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General time elapsed neuron network model:

well-posedness and strong connectivity regime

S. MISCHLER & Q. WENG

Abstract

The time elapsed models, mathematically describing the probabil-
ity density of neurons structured by the distributions of times elapsed
since the last charge, are designed to analyse the firing activity of a
homogenous assembly of neuron network. Under general assumption
on the firing rate and the delay distribution, we prove the existence
and the uniqueness of the weak solution in the whole connectivity
regime as well as the parallel results obtained in [10], including the
uniqueness of the steady state and its nonlinear exponential stability
in the strong connectivity regime. The result generalizes more explicit
asymptotic behaviours than those obtained in [11, 12] in the strong
connectivity regime. Our approach uses the spectral analysis theory
for semigroups in Banach spaces developed recently by the first author
and collaborators.

Keywords. Neuron networks, time elapsed dynamics, semigroup spectral
analysis, strong connectivity, long time asymptotic.

1 Introduction

The information transmission and processing mechanism in the nervous sys-
tems relies on the quantity of electrical pulses as the response to incoming
stimulations, during which the neuron experience a period of recalcitrance
called discharge time before reactive. In this work, we shall focus on the
model describing the neuronal dynamics in accordance with this kind of dis-
charge time which has been introduced and studied in [3, 11, 12]. In order
to reflect the recovery of the neuronal membranes after each discharge, the
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model consider an instantaneous firing rate depending on the time elapsed
since last discharge as well as the inputs of neurons. This sort of models are
also regarded as a mean field limit of finite number of neuron network models
referred to [1, 2, 14, 13].

We consider the neuronal network described by the density number of
neurons f = f(t, x) ≥ 0 in state x ≥ 0 at time t ≥ 0, where x is a local time
(or internal clock) corresponding to the elapsed time since the last discharge.
The dynamic of the neuron network is given by the following nonlinear time
elapsed (or of age structured type) evolution equation

∂tf = −∂xf − a(x, εm(t))f =: Lεm(t)f, (.a)

f(t, 0) = p(t), f(0, x) = f0(x). (.b)

Here a(x, ε µ) ≥ 0 represents the firing rate of a neuron in the state x and in
an environment µ ≥ 0 formed by the global network activity and a network
connectivity parameter ε ≥ 0. The function p(t) represents the total density
of neurons undergoing a discharge at time t and is defined through

p(t) := P[f(t);m(t)],

where

P[g, µ] = Pε[g, µ] :=

∫ ∞

0

a(x, εµ)g(x)dx.

The function m(t) represents the global neuronal activity at time t ≥ 0
resulting from earlier discharges with the interactions among the neurons
taken into account and is given by

m(t) :=

∫ ∞

0

p(t− y)b(dy),

where the delay distribution b is a probability measure which takes into
account the persistence of the electric activity in the network resulting from
discharges. In the sequel, we will consider the two following situations :

• The case without delay, when b = δ0 and then m(t) = p(t).
• The case with delay, when b is a smooth function.

Notice that in both cases, the solution f of the time elapsed equation
(.) satisfies

d

dt

∫ ∞

0

f(t, x)dx = f(t, 0)−

∫ ∞

0

a(x, εm(t))f(t, x)dx = 0.
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As a consequence, the total density number of neurons (also called mass in
the sequel) is conserved and we can normalize that mass to be 1. In other
words, we may always assume

〈f(t, .)〉 = 〈f0〉 = 1, ∀t ≥ 0, 〈g〉 :=

∫ ∞

0

g(x)dx.

A (normalized) steady state for the time elapsed evolution equation (.)
is a couple (Fε,Mε) of a density number of neurons Fε = Fε(x) ≥ 0 and a
network activity Mε ≥ 0 such that

0 = −∂xFε − a(x, εMε)Fε = LεMε
Fε, (.a)

Fε(0) =Mε, 〈Fε〉 = 1. (.b)

It is worth emphasizing that for a steady state the associated network activity
and discharge activity are two equal constants because of the normalization
of the delay distribution, i.e. 〈b〉 = 1.

Our main purpose in this paper is to prove the existence and uniqueness of
the solution to the time elapsed evolution equation (.) no matter which ε >
0, which possesses the exponential asymptotic stability in strong connectivity
regime. Before stating that result, let us present the precise mathematical
assumptions we will need on the firing rate a and on the delay distribution
b.

We make the physically reasonable assumption

∂xa ≥ 0, a′ = ∂µa ≥ 0, (.)

0 < a0 := lim
x→∞

a(x, 0) ≤ lim
x,µ→∞

a(x, µ) =: a1 <∞, (.)

and the smoothness assumption

a ∈ W 2,∞(R2
+). (.)

as well as the decay assumption, for a.e. x ≥ 0,

ε∂µa(x, εµ) → 0, ε2∂2µµa(x, εµ) → 0, as ε→ ∞. (.)

