t, x̃) , B(t,x) := (ν θd

1 be)−1 B̃(̃t, x̃) .(2.36c)
From now on, the time-spatial position is (t,x), with (t,x) ∈M := [0, 1]×Ω. Let T ∗M be
the cotangent bundle associated with M . With (2.36a), the vectors vα and pα are linked
by the relations issued from (2.4), that is:

(2.37) pα(vα) := vα
θd
α

(
1− |vα|2

)1/2 , vα(pα) := θd
α pα

〈θd
α |pα|〉

, 〈r〉 :=
√

1 + r2 .

Among the fundamental plasma parameters, we can mention (for α = 1) the electron
gyrofrequency (or cyclotron frequency) ωce ≡ ωc1 and the electron plasma frequency (or
plasma oscillation) ωpe ≡ ωp1. For α ∈ {2, · · · , N}, we could cite the ion gyrofrequencies
ωcα and the ion plasma frequencies ωpα. For simplicity of presentation, we define below
these quantities with an algebraic sign:

(2.38) ωcα := eα be
mα

, ωpα :=

√
nd
α e

2
α

mα ε0
, ∀α ∈ {1, · · · , N} .

There are corresponding dimensionless coefficients εα and µα, given by:
(2.39) εα := (Lωcα)−1c0 , µα := (ωcα)−1ωpα , ∀α ∈ {1, · · · , N} .
Then, the new Vlasov equation is:

(2.40)

∂tfα + θd
α

〈θd
α |pα|〉

pα · ∇xfα + θd
1
θd
α

ν

εα

[
E + θd

α

〈θd
α |pα|〉

pα ×B
]
· ∇pαfα

+ 1
εα

1
〈θd
α |pα|〉

(
pα ×Be(x)

)
· ∇pαfα + θd

1
θd
α

nd
α

εα
∂rMb

θd
α(x)

(
|pα|

) pα ·E
|pα|

+ 1
ν

θd
α

〈θd
α |pα|〉

pα · ∇xnd
α Mb

θd
α(x)

(
|pα|

)
+1
ν

nd
α

θd
α

〈θd
α |pα|〉

pα · ∇x(ln θd
α)
(
mb
θd
α(x)M

b
θd
α(x)

)(
|pα|

)
= 0 .

https://en.wikipedia.org/wiki/Plasma_parameters


DISPERSION RELATIONS IN COLD MAGNETIZED PLASMAS 13

On the other hand, the Maxwell’s equations become:
∂tB +∇x ×E = 0 , ∂tE−∇x ×B = − (fα) ,(2.41a)
∇x ·B = 0 , ∇x ·E = ρ(fα) ,(2.41b)

where we have introduced:

ρ(f1, · · · , fN )(t,x) ≡ ρ(fα)(t,x) :=
N∑
α=1

1
θd

1

µ2
α

εα

ˆ
R3

fα(t,x,pα) dpα ,(2.42a)

(f1, · · · , fN )(t,x) ≡ (fα)(t,x) :=
N∑
α=1

θd
α

θd
1

µ2
α

εα

ˆ
R3

pα
〈θd
α |pα|〉

fα(t,x,pα) dpα .(2.42b)

A quick calculation indicates that the two relations of (2.41b) are propagated by the evo-
lution equation (2.40)-(2.41a). Therefore, it suffices to check (2.41b) at the time t = 0, and
then to focuss on (2.41a).
2.6.2. Straightening the field lines. Equation (2.40) is not yet in a suitable form. Still, we
need to straighten out the field lines. Recall (2.29)-(2.31) so that:
(2.43) Be(x) = be(x) e3(x) = be(x) O(x) t(0, 0, 1) , ∀x ∈ Ω .

In view of Discussion 2.1, the directions of the unit vector field e3(·), and therefore of Be(·),
can vary with changes in x ∈ Ω. To remedy this situation, we replace simultaneously Be,
B, E and pα according to:
(2.44) be t(0, 0, 1) = tOBe , B := tOB , E := tOE , pα := tO pα .
For the sake of simplicity, the subscript α that identifies the different momentum variables
pα will be omitted. Concerning p ≡ pα ∈ R3, we can pass from cartesian to spherical
coordinates, with orthonormal basis (er, e$, eω). This gives rise to:
(2.45) p = r t(cosω sin$, sinω sin$, cos$) , ($,ω, r) ∈ T2 × R+ , r = |p| = |p| .

Figure 1. Spherical coordinates of p ∈ R3 after straigntening.
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From now on, the spatial-velocity position is marked by y := (x, $, ω, r) ∈ Ω × T2 × R+.
We modify fα(·) to fit with the preceding adjustements:
fα(t,y) ≡ f(t,x, $, ω, r) := fα

(
t,x, r O(x) (cosω sin$, sinω sin$, cos$)

)
.

As usual, the symbol S refers to the Schwartz space. We consider functions f(·) satisfying
uniformly in (t,x, $, ω) ∈M × T2 the conditions:

(2.46) f ∈ C∞(M × T2 × R+;R) , f(t,x, $, ω, ·) ∈ S(R+;R) .

The gradient ∇p is converted into the spherical gradient ∇p, with:

∇pf := ∂f

∂r
er + 1

r

∂f

∂$
e$ + 1

r sin$
∂f

∂ω
eω .

The change of variables (x,p)→ (x, p) on the right of (2.44) induces some extra term when
transforming (v · ∇x)f accordingly. Some application Q(·) does appear. This is a vector
valued quadratic form in p, namely:

Q(x, p) :=

 O(x) p · ∂x1e1 O(x) p · ∂x2e1 O(x) p · ∂x3e1
O(x) p · ∂x1e2 O(x) p · ∂x2e2 O(x) p · ∂x3e2
O(x) p · ∂x1e3 O(x) p · ∂x2e3 O(x) p · ∂x3e3

 O(x) p ∈ R3 .

Put aside the integral operators:

ρ(f) :=
ˆ +∞

0

ˆ π

0

ˆ π

−π
f($,ω, r) r2 sin$ dr d$ dω ,(2.47a)

J (θ; f) :=
ˆ +∞

0

ˆ π

0

ˆ π

−π

r3

〈θ r〉

(
cosω sin$
sinω sin$

cos$

)
f($,ω, r) sin$ dr d$ dω .(2.47b)

2.6.3. The hierarchy between dimensionless parameters. For further analysis, it is crucial
to produce values for the parameters εα, θd

α and µα which could be meaningful from a
physical point of view. It is also important to compare these quantities to one another. To
this end, the following dimensionless number (which comes from the inverse of the electron
cyclotron frequency):

(2.48) ε ≡ |ε1| :=
c0

L |ωc1|
= c0me

Le be
' 10−3

L be
,

will serve as a unit of measure.

Discussion 2.2. [about the size of ε] As indicated in (2.39), the number ε appears to be the
ratio beween the reference frequency 1/T = c0/L and the gyrofrequency ωce. This appears
to be a small parameter. The plasmasphere begins above the upper ionosphere and extends
outwards. It contains the inner Van Allen belt, which is located between 1Re and 2Re. Its
outer boundary, known as the plasmapause, can vary with geomagnetic activity. During
quiet period, it can expand outward to 7Re or beyond. On the contrary, during magnetic
storms, it moves at around 5Re. The outer Van Allen belt covers altitudes of approximately
4 to 8Re. In short, we can take the mean value L ' 5Re, so that ε ' 10−4. ◦

https://en.wikipedia.org/wiki/Electron_cyclotron_resonance
https://en.wikipedia.org/wiki/Electron_cyclotron_resonance
http://sci.esa.int/cluster/52831-earth-plasmasphere-and-the-van-allen-belts/
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From now on, we take ε := 10−4 � 1 as the small reference parameter to which all other
quantities will be compared. For instance, with (2.2), keep in mind that:

(2.49) |εα| = e

|eα|
mα

me
ε ' ε

ια
& β ε ' 1 , ∀α ∈ {2, · · · , N} .

Discussion 2.3. [about the size of the coefficients θd
α] The measurements recorded in the

plasmasphere indicate that θd
1 ' ε. The ratio θd

α/θ
d
1 is given by (2.17). In view of (2.2) and

(2.14), it is very small. The model (2.20) is therefore suitable for all α. In the limit ε goes
to zero, we can even say that the kinetic distribution functions are given by Dirac masses.
This explains the cold plasma approximation, which is sometimes applied in geophysical
research [20, 36]. As regards the outer Van Allen belt, the situation is more problematic.
It may still be considered that θd

α . ε and that fd
α(·) is as in (2.20) for all α ∈ {2, · · · , N}.

However, the presence sometimes of a large amount of hot electrons might also point in
favour of a Maxwell-Jüttner distribution. ◦

Discussion 2.4. [about the size of the coefficients µα] In view of (2.39), the access to µ1
requires to evaluate be, me and nd

1. How to fix these quantities has already been explained.
We find that µ := |µ1| ' 1. We remark that:

(2.50) |µα| =
(nd

α mα

ε0

)1/2 1
be

=
(nd

α mα

nd
1 m1

)1/2
|µ1| ≥ µ , ∀α ∈ {1, · · · , N} .

We can also find that:

(2.51) µ2
α

εα
= eα n

d
α

e1 nd
1

µ2

ε
' µ2

ε
, ∀α ∈ {1, · · · , N} .

◦
In practice, the value of µ := |µ1| is of size 1. As indicated in Definition 3.8, it can be locally
compared to be(x) ' 1. The plasma is termed underdense when µ < be(x) and overdense
when be(x) < µ. To track the influence of µ, this parameter will not be normalized in
what follows. At all events, retain that the size of ε is always small, and far below µ.

Discussion 2.5. [about the size of ν] We will adjust ν in such a way that ν . ε. By this
way, we can stay in a perturbative regime, even if θd

1 ' 1. Indeed:
- Smallness of B̃ in comparison with B̃e : In view of (2.36c), the condition B ' 1

implies B̃ ' ν θd
1 be . ε be. With (2.26), we can be sure that |B̃| . ε |B̃e|.

- Smallness of ν f̃s
α in comparison with f̃d

α : When computing f̃k
α(·) through (2.5), the

part ν f̃s
α(·) appears as a small modification of f̃d

α(·). This makes sense whatever
the parameter θd

α is, small or large. Indeed, the amplitude of f̃s
α(·) as prescribed by

(2.36b) with fα ' 1 is equivalent to the amplitude of f̃d
α(·) given by (2.20).

In concrete terms, we will impose ν ∼ ε.



16 C. CHEVERRY AND A. FONTAINE

2.7. The cold asymptotic regime. The discussion can be put in the context of some
asymptotic analysis (when ε goes to 0). To this end, the coefficients εα, θd

α and µα must
be viewed as functions of ε ∈ ]0, 1]. In view of the preceding study, when dealing with the
plasmasphere, the three following assumptions can be retained:

- (Cp1) : For all α ∈ {1, · · · , N}, we have θd
α(ε) ∼ ε with ε� 1.

- (Cp2) : For all α ∈ {1, · · · , N}, the dominant stationary part f̃d
α(·) is given by the

Maxwell-Boltzmann KDF (2.20).
- (Cp3) : The perturbation is such that ν ∼ ε.

As already explained, the hypotheses (Cp1) and (Cp2) correspond to a cold thermal plasma.
On the other hand, the hypothesis (Cp3) means that only a small fraction of the plasma
is out of equilibrium. By combining information from Section 2.6 with (Cp1), (Cp2) and
(Cp3), we can simplify (2.40)-(2.41a)-(2.41b) as indicated below. First, due to (Cp2), there
is almost no distinction between the cases α = 1 and α ∈ {2, · · · , N}. The only difference
is that |εα| ' 1 for all α ∈ {2, · · · , N}, whereas |ε1| = ε� 1. Thus, for all α ∈ {1, · · · , N},
we can impose:

(2.52)

∂tfα + ε

〈ε r〉
O(x) p · ∇xfα + ε

〈ε r〉
Q(x, p) · ∇pfα

+ ε

εα

[
E + ε

〈ε r〉
p×B

]
· ∇pfα −

1
εα

be(x)
〈ε r〉

∂ωfα

+ nd
α(x)
εα

∂rMb
θd
α(x)(r)

p · E
r

+ 1
〈ε r〉

O(x) p · ∇xnd
α(x) Mb

θd
α(x)(r)

+ 1
〈ε r〉

nd
α(x) O(x) p · ∇x(ln θd

α)(x)
(
mb
θd
α(x)M

b
θd
α(x)

)
(r) = 0 .

For α ∈ {2, · · · , N}, this equation (2.52) contains no singular term (of the order ε−1), and
it is weakly nonlinear. On the contrary, for α = 1, we can note the presence of a fast
rotating term (of the order ε−1), of a large source term (of size ε−1), and of some O(1)
nonlinear contribution (of the form E · ∇pfα).
The equation (2.41) does not need to be changed, except that the compatibility conditions
contained in (2.41b) must be conveniently weighted:

∂tB +∇x ×E = 0 , ∇x ·B = 0 ,(2.53a)
∂tE−∇x ×B = − (fα) , ε ∇x ·E = ε ρ(fα) ,(2.53b)

and except that the two expressions ρ(fα) and (fα) can be further specified by using (Cp1)
and (2.51) in order to find:

ρ(fα)(t,x) ≡ ρc(fα)(t,x) := − µ
2

ε2

ˆ
R3
f1 dp+

N∑
α=2

µ2

ε2

ˆ
R3
fα dp ,(2.54a)

(fα)(t,x) ≡ c(fα)(t,x) := − µ
2

ε

ˆ
R3

p

〈ε r〉
f1 dp+

N∑
α=2

µ2

ε

ˆ
R3

p

〈ε r〉
fα dp .(2.54b)
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2.8. Within the framework of geometrical optics. The plasmas can support a wide
variety of wave phenomena. We refer to [10, 11, 25] for an overview. In most cases, these
phenomena appear to be interconnected sets of particles and fields which can evolve in
a periodically repeating fashion [7]. In order to capture the precise features underlying
the propagation of such plasma waves, a good strategy is to start from the dimensionless
version of the RVM system which has just been exhibited in Paragraph 2.7, made up of
(2.52)-(2.53) together with (2.54). This allows to set the discussion within the coherent
framework of geometric optics [26, 30]. The corresponding asymptotic analysis is new for
two main reasons. The first, which is well detailed in Sections 1 and 2.5, comes from the
spatial variations of the magnetic field; the second is due to the mesoscopic precision of
our model. It is important here to discuss this second aspect more thoroughly.
Being interested in the propagation of electromagnetic waves means to focus on oscillations
of the self-consistent field (E,B)(·). Since the function (E,B)(·) depends only on (t,x),
a key point is that only time-space oscillations can be involved at this level. With this in
mind, we can introduce some smooth phase function φ ∈ C∞(M ;R), which depends on the
macroscopic variable (t,x) ∈M but certainly not on the kinetic variable p ∈ R3.
Assumption 2.6. [non-stationary phase] The function φ is such that:
(2.55) ∀ (t,x) ∈M , (∂tφ,∇xφ)(t,x) 6= 0 .

