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Abstract

Uncertain systems are considered. They are repre-
sented in a descriptor form, where the matrices have
an affine dependence on the uncertain parameter. S-
variable approach for the design of a robust adaptive
control feedback loop is presented. The only require-
ment to build such an adaptive law is robust stabil-
ity of the closed-loop system by a static gain. No
assumption about passivity of the system is made.
Asymptotic stability of the given adaptive control is
proved using Lyapunov arguments, and gain adapta-
tion parameters are tunable by linear matrix inequal-
ity based convex optimization. An application to the
attitude control of a microsatellite of the CNES Myr-
iade series illustrates the results.

1 Introduction

The parameters of a system cannot be well known
and might be subject to important variations.
Adaptive control theory proposes to deal with this
issue by making the gains of its law time-varying,
depending on the real time measurements. But can
robustness be proved? For example using robust
control methods?
They are two types of adaptive control approaches:
in an indirect adaptive scheme, the gains of the
controller evolve with relation to an estimation of
the parameters of the system. The idea of such an
estimator has been introduced in [6]. But the indi-
rect scheme does not fit well with uncertain systems
and its implementation is complex, as highlighted
in [14]. For these reasons, we choose to use the

direct adaptive scheme, where the gains are directly
modified according to the measured outputs, making
its implementation very simple. The counterpart is
that it is based on strong hypothesis, as the passivity
of the system to be controlled ([4]). Moreover, noise
on the measurements tends to push the gains of the
controller to infinity. To tackle this issue, [5] and
[7] propose the so-called σ−modification to achieve
changes in the dynamics based on the measured
outputs.
In robust control community, the effectiveness of
LMI-based methods has been widely proved ([2]),
but only a few works use them in the context of
adaptive control of uncertain systems. In [10], only
certain systems are treated, whereas in [9] and [16],
some assumptions are made about the uncertainties,
but they are not always verifiable; [1] designs a
simple adaptive controller, which does not require
the knowledge of the system dynamics.
In this paper, we deal with direct adaptive control of
uncertain systems, and the controllers are designed
using LMI-based methods. The paper has three main
contributions: First, the passivity of the system is
not required. Second, we use the recent results of
descriptor systems, that applies for systems rational
in the uncertainties ([15] and [3]). The third major
contribution of this paper is the establishment of
new results proving that adaptive law has improved
(at least no worse) robustness, compared to a given
static feedback controller.
The paper is organized as follows: First, we justify
our choice to use a descriptor representation. In
section III, we design adaptive controllers, with no
worse and improved robustness respectively. An
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application is given in section IV. Finally, we give
some conclusions and outlooks for future work.

Notation. I stands for the identity matrix. {1;V }
is the set of all the integers between 1 and V. AT is
the transpose of the matrix A. AS stands for the
symmetric matrix A + AT . A(�) ≺ B is the ma-
trix inequality stating that A − B is negative (semi-
)definite. If A ∈ Rn×m and rankA = r, A⊥ is a full
rank matrix such that A⊥ ∈ R(n−r)×n and A⊥A = 0.
A◦ is a full rank matrix such that A◦ ∈ Rm×r and
AA◦ is full rank.

2 Preliminaries about descrip-
tor systems

A system can be represented with the following de-
scriptor form

Exxẋ(t) + Exππ(t) = Ax(t) +Bu(t) , y(t) = Cx(t)
(1)

where x ∈ Rnx is the state of the system, u ∈ Rnu is
the control input, π ∈ Rnπ is an auxiliary signal (see
4.). Exx ∈ Rn×nx , Exπ ∈ Rn×nπ , A ∈ Rn×nx and
B ∈ Rn×nudefine the system.

One of the main advantages of descriptor systems
is that they derive directly from physical represen-
tations. Moreover they happen to be well suited for
dealing with uncertainties. The following result is
stated in [12] and generalized in [3]:

Theorem 2.1 Assume a parameter-dependent de-
scriptor model

Ēxx(δ)ẋ(t) + Ēxπ(δ)π̄(t) = Ā(δ)x(t) + B̄(δ)u(t)
y(t) = Cx(t), δ ∈ ∆V

(2)
where ∆V :=

{
δ ∈ RV : δ ≥ 0,1T δ = 1

}
and the

δ-dependent matrices are rational with respect to
the components of the uncertain vector δ. Then,
there always exists another parameter-dependent
descriptor model

Exx(δ)ẋ(t) + Exπ(δ)π(t) = A(δ)x(t) +B(δ)u(t)
y(t) = Cx(t), δ ∈ ∆V

(3)
in which the δ-dependent matrices are affine func-

tions of δ, that is Exx(δ) =
∑V
v=1 δvE

[v]
xx, Exπ(δ) =∑V

v=1 δvE
[v]
xπ, A(δ) =

∑V
v=1 δvA

[v] and B(δ) =∑V
v=1 δvB

[v], E
[v]
xx, E

[v]
xπ, A[v] and B[v] being the val-

ues of the matrices of the system on the V vertices of
δ. Descriptor representations allow to handle ratio-
nal systems as if affine in the uncertainties, which is
a key point.