In the delay case, we assume that b(dy) = b(y) dy satisfies the smoothness
and lost of memory conditions

∃δ > 0,

∫ ∞

0

eδy (b(y) + |b′(y)|) dy <∞. (.)
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The above assumptions permit the existence and uniqueness of the solu-
tion to the nonlinear problem (.) thanks to the Banach fixed-point theorem,
as well as the existence of corresponding steady state, which is unique in the
strong connectivity regime. The proofs are presented in the following part.

Theorem 1.1. Assume (.)-(.)-(.)-(.), then for any ε > 0, there ex-
ists a unique nonnegative and mass conserving weak solution f ∈ C(R+;L

1(R+))
to the evolution equation (.) for some functions m, p ∈ C([0, ∞)).

Theorem 1.2. Assume (.)-(.)-(.)-(.). For any ε ≥ 0, there exists
at least one solution (Fε(x),Mε) ∈ BV (R+)× R+ to the stationary problem
(.), where BV (R+) represents the space of bounded variation measures.
Moreover, there exists ε1 > 0, large enough, such that the above solution is
unique for any ε ∈ (ε1,+∞].

The main result we establish in the paper is the following long-time
asymptotic result on the solutions in the strong connectivity regime parallel
to those in the weak one referred to [10].

Theorem 1.3. We assume that the firing rate a satisfies (.), (.), (.)
and (.). We also assume that the delay distribution b satisfies b = δ0 or
(.). There exists ε1 > 0, large enough, such that for any ε ∈ (ε1,+∞)
the steady state (Fε,Mε) is unique. There also exist some constants α < 0,
C ≥ 1, η > 0 and ζε → 0 as ε → ∞ such that for any connectivity parameter
ε ∈ (ε1,+∞) and any initial datum 0 ≤ f0 ∈ L1 with mass 1 and such that
‖f0−Fε‖L1 ≤ η/ζε, the (unique, positive and mass conserving) solution f to
the evolution equation (.) satisfies

‖f(t, .)− Fε‖L1 ≤ Ceαt, ∀ t ≥ 0.

Our proof follows a strategy of “perturbation of semigroup spectral gap”
initiated in [7] for studying long time convergence to the equilibrium for the
homogeneous inelastic Boltzmann equation and used recently in [8] for a
neuron network equation. More precisely, we introduce the linearized equa-
tion for the variation functions (g, n, q) = (f,m, p) − (Fε,Mε,Mε) around a
stationary state (Fε,Mε,Mε), which writes

∂tg = −∂xg − a(x, εMε)g − n(t) ε(∂µa)(x, εMε)Fε, (.a)

g(t, 0) = q(t), g(0, x) = g0(x), (.b)
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with

q(t) =

∫ ∞

0

a(x, εMε)g dx+ n(t) ε

∫ ∞

0

(∂µa)(x, εMε)Fε dx (.)

and

n(t) :=

∫ ∞

0

q(t− y)b(dy). (.)

We associate to that linear evolution equation a generator Λε (which acts on
an appropriate space to be specified in the two cases without and with delay)
and its semigroup SΛε

. It turns out that we may split the operator Λε as

Λε = Aε + Bε,

for some α-hypodissipative operator Bε, α < 0, and some bounded and Bε-
power regular operator Aε as defined in [16, 4, 9, 6]. In particular, the
version of the Spectral Mapping Theorem of [9, 6] and the version of the
Weyl’s Theorem of [16, 4, 9, 6] imply that the semigroup SΛε

as a finite
dimensional dominant part. Moreover, the semigroup S∞ being positive, we
may use the Krein-Rutman Theorem established in [9, 6] in order to get
that the stationary state (F∞,M∞,M∞) is unique and exponentially stable.
Using next a perturbative argument developed in [7, 15, 6], we get that the
unique stationary state (Fε,Mε,Mε) is also exponentially stable in the strong
connectivity regime. We conclude the proof of Theorem 1.3 by a somewhat
classical nonlinear exponential stability argument.

This article is organized by the following plan. In Section 2, we prove the
existence and uniqueness of the solution and the stationary state result. In
Section 3, we introduce the strategy and establish Theorem 1.3 in the case
without delay. In section 4, we establish Theorem 1.3 in the case with delay.

2 Existence and the steady state

2.1 Existence of the solution

To conclude the existence of a solution to (.), we are going to apply a fixed
point argument with the benefit of the following lemma.

Lemma 2.1. For any m ∈ L∞([0, T ]) with a corresponding f satisfying
the equation (.), consider the application J : L∞([0, T ]) → L∞([0, T ]),
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J (m)(t) :=
∫ t

0
p(t − y)b(dy), where p(t) =

∫∞

0
a(x, εm(t))f(x, t)dx. Then

there exist T > 0 and 0 < C < 1 such that the estimate

‖J (m1)−J (m2)‖L∞([0, T ]) ≤ C‖m1 −m2‖L∞([0, T ]) (.)

holds for all (m1, m2) ∈ L∞([0, T ]) and for any ε > 0.