The oscillating behaviour of (E,B)(·) may be viewed as a sum of monophase pieces which
can be modelled by:

(E,B)(t,x) ≡ (Eε, Bε)(t,x) = (E ,B)
(
t,x, φ(t,x)

ε

)
, ε ∈ ]0, 1] .

Usually, the time evolution of (E,B)(·) is considered in the framework of MHD descriptions,
through fluid models based on Maxwell’s equations, involving the variables (t,x). This has
the advantage of simplicity. But this also means various simplifying assumptions which
are debatable when dealing with plasma phenomena out of equilibrium. To understand all
subtleties induced by the underlying presence of p ∈ R3, it is necessary to come back to
the original RVM system. To this end, we seek the complete solution u of (2.52)-(2.53) in
the form of a basic monophase representation implying φ through:

(2.56) u(t,y) =


f1(t,y)

...
fN (t,y)
B(t,x)
E(t,x)

 = uε(t,y) = U
(
t,y, φ(t,x)

ε

)
, y = (x, $, ω, r) .

In (2.56), the profile U is assumed to be periodic in the fast variable θ ∈ T := R/(2π Z).
The coordinates inside (t,y) are considered as slow variables. When dealing with capital
letters like U , the different font styles U , U and U will be used for expressions depending
respectively on the variables (t,y, θ), (t,y) and (t,x, $, ω). When studying (2.52)-(2.53),
a first stage is to exhibit approximate solutions.
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Given N ∈ N∗, we aim at a precision of the order O(εN−1) through expansions like:

(2.57)

uεa(t,y, r) =


fεa,1(t,y)

...
fεa,N (t,y)
Bεa(t,x)
Eεa(t,x)

 = U ε
a

(
t,y, φ(t,x)

ε

)

=
N∑
j=0

εj Uj

(
t,y, φ(t,x)

ε

)
=

N∑
j=0

εj


Fj,1(t,y, φ(t,x)/ε)

...
Fj,N (t,y, φ(t,x)/ε)
Bj(t,x, φ(t,x)/ε)
Ej(t,x, φ(t,x)/ε)

.
In (2.57), the profiles Uj(t,y, θ) are assumed to be smooth bounded real valued functions:

Uj = t(Fj,1, · · · ,Fj,N ,Bj ,Ej) ∈ C∞b (M × T2 × R+ × T;RN+6) , ∀ j ∈ {0, · · · , N} ,
with Fourier series:

(2.58) Uj(t,y, θ) =
∑
l∈Z
U lj(t,y) ei l θ , U lj = t(F lj,1, · · · ,F lj,N , Bl

j , E
l
j) ≡ Ū−lj .

It is understood that the function F lj,α(·) and its derivatives at all orders satisfy (2.46).
Plugg the real valued function uεa(·) of (2.57) into (2.52)-(2.53) and into (2.54). Collect
the contributions having the same power of ε in factor, sorted in increasing order. By this
way, we get the condition:

(2.59)
+∞∑
j=−1

εj Gj
(
t,y, φ(t,x)

ε

)
= 0 , Gj(t,y, θ) =

∑
l∈Z
Glj(t,y) ei l θ , Glj ≡ Ḡ−lj .

It turns out that the expressions Gj(·) depend only on terms Ui with i ≤ j + 1. The
approximate solution uεa(·) can be derived by solving successively the conditions Gj ≡ 0 for
j = −1, j = 0, and so on · · · up to j = N − 1. The corresponding WKB analysis is rather
difficult and imbricated. We must proceed step by step. To begin with, we limit ourselves
here to the initialization procedure. We will only consider the preliminary constraint
G−1 ≡ 0 obtained for j = −1. This includes especially the so-called eikonal equation which
allows to determine φ and therefore governs the geometry of the propagation. The study
of transport equations (for j = 0), of weakly nonlinear effects (interaction of waves) and of
stability properties is postponed to other articles.

3. Cold plasma dispersion relations

From now on, the matter is to solve the condition G−1(U0) ≡ 0, which is inherited from
the cold plasma model exposed in Paragraph 2.7. Given ` ∈ N, the Fourier coefficient G`−1
depends only on U `0. There remains:

(3.1) G`−1(U `0) ≡ 0 , ∀ ` ∈ Z .
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The expressions G`−1(·) are linear with respect to U l0 with coefficients depending on the
choice of φ. With (2.58) and (2.59), it follows that:

(3.2) G`−1(U `0) = Ḡ−`−1(Ū−`0 ) = G−`−1(U−`0 ) , G`−1(0) = 0 , ∀ ` ∈ Z .

The situation under study is very dispersive. After adjusting φ in order to obtain Gl−1 ≡ 0
(and therefore Ḡ−l−1 ≡ 0) for some l ∈ Z∗, the other conditions G`−1 ≡ 0 (with ` 6= |l|) are
in general not verified (except for the trivial choice U `0 ≡ 0). This is why, at leading order,
only one Fourier coefficient will be switched on.

Assumption 3.1. [presence of a non-trivial monochromatic electromagnetic oscillation]
There is some non-zero integer l ∈ Z∗ such that:

(3.3) (El0, Bl
0) ≡ (Ē−l0 , B̄−l0 ) 6≡ 0 , U `0 ≡ 0 , ∀ ` ∈ Z \ {−l, l} .

Due to (3.2) and (3.3), the conditions inside (3.1) reduce to:

(3.4) Gl−1(U l0) ≡ 0 , U l0 = t(F l0,1, · · · ,F l0,N , Bl
0, E

l
0) .

This Section 3 is devoted to the analysis of (3.4).

3.1. The first step of the WKB calculus. With l ∈ Z∗ as in Assumption 3.1, introduce:

(3.5) τ := l ∂tφ(t,x) ∈ R , ξ := l tO(x)∇xφ(t,x) ∈ R3 .

Recall that, due to (2.55), we have (τ, ξ) 6= (0, 0). From (2.52), knowing that ε1 = −ε and
εα . 1 for α 6= 1, we can extract:

(3.6)
[
i τ + be ∂ω

]
F l0,1 = nd

1 ∂rMb
θd

1
(r) r−1 p · El0 ,

together with:

(3.7) ∀α ∈ {2, · · · , N}, i τ F l0,α = 0 .

In view of (3.6), an electric oscillation (El0 6≡ 0) is correlated with an oscillation of the
electron density distribution (F l0,1 6≡ 0). On the contrary, the density distributions of ions
contain no oscillations (at leading order). In order to satisfy (3.7), we must impose:

(3.8) ∀α ∈ {2, · · · , N}, F l0,α = 0 .

With the f εa,α as in (2.57), exploiting (3.8), the charge density ρ and the electric current 
which are given by (2.54) can be expanded in powers of ε ∈ ]0, 1] according to:

ρ(f εa,α)(t,x) = − µ
2

ε2

(ˆ
R3
F l0,1(t,y) dp

)
ei l φ(t,x)/ε + O

(1
ε

)
,(3.9a)

(f εa,α)(t,x) = − µ
2

ε

(ˆ
R3
p F l0,1(t,y) dp

)
ei l φ(t,x)/ε + O(1) .(3.9b)
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Coming back to (2.52)-(2.53), with the definitions of (2.47), we have to consider:

ξ × El0 + τ Bl
0 = 0 .(3.10a)

ξ ×Bl
0 − τ El0 = i µ2 J

(
0;F l0,1(t,x, ·)

)
,(3.10b)

ρ
(
F l0,1(t,x, ·)

)
= 0 , ξ ·Bl

0 = 0 .(3.10c)

The rest of the article is devoted to the study of the system (3.6)-(3.10) on (F l0,1, Bl
0, E

l
0).

The subscript α is not present at the level of (3.6)-(3.10). Thus, without any possibility of
confusion, we can drop the subscript 1 at the level of θd

1 , nd
1 and F l0,1. From now on, θd,

nd and F l0 stand for θd
1 , nd

1 and F l0,1.

3.1.1. Looking for reduced-form equations on the electric part. The aim here is to extract
from (3.6)-(3.10) necessary conditions involving only El0. Let us go step-by-step.
◦ 3.1.1.a) Eliminating the presence of the variable r. The expression F l0 ≡ F l0,1 can always
be factored into:
F l0(t,y) = F l0(t,x, $, ω) ∂rMb

θd(r) , F l0 ∈ C∞(M × T2;C) .
This allows to convert (3.6) into:

(3.11)
[
i τ + be ∂ω

]
F l0 = nd (cosω sin$, sinω sin$, cos$) · El0 .

On the other hand, we have:ˆ +∞

0
r3 ∂rMb

θd(r) dr = − 1
π3/2

ˆ +∞

0

( r2

(θd)2

)3/2
exp

(
− r2

(θd)2

)
d
( r2

(θd)2

)
= − 1

π3/2 Γ
(5

2
)

= − 3
4π .

Coming back to (2.47b), it follows that:

(3.12) J (0;F l0) ≡ J0(F l0) := − 3
4π

ˆ π

0

ˆ π

−π

(
cosω sin$
sinω sin$

cos$

)
F l0(t,x, $, ω) sin$ d$ dω .

In the same way, we can compute:

(3.13) ρ
(
F l0(t,x, ·)

)
≡ ρ0(F l0) := − 1

π3/2 θd(x)

ˆ π

0

ˆ π

−π
F l0(t,x, $, ω) sin$ d$ dω .

◦ 3.1.1.b) Eliminating the presence of the variable ω. This can be done by a Fourier analysis:
F l0(t,x, $, ω) =

∑
m∈Z

F l,m0 (t,x, $) eimω =
∑

(m,n)∈Z2

F l,m0,n (t,x) ei (n$+mω) .

Then, the condition (3.11) can be declined into:

i
[
τ − be(x)

]
F l,−1

0 = 2−1 nd (El10 + i El20 ) sin$ ,(3.14a)

i τ F l,00 = nd El30 cos$ ,(3.14b)
i
[
τ + be(x)

]
F l,+1

0 = 2−1 nd (El10 − i El20 ) sin$ ,(3.14c)

i
[
τ +mbe(x)

]
F l,m0 = 0 , ∀m ∈ Z \ {−1, 0, 1} .(3.14d)
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On the other hand, we are left with:

(3.15) J0(F l0) ≡ J0(F l,−1
0 , F l,00 , F

l,1
0 ) = − 3

4

ˆ π

0

(
F l,10 + F l,−1

0
i (F l,10 − F l,−1

0 )
2 cotan$ F l,00

)
(t,x, $) (sin$)2 d$ ,

together with:

(3.16) ρ0(F l0) ≡ ρ0(F l,00 ) = − 2
π1/2 θd(x)

ˆ π

0
F l,00 (t,x, $) sin$ d$ .

Now, from (3.14b), we can deduce that:

(3.17) i τ π1/2 θd ρ0(F l0) = − 2 nd El30

ˆ π

0
cos$ sin$ d$ = 0 .

Remark 3.1. For τ 6= 0, the first condition and the second condition inside (3.10c) are
obvious consequences of respectively (3.17) and (3.10a). Thus, when τ 6= 0, we can forget
the compatibility condition (3.10c).

◦ 3.1.1.c) Eliminating the presence of the magnetic component Bl
0. Multiply the line (3.10b)

by τ . In the expression thus obtained, use (3.10a) to replace τ Bl
0. This yields:

(3.18) ξ × (ξ × El0) + τ2El0 = − i µ2 τ J0(F l0) .

◦ 3.1.1.d) Eliminating the presence of the density component F l0. The idea here is to exploit
the equations of (3.14) in order to exhibit a relation between J0(F l0) and El0. To begin
with, from (3.14), we can extract:

Σ(x, τ)

 F l,10 + F l,−1
0

i (F l,10 − F
l,−1
0 )

2 cotan$ F l,00

 = nd

 El,10 sin$
El,20 sin$
El,30 cos$

 ,
where we have introduced the skew-Hermitian matrix:

(3.19) Σ(x, τ) :=

 i τ +be(x) 0
−be(x) i τ 0

0 0 i τ

 .
Multiply this identity by (sin$)2 and integrate with respect to d$. There remains:

(3.20) Σ(x, τ) J0(F l0) = −ndEl0 .

Then, by applying Σ to (3.18), we get:

(3.21) NEl0 = 0 , N(x, τ, ξ) := Σ(x, τ)
(
ξ tξ + (τ2 − |ξ|2) Id

)
− i µ2 nd τ Id .

At this stage, we can state that a necessary condition to obtain non-trivial solutions U l0 6≡ 0
of the system (3.4), satisfying El0 6≡ 0, is to impose detN(x, τ, ξ) = 0. The discussion about
a sufficient condition requires to distinguish between the values of τ .
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3.1.2. The stationary case (τ = 0). When τ = 0, we simply find detN(x, 0, ξ) = 0. In fact,
the step 3.1.1.c) makes no sense since it removes the information contained in (3.10b). The
same applies for the step 3.1.1.d) since the matrix Σ(x, 0) is not invertible. The situation
τ = 0 must therefore be handled separately.

Lemma 3.1 (trace of the dispersion relations in the stationary case). For τ = 0, the
system (3.6)-(3.10) has a solution (F l0, Bl

0, E
l
0) satisfying Assumption 3.1 if and only if the

position (x, ξ) ∈ T ∗(Ω) is such that ξ3 = 0.

Proof. The matter here is to deal with:
be ∂ωF l0 = nd (cosω sin$, sinω sin$, cos$) · El0 ,(3.22a)
ξ × El0 = 0 ,(3.22b)
ξ ×Bl

0 = i µ2 J0(F l0) ,(3.22c)
ρ0(F l0) = 0 , ξ ·Bl

0 = 0 .(3.22d)
The condition (3.22a) - or the condition (3.14) for τ = 0 - is equivalent to:

F l,−1
0 = + i (2 be)−1 nd (El10 + i El20 ) sin$ ,(3.23a)
F l,+1

0 = − i (2 be)−1 nd (El10 − i El20 ) sin$ ,(3.23b)

together with F l,m0 = 0 for all m ∈ Z \ {−1, 0, 1} and El30 = 0. In the preceding lines,
there is no condition on F l,00 . We can always adjust the component F l,00 so that the first
condition of (3.22d) is satisfied, which amounts to impose:ˆ π

0
F l,00 (t,x, $) sin$ d$ = 0 .

The part (3.22b) says that the direction El0 is parallel to ξ. In particular, we have ξ3 = 0.
Using (3.15) together with (3.23), we get ξ · J0(F l0) = 0. This is all we need to adjust Bl

0
through (3.22c) and the second relation in (3.22d). �

3.1.3. The electron cyclotron resonance frequencies
(
τ = ±be(x)

)
. The position x ∈ Ω

being fixed, the electron cyclotron resonance frequency is given by the value |τ | = be(x).
It plays a crucial role in plasma physics (and also in condensed matter and accelerator
physics). When |τ | = be(x), the difficulty comes from the step 3.1.1.d). The matrix
Σ(x,be(x)

)
is not invertible. This is why this situation must be tackled separately. We

will deal here with the case τ = +be (the other case τ = −be being very similar).

