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GENERAL TIME ELAPSED NEURON NETWORK MODEL:

WELL-POSEDNESS AND STRONG CONNECTIVITY REGIME

Q. WENG

Abstract. For large fully connected neuron networks, we study the dynamics of ho-
mogenous assemblies of interacting neurons described by time elapsed models, indicating
how the time elapsed since the last discharge construct the probability density of neu-
rons. Through the spectral analysis theory for semigroups in Banach spaces developed
recently in [6, 9], on the one hand, we prove the existence and the uniqueness of the weak
solution in the whole connectivity regime as well as the parallel results on the long time
behavior of solutions obtained in [10] under general assumptions on the firing rate and
the delay distribution. On the other hand, we extend those similar results obtained in
[11, 12] in the case without delay to the case taking delay into account and both in the
weak and the strong connectivity regime with a particular step function firing rate.
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1. Introduction

The information transmission and processing mechanism in the nervous systems relies
on the quantity of electrical pulses as the reflect to incoming stimulations, during which
the neurons experience a period of recalcitrance called discharge time before reactive. In
this work, we shall focus on the model describing the neuronal dynamics in accordance
with this kind of discharge time which has been introduced and studied in [3, 11, 12]. In
order to show the response to the recovery of the neuronal membranes after each discharge,
the model consider an instantaneous firing rate depending on the time elapsed since last
discharge as well as the inputs of neurons. This sort of models are also regarded as a mean
field limit of finite number of neuron network models referred to [1, 2, 14, 13].

For a local time (or internal clock) x ≥ 0 corresponding to the elapsed time since the
last discharge, we consider the dynamic of the neuronal network with the density number
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of neurons f = f(t, x) ≥ 0 in state x ≥ 0 at time t ≥ 0, given by the following nonlinear
time elapsed (or of age structured type) evolution equation

∂tf = −∂xf − a(x, εm(t))f =: Lεm(t)f,(1.1a)

f(t, 0) = p(t), f(0, x) = f0(x),(1.1b)

where a(x, ε µ) ≥ 0 denotes the firing rate of a neuron in state x and in an environment
µ ≥ 0 formed by the global neuronal activity with a network connectivity parameter
ε ≥ 0 corresponding to the strength of the interactions. The total density of neurons p(t)
undergoing a discharge at time t is defined through

p(t) := P[f(t);m(t)],

where

P[g, µ] = Pε[g, µ] :=

∫ ∞

0
a(x, εµ)g(x)dx,

while the global neuronal activity m(t) at time t ≥ 0 taking into account the interactions
among the neurons resulting from earlier discharges is given by

(1.2) m(t) :=

∫ ∞

0
p(t− y)b(dy),

where the delay distribution b is a probability measure considering the persistence of the
electric activity to those discharges in the network. In the sequel, we will consider the two
following situations respectively:

• The case without delay, when b = δ0 then m(t) = p(t).
• The case with delay, when b is smooth.

Observe that the solution f of the time elapsed equation (1.1) satisfies

d

dt

∫ ∞

0
f(t, x)dx = f(t, 0)−

∫ ∞

0
a(x, εm(t))f(t, x)dx = 0,

in both the cases, which implies the conservation of the total density number of neurons
(also called mass in the sequel) permitting us to normalize it to be 1. Then we assume in
the sequel

〈f(t, ·)〉 = 〈f0〉 = 1, ∀t ≥ 0, 〈g〉 :=

∫ ∞

0
g(x)dx.

We define a couple (Fε,Mε) as a corresponding steady state, which satisfy

0 = −∂xFε − a(x, εMε)Fε = LεMε
Fε,(1.3a)

Fε(0) =Mε, 〈Fε〉 = 1.(1.3b)

Noticing that the associated network activity and the discharge activity are equal constants
for a steady state as 〈b〉 = 1.

Our main purpose in this paper is to prove the existence and uniqueness of the solution
to the time elapsed evolution equation (1.1) no matter which ε > 0. Furthermore, we
obtain the exponential asymptotic stability in strong connectivity regime, which is a range
of connectivity parameter ε ∈ [ε1,∞), with ε1 large enough, such that the equations (1.1)
and (1.3) do not possess intense nonlinearity. We are also able to extend the result in
[11, 12] in the case without delay for a step function firing rate a to the case with delay
rather than the indescribable stability. In order to conclude those results, it is necessary
to give the following mathematical assumptions on the firing rate a and on the delay
distribution b.
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We make the physically reasonable assumptions

(1.4) ∂xa ≥ 0, a′ = ∂µa ≥ 0,

(1.5) 0 < a0 := lim
x→∞

a(x, 0) ≤ lim
x, µ→∞

a(x, µ) =: a1 <∞,

one particular example of the firing rate is the ”step function” one

(1.6) a(x, µ) = 1x>σ(µ), σ′ ≤ 0,

(1.7) σ(0) = σ+, σ(∞) = σ− < σ+ < 1,

associated with some continuity assumption

(1.8) a ∈W 1,∞(R2
+),

or particularly

(1.9) σ, σ−1 ∈W 1,∞(R+),

In the strong connectivity regime, we consider the decay assumption on the two cases, for
a.e. x ≥ 0,

(1.10) ε sup
x≥0

∂µa(x, εµ) → 0, as ε→ ∞,

(1.11) lim sup
ε→∞

sup
µ∈[1−σ+,1]

ε|σ′(εµ)| = 0.

In the case with delay, we assume that the delay distribution b(dy) = b(y)dy has the
exponential bound and satisfies the smoothness condition

(1.12) ∃δ > 0,

∫ ∞

0
eδy (b(y) + |b′(y)|) dy <∞.

The above assumptions permit the existence and uniqueness of the solution to the
nonlinear problem (1.1) thanks to the Banach fixed-point theorem.

Theorem 1.1. On the one hand, for a smooth firing rate, assuming (1.4)-(1.5)-(1.8)-
(1.10), then for any f0 ∈ L1(R+) and any ε > 0, there exists a unique nonnegative and
mass conserving weak solution f ∈ C(R+;L

1(R+)) to the evolution equation (1.1) for
some functions m, p ∈ C([0, ∞)). On the other hand, for a step function firing rate,
assuming (1.6)-(1.7)-(1.9)-(1.11), then for any f0 ∈ L1 ∩ L∞(R+) and 0 ≤ f0 ≤ 1, the
parallel conclusion holds with the unique solution (f,m) satisfying that

0 ≤ f(t, x) ≤ 1, ∀t, x ≥ 0,

1− σ+ ≤ m(t) ≤ 1, ∀t ≥ 0.

For any ε > 0, there also exits a corresponding steady state, which is unique additionally
in the weak or strong connectivity regime.

Theorem 1.2. On the one hand, for a smooth firing rate, assuming (1.4)-(1.5)-(1.8)-
(1.10), then for any ε ≥ 0, there exists at least one pair of solutions (Fε(x),Mε) ∈
W 1,∞(R+)× R+ to the stationary problem (1.3) such that

(1.13) 0 ≤ Fε(x) . e
−a0
2

x, |F ′
ε(x)| . e

−a0
2

x, x ≥ 0.

On the other hand, for a step function firing rate, the existence of the steady state holds
under the assumptions (1.6)-(1.7)-(1.9)-(1.11), which satisfy

0 ≤ Fε ≤ 1, 1− σ+ ≤Mε ≤ 1.
3
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Moreover, there exists ε0 > 0 small enough or ε1 > 0 large enough, such that the above
steady state is unique for any ε ∈ [0, ε0) ∪ (ε1,+∞].

We conclude the exponential long time stability in the strong connectivity regime com-
bined with those in the weak one in [10] as our main result.

Theorem 1.3. We assume that the firing rate a satisfies (1.4)-(1.5)-(1.8)-(1.10) or (1.6)-
(1.7)-(1.9)-(1.11). We also assume that the delay distribution b satisfies b = δ0 or (1.12).
There exists ε0 > 0 (ε1 > 0), small (large) enough, such that for any ε ∈ (0, ε0) (ε ∈
(ε1,+∞)) the steady state (Fε,Mε) is unique. There also exist some constants α < 0,
C ≥ 1 and η > 0 (besides ζε → 0 as ε → ∞) such that for any connectivity parameter
ε ∈ (0, ε0) (ε ∈ (ε1,+∞)) and for any unit mass initial datum 0 ≤ f0 ∈ L1 or in the case
of step function firing rate for any unit mass initial datum f0 ∈ L

p, 1 ≤ p ≤ ∞, satisfying
0 ≤ f0 ≤ 1 additionally, such that ‖f0 − Fε‖L1 ≤ η/ε (≤ η/ζε), then the (unique, positive
and mass conserving) solution f to the evolution equation (1.1) satisfies

‖f(t, .)− Fε‖L1 ≤ Ceαt, ∀ t ≥ 0.

