
HAL Id: hal-01243171
https://hal.science/hal-01243171

Submitted on 5 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybridization of air quality forecasting models using
machine learning and clustering: an original approach to

detect pollutant peaks
Wani W. Tamas, Gilles Notton, Christophe Paoli, Marie-Laure Nivet, Cyril

Voyant

To cite this version:
Wani W. Tamas, Gilles Notton, Christophe Paoli, Marie-Laure Nivet, Cyril Voyant. Hybridiza-
tion of air quality forecasting models using machine learning and clustering: an original ap-
proach to detect pollutant peaks. Aerosol and Air Quality Research, 2016, 16 (2), pp.405-416.
�10.4209/aaqr.2015.03.0193�. �hal-01243171�

https://hal.science/hal-01243171
https://hal.archives-ouvertes.fr


 
 
 

Aerosol and Air Quality Research, 16: 405–416, 2016 
Copyright © Taiwan Association for Aerosol Research 
ISSN: 1680-8584 print / 2071-1409 online 
doi: 10.4209/aaqr.2015.03.0193 
 
Hybridization of Air Quality Forecasting Models Using Machine Learning and 
Clustering: An Original Approach to Detect Pollutant Peaks 
 
Wani Tamas1, Gilles Notton1, Christophe Paoli1,2*, Marie-Laure Nivet1, Cyril Voyant1,3 
 
1 University of Corsica - Pasquale Paoli, UMR CNRS 6134 SPE, 20250 Corte, France 
2 Galatasaray University, Department of Computer Engineering, TR-34357 Istanbul, Turkey 
3 CHD Castelluccio, radiophysics unit, BP85 20177 Ajaccio, France 
 
 
ABSTRACT 
 

This paper presents an original approach combining Artificial Neural Networks (ANNs) and clustering in order to detect 
pollutant peaks. We developed air quality forecasting models using machine learning methods applied to hourly 
concentrations of ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM10) 24 hours ahead. MultiLayer Perceptron 
(MLP) was used alone, then hybridized successively with hierarchical clustering and with a combination of self-organizing 
map and k-means clustering. Clustering methods were used to subdivide the dataset, and then an MLP was trained on each 
subset. Two urban sites of Corsica Island in the western Mediterranean Sea were investigated. These models showed a good 
global precision (Index of Agreement reaching 0.87 for O3, 0.80 for NO2 and 0.74 for PM10). Considering it is particularly 
important than forecasting model used on an operational basis correctly predict pollution peaks, a sensitivity analysis was 
performed using Receiver Operating Characteristic curves (ROC curves). It allowed to evaluate the behaviour and the 
robustness of the models for high concentration situations. The results show that for PM10 and O3, hybrid models made of a 
combination of clustering and MLP outperform classical MLP most of the time for high concentration prediction. An 
operational tool has been built with the models presented in this paper, and is used for air quality forecasting in Corsica. 
 
Keywords: Air quality forecasting; ROC curve; Multilayer perceptron; Clustering. 
 
 
 
INTRODUCTION  
 

Air quality is a major concern, both for public health and 
environment preservation. In France, Air Quality Monitoring 
Agreed Associations (AQMAA) are in charge of main ground 
level pollutant monitoring.  

Air quality forecasting is an important part of AQMAA’s 
missions, allowing the anticipation of pollution peak 
formation. Different air quality forecasting techniques have 
been developed in recent years (Zhang et al., 2012a) and 
two families of models can be distinguished. On the one 
hand, deterministic models operate by modelizing all the 
physicochemical mechanisms responsible of the evolution 
of air quality. On the other hand, statistical models must 
learn the underlying relationships between the different 
variables related to air quality to make their predictions. The 
first family of models, frequently called Chemical Transport 
Models (CTM), use similar principles to Numerical Weather 
Prediction (NWP) models. They can offer predictions with 
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a good spatial definition and help scientists understand and 
validate mechanisms of atmospheric pollution. A state of 
the art in CTM research is presented in Zhang et al. (2012b). 
Their construction demands a considerable research effort, 
large computing resources and an available emission 
inventory. The second family, statistical models, need a 
large amount of data and various preprocessing operations 
to be operational. The precision of statistical models can 
outperform CTM’s, but they produce only local predictions. 
One of the stakes in CTM research is the hybridization 
with statistical models, which are used to post-process CTM 
outputs in order to take into account available observations 
to improve forecasting. We can cite the work on PM10 
forecasting made with the CTM CHIMERE (its aerosol 
module presented in Bessagnet et al., 2004) and linear 
regression models by Konovalov et al. (2009).  