Lemma 3.2 (trace of the dispersion relations at the resonance frequencies). For τ = be(x),
the system (3.6)-(3.10) has a solution (F l0, Bl

0, E
l
0) satisfying Assumption 3.1 if and only

if the position (x, ξ) ∈ T ∗(Ω) is such that detN
(
x,be(x), ξ

)
= 0.

Proof. From Paragraph 3.1.1, we know already that the condition detN
(
x,be(x), ξ

)
= 0

is necessary. To show that it is also sufficient, assume that detN
(
x,be(x), ξ

)
= 0. Then,

there is some El0 6≡ 0 such that:
(3.24) N

(
x,be(x), ξ

)
El0 = 0 .

https://en.wikipedia.org/wiki/Electron_cyclotron_resonance
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From (3.19), we can see that (1, i, 0) ·Σ(x,be(x)
)

= 0. Then, looking at (1, i, 0) ·NEl0 = 0,
we can extract El10 + i El20 = 0. Therefore, the condition (3.14a) with τ = be(x) is met.
On the other hand, the relations (3.14b) and (3.14c) impose:

F l,00 = − i b−1
e nd El30 cos$ ,(3.25a)

F l,10 = − i (2 be)−1 nd El10 sin$ .(3.25b)

The constraint (3.14d) implies F l,m0 = 0 for all m ∈ Z \ {−1, 0, 1}. Adjust Bl
0 as indicated

in (3.10a), that is in such a way that Bl
0 = −b−1

e ξ × El0. In view of Remark 3.1, there
remains to look at (3.10b), or equivalently at (3.18). First, with (3.25), we get:

− 3
4

ˆ π

0
F l,10 (t,x, $) (sin$)2 d$ = i (2 be)−1 nd El10 ,(3.26a)

− 3
4

ˆ π

0
2 F l,00 (t,x, $) cos$ sin$ d$ = i b−1

e nd El30 .(3.26b)

Recalling (3.15), we can define:

J 1
0 (F l,−1

0 ) := J0(F l,−1
0 , 0, 0)1 = − 3

4

ˆ π

0
F l,−1

0 (t,x, $) (sin$)2 d$ .

By developing the content of the equation (3.18) with τ = be(x), and by eliminating El20
through the relation El20 = i El10 , we get:(

|ξ1|2 + b2
e − |ξ|2 + i ξ1 ξ2 − µ2 nd

2
)
El10 + ξ1 ξ3El30 = − i µ2 be J 1

0 (F l,−1
0 ) ,(3.27a) (

ξ1 ξ2 + i
(
|ξ2 |2 + b2

e − |ξ|2
)
− i µ

2 nd

2
)
El10 + ξ2 ξ3El30 = −µ2 be J 1

0 (F l,−1
0 ) ,(3.27b)

(ξ1 + iξ2) ξ3El10 +
(
|ξ3|2 + b2

e − |ξ|2 − µ2 nd)El30 = 0 .(3.27c)
The subsystem (3.27a)-(3.27b) is overdetermined. It implies a compatibility condition,
which can be exhibited by looking at the combination i (3.27a) + (3.27b) = 0, which is:

(3.28) i
(
2 b2

e − |ξ|2 − |ξ3|2 − µ2 nd
)
El10 + (ξ2 + i ξ1) ξ3El30 = 0 .

Assuming (3.28), the equations (3.27a) and (3.27b) can be solved by adjusting J 1
0 (F l,−1

0 )
accordingly. It suffices to select adequately some F l,−1

0 (t,x) not depending on $. This can
be done because no condition on F l,−1

0 (·) has been imposed so far.
To conclude, it suffices to observe that the system (3.24) and (3.27c)-(3.28) are equivalent.
Indeed, the two first components of (3.24) correspond to the conditions (1, i, 0) ·NEl0 = 0
and (i, 1, 0) ·NEl0 = 0, and they turn to be El10 + i El20 = 0 together with (3.28) . On the
other hand, the equation (3.27c) is the same as the third component of (3.24). �

Remark 3.2. The part (El10 , El30 ) extracted from the vector El0 6≡ 0 of (3.24) is necessarily
such that (El10 , El30 ) 6≡ (0, 0), and it satisfies (3.27c)-(3.28). This can be achieved if and
only if we have:
(3.29)

(
|ξ1|2 + |ξ2|2

)
|ξ3|2−

(
2 b2

e−|ξ|2−|ξ3|2−µ2 nd) (b2
e−|ξ|2 + |ξ3|2−µ2 nd) = 0 .
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This condition is equivalent to detN
(
x,be(x), ξ

)
= 0. In fact, the left-hand side of (3.29)

is exactly − ibe(x)−2 detN
(
x,be(x), ξ

)
.

3.1.4. The non-singular case
(
τ 6= 0 and τ 6= ±be(x)

)
. This situation is simpler.

Lemma 3.3 (dispersion relations in the non-singular case). For τ ∈ R \
{
0,±be(x)

}
, the

system (3.6)-(3.10) has a solution (F l0, Bl
0, E

l
0) satisfying Assumption 3.1 if and only if the

position (x, ξ) ∈ T ∗(Ω) is such that detN
(
x, τ, ξ

)
= 0.

Proof. Remark that:
(3.30) det Σ(x, τ) = i τ

[
−τ2 + be(x)2] .

A quick look at (3.10) and at the steps 3.1.1?) indicates that the condition detN(x, τ, ξ) = 0
is also sufficient to find a solution of (3.4) satisfying Assumption 3.1. �

In the next Paragraph 3.2, we examine more carefully the content of this restriction.

3.2. The characteristic variety of cold magnetized plasmas. Readers should refer to
the next Paragraph 3.2.1 if there is doubt about notations or definitions. This information
will be used repeatedly in what follows. It is also needed when applying Theorem 1.

3.2.1. Notations and definitions. With the rescaled version (2.35) of the electron density
nd ≡ nd1 and with µ ≡ |µ1| as in (2.50), introduce:

(3.31) κ ≡ κ(x) := nd(x)1/2 µ ∈ R∗+ .
With be and τ as in (2.27) and (3.5), look at the skew-Hermitian matrix:

(3.32) Σ(x, τ) :=
(

i τ +be(x) 0
−be(x) i τ 0

0 0 i τ

)
, (x, τ) ∈ Ω× R∗ .

With the preceding ingredients, consider the matrix:
(3.33) N(x, τ, ξ) := Σ(x, τ)

(
ξ tξ + (τ2 − |ξ|2) Id

)
− i κ(x)2 τ Id .

As will be seen later, all the values of (τ, ξ) ∈ R4\{0}, including the singular cases 3.1.2 and
3.1.3, can be treated together. To this end, however, the variable τ must be factorized from
the characteristic polynomial detN. As will be shown in Lemma 3.5, see the definitions
(3.50) and (3.51), there exists an explicit function χ ∈ C∞

(
Ω× (R4 \ {0})

)
such that:

(3.34) ∀ (x, τ, ξ) ∈ Ω× (R4 \ {0}) , detN
(
x, τ, tO(x) ξ

)
= − i τ χ(x, τ, ξ) .

The matrix O has been defined at the level of (2.31), while the matrix N is given by (3.33)
with κ and Σ as in (3.31) and (3.32). For all x ∈ Ω, the function χ(x, ·) is polynomial with
respect to the dual variables (τ, ξ) ∈ R4. Thus, given x ∈ Ω, the zeros of χ(x, ·) define
some algebraic variety in T ∗(t,x)M .

Definition 3.1. [characteristic variety] The characteristic variety which can be associated
with cold magnetized plasmas is the subset V of the cotangent bundle T ∗M composed of:
(3.35) V :=

{
(t,x, τ, ξ) ∈ [0, 1]× Ω× (R4 \ {0}) ; χ(x, τ, ξ) = 0

}
.



DISPERSION RELATIONS IN COLD MAGNETIZED PLASMAS 25

The representation (3.35) of V offers a complete intrinsic vision of the characteristic variety.
Now, we can decompose the direction ξ = tO(x) ξ ∈ R3 of (3.5) in spherical coordinates,
as we did for p ∈ R3 in Paragraph 2.6.2. With the convention:

(3.36) Sph(r, ω,$) := t(r cosω sin$ , r sinω sin$ , r cos$ ) ,

we have:

(3.37) ξ = Sph(r, ω,$) , (r, ω,$) ∈ R+ × [0, 2π[×[0, π] .

Note that the couple (ω,$) inside (3.37) differs from the the one of Figure 1. There will
be no possible confusion since the decomposition (2.45) of p ∈ R3 will no longer be used.

Figure 2. Spherical coordinates of ξ ∈ R3 after straigntening.

Below, we fix (t,x) ∈M and we introduce useful objects when investigating what happens
in the cotangent space T ∗(t,x)M . According to the forthcoming presentation, the discussion
will not directly involve the direction ξ but instead the variable ξ = tO(x) ξ through the
spherical representation (r, ω,$) of ξ, see the definition (3.36)-(3.37) and Figure 2. In fact,
due to some gyrotropic invariance, the angle ω will be almost absent. In particular, the
function χ(·) of Lemma 3.5 does not depend on ω. It remains to deal with (r,$). Now,
since the matrix O(x) is orthogonal, there is an obvious link between (r,$) and ξ, namely:

(3.38) r = |ξ| = |ξ| , $ = arctan
( |ξ×Be(x)|
ξ ·Be(x)

)
= arctan

( |ξ ×Be(x)|
ξ ·Be(x)

)
.

With (r,$) as in (3.38) and χx,$(·) as in (3.50)-(3.51), retain that:

(3.39) ∀ (x, τ, ξ) ∈ Ω× (R4 \ {0}) , χ(x, τ, ξ) = χ(x, τ, ξ) = χx,$(τ, r) .
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As explained in the introduction, the characteristic variety V can be written:

(3.40) V :=
{

(t,x, τ, ξ) ∈ T ∗M ;
(
|τ |, |ξ|

)
∈ V(x, $) = Vo(x, $) tVx(x, $)

}
.

As indicated in (3.40), the subset Vo(x, $) (for ordinary waves) and the subset Vx(x, $)
(for extraordinary waves) form some non-trivial partition:
∅  Vo(x, $)  V(x, $) , ∅  Vx(x, $)  V(x, $) , Vo(x, $) ∩Vx(x, $) = ∅ .

They can be recovered from Theorem 1 through ingredients τ±0 (·), τ±∞(·) and g±(·) that
are clearly specified in the definitions below.

Definition 3.2. [cutoff frequencies] The left handed cutoff frequency τ−0 (·) and the right
handed cutoff frequency τ+

0 (·) are the two functions τ±0 : Ω −→ R+ given by:

(3.41) τ±0 (x) := 1
2
(
± be(x) +

√
be(x)2 + 4κ(x)2

)
, 0 < τ−0 < τ+

0 .

Definition 3.3. [resonance frequencies] The lower resonance frequency τ−∞(·) and the
upper resonance frequency τ+

∞(·) are the two functions τ±∞ : Ω × [0, π] −→ R+, with
0 ≤ τ−∞ ≤ τ+

∞, defined by:

(3.42) τ±∞(x, $)2 := 1
2

(
be(x)2 + κ(x)2 ±

√
(be(x)2 + κ(x)2)2 − 4 be(x)2 κ(x)2 cos2 $

)
.

Definition 3.4. [dispersion relations for ordinary waves and extraordinary waves] The
links r2 = g±(x, $, τ) inside (1.1) involve the (generalized) Appleton-Hartree functions:
g± :

(
Ω× [0, π]× R+

)
\
{
(x, $, τ) ; τ = τ±∞(x, $)

}
−→ R

given by:

(3.43) g±(x, $, τ) := τ2 P(x, $, τ)± be(x) κ(x)2 √Q(x, $, τ)
2
(
τ2 − τ+

∞(x, $)2) (τ2 − τ−∞(x, $)2) ,

where:
P :=

(
(τ2 − κ2)2 − b2

e τ
2) sin2$ + (τ2 − κ2) (τ2 − b2

e − κ2) (1 + cos2$)(3.44a)
= 2 (τ2 − κ2)

(
τ2 − κ2 − b2

e

)
− b2

e κ
2 sin2$ ,

Q := b2
e sin4$ τ4 + 4 τ2 (τ2 − κ2)2 cos2$ .(3.44b)

Retain that all the expressions inside Definitions 3.3 and 3.4 can be interpreted as depending
on ξ or ξ. It suffices to exploit (3.38).

3.2.2. The characteristic variety from the physical viewpoint. In what follows, we will work
in the non-singular case, with τ 6= 0 and with |τ | 6= be(x). Introduce:

(3.45) n := ξ

τ
∈ R3 , ς := κ(x)2

τ2 − be(x)2 ∈ R , γ := be(x)
τ
∈ R∗ .

In optics, the following basic notions often come into play.

Definition 3.5. The refractive index is the vector n ∈ R3 given by (3.45).
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Definition 3.6. With ς and γ as in (3.45), the conductivity tensor σ(·) is the skew-
Hermitian invertible matrix:

σ(x, τ) := −κ(x)2 Σ(x, τ)−1 =
(

i ς τ − γ ς τ 0
+ γ ς τ i ς τ 0

0 0 i κ2 τ−1

)
, (x, τ) ∈ Ω×

(
R\{0,±be(x)}

)
.

Convections currents resulting from the plasma electrons and ions are usually accounted
for the derivation of some dielectric tensor.

Definition 3.7. The relative permittivity D(x, τ), called sometimes the dielectric tensor,
is the Hermitian matrix:
D(x, τ) := Id+ i τ−1 σ(x, τ) .

In most plasma physics books [11, 27, 33], the presentation of V is achieved in a way that
differs from (3.35). There, the construction of V is based on the Definitions 3.5, 3.6 and
3.7. Now, to recover (3.35) from n, σ and D, we can proceed as follows.

Lemma 3.4. For τ ∈ R \
{
0,±be(x)

}
, the condition (t,x, τ, ξ) ∈ V is equivalent to the

restriction detM
(
x, τ, tO(x) ξ

)
= 0 where:

(3.46) M(x, τ, ξ) := n tn + (1− |n|2) Id+ i τ−1 σ(x, τ) = n tn− |n|2 Id+D(x, τ) .

Proof. Let us start by computing the determinant:

(3.47) detΣ(x, τ) = i τ
[
− τ2 + be(x)2] .

Thus, for τ ∈ R \
{
0,±be(x)

}
, the matrix Σ(x, τ) is invertible. By construction, we have:

(3.48) N(x, τ, ξ) = τ2 Σ(x, τ) M(x, τ, ξ) .