In order to study the asymptotic convergence to an equilibrium for the homogeneous
inelastic Boltzman equation, the strategy of “perturbation of semigroup spectral gap” is
first introduced in [7]. Inspired by its recent application to a neuron network equation
in [8], we linearize the equation around a stationary state (Fε,Mε,Mε) on the variation
(g, n, q) = (f,m, p)− (Fε,Mε,Mε), such that

∂tg = −∂xg − a(x, εMε)g − n(t) ε(∂µa)(x, εMε)Fε,(1.14a)

g(t, 0) = q(t), g(0, x) = g0(x),(1.14b)

with

(1.15) q(t) =

∫ ∞

0
a(x, εMε)g dx+ n(t) ε

∫ ∞

0
(∂µa)(x, εMε)Fε dx

and

(1.16) n(t) :=

∫ ∞

0
q(t− y)b(dy),

while for the step function firing rate (1.6) in [11, 12], it is impossible to linearize the model
because of the failure in meeting the condition (1.8). Insteadly, we introduce another more
concise linear equation around the steady state on the variation (g, n, p), which writes

∂tg = −∂xg − g1x>σε
,(1.17a)

g(t, 0) = q(t), g(0, x) = g0(x),(1.17b)

where here and below we note σε := σ(εMε) for simplicity, with

(1.18) q(t) = P[g,Mε] =

∫ ∞

0
g1x>σε

dx.

By regarding the boundary condition as a source term, we construct the linear generator
Λε and the associated semigroup SΛε

respectively from the above linear equations to apply
the spectral analysis. As in [16, 4, 9, 6], we split the operator Λε into two parts, one of
which is α-hypodissipative, α < 0, denoted by Bε while the other one is bounded and
Bε- power regular, denoted as Aε. Benefiting from this split, the semigroup SΛε

admits a
finite dimensional dominant part, thanks to a particular version of the Spectral Mapping
Theorem in [9, 6] and the Weyl’s Theorem in [16, 4, 9, 6]. As ε → ∞, the limited
semigroup S∞ becomes positive because of the vanishment of the items with n(t) in (1.14)

4



5

and (1.15), which permits the Krein-Rutman Theorem established in [9, 6] to imply that
the steady state (F∞,M∞) possesses the exponential stability. And so does the stationary
state (Fε,Mε) in the strong connectivity regime after a perturbative argument developed
in [7, 15, 6]. Then we extend the exponential stability to our main result Theorem 1.3 in
the case without delay by the analysis on the rest term of the linear equation (1.14) or
(1.14) compared to the original nonlinear equation. As for the delay case, we replace the
delay equation (1.2) by a simple age equation to form an autonomous system with the
linear equation (1.14) or (1.14) to generate a semigroup and follow the same strategy.

Actually, the previous works [11, 12] shows the asymptotic stability with simpler ex-
plicitly expression and appropriate norm benefiting from the choice of the step function
firing rate (1.6). Different from those approach, we take consideration of more realistic
and flexible firing rate with more abstract method, which allows us to obtain the dissi-
pativity of the corresponding linear operators without the explicitly exhibited norm. In
particular, we are able to establish the existence and uniqueness of weak solutions first
as the complement of the results in [10] in the weak connectivity regime and adapt our
approach to the strong connectivity regime as well as to the step function firing rate to
generalize the stability results obtained in [11, 12] in the case without delay to the case
considering of the delay term.

This article is organized by the following plan. In Section 2, we demonstrate the exis-
tence and uniqueness of the solution and the stationary state result. In the strong con-
nectivity regime, we introduce the strategy and establish Theorem 1.3 in the case without
delay in Section 3, meanwhile the case with delay in section 4. In section 5, we establish
Theorem 1.3 again both in the weak regime and the strong regime for the model with the
step function firing rate (1.6).

2. Existence and the steady state

2.1. Existence of the solution. To establish the existence of a solution to (1.1), we are
going to apply a fixed point argument with the benefit of the following lemma.

Lemma 2.1. Assuming the firing rate a satisfies (1.4)-(1.5)-(1.8)-(1.10) for any m ∈
L∞([0, T ]) and f ∈ C(R+;L

1(R+)) satisfying the equation (1.1), consider the application
J : L∞([0, T ]) → L∞([0, T ]),

J (m)(t) :=

∫ t

0
p(t− y)b(dy), with p(t) =

∫ ∞

0
a(x, εm(t))f(x, t)dx,

then there exist T > 0 and 0 < C < 1 such that the estimate

(2.1) ‖J (m1)− J (m2)‖L∞([0, T ]) ≤ C‖m1 −m2‖L∞([0, T ])

holds for all (m1, m2) ∈ L∞([0, T ]) and for any ε > 0.

Proof of Lemma 2.1. Thanks to the method of characteristics with respect to x or t, a
solution f(t, x) to the equation (1.1) can be expressed as

(2.2) f(x, t) = f0(x− t)e−
∫ t

0
a(s+x−t,εm(s))ds, ∀x ≥ t

or

(2.3) f(x, t) = p(t− x)e−
∫ x

0
a(s,εm(s+t−x))ds, ∀x ≤ t.
5
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We denote fi, i = 1, 2, two solutions to the equation

(2.4)







∂tfi(x, t) + ∂xfi(x, t) + a(x, εmi(t))fi(x, t) = 0,

fi(0, t) = pi(t) =

∫ ∞

0
a(x, εmi(t))fi(x, t)dx,

with the same initial data f0. We rewrite pi(t) corresponding to two expressions (2.2) and
(2.3) as two global activity functions

pi(t) =

∫ t

0
a(x, εmi(t))pi(t− x)e−

∫ x

0
a(s,εmi(s+t−x))dsdx

+

∫ ∞

t
a(x, εmi(t))f0(x− t)e−

∫ t

0
a(s+x−t,εmi(s))dsdx.

We split p1(t)− p2(t) into two items I1(t) and I2(t) with

I1(t) =

∫ t

0

(

p1(t− x)a(x, εm1(t))e
−

∫ x

0
a(s,εm1(s+t−x))ds

−p2(t− x)a(x,m2(t))e
−

∫ x

0
a(s,εm2(s+t−x))ds

)

dx

and I2(t) as the remainder. In order to control the first item, we divide it into three parts
as I1(t) = I1,1(t) + I1,2(t) + I1,3(t), where

I1,1(t) =

∫ t

0
(p1 − p2)(t− x)a(x, εm1(t))e

−
∫ x

0
a(s,εm1(s+t−x))dsdx,

I1,2(t) =

∫ t

0
p2(t− x)

(

a(x, εm1(t))− a(x, εm2(t))
)

e−
∫ x

0
a(s,εm1(s+t−x))dsdx,

I1,3(t) =

∫ t

0
p2(t− x)a(x,m2(t))

(

e−
∫ x

0
a(s,εm1(s+t−x))ds − e−

∫ x

0
a(s,εm2(s+t−x))ds

)

dx.

Clearly, we have the estimates

‖I1,1‖L∞([0,T ]) ≤ a1T‖p1 − p2‖L∞([0,T ])

and

‖I1,2‖L∞([0,T ]) ≤ εa1‖∂µa‖L∞

x
T‖m1 −m2‖L∞([0,T ]).

Since there exists a constant C such that
∣

∣

∣e−
∫ x

0
a(s,εm1(s+t−x))ds − e−

∫ x

0
a(s,εm2(s+t−x))ds

∣

∣

∣

≤ C

∫ x

0
|a(s, εm1(s+ t− x))− a(s, εm2(s+ t− x))|ds,

which leads to the estimate

‖I1,3‖L∞([0,T ]) ≤ εa21‖∂µa‖L∞

x

T 2

2
‖m1 −m2‖L∞[0,T ].

