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Abstract

Differential Algebraic Equations (DAEs) are a general and implicit form of dif-
ferential equations. This mathematical object is often used to represent physical
systems such as dynamics of solid or chemical interactions. These equations are
different from Ordinary Differential Equations (ODEs) in sense that some of the
dependent variables occur without their derivatives. These variables are called
“algebraic variables”, which means free of derivatives and not with respect to
abstract algebra.
Validated simulation of ODEs has recently known different developments such
as guaranteed Runge-Kutta integration schemes, explicit and implicit ones. Not
so far from an ODE, solving a DAE consists of searching a consistent initial value
and computing a trajectory. Nevertheless, DAEs are in generally much more
difficult to solve than ODEs.
In this paper, we focus on the semi-explicit form of index one, called Hessenberg
index-1 form. We propose a validated way to simulate this kind of differential
equations. Finally, our method is applied to different examples in order to show
its efficiency.
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Chapter 1

Motivations

Our recent results on validated simulation of Ordinary Differential Equations (ODEs)
with implicit Runge-Kutta schemes [2] lead us to go up in complexity of the kind
of differential equations we want to solve. Indeed, we are able to simulate ODEs
with interval parameters which is one of the requirements for our solver of Differential
Algebraic Equation (DAEs). Indeed, a DAE can be seen as a parametrized ODE. We
currently focus on DAE in Hessenberg index-1 form, that is{

ẏ = f(t,x,y)
0 = g(t,x,y)

(1.1)

with f : Rn × Rm × R 7→ Rn and g : Rn × Rm × R 7→ Rm.
In Equation (1.1), y ∈ Rn is the vector of state variables and x ∈ Rm is the

vector of algebraic variables (without an expression for its derivative) and ẏ stands
for the time derivative of y. This kind of DAE is common and used by a majority of
simulation tools as Simulink and Modelica-like software. In this paper, we will present
a validated method to solve initial value problem given in the form of a DAE.

The article is organized as followed. In Section 2, a short description of our ODE
solver and by the same way a state of the art of validated simulation of ODEs will be
done. In Section 3, we will perform a review of literature about few existing validated
approaches for DAEs. In Section 4, we present in details our method. In Section 5,
we apply our solver on three different examples: a basic problem, a problem with
exact solution known and the classic pendulum problem. In Section 6, we present
how to take into account additional constraints in IVP for DAE before concluding in
Section 7.

Notations

ẏ denotes the time derivative of y, i.e., dy
dt

. a denotes a real values while a represents
a vector of real values. [a] represents an interval values and [a] represents a vector of
interval values. The midpoint of an interval [x] is denoted by m([x]). The variables y
is assigned to the state variables of the system, when x is reserved for the algebraic
variables and t obviously kept for the time. The functions f and g are used to represent
a differential algebraic equation system, with f the function given the time derivative
of state variable and g the constraint on the algebraic variable. We also denote y(t, yj)
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the exact solution of a differential equation at time t with a known value yj at time tj ,
in our case it implies that t > tj . Sets will be represented by calligraphic letter such
as X or Y.



Chapter 2

Validated simulation of
Ordinary differential
equations

A simulation of an ordinary differential equation consists on a discretization of time
and an iterative and approximative computation of the state of the system, by the
help of an integration scheme. In details, an integration scheme, starting from an
initial value yn at time tn and a finite time horizon h, the stepsize, produces an
approximation yn+1 at time tn+1, with tn+1 − tn = h, of the solution y(tn+1; yn). In
this section, we briefly recall how a validated simulation of an ODE is computed. We
refer to [26] for a more detailled presentation. The notations follow [26].

2.1 Ordinary differential equations

An initial value problem (IVP) defined through an ODE is defined by:

ẏ = f(t,y) with y(0) = y0, y0 ∈ Rn and t ∈ [0, tend] . (2.1)

In the classical approach [24, 26] to define validated method for IVP, each step of
an integration scheme consists in two steps: a priori enclosure and solution tightening.
Starting from a valid enclosure [yj ] at time tj , the two following steps are applied

Step 1. Compute an a priori enclosure [ỹj ] of the solution using Banach’s theorem
and the Picard-Lindelöf operator. This enclosure has the three major properties:

• y(t, [yj ]) is guaranteed to exist for all t ∈ [tj , tj+1], i.e., along the current
step, and for all yj ∈ [yj ].

• y(t, [yj ]) ⊆ [ỹj ] for all t ∈ [tj , tj+1].

• the step-size hj = tj+1 − tj is as larger as possible in terms of accuracy
and existence proof for the IVP solution.

Step 2. Compute a tighter enclosure of [yj+1] such that y(tj+1, [yj ]) ⊆ [yj+1]. The
main issue in this phase is how to counteract the well known wrapping effect
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[25, 24, 26]. This phenomenon appears when we try to enclose a set with an
interval vector (geometrically a box). The arising overestimation creates a false
dynamic for the next step, and, with accumulation, can lead to intervals with
an unacceptably large width.