Proof of Lemma 2.1. We use the characteristics. For all x ≥ 0, the function
f̃x(t) := f(x+ t, t) satisfies the equation

d

dt
f̃x(t) = −a(x+ t, εm(t))f̃x(t),

which tells that f̃x(t) = f0(x)e
−

∫ t

0
a(s+x,εm(s))ds and thus

f(x, t) = f0(x− t)e−
∫ t

0
a(s+x−t,εm(s))ds, ∀ x ≥ t. (.)

On the other hand, for all t ≥ 0, we note f̃t(x) := f(x, x+ t) satisfying

d

dx
f̃t(x) = −a(x, εm(x+ t))f̃t(x),

and we deduce similarly as before that

f(x, t) = p(t− x)e−
∫ x

0
a(s,εm(s+t−x))ds, ∀ x ≤ t. (.)

We denote fi, i = 1, 2 as the two solutions of the equation
{

∂tfi(x, t) + ∂xfi(x, t) + a(x, εmi(t))fi(x, t) = 0,

fi(0, t) = pi(t) =
∫∞

0
a(x, εmi(t))fi(x, t)dx,

(.)

with the same initial data f0. From (.) and (.), we deduce that

pi(t) =

∫ t

0

a(x, εmi(t))pi(t− x)e−
∫ x

0
a(s,εm(s+t−x))dsdx (.)

+

∫ ∞

t

a(x, εmi(t))f0(x− t)e−
∫ t

0
a(s+x−t,εm(s))dsdx. (.)

Now, we deduce that

J (m1)(t)−J (m2)(t) =

∫ t

0

(p1 − p2)(t− y)b(dy) =

∫ t

0

(H + E)(t− y)b(dy),
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In order to control H , we split it into three parts as H = H1 + H2 + H3,
where

H1 =

∫ t

0

(p1 − p2)(t− x)a(x, εm1(t))e
−

∫ x

0
a(s,εm1(s+t−x))dsdx,

H2 =

∫ t

0

p2(t− x)
(

a(x, εm1(t))− a(x, εm2(t))
)

e−
∫ x

0
a(s,εm1(s+t−x))dsdx,

H3 =

∫ t

0

p2(t− x)a(x,m2(t))
(

e−
∫ x

0
a(s,εm1(s+t−x))ds − e−

∫ x

0
a(s,εm2(s+t−x))ds

)

dx.

It is clear to attain the estimates

‖H1‖L∞([0,T ]) ≤ a1T‖p1 − p2‖L∞([0,T ])

and
‖H2‖L∞([0,T ]) ≤ εa1‖a

′‖∞T‖m1 −m2‖L∞([0,T ]).

To deal with the rest term H3, there exists a constant C such that

∣

∣

∣
e−

∫ x

0
a(s,εm1(s+t−x))ds − e−

∫ x

0
a(s,εm2(s+t−x))ds

∣

∣

∣

≤ C

∫ x

0

|a(s, εm1(s+ t− x))− a(s, εm2(s+ t− x))|ds,

which leads to that

‖H3‖L∞([0,T ]) ≤ εa21‖a
′‖∞

T 2

2
‖m1 −m2‖L∞[0,T ].

From the assumption (.), there exists ε1 large enough such that ε‖a′‖∞ ≤ 1,
for any ε ∈ [ε1,+∞). Denoting η := max{ε1, 1}, we deduce that

‖H‖L∞([0,T ]) ≤ a1T‖p1−p2‖L∞([0,T ])+η(C1T
2+C2T )‖m1−m2‖L∞([0,T ]), (.)

for any ε > 0. On the other hand, we have the term E as

E(t) =

∫ ∞

t

f0(x− t)
(

a(x, εm1(t))e
−

∫ t

0
a(s+x−t,εm1(s))ds

−a(x, εm2(t))e
−

∫ t

0
a(s+x−t,εm2(s))ds

)

dx
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Similarly to the estimates of H , we deduce that

‖E‖L∞([0,T ]) ≤ η(C3T + C4)‖m1 −m2‖L∞([0,T ]). (.)

From the above estimates (.) and (.), it turns out that

‖p1−p2‖L∞([0,T ]) ≤ a1T‖p1−p2‖L∞([0,T ])+η(C1T
2+C ′

2T+C
′
3)‖m1−m2‖L∞([0,T ]),

which implies

‖p1 − p2‖L∞([0,T ]) ≤ ηC‖m1 −m2‖L∞([0,T ]) (.)

when a1T less than 1. Hence, it is clear to conclude from (.) that

‖J (m1)−J (m2)‖L∞([0,T ]) ≤ ηCT‖m1 −m2‖L∞([0,T ]).

By taking T small enough such that ηCT < 1, we attain our conclusion.

Proof of Theorem 1.1. From Lemma 2.1, for any ε > 0, there is a T > 0
which does not depend upon the initial data such that the application J
admits a unique fixed point m(t) on [0, T ] then the corresponding f(t, x) on
[0, T ]× R

d, which is the unique solution to the equation (.), according to
the Banach-Picard fixed point theorem. Iterating on T , we deduce the global
existence and uniqueness of the solution (f,m) to equation (.).

