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Introduction

Signals obtained from magneto- or electroencephalography (M/EEG) are very noisy and inherently multi-
dimensional, i.e. provide a vector of measurements at each single time instant. To cope with noise, researchers
traditionally acquire measurements over multiple repetitions (trials) and average them to classify various patterns
of activity. This is not optimal because of trial-to-trial variability (waveform variation, jitters). The jitter-adaptive
dictionary learning method (JADL [1]) has been developed to better handle for this variability (with a particular
emphasis on jitters). JADL is a data-driven method that learns a dictionary (prototype pieces) from a set of
signals, but is currently limited to a single channel, which restricts its capacity to work with very noisy data such
as M/EEG. We propose an extension to the jitter-adaptive dictionary learning method, that is able to handle
multidimensional measurements such as M/EEG.

1. Jitter-adaptive dictionary learning model (JADL)

JADL is a dictionary learning framework:
I Compensate for small variations in latency and phase of atoms di .

I Atoms learned by JADL are defined on the entire signal domain.

Hypotheses:

I The set of signals of interest {xj}Mj=1 can be generated by a dictionary.

I Atoms present in a signal can suffer from unknown time delays (jitter).

xj =
K∑
i=1

aijδij(di) + ε

K : #atoms, M : #trials

aij ∈ R : coefficient

δij ∈ ∆ : shift operator

∆ : finite set of allowed shifts

di : atom

D = {di}Ki=1 : dictionary

ε : Gaussian noise

min
di ,aij ,δij

M∑
j=1

(
1
2

∥∥∥xj − K∑
i=1

aijδij(di)
∥∥∥2

2
+ λ‖aj‖1

)
, s.t.‖di‖2 = 1.

The algorithm solving the JADL problem, is based on an implementation in [2]

for common dictionary learning, which iteratively alternates between:

(i) Sparse coding: finding the coefficients {aij} and the jitters {δij}
Let an ”unrolled” version of the dictionary D be a dictionary DS

containing all allowed shifts (S = |∆|) of all its atoms:

The sparse coding problem is solved using a modification of least

angle regression (LARS)[4] by rewriting the problem as follows:

Once an atom is chosen all its shifts are forbidden.

DS = {δ(d) : d ∈ D, δ ∈ ∆},
a matrix of dimension N × KS .

aSj ← argmin
1

2
‖xj−DSaSj ‖2

2+λ‖aSj ‖1 ,

s.t. ‖aS ,ij ‖0 ≤ 1, i = 1, . . . ,K .

(ii) Dictionary update: finding the shapes {di}.
Block coordinate descent is used to iteratively solve the

constrained minimization problem for each atom:

dk = argmin
dk

M∑
j=1

1

2

∥∥∥xj− K∑
i=1

aijδij(di)
∥∥∥2

2

s.t.‖dk‖2 = 1

2. Our modified JADL model

We propose an extension to the jitter-adaptive dictionary learning method, that:

I Is able to handle multidimensional measurements such as M/EEG.

I Learns a dictionary over M/EEG recordings that have the same waveform and jitter over all the channels in

a single trial.

I Is still able to account for different jitters across trials.

Significant modifications are applied to the original JADL framework, especially in:

The solution of sparse coding problem (i) by least angle regression algorithm (LARS):

1. Atom Selection: The best shifted versions of the atoms contained in the extended dictionary DS are selected,

over all the channels, leading to a compressed dictionary DS .

dS
j = argmax

dS
j ∈DS

C∑
c=1

∥∥∥sc · dS
j

∥∥∥ ,
where C is the number of channels of the EEG data, sc is the signal of channel c and dS

j is the j-th atom
of the extended dictionary DS .

2. Standard LARS sparse coding over the channels for the current atom set: During this step the multi-

dimensional coefficients aijc are computed using the compressed dictionary DS selected by the previous step

and the multi-channel signals for the given trial.

The dictionary update problem (ii) is also slightly modified to treat the measurements corresponding to the

different channels as additional trials.

3. Synthetic data generation

I Create a dictionary of K = 3 synthetic atoms.
I Generate an extended dictionary of 9 signals:

. Introducing random jitters (from the set ∆ of S = 103 contiguous allowed

shifts) to the dictionary’s atoms .
I Select 3 source groups, each of them containing 3 neighboring sources.

. Each source group is associated to shifted versions of the same atom.

I Combine the generated signals with a lead field matrix G computed from real EEG

measurements [3]. M = GS ,

where M ∈ RC×N is the measurement matrix either MEG or EEG, G ∈ RC×Q

is the lead field matrix, S ∈ RQ×N is the sources matrix. C , Q and N are the

numbers of channels, sources and time samples respectively.
I Perform the above procedure for M trials:

. Introducing new random jitters to the dictionary of K = 3 synthetic atoms.

⇒ Generated clean M/EEG measurements of C = 6 channels, M = 200 trials and

N = 515 time samples.
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4. Results on lead field synthetic data

A comparison between the original and our multi-dimensional JADL model

Both algorithms are executed with the same signals, initial random dictionary and latency parameters.

The multi-channel algorithm is executed using all the channels from the input data, while the single-channel

algorithm is executed several times, each time using a different channel.

The results of our multi-channel algorithm show:

I A very good fit of the learned dictionary to the generated one.

I A good fit also in the case where the signals were contaminated by noise.

Figure 1 : The generated (blue color) and learned (red color) dictonary using our model (left). The learned

dictionary on contaminated signals by noise of SNR : 0.021 (right).

The comparison of our multi-channel approach with the single-channel algorithm showed:

I Similar results when the best channel is used by the single-channel algorithm.

I Worse results for the single-channel algorithm when a medium or the worse channel is used.

I Cases where the single-channel algorithm is unable to recover correctly all the atoms of the dictionary

used to generate the signals.

I A small but superior performance for the multi-channel approach based on the coefficients vectors obtained

by the goodness of fit metric: 0.995, 0.996 and 0.995 instead of 0.992, 0.977 and 0.964 for the single-

channel approach using the best channel and 0.939, 0.512, 0.512 using the worst channel.

Goodness of fit metric: cori = max
j ,τ
|aiajτ | ,

where ai is a generated atom, aj is a learned atom and

ajτ is a shifted version of the learned atom, with shifts

within the expected range τ ∈ ∆ and i , j ∈ [0, k].

SNR SNRdB Atom1 Atom2 Atom3

0.804 -0.944 0.998 0.999 0.997

0.021 -16.700 0.993 0.973 0.983

0.001 -29.240 0.954 0.821 0.892

0.0002 -36.107 0.826 0.585 0.462

Figure 2 : The learned dictionaries by the single-channel method: using the best (left) and the worst (right)

channel. Wrong recovered components are marked by the red ellipses.

5. Results on real data

The multi-dimensional approach is tested using real MEG and EEG data:

I C = 200 channels,

I M = 63 trials,

I N = 541 time samples,

I contaminated by ambient

noise.

Input parameters:

I S = 103 contiguous allowed

shifts,

I K = 3 atoms. Figure 3 : The single-channel (left) and the multi-channel method (right).

6. Conclusions

I The method shows superior performance and less noisy estimated waveforms compared to the original

single-channel JADL framework, both on synthetic and real data.

I It is more robust to various levels of noise.

I Using the JADL framework allows one to deal with signal variabilities such as jitters which is difficult to

do with standard methods such as PCA or ICA.

I Not having to select a ”best” channel (as with the JADL method) is both a user simplification and allows

the exploitation of all the available information for M/EEG trial by trial signal decomposition. It thus

provides better estimations of waveforms in the dictionary.
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