The different enclosures computed during one step are shown on Figure 2.1.

t

y(t)

[ỹj ]

[yj ]

[yj+1]

tj tj+1
hj

Figure 2.1: Enclosures appeared during one step

Some algorithms useful to perform these two steps are described in the following.

2.2 A priori solution enclosure

In order to compute the a priori enclosure, we use our interval version of Picard-
Lindelöf operator. This operator is based on the following theorem.

Theorem 2.2.1 (Banach fixed-point theorem) Let (K, d) a complete metric space
and let g : K → K a contraction that is for all x, y in K there exists c ∈]0, 1[ such
that

d (g(x), g(y)) ≤ c · d(x, y) ,

then g has a unique fixed-point in K.

In context of IVP, we consider the space of continuously differentiable functions
C0([tj , tj+1],Rn) and the Picard-Lindelöf operator

Pf (y) = t 7→ yj +

∫ t

tn

f(s,y(s))ds . (2.2)

Note that this operator is associated to the integral form of Equation (2.1). So the
solution of this operator is also the solution of Equation (2.1).
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The Picard-Lindelöf operator is used to check the contraction of the solution on
an integration step in order to prove the existence and the uniqueness of the solution
of Equation (2.1) as stated by the Banach’s fixed-point theorem. Furthermore, this
operator is used to compute an enclosure of the solution of IVP over a time interval
[tj , tj+1].

2.2.1 Rectangular method for the a priori enclosure

Using interval analysis and with a first order integration scheme we can define a simple
interval Picard-Lindelöf operator such that

Pf ([r]) = [yj ] + [0, h] · f([r]), (2.3)

with h = tj+1 − tj the step-size. Theorem 2.2.1 says that if we can find [r] such that
Pf ([r]) ⊆ [r] then the operator is contracting and Equation (2.1) has a unique solution.
Furthermore,

∀t ∈ [tj , tj+1], {y(t; yj) : ∀yj ∈ [yj ]} ⊆ [r],

then [r] is the a priori enclosure of the solution of Equation (2.1).

Remark that the operator defined in Equation (2.3) can also define a contractor
(in a sens of interval analysis [12]) on [r] after the contraction proved for Pf such that

[r]← [r] ∩ [yj ] + [0, h].f([r]) . (2.4)

Hence, we can reduce the width of the a priori enclosure in order to increase the
accuracy of the integration.

The operator defined in Equation (2.3) and its associated contractor defined in
Equation (2.4) can be defined over a more accurate integration scheme (at the condition
that it is a guaranteed scheme like the interval rectangle rule). For example, the
evaluation of

∫ t
tj
f(s)ds can be easily improved with a Taylor or a Runge-Kutta scheme

(see [2]).

2.2.2 A priori enclosure with Taylor series

Interval version of Taylor series for ODE integration gives

[yj+1] ⊂
N∑
k=0

f [k]([yj ])h
k + f [N+1]([ỹj ])h

N+1, (2.5)

with f [0] = [yj ], f
[1] = f([yj ]),. . . , f [k] = 1

k
( ∂f

[k−1]

∂y
f)([yj ]).

By replacing h with interval [0, h], this scheme becomes an efficient Taylor Picard-
Lindelöf operator, with a parametric order N such that

yj+1([tj,tj+1]; [r]) = yj +

N∑
k=0

f [k]([yj ])[0, h
k] + f [N+1]([r])[0, hN+1] . (2.6)

In consequence, if [r] ⊇ yj+1 ([tj , tj+1], [r]), then Equation (2.6) defined a contraction
map and Theorem 2.2.1 can be applied.

In our tool, we use it at order 3 by default, it seems to be a good compromise
between efficiency and computation quickness.
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Note that the scheme defined in Equation (2.5) is usually evaluated in a centered
form for a more accurate result

[yj+1] ⊂
N∑
k=0

f [k](ŷj)h
k + f [N+1]([ỹj ])h

N+1 +

(
N∑
k=0

J(f [k], [yj ])h
i)([yj ]− ŷj

)
, (2.7)

with ŷj ∈ [yj ] J(f [k], [yj ]) is the Jacobian of f [k] evaluated at [yj ]. This scheme
can also be combined with a QR-factorization to increase stability and counteract
wrapping effect [26]. These two “tricks”, with a strong computational cost, can be
avoided by using the affine arithmetic.

Picard-Lindelöf operator, as defined in Equation (2.6), gives an a priori enclosure
[r], using Theorem 2.2.1. Picard-Lindelöf operator is proven to be contracting on [r],
we can then use this operator to contract the box [r] till a fixpoint is reached

In our tool, the default contractor uses a Taylor expansion as follow

[r] ∩ yj +

N∑
k=0

f [k]([yj ])[0, h
k] + f [N+1]([r])[0, hN+1]

It is very important to contract as much as possible this box [r] because the Taylor
remainder is function of [r] and the step-size is function of the Taylor remainder.

2.3 Tighter enclosure and truncation error

Suppose that Step 1 has been done for the current integration step and that we dispose
of the enclosure [ỹj ] such that

y(t, tj , [yj ]) ⊆ [ỹj ] ∀t ∈ [tj , tj+1] .

