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sec:Intro

GENERAL TIME ELAPSED NEURON NETWORK MODEL:
WELL-POSEDNESS AND STRONG CONNECTIVITY REGIME

S. MISCHLER & Q. WENG

ABSTRACT. For large fully connected neuron networks, we study the dynamics of ho-
mogenous assemblies of interacting neurons described by time elapsed models, indicating
how the time elapsed since the last discharge construct the probability density of neu-
rons. Thr g ‘i{};(e lqgectrad analysis theory for semigroups in Banach spaces developed
recently in%rﬂe one hand, we prove the existence and the uniqueness of the weak
solution in the whole connectivityyegime as well as the parallel results on the long time
behavior of solutions obtained in mﬁgnder general assumptions on the firing rate and
e dﬁ@y distribution. On the other hand, we extend those similar results obtained in
Wn the case without delay to the case taking delay into account and both in the
weak and the strong connectivity regime with a particular step function firing rate. Our
approach uses the spectral analysis theory for semigroups in Banach spaces developed

recently by the first author and collaborators.
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1. INTRODUCTION

The information transmission and processing mechanism in the nervous

on the quantity of electrical pulses as the reflect to incoming stimulations,

systems relies
during which

the neurons experience a period of recalcitrance called discharge time before reactive. In

this work, we shall focus on the model describing the neuronal dynamics
with this kind of discharge time which has been introduced and studied in

in.accorda
E%}JOO%IEQL.&I%%

order to show the response to the recovery of the neuronal membranes after each discharge,
the model consider an instantaneous firing rate depending on the time elapsed since last

discharge as well as the inputs of neurons. This sort of models are wglﬁgiurﬁed 5 nean

field limit of finite number of neuron network models referred to [T, 2, 14,
1
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For a local time (or internal clock) x > 0 corresponding to the elapsed time since the
last discharge, we consider the dynamic of the neuronal network with the density number
of neurons f = f(t,x) > 0 in state z > 0 at time ¢ > 0, given by the following nonlinear
time elapsed (or of age structured type) evolution equation

(1.1a) O f = =0, f —alx,em(t)f = Lo f,

(1.1b) f(,0) =p(t), f(0,2)= folx),

where a(z,ep) > 0 denotes the firing rate of a neuron in state  and in an environment
i > 0 formed by the global neuronal activity with a network connectivity parameter

£ > 0 corresponding to the strength of the interactions. The total density of neurons p(t)
undergoing a discharge at time t is defined through

p(t) == PLf(t);m(t)],
where

Plg, ] = Pelg, p] == /OOO a(z,ep)g(z)de,

while the global neuronal activity m(¢) at time ¢ > 0 taking into account the interactions
among the neurons resulting from earlier discharges is given by

(1.2) m(t) = /0 " p(t — y)b(dy),

where the delay distribution b is a probability measure considering the persistence of the
electric activity to those discharges in the network. In the sequel, we will consider the two
following situations respectively:

e The case without delay, when b = 0y then m(t) = p(t).

e The case with delay, when b is smooth.

X . . eq:ASM |
Observe that the solution f of the time elapsed equation (IT.1 ; satisfies

%/OOO f(t,x)dz = f(t,0) — /OOO a(x,em(t))f(t,x)dx = 0,

in both the cases, which implies the conservation of the total density number of neurons
(also called mass in the sequel) permitting us to normalize it to be 1. Then we assume in
the sequel

(f(t,)) = (fo) =1, Yt>0, (g):= /Ooog(x)dx.

We define a couple (F;, M.) as a corresponding steady state, which satisfy
(1.3a) 0=—-0,F. —a(x,e M. )F. = L.y Fr,
(1.3b) F.(0) =M., (F.)=1.

Noticing that the associated network activity and the discharge activity are equal constants
for a steady state as (b) = 1.

Our main purpose in this paper is to pr Ve ‘ré’ﬁe existence and uniqueness of the solution
to the time elapsed evolution equation (%T%lo matter which ¢ > 0, which possesses
the exponential asymptotic stability in strong connectivity regime, which is a ral of

onnectivity parameter ¢ € [e1,00), €1 large enough, such that the equations (hﬂﬁnd

Eh—.qff)_dﬁ not possess intense nonlinearity. In order to conclude those results, it is necessary
to give the following mathematical assumptions on the firing rate a and on the delay
distribution b.
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We make the physically reasonable assumptions

hyp:ail| (1.4) 0za>0, d =0d,a>0,

hyp:a2| (1.5) 0 <ap:= lim a(zr,0) < lim a(z,p) =: a1 < oo,

T—r00 x, 4—+00

and the smoothness assumption

hyp:a3| (1.6) a €< Wl’oo(]Ri).
as well as the decay assumption, for a.e. x > 0,
hyp:a4| (1.7) esup Oya(x,ep) — 0, ase — oo.
x>0

In the case with delay, we assume that the delay distribution b(dy) = b(y)dy has the
exponential bound and satisfies the smoothness condition

hyp:del| (1.8) 36 > 0, / % (b(y) + |V ()]) dy < oo.
0

The above assumptions permit the existence and uniqueness of the solution to the
nonlinear problem (IT. anks to the Banach fixed-point theorem, as well as the existence
of corresponding steady state, which is unique in the strong connectivity regime.

th:EaU| Theorem 1.1. Assume (IL. . . hen for any € > 0, there exists a unique
nonnegatjue and mass conserving weak solution f € C(Ry; LY(Ry)) to the evolution equa-
tion (L1 : for some functions m, p € C([0, 00)).

;a4

th:8S| Theorem 1.2. Assume (T.4)-(I. . . For any € > 0, thege_ ists at least one
solution (F:(x),M.) € BV(R4) x Ry to the stationary problem (%her@ BV (R})
represents the space of bounded variation measures. Moreover, there exists €1 > 0, large
enough, such that the steady state is unique for any e € (€1, +00].

We ar le to conclude our main results, the exponential long time sta i{l}t}g}( gain as
those in in the weak connectivity regime, which extends the result in [[TT, in the
case without delay and for a step function firing rate a given by

StechtStructure‘ (1.9) a(r, 1) = Loy, 0 o teWh>(R,), o <0,

to the case with delay rather than the indescr'kaﬂqlg1 tab;]ity and tackling in the two cases
at the same time with firing rates a satisfying ( .Z; — i J in the strong connectivity regime.