Those last decades, various types of statistical models 
have been applied to air quality forecasting. Among them, 
Artificial Neural Networks (ANNs) has been particularly 
used in research. ANNs show good results when used as 
time series forecasting models (Zhang, 2012). Their 
applications in atmospheric sciences were reviewed in the 
late 90’s by Gardner and Dorling (1998), through the model 
of the MultiLayer Perceptron (MLP), a type of ANN known 
for its universal approximator ability (Hornik et al., 1989).  
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Various studies using MLP can be found in the literature 
(Kolehmainen et al., 2000; Perez and Reyes, 2002; Kukkonen 
et al., 2003; Dutot et al., 2007). Thus, our preliminary 
work focused on ozone (O3) concentration forecasting one 
hour ahead (Paoli et al., 2011). Then a work on h + 24 
hourly O3 concentration forecasting with MLP was initiated 
(Tamas et al., 2014) and showed a good reliability (IA 
reaching 0.88), in the same order of magnitude than previous 
studies found in the literature as Coman et al. (2008). As 
clustering of training data appeared to offer an improvement 
of ANN predictive models abilities (Davis and Bouldin, 
1979; Lu et al., 2006; Poggi and Portier, 2011), we decided 
to apply such a method to improve our capicity to detect 
pollutant peacks.  

In this work, we first built a h + 24 MLP model for each 
of the three major pollutants in two urban sites: ozone 
(O3), nitrogen oxides (NO2), and particulate matter (PM10, 
particles below 10 μm in diameter). Predictors were pollution 
and weather measurements and outputs from the NWP 
model AROME from Météo-France, the French national 
meteorological service. Those models were trained and 
evaluated on independent test sets, showing a good precision. 
After the first results, we focused on the pollution peak 
prediction ability and no longer on the global performances. 

In Corsica, a French island in western Mediterranean Sea 
where this study take place (see Fig. 1), pollution peaks 
mainly occur when external sources bring pollutants over 
the island. PM10 high level episodes are often linked with 
Saharan dust events in addition to local sources. Other 
typical high PM10 events are due to stable meteorological 
conditions like thermal inversion causing the stagnation of 
locally emitted particles. High O3 levels may also be linked 
to transport events. Old air masses can come from the south 
of mainland France or from the highly industrialized Po 
valley in the north of Italy.  

We investigated two clustering methods to separate the 
data into several subsets, in order to isolate the different 
weather patterns likely to favor pollution peaks. The first 
method was based on SOM and k-means clustering and the 

second on hierarchical clustering. 
After the clustering step, an MLP was trained on each 

cluster to obtain an MLP specialized on each weather pattern. 
Each trained MLP was evaluated on the part of test set 
corresponding to its cluster. The hybrid model was made of 
all those MLPs, each being used when the data corresponded 
to its cluster. The behaviour and the robustness of the 
resulting models was studied with a focus on high 
concentration situations and compared to the classical MLP 
using Receiver Operating Characteristic curves (ROC curves, 
see Fawcett, 2006). Those curves allow the comparison of 
threshold overrun detection rate for every threshold. 

The next section will present the data used in this study. 
Then we will introduce the MLP based forecasting model 
before focusing on our clustering approaches. The global 
results of all the models will be shown, followed by an 
evaluation with ROC curves focused on peak forecasting 
abilities. A conclusion with associated perspectives will be 
discussed. 

 
MATERIALS AND METHODS 
 
Air Quality in Corsica 

Corsica Island is located in the Western Mediterranean 
Sea, in the south of France, west of Italy and north of Sardinia 
Island. This mountainous island (average and maximum 
altitudes of 568 meters and 2710 meters), with a small 
industrialization, has a population of 310000 inhabitants 
for an area of 8680 km2. The air constituents (four regulated 
pollutants) are monitored by the approved association 
Qualitair Corse, using a network of 9 monitoring stations, 
mainly deployed around the two largest cities, Ajaccio and 
Bastia. We built our models to forecast the concentrations 
measured in the two urban stations (Canetto and Giraud), 
so that the predictions are representative of air state around 
the urban population. 

The main pollutant emissions in the island are due to 
energy production industry (mainly fuel), traffic (road, sea 
and air), domestic heating, waste incineration and agriculture.  

 

 
Fig. 1. Corsica Island in Mediterranean Sea. 
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In France, four pollutants (NO2, PM10, O3 and SO2) are 
regulated and controlled. Two concentration thresholds 
exist and trigger reactions of the administration if exceeded 
(Table 1). The first threshold is an information threshold, 
leading AQMAAs to communicate toward authorities and 
population on atmospheric state when exceeded or forecasted. 
The second one is an alert threshold, its exceedance forces the 
authorities to take actions in order to reduce the emissions. In 
Corsica, O3 and PM10 are the two pollutants causing pollution 
episodes, NO2 levels being less problematic. SO2 levels are 
particularly low, with average concentrations around 2 μg m–3 
for an information threshold of 300 μg.m-3. For that reason, 
SO2 is not looked at in this study. 