From the assumption (1.10), there exists ε1 large enough such that ε‖a′‖L∞
x

≤ 1, for any
ε ∈ [ε1,+∞). Denoting η := max{ε1, 1}, we deduce that

(2.5) ‖I1‖L∞([0,T ]) ≤ a1T‖p1 − p2‖L∞([0,T ]) + η(C1T
2 + C2T )‖m1 −m2‖L∞([0,T ]),
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for any ε > 0. On the other hand, we have the item I2(t) as

I2(t) =

∫ ∞

t
f0(x− t)

(

a(x, εm1(t))e
−

∫ t

0
a(s+x−t,εm1(s))ds

−a(x, εm2(t))e
−

∫ t

0
a(s+x−t,εm2(s))ds

)

dx

=

∫ ∞

0
f0(x)

(

a(x+ t, εm1(t))e
−

∫ t

0
a(s+x,εm1(s))ds

−a(x+ t, εm2(t))e
−

∫ t

0
a(s+x,εm2(s))ds

)

dx

Clearly, we have

a(x+ t, εm(t)) =
d

dt

∫ t

0
a(s+ x, εm(s))ds,

which implies
∣

∣

∣
a(x+ t, εm1(t))e

−
∫ t

0
a(s+x,εm1(s))ds − a(x+ t, εm2(t))e

−
∫ t

0
a(s+x,εm2(s))ds

∣

∣

∣

≤ C

∫ t

0
|a(s+ x, εm1(s))− a(s+ x, εm2(s))|ds,

for some constant C > 0. Similarly to estimating I1, we deduce that

(2.6) ‖I2‖L∞([0,T ]) ≤ C3ηT‖m1 −m2‖L∞([0,T ]).

From the above estimates (2.5) and (2.6), it turns out that

‖p1 − p2‖L∞([0,T ]) ≤ a1T‖p1 − p2‖L∞([0,T ]) + ηT (C1T + C ′
2)‖m1 −m2‖L∞([0,T ]),

which implies

(2.7) ‖p1 − p2‖L∞([0,T ]) ≤ ηCT‖m1 −m2‖L∞([0,T ])

when a1T less than 1. Hence, in the case without delay, we have

‖J (m1)− J (m2)‖L∞([0,T ]) = ‖p1 − p2‖L∞([0,T ]) ≤ ηCT‖m1 −m2‖L∞([0,T ]),

while taking the delay into account with the fact that

J (m1)(t)− J (m2)(t) =

∫ t

0
(p1 − p2)(t− y)b(dy),

we obviously deduce

‖J (m1)− J (m2)‖L∞([0,T ]) ≤ ηCT 2‖m1 −m2‖L∞([0,T ])

from (2.7). By taking T small enough such that ηCT 2 < ηCT < 1, we finally attain our
estimate (2.1). �

Proof of Theorem 1.1. From Lemma 2.1, for any ε > 0, there is a T > 0 which does not
depend upon the initial data such that the application J admits a unique fixed point m(t)
on [0, T ] then the corresponding f(t, x) on [0, T ]×Rd, which is the unique solution to the
equation (1.1), according to the Banach-Picard fixed point theorem. Iterating on T , we
deduce the global existence and uniqueness of the solution (f,m) to equation (1.1). �
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2.2. The stationary problem. Now we present the proof of the steady state in the
strong connectivity regime.

Proof of Theorem 1.2. Step 1. Existence. From the assumption (1.5), we deduce that for
any x ≥ 0, µ ≥ 0, there exists x0 ∈ [0,∞) such that a(x, µ) ≥ a0

2 . Denoting

A(x, µ) :=

∫ x

0
a(y, µ)dy, ∀, x,m ≥ 0,

we naturally estimate that

(2.8)
a0
2
(x− x0)+ ≤ A(x, µ) ≤ a1x, ∀x ≥ 0, µ ≥ 0.

For any m ≥ 0, the equation (1.3a) can be solved by

Fε,m(x) := Tme
−A(x,εm),

whose mass conservation gives

T−1
m =

∫ ∞

0
e−A(x,εm)dx.

Then the existence of the solution is equivalent to find m =Mε satisfying m = Fε,m(0) =
Tm. Considering

Ψ(ε,m) = mT−1
m := m

∫ ∞

0
e−A(x,εm)dx,

it is merely necessary to find Mε ≥ 0 such that

(2.9) Ψ(ε,Mε) = 1.

From the Lebesgue dominated convergence theorem, the function Ψ(ε, .) is continuous. In
addition to the fact that Ψ(0) = 0 and Ψ(∞) = ∞, the intermediate value theorem implies
the existence immediately. The inequality (2.8) shows the estimates (1.13) clearly.

Step 2. Uniqueness in the strong connectivity regime. Obviously,

M∞ := (

∫ ∞

0
e−A(x,∞)dx)−1 ∈ (0,∞)

is the unique solution to Ψ(∞,M∞) = 1. It is clear that

∂

∂m
Ψ(ε,m) =

∫ ∞

0
e−A(x,εm)

(

1−m

∫ x

0
ε∂µa(y, εm)dy

)

dx,

is continuous with respect to the two variables because of (1.8), which implies that Ψ ∈ C1.
Coupled with that

∂

∂m
Ψ(ε,m)|ε=∞ =

∫ ∞

0
e−A(x,∞)dx > 0,

we conclude from the implicit function theorem that there exists ε1 > 0, large enough,
such that the equation (2.9) has a unique solution for any ε ∈ (ε1,+∞]. �

3. Case without delay

In this section, we conclude our main result Theorem 1.3 gradually in the case without
delay.
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3.1. Linearized equation and structure of the spectrum. We introduce the lin-
earized equation on the variation (g, n) around the steady state (Fε,Mε) given by

∂tg + ∂xg + aεg + a′εFεn(t) = 0,

g(t, 0) = n(t) =

∫ ∞

0
(aεg + a′εFεn(t)) dx, g(0, x) = g0(x),

with notes aε := a(x, εMε) and a
′
ε := ε (∂µa)(x, εMε) for simplification. According to the

assumption (1.10), there exists ε1 > 0, large enough, such that

∀ ε ∈ (ε1,∞) κ :=

∫ ∞

0
a′εFεdx < 1,

permitting to define

(3.1) n(t) = Mε[g] := (1− κ)−1

∫ ∞

0
aεg dx.

We consider the operator Lε to the above linearized euqation given by

Lεg := ∂xg − aεg − a′εFεMε[g]

in domain

D(Lε) := {g ∈W 1,1(R+), g(0) = Mε[g]}

generating the semigroup SLε
on space X := L1(R+). Then for any initial datum g0 ∈ X,

the weak solution of the linearized equation is given by g(t) = SLε
(t)g0. By regarding the

boundary condition as a source term, we rewrite the linearized equation as

(3.2) ∂tg = Λεg := −∂xg − aεg − a′εFεMε[g] + δx=0Mε[g],

with the associated semigroup SΛε
, acting on the space of bounded Radon measures

X :=M1(R+) = {g ∈ (C0(R))
′; supp g ⊂ R+},

endowed with the weak ∗ topology σ(M1, C0), where C0 represents the space of continuous
functions converging to 0 at infinity. From the duality of SΛ∗

ε
, we deduce SΛε

|X = SLε
.

The spectral analysis theory referred to [5, 6] indicates the structure of the spectrum
denoting by Σ(Λε) and the associated semigroup SΛε

.

Theorem 3.1. Assume (1.4)-(1.5)-(1.8)-(1.10) and define α := −a0/2 < 0. The operator
Λε is the generator of a weakly ∗ continuous semigroup SΛε

acting on X . Moreover, there
exists a finite rank projector ΠΛε,α which commutes with SΛε

, an integer j ≥ 0 and some
complex numbers

ξ1, ..., ξj ∈ ∆α := {z ∈ C, ℜe z > α},

such that on E1 := ΠΛε,αX the restricted operator satisfies

Σ(Λε|E1
) ∩∆α = {ξ1, ..., ξj}

(with the convention Σ(Λε|E1
) ∩ ∆α = ∅ when j = 0) and for any a > α there exists a

constant Ca such that the remainder semigroup satisfies

‖SΛε
(I −ΠΛε,α)‖B(X ) ≤ Cae

at, ∀ t ≥ 0.