2.2 The stationary problem

Now we present the proof of the steady state in the strong connectivity
regime.

Proof. Step 1. We prove the existence of a solution. We set

A(x,m) :=

∫ x

0

a(y,m)dy, ∀, x,m ≥ 0.

For any m ≥ 0, we can solve the equation (.a), by writing

Fε,m(x) := Tme
−A(x,εm),

where, Tm ≥ 0 is chosen in order that Fε,m satisfies the mass normalized
condition, namely

T−1
m =

∫ ∞

0

e−A(x,εm)dx.
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In order to conclude the existence of a solution, we just have to find a real
number m =Mε such that m = Fε,m(0) = Tm. Equivalently, we need to find
Mε ≥ 0 such that

Φ(ε,Mε) = 1, (.)

where

Φ(ε,m) = mT−1
m := m

∫ ∞

0

e−A(x,εm)dx.

From the assumption (.) of a, there exists x0 ∈ [0,∞) such that
a(x, µ) ≥ a0

2
, for any x ≥ 0, µ ≥ 0, and therefore

a0
2
(x− x0)+ ≤ A(x, µ) ≤ a1x, ∀ x ≥ 0, ∀µ ≥ 0. (.)

We deduce that Φ(ε, .) is a continuous function (from the Lebesgue dom-
inated convergence theorem) and that Φ(0) = 0, Φ(∞) = ∞. From the
intermediate value theorem, we immediately conclude.

Step 2. We prove the uniqueness of the solution in the strong connectivity

regime. Obviously, there exists a unique M∞ := (
∫∞

0
e−A(x,∞)dx)−1 ∈ (0,∞)

such that Φ(∞,M∞) = 1. Moreover, we compute

∂

∂m
Φ(ε,m) =

∫ ∞

0

e−A(x,εm)
(

1−m

∫ x

0

ε∂µa(y, εm)dy
)

dx,

which is continuous as a function of the two variables because of (.). We
then easily obtain that Φ ∈ C1. Since moreover

∂

∂m
Φ(ε,m)|ε=∞ =

∫ ∞

0

e−A(x,∞)dx > 0,

the implicit function theorem implies that there exists ε1 > 0, large enough,
such that the equation (.) has a unique solution for any ε ∈ (ε1,+∞].

3 Case without delay

In this section, we conclude our main result Theorem 1.3 gradually in the
case without delay.
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3.1 Linearized equation and structure of the spectrum

To go one step further, we introduce the linearized equation around the
stationary solution (Fε,Mε). On the variation (g, n), the linearized equation
writes

∂tg + ∂xg + aεg + a′εFεn(t) = 0,

g(t, 0) = n(t) =

∫ ∞

0

(aεg + a′εFεn(t)) dx, g(0, x) = g0(x),

with aε := a(x, εMε), a
′
ε := ε (∂µa)(x, εMε). According to the assumption

(.), there exists ε1 > 0, large enough, such that

∀ ε ∈ (ε1,∞) κ :=

∫ ∞

0

a′εFεdx < 1,

we may define

Mε[g] := (1− κ)−1

∫ ∞

0

aεg dx, (.)

and the linearized equation is then equivalent to

∂tg + ∂xg + aεg + a′εFε Mε[g(t, .)] = 0, (.)

g(t, 0) = Mε[g(t, .)], g(0, x) = g0(x). (.)

By regarding the boundary term as a source term, here we reconsider the
equation as

∂tg = Λεg := −∂xg − aεg − a′εFεMε[g] + δx=0Mε[g], (.)

acting on the space of bounded Radon measures

X :=M1(R+) = {g ∈ (C0(R))
′; supp g ⊂ R+},

endowed with the weak ∗ topology σ(M1, C0).

Theorem 3.1. Assume (.)-(.)-(.)-(.) and define α := −a0/2 < 0.
The operator Λε is the generator of a weakly ∗ continuous semigroup SΛε

acting on X endowed with the weak ∗ topology σ(M1, C0). Moreover, there
exists a finite rank projector ΠΛε,α which commutes with SΛε

, an integer j ≥ 0
and some complex numbers

ξ1, ..., ξj ∈ ∆α := {z ∈ C, ℜe z > α},
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such that on E1 := ΠΛε,αX the restricted operator satisfies

Σ(Λε|E1
) ∩∆α = {ξ1, ..., ξj}

(with the convention Σ(Λε|E1
)∩∆α = ∅ when j = 0) and for any a > α there

exists a constant Ca such that the remainder semigroup satisfies

‖SΛε
(I −ΠΛε,α)‖B(X) ≤ Cae

at, ∀ t ≥ 0.

In order to conclude the spectral gap estimate, we split the operator Λε

as Λε = Aε + Bε defined on X by

Aεg := µεMε[g], µε := δ0 − a′εFε, (.)