In all the following, we consider that the matrices
which describe the system are affine functions of the
uncertain parameter δ. In order to get a condition of
stability for systems of the form of (3), we suppose
the following assumption holds:

Assumption 1: It is assumed that

[Exx(δ) Exπ(δ)] = E1(δ) [E2xx E2xπ] (4)

where E1(δ) =
∑V
v=1 δvE

[v]
1 is full column rank for

all δ ∈ ∆V .

Assumption 1 means that the potential impulsive
and non dynamic modes of system (3) do not depend
on the uncertainty δ.

We can now recall the result of [3] for uncertain
descriptor systems:

Theorem 2.2 Under assumption 1, let E2 =
E⊥2xπE2xx. The system (3) is robustly stable if there

exist matrices P̂ [v] = P̂ [v]T , Ŷ [v] and Ŝ such that the
following conditions hold for all v ∈ {1;V }:

(E2E
◦
2 )T P̂ [v](E2E

◦
2 ) � 0 (5)[

0 P̂
[v]T

e

P̂
[v]
e 0

]
+
{
Ŝ
[
E

[v]
1 −A[v]

]}S
≺ 0 (6)

where P̂
[v]
e = (ET2 P̂

[v] + Ŷ [v]TE⊥2 )E⊥2xπ.
By stability, we mean boundedness and convergence
of E2x and the absence of impulsive modes, see [3]
for details.
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Remark: Condition of Theorem 2.2 only
requires that (6) is satisfied for all v ∈ {1;V }. By
convexity, it implies that it holds for all δ ∈ ∆V with
parameter dependent matrices P̂ (δ) =

∑V
v=1 δvP̂

[v]

and Ŷ (δ) =
∑V
v=1 δvŶ

[v]. P̂ (δ) defines a parameter-
dependent quadratic Lyapunov function for the
plant.

3 LMI-based robust adaptive
control design

The main result of this paper aims at designing
an adaptive law which stabilizes the system (3) for
every value of the uncertain vector δ, under the
following assumption:

Assumption 2: Under assumption 1, let
u(t) = K0y(t) be a static output feedback. It is

assumed that there exist matrices P̂ [v] = P̂ [v]T , Ŷ [v]

and Ŝ such that for all v ∈ {1;V }, conditions of
Theorem 2.2 hold for the closed-loop system.

The proposed adaptive law consists in replacing the
static feedback by a structured time-varying control

u(t) = (K0 + LK(t)R)y(t) (7)

where L and R are partitioned with appropri-

ate dimensions such that LKR =
∑k̄
k=1 LkKkRk.

K(t) = diag (K1(t),K2(t), ...), L = [L1 L2 ...], R
T =[

RT1 RT2 ...
]

and the adaptation is driven by

K̇k(t) = ProjDk (Kk(t), Wk(t))
Wk(t) = γk(−Gky(t)(Rky(t))T − σkKk(t)).

(8)

where Dk defines an ellipsoidal set Ek:

Kk ∈ Ek ⇔ Tr(KT
k DkKk) ≤ 1 (9)

and ProjDk is the operator defined as in [13]. When
the gain Kk is inside the set, the operator outputs
K̇k = Wk, and when Kk is at the border of the set,

the operator aims at pushing it inside the set, so that
the gains cannot exit the set:

ProjDk (Kk, Wk) = Wk −Hk

where Hk is such that

Hk = 0 if Kk ∈ Ek
else s.t.

{
Tr(K̇T

k DkKk) ≤ 0
Tr((Kk − Fk)THk) ≥ 0 ∀Fk ∈ Ek

(10)
The definition of the operator guarantees that Kk

remains bounded, with a bound inversely propor-
tional to the square-root of ‖Dk‖. Notice that if
the gains are scalar, (8) can be implemented as a
saturated integrator.
The adaptation is driven by the first term of
(8) −Gky(t)(Rky(t))T , whereas the second term
−σkKk(t) contains a forgetting factor which allows
the gain Kk to tend to 0 when the output signal y is
zero. The factor γk determines the speed of adapta-
tion of the gain. The issue is to find some appropriate
values for D = diag(D1, . . . , Dk̄), GT =

[
GT1 GT2 ...