In order to apply the Spectral Mapping Theorem of [9, 6] and the Weyl’s Theorem of
[16, 4, 9, 6], we split the operator Λε as Λε = Aε + Bε defined on X by

Aεg := µεMε[g], µε := δ0 − a′εFε,(3.3)

Bεg := −∂xg − aεg.(3.4)
9
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As in the weak connectivity regime in [10], the properties of the two auxiliary operators
still hold in the strong one, which implies Theorem 3.1.

Lemma 3.2. Assume that a satisfies (1.4)-(1.5)-(1.10), then the operators Aε and Bε

satisfy the following properties.

(i) Aε ∈ B(W−1,1(R+),X ).
(ii) SBε

is α-hypodissipative both in X and X .
(iii) The family of operators SBε

∗ AεSBε
satisfies

‖(SBε
∗ AεSBε

)(t)‖X→Y ≤ Cae
at, ∀a > α.

for some positive constant Ca, where Y := BV (R+) ∩ L1
1(R+) with BV (R+)

representing the space of bounded variation measures while L1
1(R+) denoting the

Lebesgue space weighted by 〈x〉 := (1 + |x|2)1/2.

Proof. (i) Under the assumption (1.8) and (1.10), there exists some constant K > 0 such
that |ε∂µa| < K, for any ε ≥ 0, and we naturally have Mε[·] ∈ B(W−1,1(R+),R), which
implies that µε ∈ B(R,X ). Then, we conclude as Aε = µεMε[·].

(ii) Here and below, we mark A(x, εMε) as A(x) without obscurity. The explicit formula
gives

SBε
(t)g(x) = eA(x−t)−A(x)g(x− t)1x−t≥0.

From the assumption (1.5), there exists x1 ∈ [0,∞) such that A(x) ≥ 3
4a0(x−x1)+, which

implies

(3.5) A(x− t)−A(x) ≤ C e3βt, 0 ≤ t ≤ x,

where C = e3a0x1/4 and β = −a0/4 < 0. Next, we conclude

‖SBε
(t)g‖X ≤ C e3βt‖g‖X , t ≥ 0,

with From (weakly *) density argument, we also have the same estimate in X . Then, SBε

is α− hypodissipative both in X and X , as α > 3β.

(iii) We denote

N(t) := Mε[SBε
(t)g] = (1− κ)−1

∫ ∞

0
aεe

A(x−t)−A(x)g(x− t)1x−t≥0dx.

From the assumption (1.8), N ∈ C1
b (R+), we compute

N ′(t) = (1− κ)−1

∫ ∞

0
∂x

(

aεe
−A(x)

)

eA(x−t)g(x− t)1x−t≥0dx

= (1− κ)−1

∫ ∞

0
(a′ε − a2ε)e

A(x−t)−A(x)g(x− t)1x−t≥0dx.

The inequality (3.5) together with the assumption (1.8) and (1.10) permit us to have the
following estimates

|N(t)| ≤ (1− κ)−1Ca1

∫ ∞

0
e3βtg(x)dx . e3βt‖g‖X ,(3.6)

|N ′(t)| ≤ (1− κ)−1C(K + a21)

∫ ∞

0
e3βtg(x)dx . e3βt‖g‖X .(3.7)

10
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We continue to analyse the operator,

(SBε
∗ AεSBε

)(t)g(x) =

∫ t

0
(SBε

(s)µε)(x)N(t− s)ds

=

∫ t

0
eA(x−s)−A(x)µε(x− s)N(t− s)1t−s≥0

= e−A(x)(νε ∗ Ňt)(x),

where νε = eAµε and Ňt(·) = N(t− ·). And its partial derivative with respect to x is

∂x(SBε
∗ AεSBε

)(t)g = −aεe
−A(x)(νε ∗ Ňt)(x)− e−A(x)(νε ∗ Ň

′
t)(x)

−e−A(x)νε(x− t)N(0)1x−t≥0 + e−A(x)νε(x)N(t).

Using the inequality (3.5),

‖e−A(x)(νε ∗ Ňt)(x)‖L1
1

≤ ‖eβx〈x〉‖L1‖e−A(x)(νε ∗ Ňt)e
−βx‖L∞

.
∥

∥

∥

∫ t

0
e3βs|µε(x− s)N(t− s)|e−βxds

∥

∥

∥

L∞

. e2βt‖(|µε|e
−β) ∗ ˇ(|N |e−2β)t‖L∞

. eαt‖µεe
−β‖X ‖Ne

−2β‖L∞ ,

since ‖eβx〈x〉‖L1 < ∞. Then from the assumption (1.10) as well as the estimates (1.13)
and (3.6), we get

(3.8) ‖SBε
∗ AεSBε

)(t)g‖L1
1
. eαt(1 +K‖Fεe

−β‖X )‖e
β‖L∞‖g‖X . eαt‖g‖X .

Similarly, from (3.7), we have

‖e−A(x)(νε ∗ Ň
′
t)(x)‖X .

∫ t

0

∫ ∞

0
e3βs|µε(x− s)||N ′(t− s)|ds

. eαt‖µε‖X

∫ t

0
eβs‖g‖X ds

. eαt‖g‖X ,

which implies

‖∂x(SBε
∗ AεSBε

)(t)g‖X . a1‖e
−A(νε ∗ Ňt)‖X + ‖e−A(νε ∗ Ň

′
t)‖X

+e3βt‖e3βµε‖X ‖g‖X + e3βt‖e−Aνε‖X ‖g‖X

. eαt‖g‖X .

We finally conclude (iii) from the above estimate together with (3.8). �

3.2. Strong connectivity regime - exponential stability of the linearized equa-

tion. Under the assumption (1.10), when the network connectivity parameter ε goes to
infinity, the linearized time elapsed operator is simplified as

(3.9) Λ∞g = −∂xg − a(x,∞)g + δx=0M∞[g],

where M∞[g] =

∫ ∞

0
a(x,∞)g(x)dx. Similarly to the vanishing limited case ε = 0 in [10],

we also obtain the following properties.

Lemma 3.3. In the limited case ε = ∞, the operator Λ∞ and the associated semigroup
SΛ∞

satisfy
11
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(i) SΛ∞
is positive, i.e.

SΛ∞
(t)g ∈ X+, ∀g ∈ X+, ∀t ≥ 0.

(ii) −Λ∞ possesses the strong maximum principle, i.e. for any given µ ∈ R and any
nontrivial g ∈ D(Λ∞) ∩ X+, there holds

(−Λ∞ + µ)g ≥ 0 implies g > 0.

(iii) Λ∞ satisfies the complex Kato’s inequality, i.e.

ℜe(sgn g)Λ∞g ≤ Λ∞|g|, ∀g ∈ D(Λ2
∞).

Then we conclude the following exponential asymptotic stability.

Theorem 3.4. There exist some constants α < 0 and C > 0 such that Σ(Λ∞)∩∆α = {0}
and for any g0 ∈ X, 〈g0〉 = 0, there holds

(3.10) ‖SΛ∞
(t)g0‖X ≤ Ceαt ‖g0‖X , ∀ t ≥ 0.

Proof. Theorem 1.2 shows that there exists at least one nontrivial F∞ ≥ 0 as the eigen-
vector to 0 and the associated dual eigenvector is ψ = 1. From Lemma 3.3-(ii)&(iii), we
deduce that the eigenvalue 0 is simple and the associated eigenspace is Vect(F∞). While
Lemma 3.3-(i)&(ii) imply that 0 is the only eigenvalue with nonnegative real part. We
then conclude from Theorem 3.1. �

We extend the exponential stability property in the limited case to the strong connec-
tivity regime through a perturbation argument.

Theorem 3.5. There exist some constants ε1 > 0, α < 0 and C > 0 such that for any
ε ∈ [ε1,∞] there hold Σ(Λε) ∩∆α = {0} and

(3.11) ‖SΛε
(t)g0‖X ≤ Ceαt ‖g0‖X , ∀ t ≥ 0,

for any g0 ∈ X, 〈g0〉 = 0.

The proof uses the stability theory for semigroups developed in Kato’s book [5] and
revisited in [7, 15, 6]. Now, we present several results needed in the proof of Theorem 3.5.