Combining (3.34), (3.35) and (3.47), this explains the result. �

The function M(·) of physicists is clearly not defined for the values τ = 0 and τ = ±be(x).
By contrast, the function χ(·) is defined and smooth everywhere, while containing as much
information. That is why the use of χ(·) is mathematically more suitable.

Lemma 3.5. There exists a function χ(·) ∈ C∞
(
Ω× (R4 \ {0})

)
such that:

(3.49) detM(x, τ, ξ) = χ(x, τ, ξ)
τ6 (τ2 − be(x)2) .

The function χ(·) does not depend on the angle ω ∈ [0, 2π[. Given (x, $) ∈ Ω × [0, π], it
can be put in the form χ(x, τ, ξ) = χx,$(τ, |ξ|), where χ(x, ·) is polynomial in (τ, ξ) whereas
χx,$(·) is a bivariate polynomial in (τ, |ξ|). More precisely, written as a polynomial in |ξ|,
the function χx,$(τ, ·) is biquadrattic:

(3.50) χx,$(τ, |ξ|) = Ax,$(τ) |ξ|4 − Bx,$(τ) |ξ|2 + Cx(τ) .
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The coefficients Ax,$(·), Bx,$(·) and Cx(·) are in R[τ ], given by the explicit formulas:

Ax,$(τ) := τ4 − τ2 (be(x)2 + κ(x)2)+ be(x)2 κ(x)2 cos2$(3.51a)
= (τ2 − κ(x)2)

(
τ2 − be(x)2)− be(x)2 κ(x)2 sin2$ ,

Bx,$(τ) := τ2
[(

(τ2 − κ(x)2)2 − be(x)2 τ2) sin2$(3.51b)

+ (τ2 − κ(x)2)
(
τ2 − be(x)2 − κ(x)2)(1 + cos2$)

]
= τ2 P ,

Cx(τ) := τ2 (τ2 − κ(x)2)
(
(τ2 − κ(x)2)2 − be(x)2 τ2) .(3.51c)

Proof. First, note that:

(3.52) γ2 ς + 1− ς = τ2 − κ2

τ2 , (1− ς)2 − γ2 ς2 = (τ2 − κ2)2 − b2
e τ

2

τ2 (τ2 − b2
e)

.

The computation of detM(x, τ, ξ) is completely similar to the calculus of R. Fitzpatrick,
see the line (4.43) at page 94 of [11]:

(3.53) detM(x, τ, ξ) = ax,$(τ) |n|4 − bx,$(τ) |n|2 + cx(τ) ,

where:

ax,$ := (1− ς) sin2$ + (γ2 ς + 1− ς) cos2$ ,(3.54a)
bx,$ :=

(
(1− ς)2 − γ2 ς2) sin2$ + (1− ς) (γ2 ς + 1− ς) (1 + cos2$) ,(3.54b)

cx := (γ2 ς + 1− ς)
(
(1− ς)2 − γ2 ς2) .(3.54c)

Then, with (3.52) and the definitions of n, γ and ς from (3.45), it suffices to write (3.53)
as a rational fraction in powers of τ to get the result from Lemma 3.5. �

The restriction χx,$(τ, |ξ|) = 0 inside (3.35) can be handled as a quadratic equation to be
solved for |ξ|2, with discriminant ∆ := B2 − 4AC. As a consequence of Lemma 3.6 below,
the corresponding roots prove to be (positive, negative or zero) real numbers.

Lemma 3.6. The discriminant

(3.55) ∆(x, $, τ) := Bx,$(τ)2 − 4Ax,$(τ) Cx(τ) ,

can be put in the form:

(3.56) ∆ = b2
e κ

4 Q , Q := τ2 [ 4 (τ2 − κ2)2 cos2$ + τ2 b2
e sin4$

]
.

The function Q(·) is defined as in (3.44b). It is clearly non-negative. It vanishes if and
only if τ = 0 or if (τ,$) = (κ, 0).

Proof. It follows from the second formulas listed in (3.51). When computing ∆, it suffices
to identify the terms which are in factor of the different powers of sin2$. �
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3.2.3. The physical motivations behind the study of the characteristic variety. Looking at
the set V ⊂ T ∗M is interesting because we can send or receive information only by using
points (τ, ξ) in the phase space T ∗M which are microlocalized inside V .

Lemma 3.7. A necessary and sufficient condition to find solutions U l0 to the system (3.4),
with some non-trivial electromagnetic part (El0, Bl

0) 6≡ 0 satisfying Assumption 3.1, is to
impose the eikonal equation:

(3.57)
(
t,x, l ∂tφ(t,x), l∇xφ(t,x)

)
∈ V , ∀ (t,x) ∈M .

Proof. When τ ∈ R∗, in view of (3.34), the condition (3.57) is equivalent to:

(3.58) detN
(
x, l ∂tφ(t,x), l tO(x)∇xφ(t,x)

)
= 0 .

Now, from Paragraphs 3.1.4 and 3.1.3, we know that (3.58) is a NSC.

In the stationary case, when τ = 0, Paragraph 3.1.2 says that ξ3 = 0 or equivalently that
$ = π/2 is a NSC. Thus, it suffices to show that the restriction (3.35), that is:

(3.59) χ(x, 0, ξ) = χ
(
x, 0, l∇xφ(t,x)

)
= χx,$(0, |ξ|) = 0

can be realized if and only if $ = π/2. With (3.51), just remark that:
Ax,$(0) = be(x)2 κ(x)2 cos2$ , Bx,$(0) = 0 , Cx(0) = 0 ,

so that:
χx,$(0, |ξ|) = be(x)2 κ(x)2 cos2$ |ξ|4 .

Since |ξ| 6= 0, we must have cos$ = 0, that is $ = π/2 as required.
�

3.2.4. Some geometrical interpretation of the characteristic variety. Consider the cone:
C ($) :=

{
r t(cosω sin$, sinω sin$, cos$) ; (r, ω) ∈ R+ × [0, 2π]

}
.

The set V can be viewed as the union of disjoint subsets:
V = ∪

{
(t,x,V ∗x ) ; (t,x) ∈M

}
, V ∗x := ∪

{
V ∗(x, $) ; $ ∈ [0, π]

}
⊂ T ∗(t,x)M .

Thereby, the set V ∗x is the section above the position (t,x) ∈ M of the characteristic
variety V . It is contained in the four dimensional cotangent fiber T ∗(t,x)M ≡ R

4. Its form
does not depend on t ∈ [0, 1]. Now, the refined subset V ∗(x, $) is obtained by further
fixing $, namely:

V ∗(x, $) :=
{
(τ, ξ) ∈ R4 \ {0} ; (τ, ξ) ∈ V ∗x , ξ ∈ C ($)

}
⊂ T ∗(t,x)M .

With Sph as in (3.36), we can fix (x, $) ∈ Ω × [0, π], and define(we will do not mark the
star ∗ at the level of V):

(3.60) V(x, $) :=
{
(τ, r) ∈ R+ × R+ ;

(
τ, Sp(r, 0, $)

)
∈ V ∗(x, $)

}
.

With ξ as in (3.37), the coefficients A, B and C depend only on x, τ2 and $. Thus, starting
from V(x, $), we can recover the whole section V ∗(x, $) by rotations:

(3.61) V ∗(x, $) =
{(
τ, Sp(r, ω,$)

)
; (|τ |, r) ∈V(x, $) , ω ∈ [0, 2π[

}
.
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This rotational invariance can be clearly seen in Figures 10, 11, 12 and 13. By this way,
the issue reduces to the study of V(x, $), which is generically a one-dimensional subset of
the quadrant R+ × R+. Note also that the coefficients A and B satisfy:
Ax,$(τ) = Ax,π−$(τ) , Bx,$(τ) = Bx,π−$(τ) , ∀ (x, τ,$) ∈ Ω× R× [0, π[ .

This brief discussion can be summarized in a remark.

Remark 3.3. All the geometrical information is provided by the intersection of V ∗x with
the quadrant of an hyperplane. More precisely, we can focus on:

V ∗x ∩
{

(τ, ξ) ∈ R4 ; 0 < τ , ξ1 = 0 , 0 < ξ3 } ⊂ T ∗(t,x)M ,

and then recover the whole set V ∗x by changing τ ∈ R+ into −τ , by replacing ξ3 ∈ R+ by
−ξ3, and by applying rotations with axis R t(0, 0, 1) and angles ω ∈ [0, 2π[. This means
also that, in practice, we can restrict our attention to the case (τ,$) ∈ R+ × [0, π/2].

Lemma 3.6 indicates that the situation $ = 0 (existence of a double root when τ = κ)
and the other cases $ ∈ ]0, π2 ] must be distinguished. In plasma physics books, the two
values $ = 0 and $ = π

2 are usually studied separately, and they are exploited to obtain a
classification of waves. However, this viewpoint does not give access to a complete vision
of the characteristic variety V . In what follows, we will rather consider that the generic
situation is when $ ∈ ]0, π2 [, while the two cases $ = 0 and $ = π

2 can be recovered as
(very special) endpoints.

3.3. Parallel, oblique and perpendicular propagation. In the next Paragraph 3.3.1,
we recall what happens when dealing with the case of parallel

(
$ = 0(π)

)
non-resonant(

|τ | 6= be(x)
)
propagation. The general situation of oblique

(
$ 6= 0(π)

)
propagation is

detailed after, in Paragraph 3.3.2. Then, we will come back to the parallel case $ = 0 (in
Paragraph 3.3.3) and to the perpendicular case $ = π

2 (in Paragraph 3.3.4). Finally, there
are different ways to describe V ∗x . We can either study what occurs for a fixed value of
$ ∈ [0, π2 ], as above when involving V ∗(x, $),. Or we can set the value of ξ ∈ R3 (see
Paragraph 3.4.3) or of τ ∈ R (see Paragraph 3.4.2).

3.3.1. Parallel
(
$ = 0(π)

)
non-singular

(
τ ∈ R∗+ \ {be(x)}

)
propagation. The matter here

is to study the equation χx,0(τ, |ξ|) = 0, which is simply:

(3.62)
(τ2 − κ2)

[
(τ2 − b2

e) |ξ|4 − 2 τ2 (τ2 − b2
e − κ2) |ξ|2

+ τ2 ((τ2 − κ2)2 − b2
e τ

2)] = 0 .

Either we have τ2 − κ2 = 0 or Z = |ξ|2 must be subjected to:
(τ2 − b2

e) Z2 − 2 τ2 (τ2 − b2
e − κ2) Z + τ2 ((τ2 − κ2)2 − b2

e τ
2) = 0 .

Since |τ | 6= be(x), this quadratic equation has two roots Z1(x, τ) and Z2(x, τ) given by:

Z1(x, τ) := τ2 (τ2 − b2
e − κ2) + be κ2 τ

τ2 − b2
e

, Z2(x, τ) := τ2 (τ2 − b2
e − κ2)− be κ2 τ

τ2 − b2
e

.

The set V(x, 0) is usually (see for instance [11]-chapter 4) separated into connected parts,
corresponding to the different possibilities marked above.
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a) Parallel left-handed circularly polarized wave
(
|ξ|2 = Z1(x, τ)

)
. Knowing that τ ∈ R∗+,

this can be achieved for some |ξ| ∈ R+ if and only if:

(3.63) 0 ≤ Z1(x, τ) = τ (τ2 + be τ − κ2)
τ + be

⇐⇒ τ−0 (x) ≤ τ .

We find only one connected component:

(3.64) Vl(x, 0) =
{

(τ, r) ∈ R+×R+ ; τ−0 ≤ τ , r2 = τ2−κ(x)2 τ/
(
τ + be(x)

) }
.

b) Parallel right-handed circularly polarized wave
(
|ξ|2 = Z2(x, τ)

)
. Knowing that τ ∈ R∗+,

this can be achieved for some |ξ| ∈ R+ if and only if:

(3.65) 0 ≤ Z2(x, τ) = τ (τ2 − be τ − κ2)
τ − be

⇐⇒ 0 < τ < be or τ+
0 (x) ≤ τ .

Accordingly, the set Vr(x, 0) can be split into two connected parts V−r (x, 0) and V+
r (x, 0)

which are distinguished below.
b.1) The first part V−r (x, 0) contains both the dispersion relation for Alfvèn waves (values
of τ such that 0 . τ) and the dispersion relation for whistler (or electron cyclotron) waves
(values of τ such that τ . be):

(3.66) V−r (x, 0) :=
{

(τ, r) ; 0 < τ < be(x) , 0 < r , r2 = τ2 − κ(x)2 τ/
(
τ − be(x)

) }
.

b.2) The second is the standard right-handed circularly polarized wave:

(3.67) V+
r (x, 0) :=

{
(τ, r) ; τ+

0 (x) ≤ τ , 0 < r , r2 = τ2 − κ(x)2 τ/
(
τ − be(x)

) }
.

c) Parallel longitudinal wave or electrostatic plasma wave (τ = κ). With κ as in (3.31),
this means a link between τ and x, whereas no condition is imposed on |ξ|. We find the
vertical half-line V0(x, 0) :=

{
(κ, r) ; r ∈ R+

}
.

Briefly, retain that:
(3.68) V(x, 0) = Vl(x, 0) ∪V−r (x, 0) ∪V+

r (x, 0) ∪V0(x, 0) .
The corresponding curves are represented on Figure 3 below:

τ+0be κτ−0

r

τ

Figure 3. Parallel propagation ($ = 0). Standard nomenclature.
Vr(x, 0) (in orange), Vl(x, 0) (in blue-green) and V0(x, 0) (in black).
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3.3.2. Oblique ($ ∈ ]0, π2 ]) non-singular
(
τ ∈ R∗+ \ {be(x)}

)
propagation. We first study

the coefficient A which is in factor of |ξ|4 in the equation χx,$(τ, |ξ|) = 0.
Lemma 3.8. With τ±∞(·) as in (3.42), we have:
(3.69) Ax,$(τ) =

(
τ2 − τ−∞(x, $)2) (τ2 − τ+

∞(x, $)2) .
Proof. This follows from direct calculations. �

For τ 6= τ±∞, as a consequence of Lemma 3.6, the equation χx,$(τ, |ξ|) = 0 has two distinct
real solutions which can be described by:

(3.70) |ξ|2 = g±(x, $, τ) = B ± be κ2√Q
2 A = 2 C

B ∓ be κ2
√
Q
.

When g±(x, $, τ) < 0, there is no mathematical solution. The associated waves are usually
considered to be evanescent. On the contrary, when 0 ≤ g±(x, $, τ), the condition (3.70)
is achieved for some |ξ| ∈ R+. This means that a wave can be propagated. To distinguish
between these two situations, we have to study the functions g±(x, $, ·). To illustrate
the following discussion, we can directly plot the graphs of the functions g±(x, $, ·). The
content of Figures 4 and 5 is justified below.

τ−0 τ+0τ+∞be

Figure 4. Graph of g−(x, $, ·).

τ−∞ κbe

Figure 5. Graph of g+(x, $, ·).

