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Introduction

A fundamental problem in theoretical neurosciences is the inverse problem of source localization, which aims
at locating the sources of the electric activity of the functioning human brain using measurements usually
acquired by non-invasive imaging techniques, such as the electroencephalography (EEG). EEG measures
the effect of the electric activity of active brain regions through values of the electric potential furnished by
a set of electrodes placed at the surface of the scalp [3] and serves for clinical (location of epilepsy foci) and
functional brain investigation. The inverse source localization problem in EEG is influenced by the electric
conductivities of the several head tissues and mostly by the conductivity of the skull. The human skull is
a bony tissue consisting of compact and spongy bone compartments, whose shape and size vary over the
age and the individual’s anatomy making difficult to accurately model the skull conductivity.

1. Physical formulation

Under the quasi-static approximation for the EEG case, Maxwell’s equations implies:

∇× E = 0 and ∇ · J = 0

for the electric fields E and the current density J. The first, deduce that E = −∇U , while dividing the current

density J into the ohmic current σE and the source current (also called primary current) JP as: J = σE + JP

leads to our general model for the electric potential U in terms of conductivity Poisson equation with source

term in divergence form:
∇ ·
(
σ(r)∇U

)
= ∇ · JP(r) := S (r) in R3

where σ(r) ∈ R be the real valued (isotropic assumption) conductivity of the medium at location r.

Modeling the primary current JP as the result of the superposition of Q pointwise dipolar sources, leads to:

∇ ·
(
σ∇U

)
=

Q∑
q=1

pq · ∇δCq
in R3 , Cq ∈ R3

where pq is the moment of the source and δCq
is the Dirac distribution with mass at Cq.

∇ ∼ grad , ∇· ∼ div , ∇× ∼ curl

3. Data, boundary conditions and expansions

We solve the conductivity estimation problem from the available EEG partial boundary data:{
U2 = gEEG , pointwise values on S2 at electrode locations

∂nU2 = 0, no current flux outside the head

while the source term is assumed to be already estimated, with the solution U0 in Ω0, being expressed as

the convolution of the source term S (r) with the fundamental solution (Green formula):

U0(r) =
Q∑
q=1

< pq, r− Cq >

4πσ0|r− Cq|3

The source activity U0 and the EEG data gEEG are expanded on spherical harmonics basis:

U0(r) =
∑
k ,m

βkmr
−(k+1)Ykm(θ, φ) , r ∈ Ω0 \ {Cq}

gEEG =
∑
k ,m

gkmYkm(θ, φ), where k ∈ Z+, m ∈ Z, and − k ≤ m ≤ k

with the later being transmitted over the spheres S1, S0 with the boundary conditions:{
Ui−1 = Ui on Si

σi−1∂nUi−1 = σi∂nUi on Si

5. Computational algorithm and improvements

We performed numerical analysis of the inverse conductivity estimation problem, using measurements
and sources activities expanded on spherical harmonics basis (gkm, bkm) simulated by the FindSources3D

(FS3D [4]) software, while our simulations were performed in MATLAB.

The EEG data are subject to ambient noise and measurements errors, while the estimation of the

sources is not perfect. In our simulation, the inverse conductivity estimation problem is sensitive to such

perturbations, forcing us to decrease the tolerance of our reconstruction algorithm to tol = 5e−2. As a

result a significant amount of spherical harmonic coefficients is rejected, but the conductivity is still quite well
estimated with a small number of them.

Numerical conductivity estimation results are shown in Fig. 1, 2, 3, where the mean value σ̄est of the estimated

σest,k is the one to be compared with the actual conductivity value σact.

Fig.1: βkm from transmitted gkm.

Fig.3: βkm from transmitted gkm, with noise.

Fig.2: βkm from recovered sources by FS3D.

Fig.4: Conductivity estimation errors for the three

used source terms.

2. Mathematical formulation: Simplified model

We consider the inverse skull conductivity estimation problem using partial boundary EEG data, in

the preliminary case of an homogeneous skull conductivity. This is a version of the many inverse conductivity

issues still under study nowadays [1]. The following problem is thus examined:

I In a three layer spherical head model

I Made of three concentric nested
spheres, each of them modelling the

scalp Ω2, skull Ω1 and brain Ω0 tissues

I The head is assumed to be piecewise
homogeneous: each of the three layers

is supposed to have a constant conduc-

tivity

σ∣∣
Ωi

= σi , 0 < σ1 < min(σ0, σ2)

I The sources Cq are modelled as dipolar

sources JP =
Q∑
q=1

pqδCq
, Cq ∈ Ω0

In each domain Ωi , the electric potential satisfies the following equations:{
σ0∆U = ∇ · JP in Ω0

∆U = 0 in Ω1 and Ω2

with U0, U1, U2 being the solution in Ωi .

We also assume that the conductivities of the brain σ0 and the scalp σ2 are known (currently σ0 = σ2), while

the conductivity to be recovered is the one of the intermediate spherical layer, the skull σ1.

4. Uniqueness properties and reconstruction algorithm

Linear algebra computations allow us to establish uniqueness properties and a reconstruction algorithm

for the skull conductivity σ1. The data transmission

[
Ui

∂nUi

]
from a spherical interface Si to

[
Ui+1

∂nUi+1

]
of a

neighbouring spherical interface Si+1 can be expressed by the following general matrix equation.

Tk(r , σ) =

[
1 0

0 σ

] [
r k r−(k+1)

kr k−1 −(k + 1)r−(k+2)

]
=

[
1 0

0 σ

]
Tk(r)

As det(Tk) = −(2k + 1)σr−2 6= 0 the inverse transmission matrix T−1
k (r , σ) is also defined. Computing

the data transmission over the several spherical interfaces the spherical harmonics coefficients of the EEG

measurements gkm can be linked to the spherical harmonic coefficients of the source term βkm as:

βkm − [0, 1]T−1
k (r0, σ0)Tk(r0, σ1)T−1

k (r1, σ1)Tk(r1, σ2)T−1
k (r2, σ2)

[
gkm

0

]
= 0

Solving this equation in terms of σ1, leads to a polynomial equation P(σ1) = 0 of deg(Pσ1
) = 2 in σ1,

with dependences: P = Pk ,r0,r1,r2,σ0,σ2
.

Let σestk be the one of the two roots of the polynomial P(σ1) for the k th spherical harmonic basis. The

unique admissible solution σ1k , is the solution which satisfies the constraint 0 < σestk < min(σ0, σ2) and

make |P | achieving its minimal value (|P | = 0), up to a tolerance value tol.

As the reconstruction of the conductivity σ1 does not depend on the spherical harmonics index m, in order

to increase the robustness of our reconstruction algorithm, the following normalization is applied over

the different spherical harmonics index k :
gk =

∑
m
gkmβ̄km

βk =
∑
m
βkmβ̄km =

∑
m
|βkm|2

6. Further work

I Stability properties and error estimates of the inverse problem.

I Robustness analysis of the recovery algorithm and dependence on the number of sources.

I Simultaneous recovery of source term and skull conductivity. First, step with known quantity of

sources Q and locations Cq.

I Influence of the known parameters of the problem on the estimation.

I Modeling the spongiosa layer and estimating its conductivity.

I Comparison of results with more realistic head models and spongiosa layer: joint work in progress.

I Conductivity estimations using additional magnetoencephalography data.
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