Proof. Step 1. Continuity of the operator. Directly from the definitions (3.1), (3.3) and
(3.4) of Mε, Aε and Bε, we have

(Bε − B∞)g = (a(x,∞)− a(x, εMε))g

and

(Aε −A∞)g = (Mε[g] −M∞[g]) δ0 − ε(∂µa)(x, εMε)Fε Mε[g].

From the decay assumption (1.10), there exists positive ζε → 0, as ε → +∞, such that
|ε∂µa(x, εMε)| < ζε, for ε large enough. Together with the smoothness assumption (1.8),
we deduce that

(3.12) ‖Bε − B∞‖B(X) + ‖Aε −A∞‖B(X) ≤ C ζε,

in the strong connectivity regime.

Step 2. Perturbation argument. Similarly to [10], we present the sketch as the argument
in the proof of [15, Theorem 2.15] (see also [5, 7, 6]). Define

Kε(z) := (RBε
(z)Aε)

2RΛ∞
(z)(Λε − Λ∞) ∈ B(X ,X).

12
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From Lemma 3.2-(i)&(ii) as well as (3.12), there exist ε1 > 0 large enough and C > 0,
such that for any z ∈ ∆α\B(0, η), for some 0 < η < |α| and any ε ∈ [ε1,∞], the operator
Kε(z) satisfies

(3.13) ‖Kε(z)‖B(X) ≤ Cζε ≤ Cζε1 < 1,

which permits us to well define (1 −Kε(z))
−1 in B(X). From the Duhamel formula and

the inverse Laplace transform, we have

RΛε
= RBε

−RBε
AεRBε

+ (RBε
Aε)

2RΛε
.

From the definition of Kε, we directly get

(I −Kε)RΛε
= RBε

−RBε
AεRBε

+ (RBε
Aε)

2RΛ∞
.

From (3.13) and since for any ε ∈ [ε1,∞], all the terms in the RHS of the above expression
are clearly uniformly bounded in B(X ,X) on ∆α\B(0, η), we deduce that

Σ(Λε) ∩∆α ⊂ B(0, η).

Thanks to the unique continuity principle for holomorphic functions, we deduce that
RΛε

(b)|X = RLε
(b) for b ∈ R large enough, which implies that RΛε

(z)|X = RLε
(z) for any

∆α\B(0, η). By mean of Dunford integral (see [5, Section III.6.4] or [4, 6]), we express the
eigenprojector Πε as

Πε =
i

2π

∫

|z|=η
RΛε

(z) dz

=
i

2π

∫

|z|=η
(I −Kε)RΛε

dz +
i

2π

∫

|z|=η
KεRΛε

dz

=
i

2π

∫

|z|=η
(RBε

Aε)
2RΛ∞

dz +
i

2π

∫

|z|=η
KεRΛε

dz,

where the contribution of holomorphic functions vanish. In a similar way, we have

Π∞ =
i

2π

∫

|z|=η
RΛ∞

(z) dz =
i

2π

∫

|z|=η
(RB∞

A∞)2RΛ0
dz.

Next, we compute that

(RBε
Aε)

2 − (RB∞
A∞)2 = RBε

AεRBε
{(Aε −A∞) + (B∞ − Bε)RB∞

A∞}

+RBε
{(Aε −A∞) +A∞(B∞ − Bε)RB∞

}RB∞
A∞.

From the above identity together with the estimates (3.12) and (3.13), we deduce that

‖(Πε −Π∞)g‖X = ‖(Πε −Π∞)g‖X

≤
1

2π

∫

|z|=η
‖((RBε

Aε)
2 − (RB∞

A∞)2)RΛ∞
g‖X dz

+
1

2π

∫

|z|=η
‖KεRΛε

g‖X dz

≤ C ζε ‖g‖X ,

for any g ∈ X. Therefore, the eigenprojector Πε satisfies that

‖Πε −Π∞‖B(X) < 1, ∀ε ∈ [ε1,∞].
13
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Step 3. Spectral gap. From the classical result [5, Section I.4.6] (or more explicitly [15,
Lemma 2.18]), we deduce that there exists a unique simple eigenvalue ξε ∈ ∆α such that

Σ(Λε) ∩∆α = {ξε},

for any ε ∈ [ε1,+∞]. From the fact of mass conservation, we have 1 ∈ X ′ and Λ∗
ε1 = 0,

which implies the conclusion since ξε = 0. �

3.3. Strong connectivity regime - nonlinear exponential stability. Now, we come
back to the nonlinear problem (1.1) in the case without delay as

m(t) = p(t) =

∫ ∞

0
a(x, εm(t))f(x) dx.

In order to show that m(t) is well defined, we recall the optimal transportation Monge-
Kantorovich-Wasserstein distance on the probability measures set P(R+) associated to
the distance d(x, y) = |x− y| ∧ 1, denoting as W1 and given by

∀ f, g ∈ P(R+), W1(f, g) := sup
ϕ,‖ϕ‖

W1,∞≤1

∫ ∞

0
(f − g)ϕ.

In addition, we define Φ : L1(R+)× R → R as

Φ[g, µ] :=

∫ ∞

0
a(x, εµ)g(x) dx − µ.

Lemma 3.6. Under the assumption (1.5)-(1.8)-(1.10), there exists ε1 > 0 large enough
such that for any ε ∈ (ε1,+∞), the equation Φ(g, µ) = 0 towards µ has a unique nonnega-
tive solution µ = ϕε[g], where ϕε : P(R) → R is Lipschitz continuous for the weak topology
of probability measures.

Proof. Step 1. Existence. For any g ∈ P(R), we obviously have Φ(g, 0) > 0 while for any
g ∈ P(R) and µ > a1, we have

Φ(g, µ) ≤ a1 − µ < 0.

Thanks to the intermediate value theorem, for any fixed g ∈ P(R+) and any ε ≥ 0, there
exists at least one solution µ ∈ (0, a1] to the equation Φ(g, µ) = 0 from the continuity
property of Φ.

Step 2. Uniqueness and Lipschitz continuity. For any f, g ∈ P(R+), from Step 1, we are
able to consider µ, ν ∈ R+ such that

Φ(f, µ) = Φ(g, ν) = 0,

which implies that

ν − µ =

∫ ∞

0
a(x, εν)(g − f) +

∫ ∞

0
(a(x, εν) − a(x, εµ))f.

From the definition of W1 and the assumption (1.10), we have
∣

∣

∣

∫ ∞

0
a(x, εν)(g − f)

∣

∣

∣ ≤ ‖a(·, εν)‖W 1,∞ W1(g, f),

∣

∣

∣

∫ ∞

0

(

a(x, εν)− a(x, εµ)
)

f
∣

∣

∣ ≤ ‖a(·, εν) − a(·, εµ)‖L∞ ≤ ζε|µ− ν|,

where ζε → 0 as ε→ ∞. We then take ε1 large enough, such that

1− ζε ∈ (0, 1), ∀ε ∈ [ε1,∞],
14
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which permitting us to obtain

(3.14) |µ− ν| (1− ζε) ≤ ‖a(·, εν)‖W 1,∞ W1(g, f).

On the one hand, when f = g, we immediately deduce that µ = ν, the uniqueness of the
definition of the mapping ϕε[g] := µ. On the other hand, we get the Lipschitz continuity
of the function ϕε directly from the inequation (3.14). �

We present the proof of our main result Theorem 1.3 in the case without delay.

Proof of Theorem 1.3 in the case without delay. We split the proof into three steps.
Step 1. New formulation. Benefiting from Lemma 3.6, in the strong connectivity regime
ε ∈ [ε1,∞), where ε1 is the same as that in Lemma 3.6, we introduce a new formulation
of the solution f ∈ C([0,∞);X) to the evolution equation (1.1) and the solution Fε to the
stationary problem (1.3) satisfying

∂tf + ∂xf + a(εϕ[f ])f = 0, f(t, 0) = ϕ[f(t, ·)],

∂xF + a(εM)F = 0, F (0) =M = ϕ[F ],

for a given unit mass initial datum 0 ≤ f0 ∈ X, where here and below the ε and x
dependency is often removed without any confusion.