Lemma 3.9. [properties of the functions τ±∞(x, ·)] For all x ∈ Ω, the function τ+
∞(x, ·) is

strictly increasing on the interval [0, π/2], and it satisfies:

(3.71) τ+
∞(x, 0) = max

(
be(x) ; κ(x)

)
, τ+

∞(x, π/2) =
√

be(x)2 + κ(x)2 .

For all x ∈ Ω, the function τ−∞(x, ·) is strictly decreasing on [0, π/2], with:
(3.72) τ−∞(x, 0) = min

(
be(x) ; κ(x)

)
, τ−∞(x, π/2) = 0 .

Proof. By direct calculation. �

Lemma 3.10. [comparison of resonance and cutoff frequencies] If
√

2 be(x) < κ(x), we
have:
(3.73) τ−∞(x, $) < τ−0 (x) , ∀ (x, $) ∈ Ω× [0, π] .
If κ(x) <

√
2 be(x), we have τ−0 (x) < be(x) and τ−0 (x) < τ−∞(x, 0). Moreover:

(3.74) τ−0 (x) < τ+
∞(x, $) < τ+

0 (x) , ∀ (x, $) ∈ Ω× [0, π] .
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Proof. Assume that
√

2 be(x) < κ(x). In view of (3.72), to get (3.73), it suffices to note
that:
τ−∞(x, 0) = 1

2
(
− be +

√
b2
e + 8 b2

e

)
<

1
2
(
− be +

√
b2
e + 4κ2

)
= τ−0 (x) .

The other comparisons follow from straightforward computations. �

Lemma 3.11. Fix (x, $) ∈ Ω× [0, π2 ]. The functions g+(x, $, ·) and g−(x, $, ·) of (3.43)
are of class C∞ respectively on the domains R+ \ {τ−∞(x, $)} and R+ \ {τ+

∞(x, $)}.

Proof. With the expressions given in Definition 3.4, the functions g±(x, $, ·) are clearly of
class C∞ on R+ \ {τ+

∞(x, $), τ−∞(x, $)}. Moreover, using the right part of (3.70), they can
be written in the form:

(3.75) g±(x, $, τ) =
2 τ2 (τ2 − κ2)

(
(τ2 − κ2)2 − b2

e τ
2)

τ2 P($, τ)∓
√

b2
e κ

4Q($, τ)
.

The difficulty is to show that g±(x, $, ·) is well defined and smooth near τ±∞(x, $). To
this end, we have to examine more precisely the denominator in (3.75). First, combining
(3.51b), (3.51c) and (3.69), the term ∆ = b2

e κ
4Q of (3.56) can be written in the form:

∆ = τ4 P2 − 4 τ2 (τ2 − (τ+
∞)2) (τ2 − (τ−∞)2) (τ2 − κ2)

(
(τ2 − κ2)2 − b2

e τ
2) .

For τ = τ±∞, it follows that:

(τ±∞)2 P(x, $, τ±∞)∓
√

b2
e κ

4Q(x, $, τ±∞) = (τ±∞)2 (P(x, $, τ±∞)∓ |P(x, $, τ±∞)|
)
.

In view of the second formulas in (3.44a) and (3.51a), we have:

(3.76) P(x, $, τ) = A+ (τ2 − κ2) (τ2 − b2
e − 2κ2)

=
(
τ2 − (τ+

∞)2) (τ2 − (τ−∞)2)+ (τ2 − κ2) (τ2 − b2
e − 2κ2) .

From (3.76) and Lemma 3.9, we can easily deduce that:
P(x, $, τ+

∞) =
(
(τ+
∞)2 − κ2) ((τ+

∞)2 − (b2
e + 2κ2)

)
< 0 ,(3.77a)

P(x, $, τ−∞) =
(
(τ−∞)2 − κ2) ((τ−∞)2 − (b2

e + 2κ2)
)
> 0 .(3.77b)

And therefore:

(τ+
∞)2 P(x, $, τ+

∞)−
√

b2
e κ

4Q(x, $, τ+
∞) = 2 (τ+

∞)2 P(x, $, τ+
∞) < 0 ,(3.78a)

(τ−∞)2 P(x, $, τ−∞) +
√

b2
e κ

4Q(x, $, τ−∞) = 2 (τ−∞)2 P(x, $, τ−∞) > 0 .(3.78b)
This means that the denominator of (3.75) does not vanish. This gives the conclusion. �

Lemma 3.12. [zeros of the functions g±(x, $, ·) : R+ \ {τ∓∞(x, $)} −→ R]{
τ ∈ R+ \ {τ−∞(x, $)} ; g+(x, $, τ) = 0

}
=
{
0, κ(x)

}
,(3.79a) {

τ ∈ R+ \ {τ+
∞(x, $)} ; g−(x, $, τ) = 0

}
=
{
0, τ−0 (x), τ+

0 (x)
}
.(3.79b)

Proof. From (3.43) and (3.44b), we get easily g±(x, $, 0) = 0. Now, when g±(x, $, τ) = 0,
by definition, the value |ξ| = 0 must be a solution to the equation χx,$(τ, |ξ|) = 0. In view
of (3.50), this implies C(τ) = 0. Recalling the discussion in Paragraph 3.3.1, we find that:{

τ ∈ R∗+ ; Cx(τ) = 0
}

=
{
κ(x), τ−0 (x), τ+

0 (x)
}
.
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Now, using (3.43) and (3.44), we can directly check that:
(3.80) g+(x, $, κ(x)) = 0 , g−(x, $, κ(x)) 6= 0 .
On the other hand, the choice τ = τ±0 corresponds to τ2 − κ2 = ∓be τ . With (3.51b), this
gives rise to:
B(τ±0 ) = (τ±0 )2((τ±0 )2−κ2)((τ±0 )2−b2

e−κ2)(1+cos2$) , C(τ±0 ) = 0 , ∆(τ±0 ) = B(τ±0 )2 .

Coming back to (3.70), we see that g±(x, $, τ±0 ) = 0 if and only if (B ± |B|)(τ±0 ) = 0.
From (3.41), we can infer that:

(3.81) κ2 < κ2 + b2
e < (τ+

0 )2 = κ2 + 1
2 be

[
be +

√
b2
e + 4κ2] =⇒ 0 < B(τ+

0 ) ,

so that:
(3.82) g+

(
x, $, τ+

0 (x)
)
6= 0 , g−

(
x, $, τ+

0 (x)
)

= 0 .
Similarly, from (3.41), we can obtain:

(3.83) (τ−0 )2 = κ2 + 1
2 be

[
be −

√
b2
e + 4κ2] < κ2 < κ2 + b2

e =⇒ 0 < B(τ−0 ) .

It follows that:
(3.84) g+

(
x, $, τ−0 (x)

)
6= 0 , g−

(
x, $, τ−0 (x)

)
= 0 .

Combining (3.80), (3.82) and (3.84), we can deduce (3.79a) and (3.79b). �

Lemma 3.13. [asymptotic behaviors near the resonance frequencies]
lim

τ→ (τ−∞)−
g+(x, $, τ) = +∞ , lim

τ→ (τ−∞)+
g+(x, $, τ) = −∞ ,(3.85a)

lim
τ→ (τ+

∞)−
g−(x, $, τ) = +∞ , lim

τ→ (τ+
∞)+

g−(x, $, τ) = −∞ .(3.85b)

Proof. In view of (3.69) and (3.70), to obtain (3.85a) and (3.85b), it suffices to show that:

(τ−∞)2 P($, τ−∞) + be κ2
√
Q($, τ−∞)

2
(
(τ−∞)2 − (τ+

∞)2) < 0 ,(3.86a)

(τ+
∞)2 P($, τ+

∞)− be κ2
√
Q($, τ+

∞)
2
(
(τ+
∞)2 − (τ−∞)2) < 0 .(3.86b)

Taking into account Lemma 3.9, we have τ−∞ ≤ κ ≤ τ+
∞, as well as τ−∞ < τ+

∞. Applying
(3.77b), we find (3.86a). Similarly, (3.86b) comes from (3.77a). �

We are now able to distinguish between the different regions of wave propagation. This
can be done by selecting the connected parts of V(x, $). This means to isolate where the
functions g−(x, $, ·) and g+(x, $, ·) are positive. We will adopt the following classification.
a) Oblique ordinary wave

(
|ξ|2 = g+(x, $, τ) ≥ 0

)
. With Lemmas 3.11 and 3.13, together

with the intermediate value theorem, we get:
(3.87) g+(x, $, τ) ≥ 0 ⇐⇒ τ ∈ [0, τ−∞(x, $)[∪[κ(x),+∞[ .
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The set Vo(x, $) consists of two connnected parts V−o (x, $) and V+
o (x, $) which are

defined by:

V−o (x, $) :=
{
(τ, r) ; 0 < τ < τ−∞(x, $) , 0 ≤ r , r2 = g+(x, $, τ)

}
,(3.88a)

V+
o (x, $) :=

{
(τ, r) ; κ(x) ≤ τ , 0 ≤ r , r2 = g+(x, $, τ)

}
.(3.88b)

The part of V−o (x, $) with 0 . τ gives the dispersion relation for Alfvèn waves. The part
of V−o (x, $) with τ . τ−∞(x, $) determines the dispersion relation for whistler waves.

b) Oblique extraordinary wave
(
|ξ|2 = g−(x, $, τ) ≥ 0

)
. The set Vx(x, $) is also composed

of two connected parts V−x (x, $) and V+
x (x, $) which are defined by:

V−x (x, $) :=
{
(τ, r) ; τ−0 (x) ≤ τ < τ+

∞(x, $) , 0 ≤ r , r2 = g−(x, $, τ)
}
,(3.89a)

V+
x (x, $) :=

{
(τ, r) ; τ+

0 (x) ≤ τ , 0 ≤ r , r2 = g−(x, $, τ)
}
.(3.89b)

Retain that:

(3.90) V(x, $) = V−o (x, $) tV+
o (x, $) tV−x (x, $) tV+

x (x, $) .

The case of perpendicular propagation ($ = π/2) can be incorporated within the general
framework of oblique propagation. However, using (3.42), we get τ−∞(x, π/2) = 0. It follows
that V−o (x, π/2) =

{
(0, r) ; r ∈ R+

}
. Thus, the set Vo(x, π/2) reduces to the vertical half-

line {τ = 0} together with the connected component V+
o (x, π/2) which is associated to what

physicists call ordinary waves. On the other hand, the set Vx(x, π/2) is still composed of
two disjoint connected parts V−x (x, π/2) and V+

x (x, π/2) which correspond to extraordinary
waves. Some sets Vo(x, $) and Vx(x, $) are represented on Figure 6 below.

τ−∞ τ−0 τ+∞ τ+0κbe τ

r $ = 0.98

r = τ

(a) General case ($ = 0.98).

τ−0 κ max(be, κ) τ+0 τ

r

(b) Perpendicular case ($ = π/2).

Figure 6. Oblique propagation for angles $ ∈ ]0, π/2] :
- Ordinary waves Vo(x, $) = V−

o (x, $) tV+
o (x, $) in blue ;

- Extraordinary waves Vx(x, $) = V−
x (x, $) tV+

x (x, $) in red.
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3.3.3. Come back to parallel propagation. In this Paragraph 3.3.3, we examine again the
case of parallel propagation. But, to this end, we follow the approach of (3.88) and (3.89).
This allows to provide a fresh perspective on what happens when $ = 0. When $ = 0,
the formula (3.43) yields:

(3.91) g±(x, 0, τ) = τ2 − κ(x)2 τ

τ ± sgn(τ − κ(x)) be(x) .

Recall (3.81) which guarantees that κ < τ+
0 . As a consequence of (3.91), the definitions

(3.67) of V+
r (x, 0) and (3.89b) of V+

x (x, 0) coincide. The function g±(x, 0, ·) is not suitable
for the description of the other components of V(x, 0). This is because g±(x, 0, ·) is not
continuous at the point τ = κ.
Definition 3.8. [overdense and underdense plasmas] The plasma is said overdense at the
spatial position x if be(x) < κ. Otherwise, it is said underdense.
For $ = 0, the identity (3.42) gives rise to:

τ−∞(x, 0) =
{
κ(x) if κ(x) < be(x) ,
be(x) if be(x) < κ(x) , τ+

∞(x, 0) =
{
κ(x) if be(x) < κ(x) ,
be(x) if κ(x) < be(x) .

Under the overdense condition, we find:
V−o (x, 0) ≡ V−r (x, 0) , V−x (x, 0) ∪V+

o (x, 0) ≡ Vl(x, 0) .
Under the underdense condition, we can further decompose V−x (x, 0) into the disjoint union
of V−−x (x, 0) and V−+

x (x, 0), with:
V−−x (x, 0) :=

{
τ−0 < τ < κ(x) ; 0 ≤ r , r2 = τ2 − κ(x)2 τ

(
τ + be(x)

)−1}
,

V−+
x (x, 0) :=

{
κ(x) ≤ τ < be(x) ; 0 ≤ r , r2 = τ2 − κ(x)2 τ

(
τ − be(x)

)−1}
.

Then, we can recover:
V−o (x, 0) ∪V−+

x (x, 0) ≡ V−r (x, 0) , V−−x (x, 0) ∪V+
o (x, 0) ≡ Vl(x, 0) .

Finally, due to the disontinuity of the functions g±(x, 0, ·), the case τ = κ has to be treated
separetely. In fact, the corresponding study is exactly the same as in Paragraph 3.3.1c).
We recover the case of parallel longitudinal waves. These considerations together with
Figures 3, 7 and 8 clarify the connections between the physical approach of Paragraph
3.3.1 and the mathematical presentation of the actual Paragraph 3.3.3.

κ τ

r

τ+0beτ−0

(a) Overdense case.

r

⌧⌧�0  be ⌧+
0

(b) Underdense case.
Figure 7. Parallel propagation ($ = 0). Mixing of Vx(x, 0) and Vo(x, 0) .
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3.3.4. Parallel and perpendicular propagation viewed as limited cases. When $ ∈ ]0, π/2[,
the set V(x, $) has two resonances which are located at τ = τ−∞(x, $) and at τ = τ+

∞(x, $).
On the contrary, the two extreme cases $ = 0 and $ = π/2 are often presented as having
only one resonance each. This would suggest a change in the type of representation. But
this is illusive. Indeed, one of the two oblique resonances degenerates into a vertical half-
line when $ goes to 0 or π/2. More precisely, the resonance τ+

∞(x, $) gives rise to the
electrostatic plasma waves when $ → 0, while τ−∞(x, $) evolves into the vertical half-line
{τ = 0} when $ → π/2. This behaviour is illustrated on Figure 8.

τ

r

(a) Overdense case.
τ

r

(b) Underdense case.
Figure 8. Evolution of Vx(x, $) and Vo(x, $) in function of $ .
Asymptotic behaviour when $ → 0 (see $ = 0.1 ∼ 0) and $ → π/2 (see $ = 1.47 ∼ π/2).