]
,

Γ = diag(γ1, . . . , γk̄) and σdiag(σ1, . . . , σk̄) such that
the system with adaptive control is robustly stable.

3.1 Adaptive add-on design with no
worse robustness

Theorem 3.1 If assumption 2 is satisfied for system
(3), then there exist matrices P [v], Y [v], S, GT =[
GT1 GT2 ...

]
, D = diag(D1, . . . , Dk̄) and ε > 0 such

that the following equation holds ∀v ∈ {1;V }:

M [v] =

0 P
[v]T
e 0

P
[v]
e εET2 E2 + 2CTRTRC −CTGT

0 −GC −2D


+
{
S
[
E

[v]
1 −A[v]

c −B[v]L
]}S

≺ 0 (11)

where A
[v]
c = A[v] +B[v]K0C, and

P
[v]
e = (ET2 P

[v] + Y [v]TE⊥2 )E⊥2xπ.
Besides, the solution is such that the adaptive con-

trol (8) stabilizes the plant whatever positive values
of σk, γk and for all δ ∈ ∆V .
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Proof 1: If assumption 2 holds, we prove that
(11) is satisfied for all v ∈ {1;V }. For a given
v ∈ {1;V }, by a small perturbation argument on
the condition of assumption 2, and whatever a priori
choice of G, there exist ε̂[v] > 0 and ε̃[v] > 0 such that[

0 P̂
[v]T

e

P̂
[v]
e 0

]
+
{
Ŝ1

[
E

[v]
1 −A[v]

c

]}S
≺ N [v] (12)

where

N [v] =

[
0 0
0 −ε̂[v]ET2 E2 − ε̃[v]CTRTRC

]
−
(
S1B

[v]L−
[

0
CTGT

])
ε̂[v]I(

S1B
[v]L−

[
0

CTGT

])T
(13)

Take ε̂ = min
v
ε̂[v], ε̃ = min

v
ε̃[v]. Multiply the new

inequality by 2/ε̃ and take ε = 2ε̂/ε̃, P
[v]
e = (2/ε̃)P̂

[v]
e ,

Y [v] = (2/ε̃)Ŷ [v] and D = (ε̃/4ε̂)I. The Schur

complement of the result gives (11) with S =

[
S1

0

]
.

It now remains to prove the second and last part
of the theorem: stability with adaptive control.
First, we use the fact that the δ-dependent matrices
are affine functions of δ. By convexity, equation (11)
is equivalent to

V∑
v=1

δvM
[v] ≺ 0 ∀δv ≥ 0

or, by linearity, to M(δ) ≺ 0, where E1(δ)

replaces E
[v]
1 , P (δ) +

∑V
v=1 δvP

[v] replaces

P [v], Y (δ) =
∑V
v=1 δvY

[v] replaces Y [v] and
Ac(δ) = A(δ) +B(δ)K0C.

Then, let us notice that since along the closed-
loop system trajectories, Exx(δ)ẋ + Exπ(δ)π =
(A(δ) + B(δ)LKRC)x, pre and post mul-

tiplying {S [E1(δ) −Ac(δ) −B(δ)L]}S by(
ẋTET2xx + πTET2xπ xT xTCTRTKT

)
and its

transpose respectively gives zero. There-
fore, if we pre and post multiply (11) by

(
ẋTET2xx + πTET2xπ xT xTCTRTKT

)
and its

transpose respectively, it remains:

2xTPe(E2xxẋ+ E2xππ)− 2xTCTRTRCx
−xTCTRTKTGCx+ εxTET2 E2x

−2xTCTGTKRCx ≤ 0.

Then, due to the expression of Pe and the fact that
y = Cx,

2xTET2 PE2ẋ− 2yTGTKRy
+2yTRT (I −KTDK)Ry

≤ −εxTET2 E2x.