Theorem 1.3. We assume that the firing rate a satisfies (I[thZ]l3 'al(gi)';ﬁ(ﬁ%ja?md (}'IE.H/Q)'%4
We also assume that the delay distribution b satisfies b = g or (#E%)'._There exists €1 > 0,
large enough, such that for any € € (e1,+00) the steady state (F, M.) is unique. There
also exist some constants a« < 0, C' > 1, n >0 and (- — 0 as € — oo such that for any
connectivity parameter € € (e1,+00) and any initial datum 0 < fo € L' with mass 1 and
such that || fo — F:|| g 58/ Ce the (unique, positive and mass conserving) solution f to the
evolution equation Iaﬁ’ﬁatisﬁes

1£(t,.) — Fellpr < Ce™, Vit > 0.
In order to study the asymptotic convergence to an equilibrium for the homogeneous

inelastic Boltzman uation, the strategy of “perturbation of semigroup spectral gap” is
first introduced in % . inspired by its rencent application to a neuron network equation
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T
in g , we linearize the equation around a stationary state (F., M., M.) on the variation

(gan7Q):(famap)_(FE7M€7M6)7 SllCh that

(1.10a) 019 = —0,9 — a(x,e Mc)g — n(t)e(Oya)(x,e M, ) Fy,
(1'1Ob) g(t,O) = Q(t)v 9(071') = 90(1')7
with
(1.11) q(t) = /00 a(x,e M:)gdx + n(t)6/Oo(ﬁua)(:rz,eME)F6 dz
0 0
and

(112) ()= [ att = wiian)

which induces the linearized generator A. and thfo%g]@g&ieﬂﬁg sempigroup Sa. by regarding
the boundary condition as a source term. As in [16, 4, 9, 6], we split the operator A, by

Az—: = -’46 +B€a

where B; is a-hypodissipative, a < 0 while A. is boundi%%%o%]*uch more regular. Then
i oggg%cllém ’\&%r’%jfggloﬁf the Spectral Mapping Theorem of [9; 6] and the Weyl’s Theorem of
16, 4, 9, 6] 1mply the semigroup Sx_ aﬁsa ggﬁg dimensional dominant part. Besides, the
Krein-Rutman Theorem established in [[9, ells that the stationary state (Foo, Moo, Moo)
is unique and the semigroup S, is ex ﬁggntﬂgl%o%@ble because of its positivity. Then
a perturbative argument developed in Hﬂmds the exponential ‘gla:m[lity to the
semigroup S; in the strong connectivity regime, which implies Theorem 1.3 by a some-
what classical n gl@gg% exponential stability argument. In the delay case, we replace the
delay equation jﬁf)_ﬁyxa simple age equation to form an autonomous system with the
lin.earized %%9@%%%?&@?%%&%&%% a semigroup and follow the same strategy. However, the
firing rate(ll 9) mIT, T2] does not fall in the class of those considered above because con-
dition (I.6) 1 Ao net. Therefore, in order to accurate the stability in the case with delay
obtained in %T,'—I'Z], we consider a more concise linear equation around the stationary
state instead of linearizing the equation with the similar approach.
X X X . . X sec:ExitSteS
This article is organized by the following plan. In Section b, we demonstrate tl}see SXfithoutDelay
istence and uniqueness of the solution and the Stafjonary state result. In Section B3, we
introduce tche strate.gy anc.l esfcs%lc)!wlhthge}i%%segcl: ﬁepll-léth%e case with 'ﬁt;MﬁelE_*y’ meagwhlle
the case Wlth delay in section l4.' In section b, we estabhs'h Theor%%: tepe},%%g%rll)lggl?rén the
weak regime and the strong regime for the particular firing rate (T.9).

- 2. EXISTENCE AND THE STEADY STATE
sec:ExitSteS oq: ASM

2.1. Existence of the solution. To conclude the existence of a solution to (IT.T], we are
going to apply a fixed point argument with the benefit of the following lemma.

Iéelfr&gqla 2.1. For any m € L*([0, T]) with a corresponding f satisfying the equation
(T.1), consider the application J: L°°([0, T]) — L>=([0, T]), J(m)(t) := fot p(t —y)b(dy),
where p(t) = [ a(x,em(t))f(x,t)dz. Then there exist T > 0 and 0 < C < 1 such that
the estimate

(2.1) 1T (m1) = T (ma)|| Lo (o, 7)) < Cllma — mal| Lo,
holds for all (my, ma) € L>([0, T]) and for any € > 0.
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lem:ext
Proof of Lemma ks to the explicit formula with respect to x or ¢, f(z,t) satis-

fying the equation (T.T] can be expressed respectively by

(2.2) Fx,t) = fola — t)e” Joalsto—tem)ds o>y

and

(2.3) f(z,t) =p(t —x)e —Jo alsem(stt—z))ds Vo <t.

: ASM
We denote f;, i = 1, 2 as two solutions of the equation (Egl'fi
(2.0 {atfx:c 1)+ 0, fz(:v 0 : az, 6mz(t))f¢(w,t) ~0,

fi(0:t) = Jo alz,emi(t)) fi(z, t)da,
leq:chfl leq:chf2
with the same initial data fy. Accordlng to (u Z) and (2.3), we rewrite p;(t) as
t

(2.5) pi(t) = / a(x, em;i(t))pi(t — x)e” Jo a(s.em(s+t—z))ds 4.

0
(2.6) + / a(m-’ c mz(t))fo(l' _ t)ei fg a(s+z—te m(s))dsdx.