3.4. Other parametrizations of the characteristic variety. Until now, to describe
the set V , we have looked at the direction ξ ∈ R3 (in fact at |ξ| ∈ R∗+ for a given $ ∈ [0, π]

)
as a function of the frequency τ ∈ R∗+, with τ selected in convenient subdomains. The aim
of this Section 3.4 is to investigate the other ways to proceed.
3.4.1. The characteristic variety at a fixed value of ω. The description of V ∗x through the
functions g±(·) does not involve ω and the sign of τ . As observed in Paragraph 3.2.4, this
means that V ∗x is invariant under rotations with axis R t(0, 0, 1) and angles ω ∈ [0, 2π[.
Since we can recover the case ω 6= 0 from the case ω = 0 by such rotations, it suffices to
consider the case ω = 0. To this end, as pointed in Remark 3.3, we can cut V ∗x with a
well-chosen quadrant of an hyperplane. Moreover, we can consider $ ∈ [0, π] as a variable
rather than as a parameter (like we did before in Paragraph 3.3.2). By doing so, we get a
three dimensional representation of V ∗x , which could be materialized through:
V∗x :=

{
($, τ, r) ∈ [0, π]× R2

+ ;
(
τ, Sp(r, 0, $)

)
∈ V ∗x

}
.

In accordance with the classification of Paragraph 3.3.2 into the categories a) and b), the
set V∗x can be separated into connected parts:
V∗x = V−o (x) ∪ V+

o (x) ∪ V−x (x) ∪ V+
x (x) ⊂ [0, π]× R2

+ .

With ($, r) ∈ [0, π]× R+, these components are defined by:
V−o (x) :=

{
($, τ, r) ; 0 ≤ τ < τ−∞(x, $) , r2 = g+(x, $, τ)

}
,(3.92a)

V+
o (x) :=

{
($, τ, r) ; κ(x) ≤ τ , r2 = g+(x, $, τ)

}
,(3.92b)

V−x (x) :=
{
($, τ, r) ; τ−0 (x) ≤ τ < τ+

∞(x, $) , r2 = g−(x, $, τ)
}
,(3.92c)

V+
x (x) :=

{
($, τ, r) ; τ+

0 (x) ≤ τ , r2 = g−(x, $, τ)
}
.(3.92d)
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The sets V±o (x) and V±x (x) are drawn on Figure 9. We also include (in the plane r = 0)
the graphs of the functions τ±∞(x, ·) : [0, π/2] −→ R+.

τ−∞

τ−0 κ

τ+∞

τ+0 τ

r

0

π
2 $

Figure 9. The characteristic variety in the variables (τ,$, r).
From left to right: V−

o (x), V−
x (x), V+

o (x) and V+
x (x).

3.4.2. The characteristic variety at a fixed value of τ . Our purpose here is to give a detailed
description of the following set:
ν(x, τ) :=

{
ξ ∈ R3 ; (τ, ξ) ∈ V ∗x

}
.

For a given ξ ∈ R3, we use the notation ξ = Sph(|ξ|, ωξ, $ξ) which comes from the
convention of Figure 2 to represent ξ. In connection with what has been done in Paragraph
3.3.2, the set ν(x, τ) can be decomposed into ν(x, τ) =νo(x, τ) ∪νx(x, τ) with:

νo(x, τ) :=
{
ξ ∈ R3 ; (τ, |ξ|) ∈ Vo(x, $ξ)

}
,(3.93a)

νx(x, τ) :=
{
ξ ∈ R3 ; (τ, |ξ|) ∈ Vx(x, $ξ)

}
.(3.93b)

The access to ν is achieved through the functions g±(·). Now, given (x, τ) ∈ Ω×R+, the
domain of definition, the sign, the regularity and the behaviour of g±(x, ·, τ) : [0, π/2] −→ R
depend strongly on the choice of τ . Recall that we have to deal with the additional condition
|ξ|2 = g±(x, $, τ) ≥ 0. Thus, of particular interest are the intervals where g±(x, ·, τ) is
non-negative. We can first deal with the case of g+(·).

Lemma 3.14. [study of the function g+(x, ·, τ)] Two situations must be distinguished.
i) Case τ ∈ τ−∞(x, [0, π/2]) =

[
0,min

(
be(x), κ(x)

)]
. There exists a unique $−∞(x, τ) ∈

[0, π/2] such that the function g+(x, ·, τ) is defined and continuous on the domain [0, π/2]\{
$−∞(x, τ)

}
. It is non-negative if and only if $ ∈

[
0, $−∞(x, τ)

[
. Moreover, we have:

(3.94) lim
$→ ($−∞(x,τ))−

g+(x, $, τ) = +∞ .

ii) Case τ ∈ R+ \ τ−∞(x, [0, π/2]) =
]
min

(
be(x), κ(x)

)
,+∞

[
. The function g+(x, ·, τ) is

defined and continuous on the whole interval [0, π/2]. It is non-negative if and only if
τ ≥ κ(x).
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Proof. From the proof of Lemma 3.11, we know that g+(x, ·, τ) is defined and continuous
except if τ = τ−∞(x, $). Given τ ∈ R+, from Lemma 3.9, this can happen for some angle
$−∞(x, τ) ∈ [0, π/2] if and only if we are in case i). Now, assuming i), we have:
(3.95) τ < τ−∞(x, $) ≤ τ+

∞(x, $) ⇐⇒ $ ∈
[
0, $−∞(x, τ)

[
.

Then, coming back to the expression (3.43) and using the information (3.95), we can
identify as in i) the interval where g+(x, ·, τ) is non-negative, as well as the asymptotic
behaviour (3.94). In fact, to get both i) and ii), it suffices to look at Figure 5. �

Similarly, we can consider g−(x, ·, τ).
Lemma 3.15. [study of the function g−(x, ·, τ)] Two situations must be distinguished.
i) Case τ ∈ τ+

∞(x, [0, π/2]) =
[
max

(
be(x), κ(x)

)
,
√

be(x)2 + κ(x)2]. There exists some
(unique) angle $+

∞(x, τ) ∈ [0, π/2] such that the function g−(x, ·, τ) is defined and con-
tinuous on the domain [0, π/2] \

{
$+
∞(x, τ)

}
. It is non-negative if and only if $ ∈[

$+
∞(x, τ), π/2

]
. Moreover, we have:

(3.96) lim
$→ ($+

∞(x,τ))+
g−(x, $, τ) = +∞ .

ii) Case τ ∈ R+ \ τ+
∞(x, [0, π/2]). The function g−(x, ·, τ) is defined and continuous on the

whole interval [0, π/2]. It is non-negative if and only if we have either τ ∈
[
τ+

0 (x),+∞[ or
τ ∈

[
τ−0 (x),max

(
be(x) ; κ(x)

)]
.

Proof. From the proof of Lemma 3.11, we know that g−(x, ·, τ) is defined and continuous
except if τ = τ+

∞(x, $). Given τ ∈ R+, from Lemma 3.9, this can happen for some angle
$+
∞(x, τ) ∈ [0, π/2] if and only if we are in case i). Now, assuming i), we have:

(3.97) τ ∈
]
τ+
∞(x, $),

√
be(x)2 + κ(x)2] ⇐⇒ $ ∈

[
0, $+

∞(x, τ)
[
.

Then, using (3.43), (3.78a) and (3.97), we can deduce (3.96). To see where g−(x, ·, τ) is
non-negative, simply exploit Figure 4. �

The wave equation describes the propagation of electromagnetic waves in a vacuum. In its
dimensionless version, it takes the form:
∂2

ttE −∆xxE = 0 , ∂2
ttB −∆xxB = 0 .

The characteristic varieties associated with these two equations (on E and B) are the same.
They are simply given by the light cone:
(3.98) Vl :=

{
(t,x, τ, ξ) ∈ T ∗M ; τ2 − |ξ|2 = 0

}
.

Then, given τ ∈ R∗+, we recover the sphere of radius τ :
(3.99) νl(x, τ) ≡νl(τ) :=

{
ξ ∈ R3 ; |ξ| = τ

}
.

Now, in the presence of an exterior magnetic field, the picture (3.99) is strongly affected.
The first effect, already encoded within (3.93), is the well-known separation of ν into the
two parts νo and νx corresponding to ordinary and extraordinary waves. The second
impact is a disappearance of νo(x, τ) and νx(x, τ) when τ falls into the gap between
resonance and cutoff frequencies, and their resurgence in the form of cones below resonance
frequencies. With this in mind, we can highlight the following distinctions.
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Definition 3.9. [related to Figure 10] For (x, τ) ∈ Ω ×
[
0,min

(
be(x), κ(x)

)]
, the set

νo(x, τ) is referred as an ordinary resonance cone.

Proposition 3.1. [ τ ∈
[
0,min

(
be(x), κ(x)

)]
] The ordinary resonance cones νo(x, τ)

are comprised of exactly two unbounded connected components, say νa
o (x, τ) and νb

o (x, τ),
which are respectively above and below the plane {ξ; ξ3 = 0} and given by:

νa
o (x, τ) :=

{
ξ = Sph(r, ωξ, $ξ) ; 0 ≤ r , −π ≤ ωξ ≤ π ,

0 ≤ $ξ ≤ $−∞(x, τ) , r2 = g+(x, $, τ)
}
,

(3.100a)

νb
o (x, τ) :=

{
ξ = Sph(r, ωξ, $ξ) ; 0 ≤ r , −π ≤ ωξ ≤ π ,

π −$−∞(x, τ) ≤ $ξ ≤ π , r2 = g+(x, $, τ)
}
.

(3.100b)

Proof. This statement is a direct consequence of Lemma 3.14, case i). In particular, the
asymptotic behaviour (3.94) implies that neither νa

o (x, τ) nor νb
o (x, τ) are bounded. On

the contrary, for large values of r, these two sets become close to the two cones:
Cao (x, τ) :=

{
ξ ; $ξ = $−∞(x, τ)

}
, Cbo(x, τ) :=

{
ξ ; $ξ = π −$−∞(x, τ)

}
. �

The distortion from νl is here obvious. As long as τ remains sufficiently small, which
means in practice that we deal with Very Low Frequency waves (at approximately 1 kHz),
there is no similarity between νo(x, τ) and νl(τ). The same applies to νx(x, τ).

Definition 3.10. [related to Figure 11] For (x, τ) ∈ Ω×
[
max

(
be, κ

)
,
√

b2
e + κ2 ], the set

νx(x, τ) is referred as an extraordinary resonance cone.

Proposition 3.2. [ τ ∈
[
max

(
be, κ

)
,
√

b2
e + κ2 ] ] The extraordinary resonance cones

νx(x, τ) are unbounded connected sets given by:

(3.101) νx(x, τ) :=
{
ξ = Sph(r, ωξ, $ξ) ; 0 ≤ r , −π ≤ ωξ ≤ π ,
$+
∞(x, τ) ≤ $ξ ≤ π −$+

∞(x, τ) , r2 = g−(x, $ξ, τ)
}
,

Proof. This statement is a direct consequence of Lemma 3.15, case i). In particular, the
asymptotic behaviour (3.96) implies that the setνx(x, τ) is not bounded. Indeed, for large
values of r, it becomes close to the cone:
Cx(x, τ) :=

{
ξ ; $ξ = $+

∞(x, τ)
}
∪
{
ξ ; $ξ = π −$+

∞(x, τ)
}
. �

Rt(1, 0, 0)

Rt(0, 0, 1)

Rt(0, 1, 0)

$−∞

Figure 10. Ordinary resonance cone.
νo(x, τ) for τ ∈ [0,min(be(x), κ(x))].

Rt(1, 0, 0)

Rt(0, 1, 0)

Rt(0, 0, 1)

$+
∞

Figure 11. Extraordinary resonance cone.
νx(x, τ) for τ ∈ [max(be(x), κ(x)),

√
be(x)2 + κ(x)2] .
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Above their corresponding cutoff frequencies, the sets νo(x, τ) and νx(x, τ) are restored
in the form of bounded sets which are homeomorphic to spheres.
Definition 3.11. [related to Figure 12] For (x, τ) ∈ Ω × [κ(x),+∞[, the set νo(x, τ) is
referred as an ordinary sphere.
Proposition 3.3. [ τ ∈ [κ(x),+∞[ ] The ordinary spheres νo(x, τ) are bounded connected
sets given by:

(3.102) νo(x, τ) :=
{
ξ = Sph(r, ωξ, $ξ) ; 0 ≤ r , −π ≤ ωξ ≤ π ,

0 ≤ $ξ ≤ π , r2 = g+(x, $ξ, τ)
}
.

Proof. This statement is a direct consequence of Lemma 3.14, case ii). �

Definition 3.12. [related to Figure 13] For (x, τ) ∈ Ω× [τ+
0 (x),+∞[, the set νx(x, τ) is

referred as an extraordinary sphere.
Proposition 3.4. [ τ ∈ [τ+

0 (x),+∞[ ] The extraordinary spheres νx(x, τ) are bounded
connected sets given by:

(3.103) νx(x, τ) :=
{
ξ = Sph(r, ωξ, $ξ) ; 0 ≤ r , −π ≤ ωξ ≤ π ,

0 ≤ $ξ ≤ π , r2 = g−(x, $ξ, τ)
}
.

Proof. This statement is a direct consequence of Lemma 3.15, case ii). �

Rt(0, 0, 1)

Rt(1, 0, 0)

Rt(0, 1, 0)

Figure 12. The extraordinary sphere nested
into the ordinary sphere, for τ & τ+

0 (x).

Rt(1, 0, 0)

Rt(0, 1, 0)

Rt(0, 0, 1)

Figure 13. Asymptotic merge of the ordinary
and extraordinary spheres, for τ � τ+

0 (x).

The ordinary resonance cone can appear with an ordinary sphere if κ(x) <
√

2be(x) (see
Lemma 3.10). An extraordinary resonance cone can occur with an ordinary sphere which,
in this case, is located inside. For the sake of clarity such configurations are not made
apparent in Figure 10 and 11). For τ > τ+

0 (x), the extraordinary sphere and the ordinary
sphere coexist (see Figures 12 and 13), the first being included in the second. At higher
frequencies, that is concretely above 1 MHz, the distinction between νo(x, τ) and νx(x, τ)
becomes almost invisible. For τ � τ+

0 (x), these both sets just look like Vl. Indeed, from
(3.43)-(3.44), we can easily infer that:

lim
τ−→+∞

τ−2 g±(x, $, τ) = 1 .
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3.4.3. The characteristic variety as a graph of functions depending on τ . The purpose of
this Paragraph 3.4.3 is to convert the condition (t,x, τ, ξ) ∈ V by expressing τ as a function
of ξ (in fact of r at fixed angle $). From Definition 3.1, Lemma 3.5 and (3.60), recalling
the convention (3.37), we can assert that:
(3.104) (t,x, τ, ξ) ∈ V ⇐⇒ (|τ |, r) ∈ V(x, $) ∩ R2

+ ⇐⇒ χx,$(|τ |, r) = 0 .
As noted in the article [28], interpreted as a polynomial in the variable τ instead of |n|, the
characteristic equation χx,$(τ, |ξ|) = 0 turns to be of fourth order in τ2. More precisely,
we have χx,$(τ, r) = Px,$,r(τ2) with:

(3.105)

Px,$,r(X) := X4 − (b2
e + 3κ2 + 2 r2) X3

+
(
r4 + 2 r2 (b2

e + 2κ2) + b2
e κ

2 + 3κ4) X2

−
(
r4 (b2

e + κ2) + r2 (2κ4 + b2
e κ

2 (1 + cos2$)
)

+ κ6) X
+ r4 b2

e κ
2 cos2($) .