Bεg := −∂xg − aεg, (.)

for which can apply the Spectral Mapping Theorem of [9, 6] and the Weyl’s
Theorem of [16, 4, 9, 6]. As in the weak connectivity regime in [10], the
properties of the two auxiliary operators still hold in the strong one.

Lemma 3.2. Assume that a satisfies conditions (.)-(.)-(.). The oper-
ators Aε and Bε satisfy the following properties.

(i) Aε ∈ B(X, Y ), where Y = Cµε ⊂ X with compact embedding.

(ii) SBε
is α-hypodissipative in X.

(iii) The family of operators SBε
∗ AεSBε

satisfies

‖(SBε
∗ AεSBε

)(t)‖X→BV ≤ Ceαt, ∀t ≥ 0.

Then the proof of Theorem 3.1 is a direct consequence of those properties.

3.2 Strong connectivity regime - exponential stability

of the linearized equation

When the network connectivity parameter ε goes to infinity, the linearized
time elapsed operator simplifies

Λ∞g = −∂xg − a(x,∞)g + δx=0M∞[g], (.)

where M∞[g] =
∫∞

0
a(x,∞)g(x)dx. Similarly to the limited case ε = 0 in

[10], the semigroup SΛ∞
is also positive and the operator −Λ∞ is also strong

maximum while the Kato’s inequality still holds in the limited connectiv-
ity. Then we conclude the following evolution estimate benefiting from the
Theorem 3.1.
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Theorem 3.3. There exist some constants α < 0 and C > 0 such that
Σ(Λ∞) ∩∆α = {0} and for any g0 ∈ X, 〈g0〉 = 0, there holds

‖SΛ∞
(t)g0‖X ≤ Ceαt ‖g0‖X , ∀ t ≥ 0. (.)

We extend the exponential stability property in the limited case to the
strong connectivity regime.

Theorem 3.4. There exist some constants ε1 > 0, α < 0 and C > 0 such
that for any ε ∈ [ε1,∞] there hold Σ(Λε) ∩∆α = {0} and

‖SΛε
(t)g0‖X ≤ Ceαt ‖g0‖X , ∀ t ≥ 0, (.)

for any g0 ∈ X, 〈g0〉 = 0.

The proof uses the stability theory for semigroups developed in Kato’s
book [5] and revisited in [7, 15, 6]. Now, we present several results needed
in the proof of Theorem 3.4.

Proof of Theorem 3.4. With the definitions (.), (.) and (.) of Mε, Aε

and Bε, we have

(Bε − B∞)g = (a(x,∞)− a(x, εMε))g

and

(Aε −A∞)g = (Mε[g]−M∞[g]) δ0 − ε(∂µa)(x, εMε)FεMε[g].

From the decay assumption (.), there exists positive ζε → 0, as ε →
+∞, such that |ε∂µa(x, µMε)| < ζε, for ε large enough. Together with the
smoothness assumption (.), we deduce that

‖Bε − B∞‖B(X) + ‖Aε −A∞‖B(X) ≤ C ζε. (.)

In the strong connectivity regime, the eigenprojector Πε satisfies similarly
that

‖Πε −Π∞‖B(X) < 1.

From the classical result [5, Section I.4.6] (or more explicitly [15, Lemma 2.18]),
we deduce that there exists ξε ∈ ∆α such that

Σ(Λε) ∩∆α = {ξε}, ξε is a simple eigenvalue,

for any ε ∈ [ε1,+∞] (up to take a larger real number ε1 > 0). We conclude
by observing that ξε = 0 because 1 ∈ X ′ and Λ∗

ε1 = 0 (which is nothing but
the mass conservation).

12



3.3 Strong connectivity regime - nonlinear exponential

stability

Now, we focus on the nonlinear exponential stability of the solution to the
evolution equation (.) in the case without delay. We start with an auxiliary
result. We define the function Φ : L1(R+)× R → R by

Φ[g, µ] :=

∫ ∞

0

a(x, εµ)g(x) dx− µ.

We denote byW1 the optimal transportation Monge-Kantorovich-Wasserstein
distance on the probability measures set P(R+) associated to the distance
d(x, y) = |x− y| ∧ 1, or equivalently defined by

∀ f, g ∈ P(R+), W1(f, g) := sup
ϕ,‖ϕ‖

W1,∞≤1

∫ ∞

0

(f − g)ϕ.

Lemma 3.5. Assume (.). There exists ε1 > 0 and for any ε ∈ (ε1,+∞)
there exists a function ϕε : P(R) → R which is Lipschitz continuous for the
weak topology of probability measures and such that µ = ϕε[g] is the unique
solution to the equation

µ ∈ R+, Φ(g, µ) = 0.