¢

We split p1(t) — pa(t) into two items I (¢) and I(t) with
t
Il (t) = / <p1 (t — x)a(m, Em (t))e_ fo a(s,emi(s+t—z))ds
0

—po(t — x)a(z, ma(t))e Jo alse m2(5+t‘“’"))ds> dz

and I(t) as the remainder. In order to control the first item, we divide it into three parts
as I (t) = I11(t) + L1 2(t) + I1 3(t), where

)

t

Il 1 / t _ x) (x, emy (t))ei Iy als,ema (s+tfm))dsdx’
0

t
I o / pa(t — z)(a(z,emi(t)) — a(z,ema(t)))e” Jo alszma(stt=a))ds g,

=]

I 3( ) _ / pg(t _ x) (x, Mo (t))(ef Jo a(s,emy(s+t—z))ds _ e IS a(s,emg(ertfm))ds)dx‘
0
Clearly, we have the estimates

[11,1] oo jo,77) < @1 T|lp1 — p2l| e (j0,17)
and
111,20l o.77) < arlld[Lge T llmy — ma|| Lo o,17)-
Since there exists a constant C' such that
‘ — [y a(s,e mi(s+t—x))ds e Jo a(s,ema(s+t—z))ds

< C/ la(s,emi(s+t—x)) —a(s,ema(s+t—x))|ds,
0

which leads to the estimate
2

T
1113l oo (j0,77) < €a%\|a'||Lg°7||m1 — ma|| Leojo,7]-

. hyp:ad .
From the assumption (I.Ei, there exists €1 large enough such that ¢||a||f~ < 1, for any
£ € [e1,+00). Denoting 1 := max{ey, 1}, we deduce that

(2.7) 11| 2o o.77) < a1 T llpy — p2ll e ory) + N(CLT? + CoT)|lmy — ma|| Lo (0,177
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for any € > 0. On the other hand, we have the item I5(t) as
[e.9]
I2 (t) — / fO (l‘ — t) (a,(l', Em (t))e_ fot a(5+1§—t,€ mi (S))ds
t

—alw, e my())e™ Jo alstrmtema (i) 4y
Similarly to estimating I7, we deduce that
(2.8) 22| oo jo,77) < M(C3T + Cy)llma — ma||Los jo,17)-

. lineg:EI1 |ineq:EI2
From the above estimates (2.7) and (2.8); 1t turns out that

Ip1 = P2l o)) < a1 lpr — p2llzeo o)) + (C1T? + C4T + C3)||my — ma| o (0,7
which implies
(2.9) Ip1 = pall Lo o,17) < NClIma — mal| Lo (o,1))

when a7 less than 1. Hence, from (n.le and the fact that

Fm)(0) = Tma)(®) = [ (o1 = pa)lt = bian)
we obviously deduce

1T (m1) — T (m2)|| Lo jo,r7) < nCT|Imy — mal Los jo,17)-
By taking T small enough such that nC'T" < 1, we attain our conclusion. O
th:EaU lem:ext
Proof of Theorem IT. - From Lemma 2.1 ) Tor any € > 0, there is a T' > 0 which does not
depend upon the initial data such that the application J admits a unique fixed point m(t)
on [0,T] t len the corresponding f (t,x) on [0,T] x R%, which is the unique solution to the
equation (II.T), according to the Banach-Picard fixed point theorem. Iterating or by we
deduce the global existence and uniqueness of the solution (f,m) to equation (I[.1). O

2.2. The stationary problem. Now we present the proof of the steady state in the
strong connectivity regime.

:a2
Proof. Step 1. Existence. From the assumption (lg),a1 we deduce that for any = > 0,
p > 0, there exists zo € [0,00) such that a(z, ) > % . Denoting

Az, p) :=/0 a(y, p)dy, V,z,m >0,

we naturally estimate that

(2.10) %(m —x0)y < Az, p) <agz, Ya>0, p>0.

:StStl
For any m > 0, the equation (el .bai can be solved by
Fem(2) := Tpe~Amem)

whose mass conservation gives
o0
T&l _ / efA(:v,sm)dx.
0

Then the existence of the solution is equivalent to find m = M, satisfying m = F; ,,,(0) =
T),. Considering

o
U(e,m) =mT, = m/ e~ A@Em) qg
0
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it is merely necessary to find M. > 0 such that

(2.11) U(e, M) = 1.

From the Lebesgue dominated convergence theorem, the function ¥(e, .) is continuous. In
addition to the fact that ¥(0) = 0 and ¥(o0) = oo, the intermediate value theorem implies
the existence immediately.

Step 2. Uniqueness in the strong connectivity regime. Obviously, M, := (fooo e*“‘(x’“’)dm)*1 €
(0, 00) is the unique solution to ¥(oo, M) = 1. It is clear that

a o x
—U(e,m) :/ e~ Al@em) (1 —m/ 68ﬂa(y,6m)dy)dx,
8m 0 0
. . . . h :a3 . . . 1
is continuous with respect to the two variables because of (II X6 ), which implies that ¥ € C"~.
Coupled with that
0 <
50 (E M) |e=oc :/0 e~ A@2)dg > 0,
we conclude from the implicit function theorem that there exists 1 > 0, large enough,
such that the equation (EEIT)_has a unique solution for any ¢ € (g1, +00]. O

3. CASE WITHOUT DELAY

sec:WithoutDelay

th:MR
In this section, we conclude our main result Theorem [I.3 gradually in the case without
delay.

3.1. Linearized equation and structure of the spectrum. We introduce the lin-
earized equation on the variation (g,n) around the steady state (F., M.) given by

8259 + 8:1:9 + a9+ aéFen(t) =0,

4(£,0) = n(t) = /0 (aeg + dLEen(t)) dz, 9(0,7) = golx),

with notes ag:= gfx,eM;) and a := € (9ya)(z,eM.) for simplification. According to the
assumption (I; ], there exists €1 > 0, large enough, such that

o
Ve € (e1,00) K= / aLF.dz < 1,
0

permitting to define

(3.1) Mg :=(1— Ii)_l/ acgdz.
0

by considering the boundary condition as a source term, we rewrite the linearized equation
as

(3.2) Org = Aeg = —029 — acg — aLFeMc[g] + dp—0M]g],

acting on the space of bounded Radon measures

X = M'(Ry) = {g € (Co(R))'; suppg C R},

endowed with the weak * topology o(M*, Cy), where Cj represents the spac gﬁo ntinous
:5 é indicates

functions converging to 0 at infinity. The spectral analysis theory referred to [,
the structure of the spectrum and the associated semigroup Sy, .