General statistics calculated for O3, PM10 and NO2 are 
shown in Table 2. As PM10 concentrations thresholds are 
calculated on a daily basis, values of 24-hour sliding average 
are also displayed for this pollutant. 

Located on the seaside, Ajaccio and Bastia are both 
subject to coastal breezes. Bastia is located at the foot of 
the mountain range of Serra and is subject to valley and 
mountain breezes. These phenomenons influence local 
pollutants dynamics.  

Meteorological data were provided by Météo-France. 
The outputs from AROME NWP model (Seity et al., 2011) 
are used. This model has a 0.025° resolution, allowing a 
good representation of convective processes. For each station, 
the closest point of the AROME meshing output was used: 
for Canetto station (41.925N, 8.736E) we used the point 
with geographic coordinates: 41.925N, 8.725E and for Giraud 
station (42.698N, 9.446E) the point with coordinates: 42.7N, 
9.45E. The meteorological parameters used in our model and 
produced by AROME are: Temperature (T), Atmospheric 
Pressure (AP), U and V wind components, Relative Humidity 
(RH), Precipitations (P), Nebulosity (N), Geopotential (G), 
Short-Wave and Long-Wave net Radiation (SWR and 
LWR). Those variables are given for various altitude levels. 
Within the atmospheric boundary layer, thermal inversion 
can appear and provoke pollutants stagnation. A variable 

describing the thermal inversion is thus a valuable input 
for our models. We calculated the thermal Inversion Layer 
Thickness (ILT) from temperature outputs available at 
various levels (2 m, 20 m, 50 m, 100 m, 250 m, 500 m, 
750 m, 1000 m, 1250 m and 1500 m). If the temperature 
gradient is positive between two levels, the corresponding 
altitude difference is added to the ILT value. Boundary 
Layer Height (BLH) was available and is a key parameter 
for qualifying the ground-level atmospheric state. However, 
it was excluded of the dataset because it was one year 
shorter than the other variables. During a preliminary test, 
we found that models performed better without BLH in the 
dataset but with one more year to train the models. 

Pollutant time series to forecast were thus that of O3, 
NO2 and PM10 measured in Canetto and Giraud. Input data 
were both endogenous and exogenous time series, exogenous 
being measures of other pollutants, meteorological measures 
and output prediction from AROME. All time series consisted 
of hourly averages. 

 
Forecasting with Multilayer Perceptron  

An MLP is a feedforward ANN with at least one hidden 
layer. MLP is known to be able to modelize any smooth 
function (Hornik et al., 1989). Typically, MLP has one or 
two hidden layers and an output layer with as many 
neurons as the number of desired outputs. The predictors 
correspond to the input data of the MLP, provided to the 
input layer. The neurons of the first layer process the data 
and their output becomes the input of next layer’s neurons. 
Each input xi is multiplied by a specific weight wi. The 
sum of all weighted inputs is added to a specific bias b and 
this sum becomes the argument of the activation function 
of the neuron that produces the output yi (See Fig. 2). The 
weights and biases are the parameters of the MLP, and 
must be set during a supervised learning phase by a training 
algorithm. Levenberg-Marquardt Algorithm (LMA) was 
used to train our networks. During the learning phase, a 
training dataset was used, with input data and target data,

 

Table 1. Information and alert concentration thresholds in 2014 for O3, PM10, NO2 and SO2. 

Pollutant Average Information threshold (µg m–3) Alert threshold (µg m–3) 
O3 Hourly 180 240 

PM10 Daily 50 80 
NO2 Hourly 200 400 
SO2 Hourly 300 500 

 

Table 2. Statistics on hourly O3, NO2 and PM10 concentrations and on 24-hour sliding average PM10 concentrations. 

Station Pollutant Mean (µg m–3) STD (µg m–3) Min (µg m–3) Max (µg m–3) Missing values (%)

Canetto 
(Ajaccio) 

O3 58.25 29.20 0 166 1.58 
PM10 24.23 11.28 0 165 5.93 
PM10

* 24.23 8.38 6.21 82.33 6.39 
NO2 21.48 16.29 0 128 1.77 

Giraud 
(Bastia) 

O3 75.89 23.44 1 164 3.38 
PM10 22.31 10.73 0 149 8.52 
PM10

* 22.31 8.04 4.50 78.92 8.53 
NO2 15.09 12.69 0 130 4.30 

* 24-hour sliding average. 
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Fig. 2. Schematic view of a multilayer perceptron with focus on neuron’s parameters. 