Next, we consider the variation function g := f − F satisfying

∂tg = −∂xg − a(εM)g − εa′(εM)F M[g] −Q[g],(3.15)

where

Q[g] := a(εϕ[f ])f − a(εϕ[F ])F − a(εϕ[F ])g − εa′(εϕ[F ])FM[g],

with M = Mε defined in (3.1), complemented with the boundary condition given by

g(t, 0) = ϕ[f(t, ·)]− ϕ[F ]

=

∫ ∞

0
a(εϕ[f ])f −

∫ ∞

0
a(εϕ[F ])F

= M[g] +Q[g],

where Q[g] := 〈Q[g]〉. Regarding the boundary condition as a source term again, we
deduce that the variation function g satisfies the equation

(3.16) ∂tg = Λεg + Z[g],

with the nonlinear term Z[g] := −Q[g] + δ0Q[g].

Step 2. The nonlinear term. With the fact that f is mass conserved, ‖F‖X = 1 and the
assumption (1.10), we estimate that

‖Q[g]‖X = ‖a(εϕ[f ])f − a(εϕ[F ])f − εa′(εϕ[F ])F M[g]‖X

≤ ε‖a′‖L∞
x
‖f‖X

∣

∣ϕ[f ]− ϕ[F ]
∣

∣ + ε‖a′‖L∞
x
‖F‖XM[g]

. ζε
(

M[g] + ‖Q[g]‖X
)

+ ζεM[g],

where ζε → 0 as ε→ +∞. Considering that

M[g] ≤ a1(1− κ)−1‖g‖X . ‖g‖X ,

from the above inequality, we deduce that

‖Q[g]‖ . ζεM[g] . ζε‖g‖X ,

with ε large enough. We then obtain

‖Z[g]‖X ≤ 2‖Q[g]‖X . ζε‖g‖X
15
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Step 3. Decay estimate. Thanks to the Duhamel formula, the solution g to the evolution
equation (3.16) satisfies

g(t) = SΛε
(t)(g0) +

∫ t

0
SΛε

(t− s)Z[g(s)] ds.

Benefiting from Theorem 3.5 and the second step, we deduce

‖g(t)‖X ≤ C eαt ‖g0‖X +

∫ t

0
C eα(t−s) ‖Z[g(s)]‖X ds

. eαt ‖g0‖X + ζε

∫ t

0
eα(t−s) ‖g(s)‖X ds,

for any t ≥ 0 and for some constant α < 0, independent of ε ∈ [ε1,+∞). Thanks to the
Gronwall’s lemma (for linear integral inequality), we have

‖g(t)‖X . eαt‖g0‖X + ζε‖g0‖X

∫ t

0
eαt exp{

∫ t

s
eα(t−r)dr}ds

. eαt‖g0‖X + ζεte
αt‖g0‖X

. eα
′t‖g0‖X ,

for some constant α < α′ < 0. �

4. Case with delay

In this section, we conclude our main result Theorem 1.3, in the case with delay by
following the same strategy as section 3 but with appropriate adaptation towards the
boundary term. Recalling from Theorem 1.2, we already know that their exists a uinque
stationary state (Fε,Mε) in the strong connectivity regime, therefore, we start from the
linearization of the evolution equation (1.1).

4.1. Linearized equation and structure of the spectrum. We still consider the vari-
ation functions (g, n, q) = (f,m, p) − (Fε,Mε,Mε) around the steady state. However,
because of the failure to express n(t) explicitly, we introduce the following intermediate
evolution equation on a function v = v(t, y)

(4.1) ∂tv + ∂yv = 0, v(t, 0) = q(t), v(0, y) = 0,

where y ≥ 0 represent the local time for the network activity. Clearly, the above equation
can be solved by the characteristics method as

v(t, y) = q(t− y)10≤y≤t,

which simplifies the expression of the variation n(t) of network activity in the equation
(1.16), given by

n(t) = D[v(t)], D[v] :=

∫ ∞

0
v(y)b(dy),

while the variation q(t) of discharging neurons in the equation (1.15) is simplified as

q(t) = Oε[g(t), v(t)] := Nε[g(t)] + κεD[v(t)],

where

Nε[g] :=

∫ ∞

0
aε(Mε)g dx, κε :=

∫ ∞

0
a′ε(Mε)Fε dx.

16
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Therefore, we may rewrite the linearized system (1.14)-(1.15)-(1.16) together with the
evolution equation (4.1) as an autonomous system

(4.2) ∂t

(

g
v

)

= Lε

(

g
v

)

:=

(

−∂xg − aεg − a′εFεD[v]
−∂yv

)

,

with the associated semigroup SLε
(t) acting on

X := X1 ×X2 := L1(R+)× L1(R+, µ),

where the measure µ(x) = e−δx with the same δ > 0 in the condition (1.12). The domain
of the operator Lε is given by

D(Lε) := {(g, v) ∈W 1,1(R+)×W 1,1(R+, µ); g(0) = v(0) = Oε[g, v]}.

We also consider the boundary condition as a source term and rewrite the autonomous
systemwe as

∂t(g, v) = Λε(g, v),

where the generator Λε = (Λ1
ε, Λ

2
ε) is given by

Λ1
ε(g, v) := −∂xg − aεg − a′εFεD[v] + δx=0Oε[g, v],

Λ2
ε(g, v) := −∂yv + δy=0Oε[g, v].

and the associated semigroup SΛε
(t) acting on

X := X1 × X2 := M1(R+)×M1(R+, µ).

Similarly, we have SΛε
|X = SLε

. Next, we are going to show that SΛε
also possesses

a suitable decomposition of a finite dimensional principal part as well as an exponential
decaying remainder.

Theorem 4.1. Under the assumptions (1.4)-(1.5)-(1.8)-(1.10) as well as the condition
(1.12) and taking delay into account, the conclusions of Theorem 3.1 still holds true with
α := max{−a0/2,−δ} < 0.

The result also comes from the spectral analysis approach. In order to apply the Spectral
Mapping theorem and the Weyl’s Theorem established in [9, 6], we split the operator
appropriately as Λε = Aε + Bε with

Bε(g, v) =

(

B1
ε(g, v)

B2
ε(g, v)

)

=

(

−∂xg − aεg
−∂yv

)

and

Aε(g, v) =

(

A1
ε(g, v)

A2
ε(g, v)

)

=

(

−a′εFεD[v] + δx=0Oε[g, v]
δy=0Oε[g, v]

)

,

which hold the following parallel properties as those in Lemma 3.2.

Lemma 4.2. (i) Aε ∈ B(W−1,1(R+)×W−1,1(R+, µ),X ).
(ii) SBε

(t) is α-hypodissipative in both X and X ;
(iii) the family of operators SBε

∗ AεSBε
satisfies

‖(SBε
∗ AεSBε

)(t)‖B(X ,Y ) ≤ Cae
αt, ∀a > α, ∀t ≥ 0,

for some constant Ca > 0 and with Y := Y1 × Y2, where Y1 = BV (R+) ∩ L
1
1(R+)

and Y2 = BV (R+, µ) ∩ L
1
1(R+, µ).

We skip the proof and refer to the proof of Lemma 3.2 in [10] for more details.
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4.2. Strong connectivity regime - exponential stability of the linearized equa-

tion. In the limited case, i.e. as the network connectivity parameter ε passes to the
infinity, κε vanishes from the assumption (1.10), which simplifies the linearized operator
as

(4.3) Λ∞

(

g
v

)

=

(

−∂xg − a(x,∞)g + δx=0O∞[g, v]
−∂yv + δy=0O∞[g, v]

)

,

where O∞[g, v] = N∞[g] =

∫ ∞

0
a(x,∞)g(x)dx. We have already proven the exponential

stability of the first component Λ1
∞, then the Duhamel formula

v(t) = SB2
∞

(t)v0 +

∫ t

0
SB2

∞

(t− s)A2
∞

(

g(s), v(s)
)

ds

implies the similar exponential asymptotic estimate for the second component Λ2
∞. To-

gether with Theorem 3.4, we have

Theorem 4.3. There exist some constants α < 0 and C > 0 such that Σ(Λ∞)∩∆α = {0}
and for any (g0, v0) ∈ X, 〈g0〉 = 0, there holds

(4.4) ‖SΛ∞
(t)(g0, v0)‖X ≤ Ceαt ‖(g0, v0)‖X , ∀ t ≥ 0.

Then we extend the geometry structure of the spectrum of the linearized time elapsed
equation in the limited case to the strong connectivity regime taking delay into account.