*
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: 4
Theorem 3.1. Assume (IT. and define o :== —ag/2 < 0. The operator

A. is the generator of a weakly contmuous semigroup Sa_ acting on X. Moreover, there
exists a finite rank projector 115, o which commutes with Sx_, an integer j > 0 and some
complex numbers

£1,...6 € Ay :i={2€C, Rez > a},
such that on Ey :=1l5_ X the restricted operator satisfies
E(Aqp,) NAa = {&, -, &5}

(with the convention ¥(Agp,) N Ag = 0 when j = 0) and for any a > « there exists a
constant C, such that the remainder semigroup satisfies

|Sa. (I — AL o)l 2 B(x) < C, eat Vit >0.

k
Yoi p&éﬁr%ﬁﬂ *t%fﬁglxkghe Spectral Mapping Theorem of I9 g ogn?l the Weyl’s Theorem of
16, 4,9, 6], we split the operator A; as A. = A, + B; defined on X by

(3.3) Acg = peMclgl,  pe :=do — ang,
(3.4) B.g := —0,g9 — acg.
. . . . . Sw . .7
As in the weak connectivity regime in [[I0], the pro erijes of the two auxiliary operators
still hold in the strong one, which implies Theorem B.T directly.
hyp.: : :ad
Lemma 3.2. Assume that a satisfies (II. SRR ,a hen the operators A. and B. sat-

isfy the following properties.
(i) Ac € B(X,Y), where Y = Cu. C X with compact embedding.
(ii) Sp. is a-hypodissipative in X .
(iii) The family of operators Sg. x A:Sg. satisfies

H(SBg * AESBE)(t)HX—)BV S Ceat, Vit Z 0.

3.2. Strong connectivity regime - exponential stability of the linearized equa-
tion. When the network connectivity parameter & goes to infinity, the linearized time
elapsed operator simplifies

(3.5) Aoog = —0,9 — a(x,00)g + 6z=0 Moo 9], .
where M fo (x)dz. Similarly to the limited case ¢ = 0 in F[Dﬁ the

semigroup S Ao 18 also pomtlve and the operator —A, is also strong maximum while the
Kato’s inequality still holds in the limited CODHT&%EQ’ Then we conclude the following

evolution estimate benefiting from the Theorem

Theorem 3.3. There exist some constants o < 0 and C > 0 such that ¥(Ass) NA, = {0}
and for any go € X, (go) = 0, there holds

(3.6) 184 (H)gollx < Ce™ [lgollx, ¥t =>0.

We extend the exponential stability property in the limited case to the strong connec-
tivity regime.

Theorem 3.4. There exist some constants €1 > 0, a« < 0 and C' > 0 such that for any
£ € [e1,00] there hold ¥(A:) N A, = {0} and

(3.7) 1Sa. (Dgollx < Ce® |lgollx, Vit>0,
for any go € X, {(go) = 0.

toBook
The proohg yses hﬁbst%blhty theory for semigroups developed in Kato’s book 5 EHQEWR

revisited in ow, we present several results needed in the proof of Theorem
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Proof of Theorem F?I.%?_W%Vith the definitions bef) Ne%) A;BZ Eei) BSF S./\/lg, A. and B., we
have
(B. — Boo)g = (a(, 50) — alw, eM.))g
and
(A = Axo)g = (M:g] — Moolgl) do — £(a)(z, eMe) Fe Meg].
From the decay assumption (IT. 4here exists positive (¢ — 0, as ¢ — 400, such that

leOua(x,eM,)| < (., for € large enough Together with the smoothness assumption ( .gi,
we deduce that

eq:La.mbdaeps—O‘ (3.8) |1Be — Boo

2(x) t A — Ao ) < CC.

In the strong connectivity regime, the eigenprojector Il satisfies similarly that
HH6 — Iy ) < 1.

toBook *
From the classical result :Ba, Section 1.4.6] (or more explicitly %5, Lemma 2.18]), we deduce
that there exists £ € A, such that

Y(A) N AL ={&}, & is asimple eigenvalue,

for any € € [e1, +00] (up to take a larger real number £; > 0). We conclude by observing
that & = 0 because 1 € X’ and A*1 = 0 (which is nothing but the mass conservation). [

3.3. Strong connectivity regime - nonlinear exponential stability. Now, we fo
on the nonlinear exponential stability of the solution to the evolution equation (EBT%?
the case without delay. We start with an auxiliary result. We define the function @ :
L'(R;) x R — R by

(3.9) Bloup)i= [ alaeulala) do -

We denote by Wj the optimal transportation Monge-Kantorovich-Wasserstein distance on
the probability measures set P(Ry) associated to the distance d(z,y) = |x —y| A 1, or
equivalently defined by

VigePRy), Wi(f.g)i=  sup /Ooo<f—g>so

o5 llellp1,00 <1

hyp:a3
Lemma 3.5. Assume (l.gi. There exists €1 > 0 and for any € € (e1,+00) there exists a

function ¢. : P(R) — R which is Lipschitz continuous for the weak topology of probability
measures and such that u = ¢:[g] is the unique solution to the equation

pERy, @(g,p) =0.
lem:varphi
Proof of Lemma 13.5. ep 1. Existence. For any g € P(R) we have ®(g,0) > 0 and for
any g € P(R) and p > 0, we have
q)(gnu‘) <ar — Ky

so that ®(g,u) < 0 for & > ay. By the intermediate value theorem and the continuity
property of ®, for any fixed ¢ € P(Ry) and € > 0, there exists at least one solution
p € (0,a1] to the equation ®(g, ) = 0.

Step 2. Uniqueness and Lipschitz continuity. Fix f,g € P(R;) and consider u,v € Ry
such that

(f,pu) = 2(g,v) =0.
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We have - -
von= [ aeeo=p+ [ () -l
with -
[ aleenta = | < ot )l Wata. 1)
and

[ (atwnen) = atc) | < latev) = acplom < Gl ol
We then obtain

(3.10) = v (1 =¢) < la(ev)llwre Wilg, f),

and we may fix e; > 0 such that 1 — (., [|0,al/z~ € (0,1), € € [e1,400]. On the one hand,

for f = g, we deduce that = v and that uniquely defines the mapping ¢. [g] == . On
Elﬂrm*' : O

the other hand, the function is Lipschitz continuous becaus& pgR( .
We come back to the proof of our main result Theorem .3 in the case without delay.
th:MR
Proof of Theorem 1.3 wn the case without delay. We split the proof into two steps.
Step 1. New formulation. We start giving a new formulation of the solutions to the
evolution and stationary, equations in the strong connectivity regime e € [e1,00), where
€1 is defined in Lemma &3.5.. For a given initial datum 0 < foee, h(R+) with unit mass
the solution f € C([0, 00 éLls£ 1)) to the evolution equation (T.1] and the solution F. to
the stationary equation (II.3) clearly satisfy
0 F +a(eM)F =0, F(0) = M = ¢[F],
where here and below the € and x dependency is often removed without risk of misleading.
We introduce the variation function g := f — F' which satisfies the PDE
(3.11) Org = —0ug — a(eM)g — ea'(eM)F M(g] — Qg]
with
L _ _ _ !/
Qlo] := aleplf))f o afealFDF = aleplFl)g — ea'(ep[F]) FMg]
where M = M. is defined in (iBI ). PTe above PDE is complemented with the boundary

condition

and we may write again

olf] — elF] = Mgl + Qlg], Qlg] := (Qlg)])-
As a consequence, we have proved that the variation function g satisfies the equation
(3.12) g =Aeg+ Zlgl, Zlg] = —Qlgl + Qg