 

and the LMA iteratively adapted all MLP’s parameters in 
view to reduce the MSE between target data and MLP’s 
output (Marquardt, 1963). Those parameters properly set 
allow the MLP to modelize underlying relationships between 
the predictors and the predictand. Our target (the predictand) 
was the concentration time series to forecast, shifted forward 
24 hours. Thus, the MLP was trained to a h + 24 predictive 
model. Our network had one hidden layer of ten neurons with 
sigmoid activation function. Output neuron’s activation 
function was a linear function. 

The early stopping method was used to avoid overlearning, 
which leads to an over specialization of the network on 
training data and poor generalization abilities. Input data 
were divided into three subsets: the train set, the validation 
set and the test set. Three years of data were dedicated to 
the train set, one year for the validation set and one year for 
the test set. The MLP was trained using the training set, and at 
each iteration of the LMA, the MSE was calculated using the 
validation set. When validation MSE stopped decreasing for 
six consecutive iterations, the learning phase was stopped. 
The test set was then used to evaluate model’s performances. 
Saving a full year for the test set allowed having all 
seasons equally represented. 

 
Clustering Models 

As observed in a previous study (Tamas et al., 2014), 
the main difficulty encountered with MLP was to obtain 
good performances for high concentration episodes. Some 
authors use boosting, that is to say increase the frequency 
of such episodes in the training set (Kukkonen et al., 2003; 
Paschalidou et al., 2010), but it can lead to overfitting. 
Another way to improve the precision for high concentration 
is to build a forecasting model with the time series of 
maximum daily values of the pollutant as target (Corani, 
2005; Lu et al., 2006; Perez, 2012); but working with daily 
values does not bring information on air quality evolution 
during the day, which is useful for operational use. 

We chose to investigate the precision gain for high 
concentration by specializing an MLP into each weather 
class, those classes being determined by a clustering process. 
It allows to separate, by unsupervised learning, different 
typical weather episodes, during which relationships between 

predictors and predictand may be different. Hybrid models 
consisted of the successive assignation to a cluster followed 
by the prevision using the proper MLP. Two clustering 
approaches were investigated: a hierarchical clustering and 
a SOM mapping followed by a k-means clustering. The 
clustering was applied on the dataset comprising outputs 
from AROME and pollution observations. This dataset 
was different from these used as MLP’s input though the 
variables was the same because of a different lag choice. 
The clustering dataset used the h + 24 prediction from 
AROME (observed time series were not lagged). 

Hierarchical clustering is an iterative method gathering 
data points in clusters using a distance metric representing 
their dissimilarity. In an agglomerative hierarchical 
clustering process, each data point is first assimilated to a 
group. A distance metric must be defined, that represents 
the dissimilarity between groups. A criterion is chosen that 
uses the metric to select at each iteration the two groups to 
be gathered into a new group. The process continues until 
a chosen number of final groups is reached. We used the 
euclidean distance as metric with Ward criterion for the 
clustering (Ward, 1963). Ward criterion is based on 
intergroup inertia. At each iteration of the algorithm, two 
groups are gathered together in order to maximize intergroup 
inertia I: 
 

2

1

1


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k

i i
i

I m g g
m

 (1) 

 
with m the sample size and g it’s centroid, and k clusters 
indexed by i, with a size mi and a centroid gi. 

The second clustering approach was based on SOM 
followed by a k-means algorithm. SOM were used as a first 
dimensional reduction step leading to a faster clustering. 
SOM are artificial neural networks with one group of 
interconnected neurons. Each neuron has n parameters, 
assimilated to a position in an n dimensions space, and is 
connected to its neighbours. The SOM is trained on the 
sample of dimension n, and for each data point, the neuron 
with the closest position moves closer to the data point, 
dragging with him neighbour neurons. At the end of the 
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training, neurons cover the space occupied by the sample, 
and each data point may be classified as belonging to the 
group of the closest neuron. 

After this first step, we applied the k-means algorithm to 
trained SOM’s neurons positions. The clusters are defined 
by their centroid gi, and each data point belongs to the 
cluster having the nearest centroid. The number of desired 
groups k is given, and the algorithm seeks the k centroids 
gi in order to minimize the intragroup sum of squares: 
 

2

1 

 
i

k

i
i x Q

D x g  (2) 

 
with x the data points, Qi the iest cluster and gi its centroid. 

It is difficult to choose the appropriate number of clusters 
and to evaluate the quality of a clustering process dedicated 
to subdivide a training set for an MLP. Increasing the 
number of clusters may reduce the intragroup distance, but it 
would also decrease cluster sizes, lowering MLP’s training 
potential. We chose to experiment every number of clusters 
between two and five for each experiment, retaining the 
model with the best forecasting abilities with the test set. 