Proof of Lemma 3.5. Step 1. Existence. For any g ∈ P(R) we have
Φ(g, 0) > 0 and for any g ∈ P(R) and µ ≥ 0, we have

Φ(g, µ) ≤ ‖a‖L∞ − µ,

so that Φ(g, µ) < 0 for µ > ‖a‖L∞. By the intermediate value theorem and
the continuity property of Φ, for any fixed g ∈ P(R+) and ε ≥ 0, there exists
at least one solution µ ∈ (0, ‖a‖L∞ ] to the equation Φ(g, µ) = 0.

Step 2. Uniqueness and Lipschitz continuity. Fix f, g ∈ P(R+) and consider
µ, ν ∈ R+ such that

Φ(f, µ) = Φ(g, ν) = 0.

We have

ν − µ =

∫ ∞

0

a(x, εν)(g − f) +

∫ ∞

0

(a(x, εν)− a(x, εµ))f,
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with
∣

∣

∣

∫ ∞

0

a(x, εν)(g − f)
∣

∣

∣
≤ ‖a(·, εν)‖W 1,∞ W1(g, f),

and

∣

∣

∣

∫ ∞

0

(

a(x, εν)− a(x, εµ)
)

f
∣

∣

∣
≤ ‖a(·, εν)− a(·, εµ)‖L∞ ≤ ζε|µ− ν|.

We then obtain

|µ− ν| (1− ζε) ≤ ‖a(·, εν)‖W 1,∞ W1(g, f), (.)

and we may fix ε1 > 0 such that 1 − ζε1‖∂µa‖L∞ ∈ (0, 1), ε ∈ [ε1,+∞]. On
the one hand, for f = g, we deduce that µ = ν and that uniquely defines the
mapping ϕε[g] := µ. On the other hand, the function is Lipschitz continuous
because of (.).

We also recall the following classical Gronwall’s type lemma, with the
proof referred to [10].

Lemma 3.6. Assume that u ∈ C([0,∞);R+) satisfies the integral inequality

u(t) ≤ C1e
at u0 + C2

∫ t

0

ea(t−s)u(s)2 ds, ∀ t > 0,

for some constants C1 ≥ 1, C2, u0 ≥ 0 and a < 0. Under the smallness
assumption

a+ 2C2u0 < 0,

there holds

u(t) ≤
(

1 +
C1u0C2

|a+ 2C2u0|

)

C1 e
at u0, ∀ t ≥ 0.

We come back to the proof of our main result Theorem 1.3 in the case
without delay.

Proof of Theorem 1.3 in the case without delay. We split the proof into two
steps.
Step 1. New formulation. We start giving a new formulation of the solutions
to the evolution and stationary equations in the strong connectivity regime
ε ∈ [ε1,∞), where ε1 is defined in Lemma 3.5. For a given initial datum
0 ≤ f0 ∈ L1(R+) with unit mass the solution f ∈ C([0,∞);L1(R+)) to the

14



evolution equation (.) and the solution Fε to the stationary equation (.)
clearly satisfy

∂tf + ∂xf + a(εϕ[f ])f = 0, f(t, 0) = ϕ[f(t, ·)],

∂xF + a(εM)F = 0, F (0) =M = ϕ[F ],

where here and below the ε and x dependency is often removed without risk
of misleading.

We introduce the variation function g := f − F which satisfies the PDE

∂tg = −∂xg − a(εM)g − εa′(εM)F M[g]−Q[g] (.)

with

Q[g] := a(εϕ[f ])f − a(εϕ[F ])F − a(εϕ[F ])g − εa′(εϕ[F ])F M[g],

where M = Mε is defined in (.). The above PDE is complemented with
the boundary condition

g(t, 0) = ϕ[f(t, ·)]− ϕ[F ],

and we may write again

ϕ[f ]− ϕ[F ] = M[g] +Q[g], Q[g] := 〈Q[g]〉.

As a consequence, we have proved that the variation function g satisfies the
equation

∂tg = Λεg + Z[g], Z[g] := −Q[g] + δ0Q[g]. (.)

Step 2. The nonlinear term. On the one hand, we obviously have

〈Z[g]〉 = 0, ∀ g ∈M1(R+). (.)

On the other hand, in order to get an estimate on the nonlinear term Z[g],
we introduce the notation

ψ(u) = a(x, εmu)fu,

where, for some fixed g ∈ P(R+), 〈g〉 = 0, we have set

f := F + g, fu := uf + (1− u)F, mu := ϕ[fu].

15



We first notice that ψ(0) = a(εϕ[F ])F and ψ(1) = a(εϕ[f ])f . Second, we
have

ψ′(u) = a′ε(mu)fum
′
u + aε(mu)g. (.)

In order to compute m′
u, we differentiate with respect to u the identity

mu =

∫ ∞

0

aε(mu)fudx,

and we have

m′
u =

∫ ∞

0

a′ε(mu)fudxm
′
u +

∫ ∞

0

aε(mu) gdx,

which implies

m′
u =

(

1−

∫ ∞

0

a′ε(mu)fudx
)−1

∫ ∞

0

aε(mu) gdx. (.)