Step 2. The ponlinear term. With the fact that f is mass conserved, ||F|[x =1 and the
assumption (I[.7), we estimate that

1QIallx = lla(eplf])f — alep[F])f —ed'(ep[F])F Mg]|| x
elld el £l x]elf] = @[F)] +ella | oo || Fllx Mlg]
(Mgl + 1Qlglllx) + Mg,
where (; — 0 as ¢ — +o00. Considering that

Mlg] < ar(1 = 5) gl X < Nlgllx,

IZANRIA
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from the above inequality, we deduce that

1QUlll S Mgl < Cllgllx
with e large enough. We then obtain

12191llx < 2[Qylllx < Cllgllx

Step 3. D cay estimate. Thanks to the Duhamel formula, the solution g to the evolution
E3 [2) saftisfies

equation (B
t
g(t) = Sa.(g0) + [ Su.(t - 9)Zlg(s)] ds.
th:CWR 0
Benefiting from Theorem lB.ZI and the second step, we deduce

t
lg@lx < Ceo‘tllgollx+/0 C e ) Z[g(s)]l|x ds

t
S el 4G [ e glo)x ds,
0

for any ¢ > 0 and for some constant o < 0, independent of ¢ € [g1,400). Thanks to the
Gronwall’s lemma (for linear integral inequality), we have

t t
emwwx+@mwx/emwm/eme@@
0 s

< ellgollx + ¢te™|lgollx
<

e*lgollx

N

lg(®)llx

for some constant o < o/ < 0. O

4. CASE WITH DELAY

sec:WithDelay

This section is devoted to the proof of our main result, Theorem E%%n the case with
delay by following the same strategy as in the case witho Bzgéalay but adaptation the
functional framework. We have already proved in Theorem :2 the existence of a unique
stationary solution (F:, M.) in the strong connectivity regime and we may then focus on
the evolution equation.

4.1. Linearized equation and structure of thqe §H§ﬁfeﬁ%ﬂ al&gmlg&to write as a

time autonomous equation the linearized equation ([I.TI0)-(II.I1)-(I[.12], we introduce the
following intermediate evolution equation on a function v = v(t,y)

(4.1) O + Oyv =0, v(t,0) =q(t), v(0,y) =0,

where y > 0 represent the local time for the network activity. That last equation can be
solved with the characteristics method

vu(t,y) = q(t —y)Lo<y<t-
eq:ASM1in3
Therefore, equation (I.IZ; on the variation n(t) of network activity writes

n(®) = DR0]. Dl = [ ow)b(a),
:ASM1in2
and then equation (el NN ) on the variation q(t) of discharging neurons writes
q(t) = Oc[g(t), v(t)],
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with
Os[g, U] = Nz—:[g] + ke D[U],
o0 o0
Ncg] == / a:(M:)gdz, ke := / aL(M.)F; dz.
0 OASMJ,e.aniASMJLaanQASMllnB
As a consequence, we may rewrite the linear system (Il 10)-(I.11)-(I.12), as the autonomous

system

(4.2) Bi(g,v) = Z(g,v),
where the operator .2, = (£, £2) is defined by
gel(gav) = —0pg — acg — a F.D[v] + 8,200: g, v],
L2g,v) = =0y + 8y=00:[g, v,
in the space
X =X x X5 := MYRy) x M}(R_, )

:del
with p(z) = e79% and § > 0 is the same as in the condition (I

: :ad hyp:del th:MRe
th:MRel| Theorem 4.1. Assume (II. and (Igi. The conclusions of Theorem 3.1

holds true with « :== max{— a0/2 —5} < 0.
The reﬁ%hj %gylgyvs from the Spectral Mapping theorem and the Weyl’s Theorem estab-

lished in y introducing a convenient splitting of the operator .Z.. More precisely,
we write £, = A + B, with

s = (3 0) = (")

P ) B e O )

Taking Y = (Céy + B 1(eH1§ﬁLplx Coy C X, the operators A. and B. possess the same
properties as in Lemma l3.2.

and

4.2. Strong connectivity regime - exponential stability of the linearized equa-
tion. When the network connectivity parameter goes to the limit, ¢ = 400, the linearized
operator simplifies into

. g\ _ _amg - a(x’ oo)g + 5m=0000 [g,v]
(43) goo <'U> - < _ayv+5y:0000[g’v] 9

h:1
where Oulg,v] = Nxolg] =[5 a(x,00)g(x)dz. From Theorem E.3 and the Duhamel

formula
o(t) = Sz (oo + [ +0'Sg (¢ = 5)4% (g(5) () ) s,

the exponential asymptotic estimate holds for the second component of the operator Zx..

Theorem 4.2. There exist some constants o < 0 and C > 0 such that ¥(Zx)NA, = {0}
and for any (go, vo) € X, (go) = 0, there holds

(4.4) 1S (8)(g0, v0)llx < Ce® [[(go, v0)llx, Vit > 0.