 
Choice of Predictors 

Data used as predictors were pollutant variables and 
meteorological variables, from September 2009 to June 2014. 
The pollutant variables were PM10, NO2, O3 concentration 
timeseries, along with meteorological measures (HR, P, T) 
and meteorological previsions from AROME (AP at sea 
level, T and RH at 2m,U and V at 10m, G at 800 hPa, ILT 
between ground level and 1500m, P, N, SWR and LWR). 
Those variables represent different phenomena related 
with the pollutant concentration. Three different prevision 
horizons were used (h + 15, h + 20 and h + 24) to provide 
information about the weather evolution before the prediction 
horizon of the MLP. 

Various preprocessing operations precede the learning 
phase. First, data points with missing values were deleted. 
Then, input and target time series were normalized (centred 
and reduced). This ensures that variables significance is 
not affected by their range or their unit. Annual and daily 
profiles of variables were computed, and time series 
presenting a periodic compound (input or target) were 
transformed into stationary time series, by subtracting their 
daily and annual mean values. Thus, a Principal Component 
Analysis (PCA) was performed on the entire input dataset, 
and the Principal Components (PCs) were used as input for 
the MLP. It is known to improve the precision of the 
predictive model (Sousa et al., 2007). The PCA also allow 
the reduction of the amount of input variables. PCs are 
hierarchied by decrising corresponding eigenvalue. It is 
possible to discard some of the PCs with the less eigenvalue. 
Only the PCs with the higher eigenvalue, which accounts 
for the majority of the variability in the data, were selected 
as input of the MLP. 

We used the same variables for the clustering dataset, 
but the horizon of predicted variables was h + 24 only. Those 
variables at this horizon represent weather conditions when 

pollutant concentration must be forecasted. Some weather 
conditions are known to be responsible of high pollution 
event. Particularly, wind component and geopotential at 800 
hPa bring informations about transport events. ILT represent 
the amplitude of the thermal inversion responsible of 
pollutant stagnation. Solar radiation is closely linked to O3 
photochemical formation. MLP trained with a cluster 
representative of a pattern linked with high concentration 
should have his detection rate increased. 

As the unsupervised dimension reduction process of 
PCA is closely related to the unsupervised learning of k-
means clustering (Ding and He, 2004), using PCs of the data 
helps the k-means clustering algorithm to find appropriate 
centroids. PCs of normalised data were used to perform the 
clustering. 

 
RESULTS 
 
Models Global Performances 

Three 24 hour ahead forecasting models were built for 
each pollutant (PM10, O3 and NO2) in Canetto station 
(Ajaccio) and Giraud station (Bastia). Each model consisted 
of an MLP of one hidden layer with ten neurons. MLPs 
that were trained with the full training set (without clustering) 
are referred as fMLP. The hybrid models formed of various 
MLPs each trained with data subsets after a hierarchical 
clustering are referred to as hMLP. The hybrid models 
formed of MLPs trained with data subsets after the SOM/k-
means clustering are referred to as kMLP (see Fig. 3). For 
the two clustering processes, data was clustered before the 
separation between the tree datasets (train, validation and 
test sets). It means that the test set of each MLP was the 
part of the global test set that belonged to its cluster. To 
evaluate models with clustering, each of their MLP’s outputs 
was merged to form the global test output. 

Data used for learning and evaluation of MLPs covered 
years from 2009 to 2014. A full year was dedicated to the 
test set, another full year was used as validation set and the 
rest formed the train set. The initialisation of weights and 
biases by Nguyen-Widrow algorithm (Nguyen and Widrow, 
1990) comprising a random component, all the trained 
models are different and their precision varies. Each model 
was therefore independently trained and evaluated six times. 
The variation of precision is more important for models 
with clustering that have smaller training sets. The models 
with N clusters is constituted of N MLPs, each one being 
the best of the six trained. To evaluate the complete model, 
each data point of the test set is assigned to its cluster, and 
the corresponding MLP produce the test output for this 
point. Models were trained to fit the 24 hour ahead shifted 
concentration time series. Their precision was evaluated with 
error indexes: Root Mean Square Error (RMSE), normalized 
Root Mean Square Error (nRMSE), Mean Absolute Error 
(MAE), Mean Bias Error (MBE), Index of Agreement (IA) 
and correlation coefficient (R), reported in Table 3. We have: 
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Fig. 3. Construction of forecasting models without clustering (fMLP), with hierarchical clustering (hMLP) and with 
SOM/k-means clustering (kMLP). The number of clusters is N. 
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with n the sample size and i the sample index, o the 
observed variable and p the variable prediction. 

IA (Willmott, 1982), ranging from 0 for the worst model 
to 1 for a perfect model, was preferred to the other indexes 
to be used as a criterion when a selection was necessary, for 
it can detect additive and proportional differences between 
the observed and predicted time series. Moreover, RMSE 
and MAE are more dependent to time series dynamics, and 

R is not adapted to rate models. 
Those indexes are widely used but yet are insufficient to a 

proper evaluation, as they do not give informations about high 
concentration detection. This evaluation will be completed 
with proper tools (i.e., ROC curves) presented in next section. 