We may thus observe that m′
0 = M[g], so that ψ′(0) = a′ε(M)FMε[g] +

aε(M)g, and therefore

Q[g] = ψ(1)− ψ(0)− ψ′(0).

Third, from (.), we have

ψ′′(u) = a′′ε(mu)fu (m
′
u)

2 + 2a′ε(mu)gm
′
u + a′ε(mu)fum

′′
u,

and from (.), we have

m′′(u) = 2
(

1−

∫ ∞

0

a′εfu

)−2
∫ ∞

0

aεg

∫ ∞

0

a′εg

+2
(

1−

∫ ∞

0

a′εfu

)−3
∫ ∞

0

a′′εf
(

∫ ∞

0

aεg
)2

.

From (.), it is clearly that there exists ηε → 0, as ε → +∞, such that
‖a′′ε‖ < ηε for ε large enough. Then in the strong connectivity regime ε ∈
[ε1,+∞), ζε1 < 1, we get the bound

‖ψ′′(u)‖X ≤ ‖a′′ε‖∞ |m′
u|

2 + 2‖a′ε‖∞‖g‖X|m
′
u|+ ‖a′ε‖∞ |m′′

u|

≤
ηε‖a‖2∞
(1− ζε)2

‖g‖2X + 2
ζε‖a‖∞
1− ζε

‖g‖2X

+2
ζ2ε‖a‖∞
(1− ζε)2

‖g‖2X + 2
ηεζε‖a‖∞
(1− ζε)3

‖g‖2X

≤ (ηε + ζε)K ‖g‖2X,
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for some constant K ∈ (0,∞). Using the Taylor expansion

Q[g] = ψ(1)− ψ(0)− ψ′(0) =

∫ 1

0

(1− u)ψ′′(u)du,

we then obtain

‖Z[g]‖X ≤ 2‖Q[g]‖X ≤

∫ 1

0

(1− u)‖ψ′′(u)‖Xdu ≤ C ‖g‖2.

Step 3. Decay estimate. Thanks to the Duhamel formula, the solution g to
the evolution equation (.) satisfies

g(t) = SΛε
(t)(f0 − F ) +

∫ t

0

SΛε
(t− s)Z[g(s)] ds.

Using Theorem 3.4 and the second step, we deduce

‖g(t)‖X ≤ C eαt ‖g0‖X +

∫ t

0

C eα(t−s) ‖Z[g(s)]‖X ds

≤ C eαt ‖g0‖X + C (ηε + ζε)K

∫ t

0

eα(t−s) ‖g(s)‖2X ds,

for any t ≥ 0 and for some constant C ≥ 1, α < 0, independent of ε ∈
[ε1,+∞). Observing that ‖g(t)‖X = ‖g(t)‖L1 ∈ C([0,∞), we conclude
thanks to Lemma 3.6.

4 Case with delay

This section is devoted to the proof of our main result, Theorem 1.3, in
the case with delay by following the same strategy as in the case without
delay but adaptation the functional framework. We have already proved
in Theorem 1.2 the existence of a unique stationary solution (Fε,Mε) in the
strong connectivity regime and we may then focus on the evolution equation.

4.1 Linearized equation and structure of the spectrum

In order to write as a time autonomous equation the linearized equation (.)-
(.)-(.), we introduce the following intermediate evolution equation on a
function v = v(t, y)

∂tv + ∂yv = 0, v(t, 0) = q(t), v(0, y) = 0, (.)
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where y ≥ 0 represent the local time for the network activity. That last
equation can be solved with the characteristics method

v(t, y) = q(t− y)10≤y≤t.

Therefore, equation (.) on the variation n(t) of network activity writes

n(t) = D[v(t)], D[v] :=

∫ ∞

0

v(y)b(dy),

and then equation (.) on the variation q(t) of discharging neurons writes

q(t) = Oε[g(t), v(t)],

with
Oε[g, v] := Nε[g] + κε D[v],

Nε[g] :=

∫ ∞

0

aε(Mε)g dx, κε :=

∫ ∞

0

a′ε(Mε)Fε dx.

As a consequence, we may rewrite the linear system (.)-(.)-(.), as the
autonomous system

∂t(g, v) = Lε(g, v), (.)

where the operator Lε = (L 1
ε ,L

2
ε ) is defined by

L
1
ε (g, v) := −∂xg − aεg − a′εFεD[v] + δx=0Oε[g, v],

L
2
ε (g, v) := −∂yv + δy=0Oε[g, v],

in the space
X = X1 ×X2 :=M1(R+)×M1(R+, µ)

with µ(x) = e−δx and δ > 0 is the same as in the condition (.).

Theorem 4.1. Assume (.)-(.)-(.)-(.) and (.). The conclusions of
Theorem 3.1 holds true with α := max{−a0/2,−δ} < 0.