Then we extend the geometry structure of the spectrum of the linearized time elapsed
equation to the strong connectivity regime taking delay into account.
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Theorem 4.3. There exists some constants e > 0, C > 1 and o < 0 such that for any
£ € [e1,+00] there holds X(£:) N Ay = {0} and
(4.5) 1S (t)(g0. vo) [l x < Ce™|[(g0, vo)x
for any (go,vo) € X such that (go) = 0.
th: CWR
Proof. Similarly, we proceed exactly as in the proof of Theorem B.4 and deduce the con-

tinuity of the operatorZ. to g in the strong connectivity regime, with whose help, we
conclude that (see also again E’S])

Y(Z) N A = {&}
with |£.] < O(¢.) and & is algebraically simple. We observe that
o (P Oap — acp + ac(p(0) + 1(0))
<\ 3y¢+/€eb¢(0)+ffab<ﬂ(0)—bfaéFetﬂdx ’
from which we deduce that £*(1,0) = 0. Then 0 € (%) and & = 0. Moreover,

the orthogonality condition (go) = ((go,v0), (1,0))x x» = 0 implies that the exponential
estimate (%Bi holds. O

4.3. Strong connectivity regime - nonlinear exponential stability. We finally come
back on the nonlinear problem and we present the proof of the second part of our main
result for the case with delay.

th:MR . )
Proof of Theorem 1.3 in case with delay. We write the system as

Ohf = —0uf —ac(Dlul)f + 6oP[f, Dlu]]
dyu —0yu + 6oP[f, Dlu]],

with
Plf.ml = [a(m)f, Dl = [ bu

We recall that the steady state (F,U), U := M1,>, satisfies

0 = —0xF —a(M)F + 6oM
0 = —9,U+6M, M =D|U]=P[F,D[U].
We introduce the variation g := f — F and v = u — U. The equation on g is
g = —0eg—a(Dlu))f + ac(M)F + 8(P[f, Du]] — P[F, DIU]])

—0pg — ac(M)g — azF'Dlv] — Qlg,v] + 6Oy, v] + d0Qlg, ]
= Zl(g,v) + 2 g0,
with
Qlg,v] := a-(Dlu)) f — a:(M)F — a.(M)g — a.FD|v]
and Q[g,v] = (Qlg,v]), Z'[g,v] := —Qlg, v] + 60Q]g,v]. The equation on v is
v = —0yv+d(P[f,D[u]] — P[F,D[U]])
= —0yv+ 000]g,v] + 6oQ[g, V]
= ZL%(g,v) + Z%[g,v], ZZ[g,v] = 5Q[g,v].
Since ||f||x, = 1 and the assumption (h. :,a%ve estimate that
1Qlg.vlllx, = a-(Dlu])f - a:(M)f — aLFD[v]
< elld|lrellfllx, |Plu] = DU — ella’[| 25 D[]
S Gllvllxe,
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which implies | Z[g,v]||x < C|l(g,v)|x. The associated Duhamel formula writes

MWWWZS%@%WM+AQﬂPﬂﬂM%Mﬂ®-

Using the above estimate f ’Ehthﬁ nonlinear term and the Gronwall’s lemma, we conclude
as in the proof of Theorem T.3. O

5. STEP FUNCTION FIRING RATE

. . . . . K1 PK .
In this section, we focus on the nonlinear time elapsed model in [T, IZ: for a particular
eq:FR| step function firing rate given by

(5.1a) a(r, 1) = yso(en), O o lewh®Ry), o <0,
(5.1b) 0(0) =04, o(0)=0_<o04<1.
In the strong connectivity regime, we need the additional decay rate assumptions

—eo'(p)

(5.2) limsup sup 5 <1,

e=oo pehi(o) (14 o(ep))

(5.3) limsup sup eo’(epu) = 0.

E—00 MEIQ(U)

where I1(0) = [(1+ J+)g1, it o_)71], and Iy(0) = [1 — o, 1]. We consider the dynamic
of the neuron network (T.1) completed with an initial probability density fq satisfying

eq:ID (54) 0< fo<1, /Oo fo(:ﬂ)d:ﬂ =1.
0

. o . . Eﬂf@ . . .
Obv1(gs}¥R1the solution f of the time elapsed equation (I.T) corresponding to the ng
b.1a)

rate 'es SRM mass conserved, and we naturag 'lpgnormalize that mass. From [IT],
the model (T.T) with the step function firing rate (5.1) admits a steady state as well as a

unique solution.

0n
0]
(@]
[97]
ct
[0}
g2 [g]glE IR
e} e} o | a
s s || o +
0 w o || = y
N = N - j=v}

th:SSFR| Theorem 5.1. For any e > 0, there exists at least one unit mass steady solution (F-, M)
eq:SPFR| t0 the stationary problem

(55&) amFe + 1$>U(5M5)F€ = 0,

(5.5b) F(0)=M., 0<F <1, (F)=1

Moreover, there exists positive eg small noysqh, such that the above solution is unique for
any € € [0,e0). Furthermore, assume (b.2), then there exists €1 large enough, such that
the uniqueness holds for any € € (&1, +00]

:ID
Theorem 5.2, Assyme (E.EH, then for any e > 0, there exists a unjgue solution (f,m) to
the equations (I.T) with the step function firing rate satisfying (b.1), which satisfies that

0< f(t,x) <1, Vt,x >0,
1l—0op <m(t) <1, Vt>0.

) ) th:MR )

By applying the same method, we conclude again rem 1.3 as well as the asymptotic

exponentialest, ility in the weak regime obtainﬁ%in for the model with the particular
b I% ]

firing rate (5.1), which accurate the results in
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Theorem 5.3. We a su%%lthat the firing rate a satisfies (E—f‘f)@and the delay distribution
b satisfies b = do or (I.8]. There exists €9 > 0 (e1 > 0), small (large) enough, such that
for any € € (0, gg) (¢ € (e1,+00), with the assumption (%YS)_)T the steady state (F., M.)
is unique. There also exists some ¢ nstapts o < 0, C >1andn >0 (besides (¢ — 0,
as € — oo under the assumption (%%)%such that for any connectivity parameter € €
(0,e0) (¢ € (e1,+00)) and any initial datum fo € L* with mass 1 satisfying 0 < fo < Jsu
and such that ||fo — F:||p1 < n/e (< n/¢), the solution f to the evolution equation (FT)*
satisfies

If(t,.) = Fellpr < Ce™, V> 0.