Results of Table 3 show the indexes of performance of 
models. Error indexes of PM10 models are also displayed 
for 24-hour sliding average to correspond to the daily basis 
used in France for PM10 thresholds and alerts. The results 
of fMLP are quite good, reaching IA of 0.87 for O3 at 
Canetto station. The precision of fMLP in Giraud station, 
where the dynamic of this pollutant is more complex, is 
lower (IA = 0.837) but RMSE and MAE are smaller, due 
to the little range of O3 concentration variations in Bastia 
caused by nocturnal high concentrations. nRMSE is also 
lower than in Ajaccio, average concentrations in Bastia 
being higher for the same reason. We note that precision 
for O3 forecasting is equivalent to that which was obtained 
in previous work (Tamas et al., 2014) with models and data 
comparable to fMLP. However, we had used a heavier 
feature selection process, using mutual information, replaced 
here by the easier use of PCA on a large dataset. Precision 
of PM10 models is similar for the two stations, with an IA 
around 0.73 for hourly concentrations. NO2 have a better 
IA in Canetto than in Giraud, reaching 0.80.  

 
Evaluation of Threshold Overrun Detection with ROC 
Curves 

While fMLP display better performance indexes for 
hourly prediction, we will see that hMLP and kMLP have
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Table 3. Test set precision of h + 24 forecasting models for O3, PM10 and NO2 hourly concentrations. 24-hour sliding 
averages values are also displayed for PM10 models. IA and R are dimensionless. 

Station Pollutant 
RMSE 

(µg m–3) 
nRMSE 
(µg m–3) 

MAE 
(µg m–3) 

MBE 
(µg m–3) 

IA R 

Canetto 

PM10 7.40 37.02 5.77 1.63 0.736 0.599 
PM10

* 4.41 22.04 3.56 1.64 0.826 0.752 
O3 18.65 31.57 14.69 –0.38 0.870 0.766 

NO2 12.10 55.84 8.58 0.60 0.805 0.669 

Giraud 

PM10 7.49 38.89 5.70 1.14 0.728 0.606 
PM10

* 4.73 24.52 3.72 1.05 0.834 0.759 
O3 15.84 20.53 12.23 –1.65 0.837 0.743 

NO2 10.90 71.97 7.30 0.49 0.735 0.592 
MLP without clustering (fMLP). 
 

Station Pollutant 
Retained num. 

of clusters 
RMSE 

(µg m–3)
nRMSE 
(µg m–3)

MAE 
(µg m–3)

MBE 
(µg m–3) 

IA R 

Canetto 

PM10 3 
8.72 43.51 6.79 1.54 0.649 0.437 

PM10
* 4.53 22.59 3.65 1.52 0.826 0.728 

O3 4 24.22 38.69 19.03 0.03 0.779 0.613 
NO2 4 17.57 85.26 12.82 0.75 0.591 0.326 

Giraud 

PM10 2 
7.91 41.36 6.02 1.01 0.696 0.545 

PM10
* 4.74 24.77 3.71 1.00 0.831 0.754 

O3 2 16.74 21.48 12.93 –1.57 0.826 0.711 
NO2 2 12.34 82.23 8.52 0.68 0.655 0.464 

MLP trained after hierachical clustering (hMLP). Models with two to five clusters were trained and tested, and we retained 
the number of cluster leading to the best Index of Agreement.  
 

Station Pollutant 
Retained num. 

of clusters 
RMSE 

(µg m–3)
nRMSE 
(µg m–3)

MAE 
(µg m–3)

MBE 
(µg m–3) 

IA R 

Canetto 

PM10 4 
8.28 41.32 6.48 1.94 0.681 0.499 

PM10
* 4.66 23.26 3.83 1.92 0.807 0.726 

O3 2 22.56 36.04 17.53 1.12 0.808 0.662 
NO2 3 15.42 74.81 10.95 0.46 0.672 0.452 

Giraud 

PM10 3 
8.10 42.31 6.10 0.89 0.662 0.509 

PM10
* 5.00 26.09 3.90 0880 0.797 0.720 

O3 2 16.99 21.81 13.17 –1.23 0.818 0.699 
NO2 2 11.96 79.79 8.21 0.615 0.642 0.474 

MLP trained after k-means clustering (kMLP). Models with two to five clusters were trained and tested, and we retained 
the number of cluster leading to the best Index of Agreement. 
* 24-hour sliding average. 

 
better peak detection abilities, that is the interest of using 
clustering. We need a more appropriated evaluation method 
to measure these abilities and robustness. In Canetto, hMLP 
still reached the same IA than fMLP for PM10 24-h sliding 
average. 