Theorem 4.4. There exist some constants ε1 > 0, C ≥ 1 and α < 0 such that for any
ε ∈ [ε1,+∞] there holds Σ(Λε) ∩∆α = {0} and

(4.5) ‖SΛε
(t)(g0, v0)‖X ≤ Ceαt‖(g0, v0)‖X ,

for any (g0, v0) ∈ X such that 〈g0〉 = 0.

Proof. We proceed in two steps.
Step 1. Continuity of the operator Λε. For all (g, v) ∈ X , we have

Λε

(

g
v

)

=

(

−∂xg − aεg − a′εFεDε[v] + δx=0Oε[g, v]
−∂yv + δy=0Oε[g, v]

)

,(4.6a)

Λ∞

(

g
v

)

=

(

−∂xg − a(x,∞)g + δx=0O∞[g, v]
−∂yv + δy=0O∞[g, v]

)

.(4.6b)

Compute the difference between (4.6a) and (4.6b), we have

(Λε − Λ∞)

(

g
v

)

=

(

(a(x,∞)− aε)g − a′εFεDε[v] + δx=0

(

Oε[g, v] −O∞[g, v]
)

δy=0

(

Oε[g, v] −O∞[g, v]
)

)

.

From the assumption (1.5) and (1.10), we deduce that

‖(Λε − Λ0)(g, v)‖X = ‖(a(·,∞) − aε)g‖X1
+ ‖a′εFεDε[v]‖X1

+ 2|Oε[g, v] −O∞[g, v]|

≤ 3‖(a∞ − aε)g‖X1
+ 2‖a′εFεDε[v]‖X2

≤ 3ζε‖g‖X1
+ 2a1ζε(1− ζε)‖Fε‖X1

‖v‖X2

. ζε‖(g, v)‖X ,

where ζε → 0 as ε→ ∞, which implies the continuity of the operatorΛε to ε in the strong
connectivity regime.

18
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Step 2. Extension to the strong connectivity regime. Similar to the proof of Theorem 3.5,
we deduce that their exists ε1 > 0 large enough, such that for any ε ∈ [ε1,∞], the
eigenprojector Πε satisfies

‖Πε −Π∞‖B(X) < 1,

which permits us to conclude that there exists ξε satisfying |ξε| ≤ O(ζε), such that

Σ(Λε) ∩∆α = {ξε}

and ξε is algebraically simple (see in [5, Section I.4.6] and [15]). Since the dual operator
Λ∗
ε is given by

Λ∗
ε

(

ϕ
ψ

)

=





∂xϕ− aεϕ+ aε(ϕ(0) + ψ(0))

∂yψ + κεb ψ(0) + κεb ϕ(0) − b

∫

a′εFε ϕdx



 ,

for any (ϕ,ψ) ∈ X ′, observe that Λ∗
ε(1, 0) = 0. Thus, 0 ∈ Σ(Λ∗

ε), which implies ξε = 0.
Together with the fact that 〈g0〉 = 〈(g0, v0), (1, 0)〉X ,X ′ = 0, the exponential asymptotic
estimate (4.5) holds. �

4.3. Strong connectivity regime - nonlinear exponential stability. Finally, we
focus on the nonlinear problem taking delay into account and present the proof of the first
part of our main result in the case with delay, neglecting the connectivity parameter ε
most of time without any misleading.

Proof of Theorem 1.3 in case with delay. Inspired by the intermediate evolution equation
(4.1), we rewrite the nonlinear problem as a system of (f, u), given by

∂tf = −∂xf − aε(D[u])f + δ0P[f,D[u]]

∂tu = −∂yu+ δ0P[f,D[u]],

where

P[f,m] =

∫

a(m)f, D[u] =

∫

bu.

Denoting U := M1y≥0, the steady state (F,U) satisfies

0 = −∂xF − aε(M)F + δ0M

0 = −∂yU + δ0M, M = D[U ] = P[F,D[U ]].

Introducing the variation functions g := f −F and v = u−U again, we obtain the system
of (g, v) as

∂tg = −∂xg − aε(D[u])f + aε(M)F + δ0(P[f,D[u]]−P[F,D[U ]])

= −∂xg − aε(M)g − a′εFD[v]−Q[g, v] + δ0O[g, v] + δ0Q[g, v]

= Λ1
ε(g, v) + Z1[g, v],

∂tv = −∂yv + δ0(P[f,D[u]] −P[F,D[U ]])

= −∂yv + δ0O[g, v] + δ0Q[g, v]

= Λ2
ε(g, v) + Z2[g, v],

where

Q[g, v] := aε(D[u])f − aε(M)F − aε(M)g − a′εFD[v]

Q[g, v] := 〈Q[g, v]〉,
19
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and the remainders are given by

Z1[g, v] := −Q[g, v] + δ0Q[g, v],

Z2[g, v] := δ0Q[g, v].

From the mass conservation of f and the assumption (1.10), we deduce that

‖Q[g, v]‖X1
= aε(D[u])f − aε(M)f − a′εFD[v]

≤ ζε‖f‖X1

∣

∣

∣D[u]−D[U ]
∣

∣

∣− ζε‖D[v]

. ζε‖v‖X2
,

where ζε is the same as in Theorem 4.4. Denoting Z[g, v] := (Z1[g, v],Z2[g, v]), we clearly
have the estimate

‖Z[g, v]‖X . ζε‖(g, v)‖X

The associated Duhamel formula writes

(g(t), v(t)) = SΛε
(t)(g0, v0) +

∫ t

0
SΛε

(t− s)Z[g(s), v(s)] ds.

Using the above estimate for the nonlinear term and the Gronwall’s lemma, we conclude
as in the proof of Theorem 1.3. �

5. Step function firing rate

In this section, we focus on the nonlinear time elapsed model in [11, 12] with a particular
step function firing rate given by

a(x, µ) = 1x>σ(εµ)

satisfying (1.6)-(1.7)-(1.9)-(1.11). We consider the dynamic of the neuron network (1.1)
completed with an initial probability density f0 satisfying

(5.1) 0 ≤ f0 ≤ 1,

∫ ∞

0
f0(x)dx = 1.

Obviously, the solution f of the time elapsed equation (1.1) corresponding to the firing
rate (1.6) is still mass conserved, and we naturally renormalize that mass. The previous
work [11] shows that the model (1.1) with the step function firing rate (1.6) admits a
steady state as well as a unique solution, that is to say the second part of Theorem 1.1
and Theorem 1.2. By applying the adapted above spectral analysis method, we conclude
the results in Theorem 1.3 for a particular step function firing rate, which accurate the
stability results in [11] in the case with delay. Failing to construct the linearized equations
(1.14) and (1.15), we replace them with another more concise linear equation for the
variation functions (g, n, q) = (f,m, p)− (Fε,Mε,Mε), which writes

∂tg + ∂xg + g1x>σε
= 0,

g(t, 0) = q(t) :=

∫ ∞

0
g1x>σε

dx, g(0, x) = g0(x),

where here and below we note σε := σ(εMε) for simplicity. We introduce the intermediate
evolution equation (4.1) again to write the linear equation (1.17)-(1.18)- (1.16) as a time
autonomous system

(5.2) ∂t(g, v) = Lε(g, v),
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where the operator Lε = (L 1
ε ,L

2
ε ) is defined by

L
1
ε (g, v) := −∂xg − g1x>σε

+ δx=0Rε[g, v],

L
2
ε (g, v) := −∂yv + δy=0Rε[g, v],

with the boundary term

Rε[g(t), v(t)] := P[g,Mε] =

∫ ∞

0
g1x>σε

dx,

in the space

X = X1 ×X2 := Lp
0(R+)× Lp(R+, µ)

with Lp
0(R+) = {h ∈ Lp(R+); 〈h〉 = 0}, 1 ≤ p ≤ ∞, and µ(x) = e−δx, δ > 0 is the same

as in the condition (1.12). We extend the exponential stability from the single equation
of g to the above autonomous system.