. . X X leq:ASM1linl Jeq:ASM1in2 X
Failing to construct the linearized equations (I.10) and (I.11), we replace them with

another more concise linear equation for the variation functions (g,n,q) = (f,m,p) —
eq:ASMFR1in1| (F%, M, M.) around a stationary state (I, M), which writes

(5'63‘) 8159 = —0zg — 91$>057
(5'6b) g(tv 0) - Q(t)v 9(07 .%') - 90(1')7

where here and below we note o, := (M) for simplicity, with

o0
quASMFRlinQ (57) q(t) = P[Q? M€] - / glx>05d1’.
c:FRWithoutDelay | 0

:ASMFR1in1

5.1. Case without delay. When b = Jg, the system (E.b) goeslfno

atg + 83{:9 + 91$>ag =0,

9(t,0) = Ne[g(t,-)] == Plg, Mc],

9(0,z) = go(x).
We rewriting similarly the equation as
(5.8) 0rg = Aeg == =029 — glo>o. + Go=0Ne[g],
acting on the space of X defined by

X = L(Ry) = {h € IP(R}); () =0}, 1<p<os,
and possessing the asymptotic convergence to the equilibrium.
eq:FR hyp:s2

th:MReFR| Theorem 5.4. Assume (%.li (with (%E)j and define the operator A, the generator of
a weakly * continuous semigroup Sp, acting on X endowed with the weak * topology
O'(Lg,Lp/). Moreover, there exist some constants g > 0 small enough or €1 > 0 large

enough and C > 0, such that for any ¢ € [0,e9] or € € [e1,00], the structure of the
spectrum satisfies (A:) N A_; = {0}, where A_; :={z € C, Rez > —1} and there holds

eq:1cFR| (5.9) 1S, (D) gollx < Ce lgollx, ¥t>0,
for any go € X, (go0) = 0.

To conclude our main result again for the particular firing rate, we split the operator
A as A, = A + B. with A, and B defined on X by
eq:FRAB| (5.10) A.g :=0oN:clg], B.g:=—0.9 — 9li>o.-

ith:MReFR
hﬁR Theorem b.4 1s naturally a consequence under the deduction of the proof of Theorem

:MRé
i3.| with the following properties of the two auxiliary operators.

:FR hyp:s2
lem:LmFR1| Lemma 5.5. Assume (E.li (with (%gj 7= The operators A. and B satisfy the following
properties.

(i) A. € B(X,Y), where Y = Cdy C X with compact embedding;
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(ii) Sp.(t) is —1-hypodissipative in X, namely there exists C' such that
1S5. ()| xx < Ce™t, Vt>0.
(iii) the family of operators Sp. * A:Sp. satisfies
(S5, * ASB.)(t)ll x 1 < Ce™", VE=0.
Proof of Lemma %%.:_Lln%rder to shorten notation, we note

A@)i= [ 1y =@ = 001

[
(i), We obtain A. € Z(X,Y) from the fact that N:[] € %(X,R) because of (IL.

(637

(ii) We write Sp. with the explicit formula

(.11 . (19(w) = e A gla — 11,z = S(0)

We have

:al

IS5 (B)glx = e~ g(a)x
le= =7 g() | x
Ce™[lg(x)]x,

IA A

with C' = ¢e%¢ > 0.
(iii) We have
A:SB.(t)g = do N (1),
with N(t) := N:[S(t)]. Moreover, we have

IN()] < / e g — 1)[La—ssoda < Ceglx
0

for any ¢ > 0. We deduce
(S5, * A-S5.)(D)g(x) = /0 (S5.(5)60) ()N (t — 5)ds

t
B / e 5y oN(t = $)1p—s>0ds
0

= G_A(x) N(t — Cﬂ)lt,xzo.
With direct computation, we have

(S5, * A=Sp.) (t)gll L < Ce™"llgllx-

O

. . eq:ASM | . Lo eq:FR

To go further on the nonlinegr. equation (T.T) with the firing rate satisfying (5.1),
we reconsider the function (3.9) and the optimal transportation Monge-Kantorovich-

Wasserstein distance to deduce that

:FR1 hyp:s2
lem:varphigFR| Lemma 5.6. Assume (5e.la; (with (5.55]8?. There exists eg > 0 (e1 > 0) small (large)

enough, such that for any e € (0,e0) (¢ € (e1,00)), there exists a function . : P(R) — R
which is Lipschitz continuous for the weak topology of probability measures and such that
= elg] is the unique solution to the equation

pERy, @(g,p) =0.
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lem:varphigFR

Proof of Lemma 5.6. For any fixed g € P(R;) and £ > 0, there exists clearly at least one
solution p € (0, 1] to the equation ®(g, ) = 0. Fix f,¢g € P(R;) and consider p,v € Ry
such that

O(f.11) = D(g,v) = 0.
considering
V—p= /0 (g - f)]-m>o(€1/) +/0 f(lm>‘7(5’/) B 15’3>‘7(5“))’

with the fact that
S Wl (g’ f),

‘/Ooo(g - f)1m>a(eu)

and
|| st = Lasaten)ia] < lo(er) = oler)| < el ol = .

we deduce obviously that

(5.12) =1 (=l l) < Wy, ),

and we may fix g9 > 0 (g1 > 0) such that 1 — ¢||o’||~ € (0,1), € € [0,0] (¢ € [e1,09)]),
which permits the uniqueness and Lipschitz continuity then the well-defined mapping

pelg] = p.
. . %llé@t .
The above mapping admits our proof of Theorem b.3 1n the case without delay.

th:MRFR . .
Proof of Theorem [5.3. With the above mapping, we present the new formulation of the

solutions to the evolution and stationary equations in the weak (sggmn%grcg{lgﬁctivity
regime £ € (0,&] (¢ € [e1,00)), where g (¢1) i3 defined in Lemma /.6." For any given

initial datum fy € LP(Ry), 1 < p < oo satisfying (b, f psipe solution f € C([0,00); LP(R L))o
1 <p<o0,0< f <1 to the evolution equation (I.T) with the particular firing rate (5.1
and the steady state F. clearly satisfy

atf + 8$f + flm>o(54p[f]) =0, f(t70) - (P[f(t, ) )
8:1:F€+F€1:v>05 =0, FE(O) :MEZQD[FE]'

Then the variation function g := f — F_ satisfies the equation

Org = Neg + Zelgl,  Zelg] := —Qelg] + 00(Qclg)),
with the item
Qclg] = sen(Nelg)) (9 + Fe)Lrn g
where the interval
F(n) = (0(eM; +eny),o(eM; +en_)].
We observe that