We will now consider forecasting models for their 
threshold overrun detection. The models can then be seen 
as binary classifiers, with possible outputs indicating 
"exeedance" or "no exeedance". It is possible to evaluate 
such models for a given threshold with contingency 
matrices. But it is useful to know model’s behaviour for 
various thresholds, and for that reason we drew the ROC 
curves (presented by Fawcett (2006)) of our models. The 
True Positive Rate (TPR) and the False Positive Rate 
(FPR) of a model can be calculated for each threshold. The 
TPR is the rate of correctly predicted exceedances for total 
observed exceedances (between 1 for a perfect model and 

0 for a totally defective model), and the FPR is the rate of 
predicted exceedances that were not observed (false alarm) 
for all situation when concentrations stay below the 
threshold (FPR is between 0 for a perfect model and 1 for 
a totally defective model). The ROC curve is drawn by 
plotting, for each threshold, the FPR on abscissa axis and 
the TPR on ordinate axis. 

ROC curves of the best fMLP, hMLP and kMLP for 
PM10 and O3 are shown in Fig. 4 for Canetto station and in 
Fig. 5 for Giraud station. PM10 results are shown for 24-
hour sliding average and O3 results for hourly averages, to 
correspond to official thresholds averages. 

Remember that each MLP was trained six times, the 
best kMLP and hMLP are the combination of the best of 
those six MLPs for each cluster. For kMLP and hMLP, we 
built models with two to five clusters and show in Figs. 4 
and 5 the best results, indicating the number of clusters.
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Fig. 4. ROC curves of 24 hour ahead forecasting models for PM10 and O3 concentrations in Canetto station (Ajaccio). 24-
hour sliding average is used for PM10 concentrations. 

 

     

     
Fig. 5. ROC curves of 24 hour ahead forecasting models for PM10 and O3 concentrations in Giraud station (Bastia). 24-
hour sliding average is used for PM10 concentrations. 
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Numbers on the curves indicate the thresholds in μg m–3. 
When models with clustering have better TPR for high 
thresholds than fMLP, those values are highlighted. Global 
performances in Table 3 showing better results for fMLP 
can also be noted on ROC curves in term of area under the 
curve. But the interest of the clustering is not to improve 
global performances, but to increase forecast precision for 
high concentration events. On a ROC curve, we will not 
focus on the area under the curve, but we will pay attention 
to the bottom-left part of the graph, evaluating the models 
for thresholds corresponding to the highest concentration 
values of the dataset. In this part of the curve, FPR is 
logically low as models will hardly make a false alarm 
with a high threshold. The objective is to increase the TPR 
for high thresholds to have a model that does not miss high 
concentration events, particularly when those events are 
rare and have little presence in the data of training set, 
which is the case here. We underlined some threshold values 
to emphasise the cases where models with clustering perform 
better for high levels. 

For PM10 and O3, models with clustering can show better 
detection for high concentration events than fMLP. In 
Fig. 4 showing Canetto results, the two clusters PM10 hMLP 
have slightly better behaviour than fMLP for thresholds 
higher than 30 μg m–3, as O3 kMLP for thresholds higher 
than 100 μg m–3. At Giraud station, O3 model is also 
improved by clustering, hMLP having the best detection 

rates. For those pollutant, PM10 models in Bastia is the 
only case where hybrid models do not improve high level 
detection. 

Scatter plots of fMLP and of the best hybrid model 
(considering ROC curves) are shown in Fig. 6 for Canetto 
station and in Fig. 7 for Giraud station. PM10 scatter plots 
display some line patterns, due to the 24-sliding average 
used which smooths concentration evolution. On those 
curves, we can see the detection improvement for high 
concentration values. The global precision degradation due 
to the subdivision of training sets with hybrid models is 
also visible, with more scattered points for medium and low 
concentration values. This scattering echoes the lowering of 
IA observed with hybrid models. For medium concentrations 
fMLP appear to be more appropriated. This seems to be 
the consequence of the subdivision of dataset, reducing the 
size of training set for the MLPs of hybrid models. But for 
high concentrations, an improvement of peak detection is 
observed with hybrid model. Both should be used on 
operational basis, with focus on hybrid model for the peak 
forecasting. 

NO2 results are not plotted, being systematicly poorer with 
hybrid models than with fMLP. This lack of performances 
may come from the data used for the clustering, mainly 
meteorological and including variable outputs over the 
atmospheric boundary layer. Such a dataset brings both 
local and mesoscale informations, that are needed to explain

 

    
 

    
Fig. 6. Scatter plots of fMLP and the best hybrid model in Canetto station, in µg m–3. 
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Fig. 7. Scatter plots of fMLP and the best hybrid model in Giraud station. 24-hour sliding average is used for PM10 
concentrations. 