Moreover, the fact that K and D are block-
diagonal implies that (I − KTDK) is also block-
diagonal, with KTDK � 0 and Tr(KTDK) ≤ 1 in-
volving that (I −KTDK) � 0.
Hence,

2xTET2 PE2ẋ− 2yTGTKRy ≤ −εxTET2 E2x. (14)

Keeping this in mind we consider the Lyapunov
function defined by:

V (x,K) = xTET2 PE2x+ Tr(KTΓ−1K)

where Γ = diag(γ1Im1
, · · · , γk̄Imk̄) and mk is

the number of columns of Lk. Taking σ =
diag(σ1Im1 , · · · , σk̄Imk̄) and H = diag(H1, · · · , Hk̄),
its derivative reads as:

V̇ (x,K) = 2xTET2 PE2ẋ+ 2Tr(KTΓ−1K̇)
= 2xTET2 PE2ẋ− 2Tr(KT (Gy)(Ry)T )
− 2Tr(KT (σK + Γ−1H))

Furthermore, the trace operator properties, the
structure of Γ and the properties of H give:

Tr(KT (Gy)(Ry)T ) = yTGTKRy

Tr(KTΓ−1H) ≥ 0

and then, using (14)

V̇ (x,K)≤ −εxTET2 E2x−
∑k̄
k=1 σkTr(KT

k Kk).

Consequently, the adaptive closed-loop system is
asymptotically stable; E2x converges to zero and Kk

converges to 0 for all k. The property holds for any
δ ∈ ∆V and hence is robust.
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3.2 Adaptive add-on analysis, im-
proved robustness

With Theorem 3.1, we only know that the adaptive
law is no worse than the static control. The following
theorem aims at improving it.

Theorem 3.2 Consider the following matrix in-
equalities with P̆ [v] � 0, Y̆ [v] and ε̆ > 0 for all
v ∈ {1;V }:0 P̆

[v]T
e 0

P̆
[v]
e N̆ −(GC)T

0 −GC −2D


+
{
S
[
E

[v]
1 −A[v]

c∆ −B
[v]L

]}S
≺ 0 (15)

and[
Tk FTk Dk

DkFk Dk

]
� 0 ,Tr(Tk) ≤ 1 ∀ k ∈

{
1; k̄
}

(16)

where N̆ = ε̆ET2 E2+2CTRTRC+
{
CTRTFGC

}S
,

A
[v]
c∆ = A[v] +B[v](K0 + LFR)C

and P̆
[v]
e = (ET2 P̆

[v] + Y̆ [v]TE⊥2 )E⊥2xπ for all v ∈
{1;V }.

These constraints are such that:

(i) For fixed K0, G, S and D = diag(D1, . . . , Dk̄)
the constraints are LMI in P̆ [v], Y̆ [v], ε̆ and F .

(ii) For K0, G, S and D solution to constraints in
Theorem 3.1 the LMIs are feasible.

(iii) If the constraints are feasible, then F is such that
FTk DkFk � I and u(t) = (K0 + LFR)y(t) stabi-
lizes the plant (3).

(iv) If the constraints are feasible, then whatever γk
the adaptive control (8) quadratically stabilizes
the set of the states x such that E2x = 0 when all
σk = 0 and quadratically stabilizes a neighbor-
hood of this same set when at least one σk > 0.

Proof 2: The proof of Theorem 3.2 is quite the
same as the one of Theorem 3.1. The most important
thing to notice is that the baseline control is no
more required to be a quadratically stabilizing gain

in items (i), (iii) and (iv). Here, only a static add-on
stabilizes the plant, but it is not needed to be known.

(i) is trivial.

To prove (ii) one has to notice that (15) is nothing
else but (11) with P̆ = P , Y̆ = Y , F = 0 and ε̆ = ε,
which proves the feasibility of (15).

To prove (iii), one has to notice on the one hand
that F is forced to be in the same set as the adaptive
gain K. Indeed, applying Schur complement to (16)
gives

Tr(FTk DkFk) � 1 for all k ∈
{

1; k̄
}
.

On the other hand, if we denote S by S =[
ST1a ST1b ST3

]T
, (15) implies that{[

S1a

S1b

] [
E

[v]
1 −A[v]

c∆

]}S
+

[
0 P̆

[v]T
e

P̆
[v]
e 0

]

�
{[
S1a

S1b

] [
E

[v]
1 −A[v]

c∆

]}S
(17)

+

[
0 P̆

[v]T
e

P̆
[v]
e ε̆ET2 E2 + 2CTRTRC +

{
CTRTFGC

}S
]

� 0 (18)

Using Theorem 2.2, this proves the stability of the
closed-loop with static gain K0 + LFR.