1Qclglllx = IIsen(Ne)(g + Fo)lopllx < |FINC]
= (o(eM: —eN._) —o(eM: +eN.y))
< Cello’||oo| Nelg]]
< Ce()lgllxs
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which implies immediately that || Z:[g]||x < e (¢:) C|lgllx. The Duhamel formula tells

t
lg@llx < Ce_tllgollx+/0 Ce* ™| Ze[g(s)] [ x ds

t
< el +2(€C [ e gl)llxds,
0
We conclude the asymptotic exponential stability from the Gronwall’s lemma. U
eq: LoV
5.2. Case with delay. o 1 Mtegnedlate evolution equation (izll ) again to
write the linear equation (5. ' .7)- (I.12) as a time autonomous system
(513) at(g’v) :%(g,v)’
where the operator .Z. = (£}, £?) is defined by
351(97 U) = =09 — gll‘>0’g + 5$:006[ga U]a
362(97 U) = _ayv + 5y=006[ga ’U],

with the boundary term

O.lg(t), v(t)] = N:fg] = /0 " glae, de,

in the space
X = X1 x Xo = LA(Ry) x LP(Ry, 1)
:del
with 1 < p < 0o and p(z) = €%, § > 0 is the same as in the condition (l§) SWe extend

the exponential stability from the single equation of g to the above autonomous system.

q:FR1 leq:FROh
Theorem 5.7. Assume (L5 Ta)- (|5qlb)(|lv§) (wzth % ]5:)) There exist some constants €y >

0 (1 >0), C >1and a < 0 such that for any € € [0,e0] € € [e1,00] there holds
Y(Z)Nn Ay = {0} and

(5.14) 1S (t)(g0, vo) llx < Ce®*||(g0,v0)x,
for any (go,vo) € X, s.t. ((g0,v0),(1,0))x x =0.

The extension follows from the Spectral Mapping theorem and the Weyl’s Theorem by
introducing a convenient splitting of the operator .Z. as .Z. = A. + B. with

Bup.0) = <522g: g) _ (—619_—85”1@05)
ato) = () = (3o,

and there is nothing left except whether the following properties are met by the operators

Ae and B..

and

leq:FR1 leq:FR2hyp hyp:s2
Lemma 5.8. Assume (qula) (nglb)(llVS) (wzth 5.§i 7~ Then the two operators satisfy

(i) Ac € B(X,Y), where Y = Cdy x Cody C X with compact embedding;
(ii) Sp.(t) is a-hypodissipative in X ;
(iii) the family of operators Sp. * A:Sp. satisfies

(S, * AcSE) Bl 1ot gy < Ce™s V>0,
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:del
Proof. (i) It is an immediate consequence of the fact that D € 2(Xs;R) (because of (II. :

and V. € #(X1;R). . defSBeps1

(ii) Since Sp is gg}%i%}jm the semigroup Sp. defined in (%18 —1-dissipative
thanks to Lemma 5.5-(i1), we just have to prove the dissipativity of the translation semi-
group Spz which is given by the explicit formula [Sp:(t)v](y) = v(y — t)1,—4>0. That
follows from

00 1
Ie2 @0l = ([ (0w =107 dy)” = o,

for any v € X9 and any ¢ > 0. Then, we choose « := max{—1,—9}.
(iii) Clearly, we have

(5.15) ASB.(D)(g,0)(x) = G0N (D),
(5.16) AZSp.(t)(9.0)(y) = G0N (1),
with
o0
N(t) = NelSh (9] = [ e Al Lo s0lyna,da,
0
where here and below the € dependency is oft 1 remaved without risk of misleading. With
the similar argument in the proof of Lemma %.5, we deduce

1581 % A2Sp. (1) (g, 0) (@) < Ce™[l(g,0)l|x
12 + A28, (00, ) Wl < Cel(g,0)llx-
Thus, the announced estimate holds for the family of operators Sp. * A.55.. O

th:MReFR1 1
Proof of Theorem [5.7. Since .Z. = A., we have already glpci\éed that g(t) := Sgi(t)go
satisfies ||g(t)|| < Ce™! | go|lx, for any ¢t > 0 from Theorem B.3. We then just focus on .£2.
The Duhamel formula associated to the equation dyv = .Z2(g,v) writes

o(t) = Sg2 (o + /0 Sw2(t — 5)A2(g(s), v(s)) ds.

Using the already known estimate on g(t), we deduce
t
[Szzvo(®)llx. = [v®lx, <I[Sp2()vollx, +/0 1582 (¢ — 8)d0Nelg(s)]] x, ds

t
< Ml + [ N0 g, ds
0

< Ce™l(go, vo)llx

for some 0 > o > max{—1, -4}, which yields our conclusion. (]

Now, we complete the rest part of the proof to describe the stability in the case with
delay more precisely compared to that in }ﬁ{r]

th:MRFR . )
Proof of Theorem 5.3 in case with delay. We write the system as

of = —0:f — flosoeniu)) + 6oPLf, Dlul]
atu = —8yu + 50P[fa D[UH

with

Plf.ml = [a(m)f, Dl = [ b
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We recall that the steady state (F,U), U := M1,>, satisfies

0 = —0.F~— F]':B>U(€M) + oo M
0 = —0,U+d6M, M =D[U|=P[F,D[U].
We introduce the variation g := f — F and v = u — U. The equation on g is
Og = —0.9— f1x>0(5’D[u]) + F1x>a(5M) + 50(P[f=D[uH - P[F7D[UH)

= Z(g,v) — Qlg, ] + d0(Qlg, v])
= Zg,v) + Z'[g,0],
with
Qlg,v] := sgn (D[v]) (9 + F2)1spp)-
The equation on v is
ov = —0yv+ % (P[f,Dlu]] — P[F,D[U]])
= —0yv + 600|[g,v] + d0(Q[g, v])
= L2(g,0) + Z%g,0],  Z%[g,v] = Go(Qlg, v]).
We observe that

IQlg, vllr = lsen(Dl])gLsppler < | D]
= (o(eM —eD[v]-) — o(eM +eD[v]4))
< Cello’ll|Dv]|
< e (G)lvllx

which implies immediately that || Z1[g,v]|x, < (¢.) Cl/(g,v)|lx and
122(9,v]|lx, <e(¢)C|l(g,v)|x. We write the Duhamel formula

(9(8),0(t)) = S (1) (g0, v0) + /0 S (t — 5)Z[g(s), v(s)] ds.

and thanks 9 .ngGronwall’s Lemma, we conclude the exponential asymptotic stability
of Theorem 5.3 in the case with delay. O
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