Explicit algebraic expressions τ(x, |ξ|, $) are of course available, but they are not so easy
to implement. We will proceed differently. Another way to extract information is to study
the properties of the function g±(x, $, ·). We start by looking at the two extreme situations
($ = 0 and $ = π/2). Then, we consider the oblique case $ ∈ ]0, π/2[.
◦ 3.4.3.a) Parallel case ($ = 0). To describe the set V(x, 0) as a graph of functions
depending on τ , we can come back to Paragraph 3.3.1. With the formulas inside (3.64),
(3.66) and (3.67) in mind, we can define:

L(x, τ) := τ2 − κ(x)2 τ

τ + be(x) , ∀ (x, τ) ∈ Ω× R+ ,(3.106a)

R(x, τ) := τ2 − κ(x)2 τ

τ − be(x) , ∀ (x, τ) ∈ Ω×
(
R+ \ {be(x)}

)
.(3.106b)

Lemma 3.16. Fix x ∈ Ω. The application L(x, ·) : [τ−0 (x),+∞[−→ R+ as well as the two
applications:
R(x, ·) : [0,be(x)[−→ R+ , R(x, ·) : [τ+

0 (x),+∞[−→ R+ ,

are C∞-diffeomorphisms.

Proof. For L, remark that:

(3.107) ∂τL(x, τ) = 2 τ − κ2 be
(τ + be)2 = 2 τ (τ2 + be τ) + 2 be (τ2 + be τ)− κ2 be

(τ + be)2 .

From (3.63), we know that τ2 + be τ ≥ κ2 if τ ≥ τ−0 (x). Then, looking at the right-hand
term of (3.107), we get the first result. Otherwise, just compute ∂τR(x, τ). �

When $ = 0, there is a mix between ordinary and extraordinary waves. This effect is
enhanced under the underdense assumption, see Figure 14. It follows that the independent
use of L(x, ·) or R(x, ·) is not suitable to get inversion formulas that are globally defined
in $. The reason is that the expressions L(x, ·) or R(x, ·) (taken separately) do not allow
a continuous connection to g±(x, ·) when $ goes to 0. To remedy this, we have to blend
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the functions L(x, ·) and R(x, ·) accordingly. This induces the technicalities reproduced
below. We start with the overdense case (Definition 3.8) which is simpler. For ordinary
waves below the resonance frequency, just take:

(3.108) F 1
+,ov(x, r) :=

(√
R(x, ·)

[0,be(x)[

)−1(r) ,

to recover:
V−o (x, 0) =

{
(τ, r) ; 0 ≤ r , τ = F 1

+,ov(x, r)
}
.

For extraordinary waves located below the resonance frequency, we have to follow the red
curve in Figure 14-(a). This means introducing:

F 1
−,ov(x, r) :=

{ (√
L(x, ·) [τ−0 (x),κ(x)[

)−1(r) if r ≤
√
L(x, κ(x)) ,

κ(x) if r ≥
√
L(x, κ(x)) ,

in order to obtain:
V−x (x, 0) =

{
(τ, r) ; 0 ≤ r , τ = F 1

−,ov(x, r)
}
.

For ordinary waves above the cutoff frequency, we have to reconstruct the blue curve in
Figure 14-(a). Just define:

F 2
+,ov(x, r) :=

{
κ(x) if r ≤

√
L(x, κ(x)) ,(√

L(x, ·) [κ(x),+∞[
)−1(r) if r ≥

√
L(x, κ(x)) ,

that gives access to:
V+
o (x, 0) =

{
(τ, r) ; 0 ≤ r , τ = F 2

+,ov(x, r)
}
.

We now move to the underdense case. As already noted in Paragraph 3.3.3, the situation
is more intricated when be(x) > κ. However, the logic is the same. We have to follow the
coloured lines (blue and red) at the level of Figure 14-(b). Briefly define:

F 1
+,un(x, r) :=

{ (√
R(x, ·) [0,κ(x)[

)−1(r) if r ≤
√
R(x, κ(x)) ,

κ(x) if r ≥
√
R(x, κ(x)) ,

F 1
−,un(x, r) :=


(√

L(x, ·) [τ−0 (x),κ(x)[
)−1(r) if r ≤

√
L(x, κ(x)) ,

κ(x) if
√
L(x, κ(x)) ≤ r ≤

√
R(x, κ(x)) ,(√

R(x, ·) [κ(x),+∞[
)−1(r) if r ≥

√
R(x, κ(x))

F 2
+,un(x, r) :=

{
κ(x) if r ≤

√
L(x, κ(x)) ,(√

L(x, ·) [κ(x),+∞[
)−1(r) if r ≥

√
L(x, κ(x)) .

The sets V±o (x, 0) and V−x (x, 0) are then given by:
V−o (x, 0) =

{
(τ, r) ; 0 ≤ r , τ = F 1

+,un(x, r)
}
,

V−x (x, 0) =
{
(τ, r) ; 0 ≤ r , τ = F 1

−,un(x, r)
}
,

V+
o (x, 0) =

{
(τ, r) ; 0 ≤ r , τ = F 2

+,un(x, r)
}
.

The situation of V+
x (x, 0) is simpler because V+

x (x, 0) just coincides with V+
r (x, 0). It

suffices to define:
F 2
−(x, r) :=

(√
R(x, ·)

[τ+
0 (x),+∞[

)−1(r) ,
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to recover V+
x (x, 0) through:

V+
x (x, 0) =

{
(τ, r) ; 0 ≤ r , τ = F 2

−(x, r)
}
.

The sets V±o (x, 0) and V±x (x, 0) are represented on Figure 14 below.

r

τ

τ−0

be
κ

τ+0

(a) Overdense case.

τ−0

κ

be

τ+0

r

τ

(b) Underdense case.

Figure 14. Parallel propagation ($ = 0) with τ written as a function of r.
Mixing of Vx(x, 0) and Vo(x, 0).

◦ 3.4.3.b) Perpendicular case ($ = π/2). We simply find:

g+(x, π/2, τ) = τ2 − κ(x)2 , g−(x, π/2, τ) = (τ2 − κ(x)2)2 − be(x)2 τ2

τ2 − be(x)2 − κ(x)2 .

Lemma 3.17. Fix x ∈ Ω. The application g+(x, π/2, ·) : [κ(x),+∞[−→ R+ as well as
the two applications:
g−(x, π/2, ·) :

[
τ−0 (x),

√
be(x)2 + κ(x)2[ −→ R+ , g−(x, π/2, ·) : [τ+

0 (x),+∞[−→ R+ .

are C∞-diffeomorphisms.

Proof. This is obvious for g+(x, π/2, ·). For τ 6=
√

be(x)2 + κ2, this follows from:

∂τg−(x, π/2, τ) = 2 τ (τ2 − b2
e − κ2)2 + b2

e κ
2

(τ2 − b2
e − κ2)2 > 0 . �

◦ 3.4.3.c) Oblique case ($ ∈ ]0, π/2[). The analog of Lemmas 3.16 and 3.17 would be to
show that ∂τg±(x, $, ·) has a specific sign. The corresponding calculation seems rather
complicated. We use a weaker (more accessible) result, which is sufficient for our purpose.

Lemma 3.18. Fix x ∈ Ω. Select any angle $ ∈ ]0, π/2[. The four applications:
g+(x, $, ·) : [0, τ−∞(x, $)[−→ R+ , g+(x, $, ·) : [κ(x),+∞[−→ R+ ,
g−(x, $, ·) : [τ−0 (x), τ+

∞(x, $)[−→ R+ , g−(x, $, ·) : [τ+
0 (x),+∞[−→ R+ ,

are homeomorphisms.

Proof. Fix r ∈ R+. From (3.104) and (3.105), we can easily infer that:

(3.109) #
{
τ ∈ R+ ; (τ, r) ∈ V(x, $)

}
≤ 4 .
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On the other hand, from Paragraph 3.3.2, we have (3.90). As recorded in Lemmas 3.11
and 3.13, the function g+(x, $, ·) is continuous on [0, τ−∞(x, $)[, and it satisfies:
g+(x, $, 0) = 0 , lim

τ→ (τ−∞)−
g+(x, $, τ) = +∞ .

In this context, given r ∈ R+, the intermediate value theorem states that r2 = g+(x, $, τ)
for some τ ∈ [0, τ−∞(x, $)[. In other words, we have (τ, r) ∈ V−o (x, $). Similarly, applying
again Lemmas 3.11 and 3.13 but arguing this time with g−(x, $, ·) and g+(x, $, ·) on
well-chosen intervals, we get:
(3.110) #

{
τ ∈ R+ ; (τ, r) ∈ Vσ

∗ (x, $)
}
≥ 1 , ∀ (∗, σ) ∈ {o, x} × {±} .

Combining (3.109) and (3.110), we can assert that:
(3.111) #

{
τ ∈ R+ ; (τ, r) ∈ V(x, $)

}
= 4 , #

{
τ ∈ R+ ; (τ, r) ∈ Vσ

∗ (x, $)
}

= 1 .
This means that the function g+(x, $, ·) is a bijection from [0, τ−∞(x, $)[ to [0,+∞[, and
from [κ,+∞[ to [0,+∞[. This implies also that the function g−(x, $, ·) is a bijection
from the interval [τ−0 (x), τ+

∞(x, $)[ to [0,+∞[, and from [τ+
0 (x),+∞[ to [0,+∞[. Since

both g+(x, $, ·) and g−(x, $, ·) are continuous and injective on their respective intervals
of definition, the corresponding inverse functions are continuous. �

◦ 3.4.3.d) Synthesis of the results ($ ∈ [0, π/2]). By combining the results of the preceding
paragraphs, a global description of the parts Vσ

∗ (x, $) inside V(x, $) becomes available.
To this end, for all position x ∈ Ω, for all angle $ ∈ [0, π], for all symbol ∗ ∈ {ov, un}, and
for all r ∈ R+, define:

f1
+,?(x, $, r) :=

{ (√
g+(x, $, ·) [0,τ−∞(x,$)[

)−1(r) if $ ∈ ]0, π[ ,
F 1

+,?(x, r) if $ = 0(π) ,
(3.112a)

f2
+,?(x, $, r) :=

{ (√
g+(x, $, ·) [κ(x),+∞[

)−1(r) if $ ∈ ]0, π[ ,
F 2

+,?(x, r) if $ = 0(π) ,
(3.112b)

f1
−,?(x, $, r) :=

{ (√
g−(x, $, ·) [τ−0 (x),τ+

∞(x,$)[
)−1(r) if $ ∈ ]0, π[ ,

F 1
−,?(x, r) if $ = 0(π) ,

(3.112c)

f2
−(x, $, r) :=

{ (√
g−(x, $, ·) [τ+

0 (x),+∞[
)−1(r) if $ ∈ ]0, π[ ,

F 2
−(x, r) if $ = 0(π) .

(3.112d)

Then, the components of the characteristic variety V can be viewed as the graphs of
continuous functions on Ω× [0, π]×R+. As a matter of fact, for all (x, $) ∈ Ω× [0, π], the
sets V±o (x, $) and V±x (x, $) are given by:

V−o (x, $) :=
{

(τ, r) ; 0 ≤ r , τ = f1
+,?(x, $, r)

}
,(3.113a)

V+
o (x, $) :=

{
(τ, r) ; 0 ≤ r , τ = f2

+,?(x, $, r)
}
.(3.113b)

V−x (x, $) :=
{

(τ, r) ; 0 ≤ r , τ = f1
−,?(x, $, r)

}
,(3.113c)

V+
x (x, $) :=

{
(τ, r) ; 0 ≤ r , τ = f2

−(x, $, r)
}
.(3.113d)
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3.4.4. The eikonal equation. In Paragraph 3.1, we have approximated the RVM equations
by using the WKB theory. The first outcome of this procedure is an eikonal equation which
provides a simplified but pertinent representation of electromagnetic wave propagation in
terms of geometric optics.
◦ 3.4.4.a) The concrete form of the eikonal equation. Paragraph 3.4.3 allows to formulate
globally in space the Cauchy problem in time satisfied by φ. To produce the eikonal
equation, introduce the angle $(x, ξ) ∈ [0, π] between the directions ξ and Be(x). When
ξ and Be(x) are not parallel vectors, this angle is accessible through:

(3.114) $(x, ξ) := arccotan

 ξ ·Be(x)/|ξ|be(x)√
1−

(
ξ ·Be(x)/|ξ|be(x)

)2
 , (x, ξ) ∈ Ω× R3 .

When ξ and Be(x) are parallel vectors, just adopt the conventions:

(3.115) $(x, ξ) :=
{
π if ξ = sBe(x) with s < 0 ,
0 if ξ = sBe(x) with s > 0 , (x, ξ) ∈ Ω× R3 .

For all (x, ξ) ∈ Ω× R3, we can also define:

λi+,∗(x, ξ) := −f i+,∗
(
x, $(x, ξ), |ξ|

)
, (i, ∗) ∈ {1, 2} × {ov, un} ,(3.116a)

λ1
−,∗(x, ξ) := −f1

−,∗
(
x, $(x, ξ), |ξ|

)
, ∗ ∈ {ov, un} ,(3.116b)

λ2
−(x, ξ) := −f2

−
(
x, $(x, ξ), |ξ|

)
.(3.116c)

Lemma 3.19. Let φ ∈ C∞(M ;R) be a function subjected to (3.57) with l = 1. The choice
of the value l = 1 is to simplify the presentation. Then, the condition:(

$
(
x,∇xφ(t,x)

)
, ∂tφ(t,x) , |∇xφ(t,x)|

)
∈ V†` (x) , (†, `) ∈ {+,−} × {o, x}

amounts to the same thing as:

(3.117) ∂tφ(t,x) + λi±,∗
(
x,∇xφ(t,x)

)
= 0 , (i, ∗) ∈ {1, 2} × {ov, un}

with the following correspondences:
(†, `) = (−, o) =⇒ (i,±) = (1,+) , (†, `) = (+, o) =⇒ (i,±) = (2,+) ,
(†, `) = (−, x) =⇒ (i,±) = (1,−) , (†, `) = (+, x) =⇒ (i,±) = (2,−) ,

and ∗ is given by ov (resp. un) if be(x) < κ(x) (resp. be(x) > κ(x)).