Theorem 5.1. Assume (1.6)-(1.7)-(1.9) and (1.12) (with (1.11)). There exist some con-
stants ε0 > 0 (ε1 > 0), C ≥ 1 and α < 0 such that for any ε ∈ [0, ε0] ε ∈ [ε1,∞] there
holds Σ(Lε) ∩∆α = {0} and

(5.3) ‖SLε
(t)(g0, v0)‖X ≤ Ceαt‖(g0, v0)‖X ,

for any (g0, v0) ∈ X, s.t. 〈(g0, v0) , (1, 0)〉X,X′ = 0.

The extension follows from the Spectral Mapping theorem and the Weyl’s Theorem by
introducing a convenient splitting of the operator Lε as Lε = Aε + Bε with

Bε(g, v) =

(

B1
ε(g, v)

B2
ε(g, v)

)

=

(

−∂xg − g1x>σε

−∂yv

)

and

Aε(g, v) =

(

A1
ε(g, v)

A2
ε(g, v)

)

=

(

δx=0Rε[g, v]
δy=0Rε[g, v]

)

.

Since the step function firing rate is no longer continuous, we have to consider the resolvent
of the operator Bε.

Lemma 5.2. Assume (1.6)-(1.7)-(1.9) and (1.12) (with (1.11)). Then the two operators
satisfy

(i) Aε ∈ B(X,Y ), where Y = Cδ0 × Cδ0 ⊂ X with compact embedding;
(ii) SBε

(t) is α-hypodissipative in X;
(iii) (RBε

(z)Aε)
2(z) ∈ B(X), with bound in O(〈z〉−1), ∀z ∈ ∆−1.

Proof. In order to simplify the notation, we note

ρ(x) :=

∫ x

0
1y>σε

dy = (x− σε)+.

(i) It is an immediate consequence of the fact that D ∈ B(X2;R) (because of (1.12)) and

Nε ∈ B(X1;R).
(ii) We write SB1

ε
and SB2

ε
respectively with the explicit formula

SB1
ε
(t)g(x) = eρ(x−t)−ρ(x)g(x − t)1x−t≥0,

SB2
ε
(t)v(y) = v(y − t)1y−t≥0.
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We estimate that

‖SB1
ε
(t)g‖X1

= ‖eρ(x)−ρ(x+t)g(x)‖X1
= ‖e(x−σε)+−(x+t−σε)+g(x)‖X1

≤ Ce−t‖g(x)‖X1
,

‖SB2
ε
(t)v‖X2

= ‖e−δ(y+t)v(y)‖Lp = e−δt‖v‖X2
,

for any g ∈ X1 and v ∈ X2 and any t ≥ 0, which implies

‖SBε
(t)‖X→X ≤ Ceαt, t ≥ 0,

by choosing C := max{2eσε , 1} and α := max{−1,−δ}.
(iii) We have

SB1
ε
(t)Aε[g, v](x) = δx=tRε[g, v]e

ρ(x−t)−ρ(x) ,

and we denote

kt(x) := AεSB1
ε
(t)Aε[g, v](x) = δx=0

∫ ∞

0
δx=te

ρ(x−t)−ρ(x)1x>σε
dx

= δx=0e
−ρ(t)1t>σε

Rε[g, v].

Finally, we obtain

(SB1
ε
Aε)

(∗2)(t)[g, v](x) =

∫ t

0
kt−s(x− s)eρ(x−s)−ρ(x)1x−s≥0ds

= e−ρ(t−x)+ρ(0)−ρ(x)1t≥x1t−x>σε
Rε[g, v]

= e−ρ(t−x)−ρ(x)1t−x>σε
Rε[g, v].

Denoting ψt(x) := e−ρ(t−x)−ρ(x)1t−x>σε
, we compute its Laplace transform

ψ̂(z) =

∫ ∞

0
e−ρ(t−x)−ρ(x)1t−x>σε

e−ztdt

= e−ρ(x)−zx

∫ ∞

σε

e(t−σε)+−ztdt

= e−ρ(x)−z(x+σε)

∫ ∞

0
e−(1+z)tdt

=
1

1 + z
e−ρ(x)−z(x+σε),

with the estimate

‖ψ̂(z)‖X1
≤

1

|1 + z|

∫ ∞

0
e−(x−σε)+−ℜe z(x+σε)dx

≤
eσε(1−ℜe z)

|1 + z|(1 + ℜe z)
.

All together, we get

‖(RB1
ε
(z)Aε)

2(z)(g, v)‖X1
≤ ‖ψ̂(x)‖X1

|Rε[g, v]| ≤
C

〈z〉
‖(g, v)‖X ,

for any z ∈ ∆−1 and some constant C > 0 and similar estimate for the second part

‖(RB2
ε
(z)Aε)

2(z)(g, v)‖X2
≤

C

〈z〉
‖(g, v)‖X .

�
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Proof of Theorem 5.1. From the factorization formula with the properties of the two aux-
iliarty operators in the above Lemma 5.2 and benefiting from the perturbation argument
in [7, 15, 6], we deduce that for any 〈g0〉 = 0, there holds

‖g(t)‖X1
= ‖SL 1

ε
(t)g0‖X1

≤ Ce−t ‖g0‖X1
.

The Duhamel formula associated to the equation ∂tv = L 2
ε (g, v) writes

v(t) = SB2
ε
(t)v0 +

∫ t

0
SB2

ε
(t− s)A2

ε

(

g(s), v(s)
)

ds.

Using the already known estimate on g(t), we deduce

‖SL 2
ε
(t)v0‖X2

= ‖v(t)‖X2
≤ ‖SB2

ε
(t)v0‖X2

+

∫ t

0
‖SB2

ε
(t− s)δ0Nε[g(s)]‖X2

ds

≤ e−δt‖v0‖X2
+

∫ t

0
e−δ(t−s)C e−s‖g0‖X1

ds

≤ C eαt‖(g0, v0)‖X

for some 0 > α > max{−1,−δ}, which yields our conclusion. �

Now, we complete the rest part of the proof of Theorem 1.3 to describe the stability in
the case with delay more precisely compared to that in [11].

Proof of Theorem 1.3 for the step function firing rate in the case with delay. We write the
system as

∂tf = −∂xf − f1x>σ(εD[u]) + δ0P[f, εD[u]]

∂tu = −∂yu+ δ0P[f, εD[u]]

with

P[f,m] =

∫

a(m)f, D[u] =

∫

bu.

We recall that the steady state (F,U), where U := M1y≥0, satisfies

0 = −∂xF − F1x>σ(εM) + δ0M

0 = −∂yU + δ0M, M = D[U ] = P[F, εD[U ]].

We introduce the variation g := f − F and v = u− U . The equation on g is

∂tg = −∂xg − f1x>σ(εD[u]) + F1x>σ(εM) + δ0(P[f, εD[u]]−P[F, εD[U ]])

= L
1
ε (g, v) −Q[g, v] + δ0〈Q[g, v]〉

= L
1
ε (g, v) + Z1[g, v],

with

Z1[g, v] = −Q[g, v] + δ0〈Q[g, v]〉,

Q[g, v] := sgn
(

D[v]
)

(g + Fε)1I [D[v]],

where the interval
I (n) := (σ(εM + εn+), σ(εM + εn−)].

The equation on v is

∂tv = −∂yv + δ0(P[f, εD[u]] −P[F, εD[U ]])

= −∂yv + δ0O[g, v] + δ0〈Q[g, v]〉

= L
2
ε (g, v) + Z2[g, v],
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with
Z2[g, v] := δ0〈Q[g, v]〉.

We observe that

‖Q[g, v]‖Lp = ‖ sgn(D[v])g1I [D[v]]‖Lp ≤
∣

∣I [D[v]]
∣

∣

1/p

=
(

σ(εM − εD[v]−)− σ(εM + εD[v]+)
)1/p

≤ C
(

ε‖σ′‖∞
∣

∣D[v]
∣

∣

)1/p

≤ C ε(ζε)‖v‖X2
,

which implies immediately that

‖Z1[g, v]‖X1
≤ ε (ζε)C‖(g, v)‖X ,

‖Z2[g, v]‖X2
≤ ε (ζε)C‖(g, v)‖X .

We write the Duhamel formula

(

g(t), v(t)
)

= SLε
(t)(g0, v0) +

∫ t

0
SLε

(t− s)Z[g(s), v(s)] ds.

and thanks to the Gronwall’s Lemma, we conclude the exponential asymptotic stability
of Theorem 1.3 for the step function firing rate in the case with delay. �
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