The result follows from the Spectral Mapping theorem and the Weyl’s
Theorem established in [9, 6] by introducing a convenient splitting of the
operator Lε. More precisely, we write Lε = Aε + Bε with

Bε(g, v) =

(

B1
ε(g, v)

B2
ε(g, v)

)

=

(

−∂xg − aεg
−∂yv

)
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and

Aε(g, v) =

(

A1
ε(g, v)

A2
ε(g, v)

)

=

(

−a′εFεD[v] + δx=0Oε[g, v]
δy=0Oε[g, v]

)

.

Taking Y = (Cδ0 + BV (R+)) × Cδ0 ⊂ X, the operators Aε and Bε possess
the same properties as in Lemma 3.2.

4.2 Strong connectivity regime - exponential stability

of the linearized equation

When the network connectivity parameter goes to the limit, ε = +∞, the
linearized operator simplifies into

L∞

(

g
v

)

=

(

−∂xg − a(x,∞)g + δx=0O∞[g, v]
−∂yv + δy=0O∞[g, v]

)

, (.)

where O∞[g, v] = N∞[g] =
∫∞

0
a(x,∞)g(x)dx. From the Theorem 3.3 and

the Duhamel formula

v(t) = SB2
∞
(t)v0 +

∫ t

0

SB2
∞
(t− s)A2

∞

(

g(s), v(s)
)

ds,

the evolution estimate holds for the second component of the operator Lε.

Theorem 4.2. There exist some constants α < 0 and C > 0 such that
Σ(L∞) ∩∆α = {0} and for any (g0, v0) ∈ X, 〈g0〉 = 0, there holds

‖SL∞
(t)(g0, v0)‖X ≤ Ceαt ‖(g0, v0)‖X , ∀ t ≥ 0. (.)

Then we extend the geometry structure of the spectrum of the linearized
time elapsed equation to the strong connectivity regime taking delay into
account.

Theorem 4.3. There exists some constants ε1 > 0, C ≥ 1 and α < 0 such
that for any ε ∈ [ε1,+∞] there holds Σ(Lε) ∩∆α = {0} and

‖SLε
(t)(g0, v0)‖X ≤ Ceαt‖(g0, v0)‖X , (.)

for any (g0, v0) ∈ X such that 〈g0〉 = 0.
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Proof. Similarly, we proceed exactly as in the proof of Theorem 3.4 and de-
duce the continuity of the operatorLε to ε in the strong connectivity regime,
with whose help, we conclude that (see also again [15])

Σ(Lε) ∩∆α = {ξε},

with |ξε| ≤ O(ζε) and ξε is algebraically simple. We observe that

L
∗
ε

(

ϕ
ψ

)

=

(

∂xϕ− aεϕ+ aε(ϕ(0) + ψ(0))
∂yψ + κεb ψ(0) + κεb ϕ(0)− b

∫

a′εFε ϕ dx

)

,

from which we deduce that L ∗(1, 0) = 0. Then 0 ∈ Σ(L ∗
ε ) and ξε = 0.

Moreover, the orthogonality condition 〈g0〉 = 〈(g0, v0), (1, 0)〉X,X′ = 0 implies
that the exponential estimate (.) holds.

4.3 Strong connectivity regime - nonlinear exponential

stability

We finally come back on the nonlinear problem and we present the proof of
the second part of our main result for the case with delay.

Proof of Theorem 1.3 in case with delay. We write the system as

∂tf = −∂xf − aε(D[u])f + δ0P[f,D[u]]

∂tu = −∂yu+ δ0P[f,D[u]],

with

P[f,m] =

∫

a(m)f, D[u] =

∫

bu.

We recall that the steady state (F, U), U :=M1y≥0, satisfies

0 = −∂xF − aε(M)F + δ0M

0 = −∂yU + δ0M, M = D[U ] = P[F,D[U ]].

We introduce the variation g := f − F and v = u− U . The equation on g is

∂tg = −∂xg − aε(D[u])f + aε(M)F + δ0(P[f,D[u]]− P[F,D[U ]])

= −∂xg − aε(M)g − a′εFD[v]−Q[g, v] + δ0O[g, v] + δ0Q[g, v]

= L
1
ε (g, v) + Z1[g, v],
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with

Q[g, v] := aε(M)F − aε(D[u])f + aε(M)g + a′εFD[v]

= Φ(0)− Φ(1) + Φ′(0),

where Φ(k) = aε(D[k u+ (1− k)U ])(k f + (1− k)F ) and Q[g, v] = 〈Q[g, v]〉,
Z1[g, v] := −Q[g, v] + δ0Q[g, v]. The equation on v is

∂tv = −∂yv + δ0(P[f,D[u]]− P[F,D[U ]])

= −∂yv + δ0O[g, v] + δ0Q[g, v]

= L
2
ε (g, v) + Z2[g, v], Z2[g, v] := δ0Q[g, v].

We then write the associated Duhamel formula

(g(t), v(t)) = SLε
(t)(g0, v0) +

∫ t

0

SLε
(t− s)Z[g(s), v(s)] ds.

Because ‖Z[g, v]‖X ≤ C ‖(g, v)‖2X we may conclude as in the proof of Theo-
rem 1.3.
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