Proof. This follows directly from (3.113). �

Lemma 3.18, together with the definitions (3.113) and (3.116), only yields the continuity
of the functions λi±,∗(·). This is not enough to ensure the existence and the uniqueness of
solutions to the Hamilton-Jacobi equation (3.117). However, when dealing in the overdense
case with the so-called whistler dispersion relation λ1

+,ov(·), this can be avoided by selecting
large values of |∇xφ(t,x)|.

Lemma 3.20. For all relatively compact open set O ⊂ Ω, there exists a constant C such
that λ1

+,ov(·) is of class C1 on O ×B(0, C)c.
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Proof. The expression λ1
+,ov(·) can be accessed via (3.116a) and (3.112a). Thus, the aim is

to study the regularity of the functions g+(·) and F 1
+,ov(·). The first difficulty is to examine

what happens when $ = 0 and $ = π.
On the one hand, the function $(·) of (3.114) is not differentiable when ξ and Be(x) have
parallel directions. Note however that this singularity is artificial. Indeed, the definition of
g+(·) only involves terms in sin2$(·) and cos2$(·) which both are of class C1. On the other
hand, the two extreme situations $ = 0 (i.e. study of F 1

+,ov) and $ = π/2 have already
been treated in Lemmas 3.16 and 3.17. It follows that the discussion may be limited to the
case $ ∈ ]δ, π − δ[ with δ ∈ R∗+ small enough. From now on, the matter is to show that,
for some well chosen δ > 0, we have:
(3.118) ∀ ($, τ) ∈ ]δ, π − δ[×]τ−∞(x, $)− δ, τ−∞(x, $)[ , ∂τg+(x, $, τ) > 0 .
For $ ∈ ]0, π/2[ and τ < τ−∞(x, $), we can compute:

∂τg+(x, $, τ) = 1
(τ2 − (τ+

∞)2)(τ2 − (τ−∞)2)

(
P ($, τ)− Q($, τ)

(τ2 − (τ+
∞)2)

− Q($, τ)
(τ2 − (τ−∞)2)

)
,

where:

P (x, $, τ) := 2 τ P(x, $, τ) + τ2 ∂τP(x, $, τ) + be κ2 ∂τQ(x, $, τ)
2
√
Q(x, $, τ)

,(3.119a)

Q(x, $, τ) := 2 τ3
[
P(x, $, τ) + be κ2

√
τ−4Q(x, $, τ)

]
.(3.119b)

Combining (3.77) and (3.78), we easily get that:
(3.120) Q

(
x, $, τ−∞(x, $)

)
:= 4 τ−∞(x, $)3 P

(
x, $, τ−∞(x, $)

)
> 0 .

It follows that:
lim

τ→ τ−∞(x,$)−
∂τg+(x, $, τ) = +∞ .

This is sufficient to deduce (3.118). �

◦ 3.4.4.b) Deviation from parallel propagation. In the constant coefficient case, if ξ ∧Be = 0
at time t = 0, this remains true along the characteristics at all times t ∈ R∗+. Now, in
the presence of spatial inhomogeneities, parallel propagation would mean that the well
prepared rays of geometrical optics, i.e. the rays associated to (3.117) and started from
positions (x, ξ) ∈ T ∗M such that ξ ∧Be(x) = 0, would follow the field lines. The aim of
this Paragraph is precisely to dismiss this possibility.
To simplify, we focus on the whistler dispersion relation λ1

+,ov(·). Moreover, to detect only
the effects of the variations of Be(·), we assume that κ does not depend on x. This amounts
to suppose that there are no variations in density. Let O b Ω. With C as in Lemma 3.20,
consider a function φ0 ∈ C∞(O;R) satisfying:
∀x ∈ O , $

(
x,∇xφ0(x)

)
= 0 , C < |∇xφ0(x)| .

Complete the Hamilton-Jacobi equation (3.117) with the initial data:
(3.121) ∀x ∈ O , φ(0,x) = φ0(x) .
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The smoothness of λ1
+,ov(·) guarantees the local in time well-posedness of the Cauchy

problem (3.117)-(3.121). More precisely, restricting a little the size of O if necessary, we
can find T ∈ ]0, 1] small enough and a unique function φ of class C1 satisfying:
(3.122) ∀ (t,x) ∈ [0, T ]×O , ∂tφ(t,x)+λ1

+,ov
(
x,∇xφ(t,x)

)
= 0 , φ(0,x) = φ0(x) .

To show that purely parallel propagation does not occur for whistler waves, it suffices
to exhibit some (t,x) ∈ [0, T ] × O such that $

(
x,∇xφ(t,x)

)
> 0. To this end, it is

more convenient to work in the straightened coordinates of [7]. With the notations from
Discussion 2.1 in mind, introduce the diffeomorphism Ye : Ω −→ Ye(Ω) which is defined
through the curvilinear coordinates:

Y1
e := z (ρ2 + z2)−3/2 ∈ R , Y2

e := − ρ4 (ρ2 + z2)−3 ∈ R∗− , Y3
e := φ ∈ R .

This gives rise to a triply orthogonal system (∇xYj
e)1≤j≤3 satisfying ∇xY1

e = Be. Adopt
the conventions:
(3.123) dje := |∇xYj

e ◦Y−1
e | , ∀ j ∈ {1, 2, 3} .

In particular, we have d1
e ≡ be ◦ Y−1

e . From now on, we will note y the current variable
in the domain Ye(Ω). With these conventions, the coordinates y1, y2 and y3 can be
interpreted respectively as a sort of latitude, (negative) altitude and longitude. Define:
φ(t,y) := φ

(
t,Y−1

e (y)
)
, φ0(y) := φ0

(
Y−1
e (y)

)
.

The new expression φ is subjected to:
(3.124) ∂tφ(t,y) + Λ1

+,ov
(
y,∇yφ(t,y)

)
= 0 , φ(0,y) = φ0(y) ,

where, for ξ = t(ξ1, ξ2, ξ3) ∈ R3, we have introduced:
(3.125) Λ1

+,ov(y, ξ) := −f1
+,ov

(
Y−1
e (y),$(y, ξ), N(y, ξ)

)
,

with:

N(y, ξ) :=
√ ∑

1≤j≤3
(ξj)2 dje(y)2 ,(3.126a)

$(y, ξ) := arccotan
(

d1
e ξ

1√
(d2
e)2 (ξ2)2 + (d3

e)2 (ξ3)2

)
.(3.126b)

Lemma 3.21. [characterization of purely parallel propagation] The following assertions
are equivalent:
(i) For all (t,x) ∈ [0, T ]×O, we have $

(
x,∇xφ(t,x)

)
= 0.

(ii) For all (t,y) ∈ [0, T ]×Ye(O), we have ∂y2φ(t,y) = ∂y3φ(t,y) = 0.

Proof. With x = Y−1
e (y), the condition $

(
x,∇xφ(t,x)

)
= 0 is equivalent to:

0 = Be(x) ∧∇xφ(t,x) = ∂y2φ(t,y) Be(x) ∧∇xY2
e(x) + ∂y3φ(t,y) Be(x) ∧∇xY3

e(x) .
Since the three vectors Be(x), ∇xY2

e(x) and ∇xY3
e(x) are orthogonal two by two, this can

be achieved if and only if ∂y2φ(t,y) = ∂y3φ(t,y) = 0. �

We are now able to prove that purely paralel propagation does not exist:
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Theorem 2. Assume that κ is constant on Ω. Then, there exists some (t,x) ∈ [0, T ]×O
such that $

(
x,∇xφ(t,x)

)
> 0.

Proof. The function Λ1
+,ov(·) introduced at the level of (3.124) cannot depend on y3 since

we have ∂y3dj ≡ 0 for all j ∈ {1, 2, 3} (see [7], Lemma 2.1). As a consequence, we have:
∀ (t,y) ∈ [0, T ]×Ye(O) , ∂y3φ(t,y) = 0 .

Taking into account Lemma 3.21, the matter is to obtain ∂y2φ(t,y) 6= 0 for some (t,y).
By contradiction, let us assume that we have ∂y2φ(·) ≡ 0. Then, the equation (3.124)
reduces to:
(3.127) ∂tφ(t,y) + f1

+,ov
(
Y−1
e (y), 0, d1

e(y) |∂y1φ(t,y)|
)

= 0 .

Moreover, looking at the derivative of (3.124) with respect to y2, we get:
(3.128) ∀ (t,y) ∈ [0, T ]×Ye(O) , ∂y2Λ1

+,ov
(
y, t(∂y1φ(t,y), 0, 0)

)
= 0 .

From (3.125), we can deduce:
∂y2Λ1

+,ov = ∇xf
1
+,ov · ∂y2Y−1

e + ∂$f
1
+,ov × ∂y2$+ ∂rf

1
+,ov × ∂y2N .

On the one hand, we have the relations:

∇xf
1
+,ov = −

∇x
√
g+

∂τ
√
g+

, ∂$f
1
+,ov = −

∂$
√
g+

∂τ
√
g+

, ∂rf
1
+,ov = 1

∂τ
√
g+

.

On the other hand, the dependence of g+(·) on x and $ is achieved through be(x) and
cos2$. It follows that:
∇x
√
g+ · ∂y2Y−1

e (y) = ∂be
√
g+ × ∂y2d1

e , ∂$
√
g+ × ∂y2$ = ∂cos2 $

√
g+ × ∂y2 cos2$ .

Remark also that $(y, ξ1, 0, 0) = 0(π) so that sin$(y, ξ1, 0, 0) = 0. By combining the
preceding information, we can assert that:

(3.129) (∂y2Λ1
+,ov)

(
y, t(ξ1, 0, 0)

)
=
∂y2d1

e(y)
∂τ
√
g+

(
|ξ1| − ∂be

√
g+
)
,

where ∂be
√
g+ and ∂τ

√
g+ are evaluated at the position:

(x, $, τ) =
(

Y−1
e (y) , 0 , f1

+,ov(Y−1
e (y), 0, |ξ1d1

e|) ) .
Knowing that ∂y2d1

e < 0 - see [7], Lemma 2.1 - and that √g+ ≡ F 1
+,ov ≡

√
R when $ = 0

- see (3.108) and (3.112a)-, the condition (3.128) amounts to the same thing as:

(3.130) ∀ (t,y) , |∂y1φ(t,y)| − ∂be
√
R(Y−1

e (y), ∂tφ(t,y)) = 0 .
Another way to express (3.127) is to write:
|∂y1φ(t,y)| = d1

e(y)−1 √R
(
Y−1
e (y), ∂tφ(t,y)

)
.

With (3.106b), the left hand side of (3.130) is therefore:

(3.131) 1
d1
e

√
R(Y−1

e (y), τ) + κ2 τ

2 (τ − be)2
√
R(Y−1

e (y), τ)
, τ := ∂tφ(t,y) .

Since τ > 0, this expression cannot be zero as required at the level of (3.130). This is the
expected contradiction. �
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3.4.5. Physical interpretations. Chorus emissions are the most common and most intense
electromagnetic plasma waves that are observed in the radiation belts of the Earth. They
must be related to radio science phenomena. They have long stimulated both experimental
and theoretical research [17, 18, 35], see especially the fairly old review [31]. During the
last years [3, 29, 37], with the advent of satellite-based investigation systems, they have
received renewed interest. Today, they are studied even more intensively, especially because
of their role as a viable mechanism for accelerating electrons [24, 34].

Figure 15. Spectrogram of chorus emission.

There is a general agreement that the
mechanisms underlying the generation
of very low frequency waves does rely
on the cyclotron resonance interactions
between the waves and the particles.
The current discussions rather relate to
the modalities of these interactions. In
the recent contribution [7], the origin
of the monochromatic elements forming
the fine structure of chorus (see Figure
15) is mathematically interpreted as a
mesoscopic caustic effect.
As a matter of fact, the deviation from
parallel propagation which has been
fully justified in Paragraph 3.4.4 comes
to reinforce this principle. Indeed, this confirms that the waves (unlike the particles) do
not travel along the field lines. Thus, instead of coming from the propagation along the
field lines of some original wave packet, most electromagnetic signals would be the result
of the procedure of creation of light detailed in [7]. The analysis of [7] was based on the
classical whistler dispersion relation, as found in [11, 27, 33]. Below, by combining the
refined model exhibited in Theorem 1 with the information from [7], we can get a better
understanding of what happens.
According to [7], the wave packets are emitted inside the characteristic variety V , all
along the resonance cones (drawn at the level of Figures 10 and 11). Moreover, a signal
which is generated at the time t from the position (t,x, τ, ξ) ∈ V starts to travel at the
velocity |∇ξλi−,?(x, ξ)|. In view of the dispersion relations, the size of |∇ξλi−,?(x, ξ)| may
be significant when ξ is located away from the resonance frequencies τ±∞(x, $) with $
given by (3.38). Then, as described in Theorem 2 of [7], the electromagnetic signals should
appear again and again over consecutive periods of almost equal length. They are marked
by light-coloured vertical lines in the spectrograms, see Figure 17. On the contrary, the
size of |∇ξλi−,?(x, ξ)| becomes small when ξ approaches τ±∞(x, $). Then, there is almost
no propagation. This could account for the creation of quasi-electrostatic waves. This
difference in behaviour could explain why chorus emissions are usually composed of discrete
narrowband wave elements accompanied by banded incoherent waves [24].
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Figure 16. The characteristic variety
as a graph of functions depending on τ .

Figure 17. Whistler-mode chorus:
Spectrogram of the electromagnetic field.

Moreover, chorus emissions usually occur in two frequency ranges, a lower band and some
upper band, which are separated by a gap [24, 29, 31]. The high part of the lower band
might correspond to the resonance frequency τ−∞. On the other hand, the upper band
could be demimited from below by the cutoff frequency τ−0 and at the top by the resonance
frequency τ+

∞. To well illustrate these correspondences, the comparison between Figures 16
and 17 is facilitated above. Note also that the lower and upper bands would be associated
with respectively the ordinary and extraordinary modes of propagation,
The fact [29] that lower-band waves tend to be field-aligned ($ ' 0) whereas upper-band
waves seem to be highly oblique ($ ' π/2) is another aspect that can be interpreted as a
consequence of our analysis. Indeed, away from the emission points, the (non propagating)
electrostatic waves should not be detected. Such waves are generated from the vertical
lines in Figures 6 and 7. This yields the line τ ≡ τ+

∞ = κ in the perpendicular case $ = 0,
and τ ≡ τ−∞ = 0 in the parallel case $ = π/2. As a result, away from the emitting regions,
one would expect to observe principally a lower-band (related to τ−∞) when $ ' 0, and a
upper band (related to τ+

∞) when $ ' π/2.
In conclusion, the refined structures of the characteristic variety V help to improve our
understanding of the morphological properties of chorus emissions.
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