 

both PM10 and O3 concentration. Saharan dust event are 
the major cause of PM10 events in Corsica and O3 transport 
events from France and Italy are also common. O3 is a 
secondary pollutant and is more influenced by meteorological 
conditions than primary pollutants. On the other side, NO2 
levels are mainly due to local anthropogenic emissions. 
Those hybrid methods with this clustering dataset seem not 
to be adapted for this pollutant. 

Those ROC curves have to be analysed knowing the 
pollutant statistics of Table 2, not only describing the test 
set but all available data. Information threshold are hardly 
reached, only PM10 is responsible for threshold exeedances.  

Fig. 8 shows the most important PM10 event of the test 
set, and the better performances of the hMLP model are 
visible. For example, the 18/03/12 peak is underestimated 
by fMLP and forecasted by hMLP. 

No clear relationship could be found between the nature of 
the clustering (hierarchical or SOM/k-means based, number 
of clusters) and the high concentration levels detection 
performances, but both kMLP and hMLP appear to improve 
those abilities in several situations for PM10 and O3. 
Increasing the number of cluster may improve the clustering, 
but will decrease the amount of data for each MLP’s 
learning. It should be noted that the best models in term of 
global performance indexes (Table 3) may not be the best 
for high concentration detection, and that point emphasizes 

the interest of the use of ROC curves for evaluation. The 
number of cluster to obtain the best high concentration 
detection can even be different for hourly concentrations and 
for 24-hour sliding averages, as it is for PM10 kMLP. With 
this average, TPR can be strongly improved by clustering, 
underlying the benefit of this method for operational 
forecasting. kMLP and hMLP improve high concentration 
detection rate in the majority of investigated cases. We 
suggest the use of both those clustering methods, and an 
evaluation with ROC curves in addition to classical indexes to 
identify the better architecture for each situation. In those 
conditions, an improvement of pollution peak detection 
can be waited. For operational use, ROC curves also bring 
information on the behaviour of the model, helping the 
forecaster interpret its outputs. 
 
CONCLUSIONS 
 

In order to detect pollutant peaks, we developed an original 
approach combining ANNs and clustering. First we built 
three different MLP-based models to forecast hourly 
concentration of PM10, O3 and NO2 24 hours ahead, with 
Principal Components of endogenous and exogenous data 
as inputs. Data came from Corsica Island in the western 
Mediterranean Sea, and consisted of air quality and 
meteorological measurements and outputs from AROME



 
 
 

Tamas et al., Aerosol and Air Quality Research, 16: 405–416, 2016 415

 
Fig. 8. Observed and predicted timeseries of PM10 concentration in Canetto with fMLP and hybrid models. 

 

NWP model. Five years of data were available and divided 
into the train set, the validation set and the test set. A first 
model used the full dataset to be trained (fMLP), and was 
evaluated giving a good global precision (IA of 0.87 for 
O3, 0.74 for PM10 and 0.80 for NO2). 

Two hybrid models were also built, combining MLP and 
clustering methods. The two investigated clustering 
approaches were hierarchical clustering using euclidean 
distance with Ward criterion (hMLP), and k-means clustering 
coupled with Self Organisation Map (kMLP). 

Hybrid models had lower global precision in term of IA, 
but showed better ability to correctly forecast high 
concentration events. This ability is the most important for 
operational air quality forecasting, and the evaluation of 
models with ROC curves was useful to describe their 
behaviour and robustness for various concentration 
thresholds. We suggest the use of such curves for sensitivity 
analysis in studies relative to air quality forecasting, which 
are often limited to an evaluation on the full test set with 
error indexes that do not distinguish high concentration 
events from other situations. 

Both hierarchical and SOM/k-means clustering approaches 
appeared to be efficient, depending on the situation. Their 
use generally increased the detection rate of high pollution 
events compared to the classical MLP for PM10 and for O3. 
However, classical MLP still performed better than hybrid 
models in global performances. As clustering process reduce 
the size of training set, an improvement of hybrid models 
can be waited when more data will be available. 

The results obtained lead to a continuation of our research 
effort using those methods. Hybrid models may be used to 
focus on the high concentration events, and classical MLP 
for air quality forecasting regardless to high pollution. Our 
perspective is to apply those processes on other datasets, 

with different pollutant patterns and from other regions of 
Earth. As these models need few computing resources, they 
seem adapted for AAQMAs with limited financial and 
human resources, on territories such as French Islands 
(Guadeloupe and Martinique Islands in the Caribbean Sea, 
and Réunion Island in the Indian Ocean). An operational 
model has been built following the template presented here, 
and is working at the local AAQMA, Qualitair Corse, to 
improve the forecasting of pollution events. 
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