Now let us prove (iv). The generalization of
(15) for all δ ∈ ∆V is achieved as in the proof
of Theorem 3.1. Still following the same lines as
the second part of proof 1, multiplying (15) by(
ẋTET2xx + πTET2xπ xT xTCTRTKT

)
and its trans-

pose respectively gives

2xTE2P̆E2ẋ− 2yTRT (K − F )TGy
−2yTRT (KTDK − I)Ry

≤ −ε̆xTET2 E2x.

(19)
where (KTDK − I) � 0. That result proves the

stability with the adaptive add-on.

Here, the Lyapunov function is given by:

V (x,K) = xTE2P̆E2x+ Tr((K −F )TΓ−1(K −F )T )
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and its derivative writes as follows:

V̇ (x,K) = 2xTE2P̆E2ẋ+ 2Tr(K̇Γ−1(K − F )T )

= 2xTE2P̆E2ẋ− 2Tr((GyyTRT + σK)
(K − F )T )− 2Tr(HΓ−1(K − F )T )

= 2xTE2P̆E2ẋ− 2yTRT (K − F )TGy
−2σTr(KT (K − F ))− 2Γ−1Tr((K − F )TH)
≤ −ε̆xTET2 E2x− 2

∑
σkTr(K

T
k (Kk − Fk))

(20)
For the second row, we use the definition of the

projection operator (10). For the third row, we use
the fact that the three following properties are true
for all matrices M and N with appropriate sizes and
for every λ ∈ R:

Tr(M + λN) = Tr(M) + λTr(N)

Tr(MN) = Tr(NM); Tr(M) = Tr(MT )

For the last row we use (19) and again the property
of the projection operator (10).

The last row indicates that when all σk are zero,
the derivative of the Lyapunov function is negative
along trajectories as long as the state of the plant
has not converged to E2x = 0. The Lyapunov theory
allows to claim that in that case, the state x converges
to E2x = 0.

However, the only thing we can say about the adap-
tive add-on gain is that if the baseline controller does
not stabilize the system, the adaptive add-on may
not converge to zero.
Now, consider the case when at least one σk is strictly
positive. On the one hand, the last right term of
(20) being bounded, there exists positive functions
fk(‖Dk‖), decreasing when ‖Dk‖ grows, such that
V̇ (x,K) ≤ −ε̆xTET2 E2x+ 2

∑
σkfk(‖Dk‖).

Hence we get V̇ (x,K) < 0 as soon as
xTET2 E2x >

2
ε̆

∑
σkfk(‖Dk‖).

On the other hand, the last term of V (x,K) is also
bounded, we can find positive functions gk(‖Dk‖),
decreasing when ‖Dk‖ grows, such that:

V (x,K) ≤ λmax(P̆ )xTET2 E2x−
∑

γ−1
k gk(‖Dk‖).

(21)
Then, if

xTET2 E2x ≥ max(
2

ε̆

∑
σkfk;λ−1

max(P̆ )
∑

γ−1
k gk)

then x is outside an equipotential of the Lyapunov
function and is such that V̇ < 0. This equipotential
defines an attractor, and one can easily see that the
larger any σk or γk is, the larger is the size of the
attractor.

4 Robust design of the Deme-
ter adaptive attitude control

In this section, Theorems 3.1 and 3.2 are applied to
the CNES microsatellite Taranis, whose dynamics
can be modelized as follows:

Jθ̈ +
√
Jlη̈ = u√

Jlθ̈ + η̈ + 2ζωnη̇ + ω2
nη = 0

(22)

where θ is the attitude of the satellite, η repre-
sents the flexible modes, J the inertia, l stands for
the coupling between θ and η, ωn is the natural
frequency of the flexible modes and ζ the damp-
ing. l = 0.7582 is known but ωn ∈ [0.2 0.6] × 2π
(50% uncertainty), ζ ∈

[
5e−4 5e−3

]
(80% uncer-

tainty) and
√
J ∈ [5.205 7.041] (30% uncertainty for

J) are uncertain. The first step is to rewrite system
(22) into a descriptor form in which the matrices are
affine function of the uncertain parameter. To do it
we introduce two exogenous signals π1 =

√
Jθ̈ and

π2 = 2ζη̇ + ωnη and we consider that the uncertain

parameter is δ =
[
ωn ζ

√
J
]T

. Thus we get the

following descriptor system:


0 0 0 l

√
J

0
√
J 0 0

1 0 0 0

0 l
√
J 0 1

0 0 0 0
0 0 1 0

 ẋ+



√
J 0
−1 0
0 0
0 ωn
0 1
0 0

π

=


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 ωn 2ζ
0 0 0 1

x+


1
0
0
0
0
0

u, (23)
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Figure 1: Attitude angle. Dashed: without adapta-
tion. Solid: with adaptation

y =

[
1 0 0 0
0 1 0 0

]
x

where matrices Exx(δ), Exπ(δ), A(δ), B(δ) and C
are easily identifiable. As [Exx(δ) Exπ(δ)] is square
and full rank, assumption 1 holds with E1(δ) =
[Exx(δ) Exπ(δ)] and [E2xx E2xπ] = I6. As δ ∈ R3,
23 = 8 models define the system. Assumption 2 is
tested and satisfied.

4.1 Adaptive control with no worse
robustness

Theorem 3.1 is applied to get numerical val-
ues for adaptive law parameters. For more details
about the parametrization of the law, see [11] and [8].

Simulation results with and without this adaptive
control are plotted with solid and dashed lines re-
spectively in Fig. 1 to Fig. 4, under the same initial
conditions and with several random values of the un-
certain parameter within the polytope of its extremal
values.

Fig. 1 and Fig. 2 show that the adaptive control
allows a faster convergence of the states. The
overshoots in the attitude angle θ and the angular
rate ω have disappeared with the adaptive law.
Time variations of the adaptive gains Kθ and Kω

are plotted in Fig. 3 and Fig. 4. The dashed curves
are constant since they correspond to a static control
law. The solid lines show non negligible variations of

Figure 2: Angular rate. Dashed: without adaptation.
Solid: with adaptation

Figure 3: Adaptive gain for the attitude angle.
Dashed: without adaptation. Solid: with adaptation

Figure 4: Adaptive gain for the angular rate. Dashed:
without adaptation. Solid: with adaptation
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the gains.

Moreover, setting the σk values allow to tune the
convergence speed of the states, and the variation
rate of the gains evolve with the values of γk. γk
must be chosen large enough to allow the adapta-
tion, but small enough to have reasonable and then
implementable values for K̇k. For more details, one
can refer to [10].

4.2 Adaptive control with improved
robustness

Theorem 3.2 is an improvement in terms of admissi-
ble values of the uncertainties: due to the fact that
the baseline control is no more required to stabilize
all the realizations of the system, we can expect that
(15) and (16) are feasible for a larger set of uncertain-
ties than the one given in the previous part. This use
of Theorem 3.2 is relevant in the context of TARANIS
attitude control, since the inertia J of the satellite is
ill known and can be subject to more important un-
certainties than those given above.
Tests have been achieved with the same set of ad-
missible dampings ζ and natural frequencies of the
flexible modes ωn. We aim at finding the biggest set
of inertias for which (15) and (16) are feasible. Re-
sults yield the set [23.61 51, 37]. Compared to the
original set of uncertainties [26.27 48.71], which was
the largest set for which LMIs of Theorem 3.1 are
feasible, Theorem 3.2 allows an extension of the set
of 23%.
Beyond that, the controller built solving (15) and
(16) can be used to stabilize other sets of uncertain-
ties. To be clear, let us apply this feature to system
(23). Figure 5 can be read as follows: first, the static
control with F = [0.1 2] robustly stabilizes system
(23) with a nominal inertia increased by 75% com-
pared to the real nominal one, and with a ±30% un-
certainty. Tests show that beyond this new nomi-
nal inertia and/or beyond an uncertainty of 30%, as-
sumption 2 is no more satisfied (blue interval in Fig-
ure 5). But with the adaptive control designed using
Theorem 3.2, the uncertainty on the inertia can be
pushed up to 90% (red interval in Figure 5).

These applications show that Theorem 3.2 provides

Figure 5: Admissible sets of uncertainty on the iner-
tia using robust adaptive control

a non negligible improvement in terms of robustness
compared to Theorem 3.1, all of these based on the
fact that we gain asymptotic stability of a neighbor-
hood of the equilibrium point at the expense of relax-
ing the goal of asymptotic stability of the equilibrium
itself.

5 Conclusion

After recalling some important results about uncer-
tain descriptor systems, we have established in this
paper a SV-LMI based result to design a robust adap-
tive control law. A similar result but with improved
robustness has also been proved, and two main uses
have been highlighted. Both theorems have been ap-
plied to satellite attitude control. To go further, it
should be studied if such improved robustness control
law could have some drawbacks or not.
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