In particular, we have y(tj+1, tj , [yj ]) ⊆ [ỹj ]. The goal of Step 2 is thus to compute
the tighter enclosure [yj+1] such that

y(tj+1, tj , [yj ]) ⊆ [yj+1] ⊆ [ỹj ] .

One way to do that consists in computing an approximate solution
yj+1 ≈ y(tj+1, tj , [yj ]) with an integration scheme Φ(tj+1, tj , [yj ]), and then the as-
sociated local truncation error LTEΦ(t, tj , [yj ]). Indeed, a guaranteed integration
scheme has the property that there exists a time ξ ∈ [tj , tj+1] such that

y(tj+1, tj , [yj ]) ⊆ Φ(tj+1, tj , [yj ]) + LTEΦ(ξ, tj , [yj ]) ⊆ [ỹj ] .

So [yj+1] = Φ(tj+1, tj , [yj ]) + LTEΦ(ξ, tj , [yj ]) is an acceptable tight enclosure.
The guaranteed solution of IVP using interval arithmetic is mainly based on two

kinds of methods to compute Φ:

1. Interval Taylor series methods [25, 24, 5, 26, 22, 36, 13, 23],

2. Interval Runge-Kutta methods [17, 7, 6].

The former is the oldest method used in this context. Indeed, R. Moore [25] already
applied this method in the sixties and until now it is the most used method to solve
Equation (2.1). The latter is more recent, see in particular [7, 6], but Runge-Kutta
methods have many interesting properties, as strong stability, that we would like
to exploit in the context of validated solution of DAEs. The challenge lies in the
computation of LTEΦ.
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2.4 Runge-Kutta methods

To obtain yn+1, a Runge-Kutta method computes s evaluations of f at predetermined
time instants. The number s is known as the number of stages of a Runge-Kutta
method. More precisely, a Runge-Kutta method is defined by

yn+1 = yn + h

s∑
i=1

biki , (2.8)

with ki defined by

ki = f

(
tn + cih,yn + h

s∑
j=1

aijkj

)
. (2.9)

The coefficient ci, aij and bi, for i, j = 1, 2, · · · , s, fully characterize the Runge-Kutta
methods and their are usually synthesized in a Butcher tableau [11] of the form

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

...
. . .

...
cs as1 as2 . . . ass

b1 b2 . . . bs

In function of the form of the matrix A, made of the coefficients aij , a Runge-Kutta
method can be

• explicit, e.g., the classical Runge-Kutta method of order 4 given in Figure 2.2(a).
In other words, the computation of an intermediate ki only depends on the
previous steps kj for j < i. These methods are often the faster for a given
order, but with less properties than the followers;

• diagonally implicit, e.g., a diagonally implicit method of order 4 given in Fig-
ure 2.2(b). In this case, the computation of an intermediate step ki involves
the value ki and so non-linear systems in ki must be solved. Nevertheless, the
structure of this kind of method leads to a faster solving;

• fully implicit, e.g., the Runge-Kutta method with a Lobatto quadrature formula
of order 4 given in Figure 2.2(c). In this last case, the computation of interme-
diate steps involves the solution of a non-linear system of equations in all the
values ki for i = 1, 2, · · · , s. In this class of implicit methods, some of them
have strong properties such as A-stability and stiffly accurate capability.

Local truncature error

Recently, we defined an unified approach to express LTE for explicit and implicit
Runge-Kutta methods. More precisely, for a Runge-Kutta of order p we have

LTE(t,y(ξ)) := y(tn; yn−1)− yn =

hp+1

(p+ 1)!

∑
r(τ)=p+1

α(τ) [1− γ(τ)ψ(τ)]F (τ)(y(ξ)) ξ ∈ [tn, tn+1] (2.10)

with
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Figure 2.2: Different kinds of Runge-Kutta methods

• τ is a rooted tree

• F (τ) is the elementary differential associated to τ

• r(τ) is the order of τ (number of nodes)

• γ(τ) is the density

• α(τ) is the number of equivalent trees

• ψ(τ)

Note that y(ξ) is a particular, and a priori unknown, solution of Equation (2.1) at a
time instant ξ. This solution can be over-approximated using Picard-Lindelöf operator
presented in Section 2.2.

Wrapping effect

Runge-Kutta methods also suffer from the wrapping effect, such as discussed before.
The problem of reducing this latter has been studied in many different ways [28,
27]. One of the most known and effective is the QR-factorization [24]. This method
improves the stability of the Taylor series in the Vnode-LP tool [26]. An other way
is to modify the geometry of the enclosing set (parallelepipeds [16, 25], ellipsoids [28],
convex polygons [31] and zonotopes [34, 8]).

In our work, an efficient affine arithmetic allows us to counteract the wrapping
effect [14, 2].



Chapter 3

Differential Algebraic
Equations

We can distinguish at least two families of DAEs, the fully implicit ones and the
semi-explicit ones, the fully explicit are similar to ODEs.

3.1 Fully implicit DAEs

The first class of differential algebraic equations is the fully implicit ones. It is the
most general representation of a differential system such as:

f(t,y, ẏ, ...) = 0, t0 ≤ t ≤ tend (3.1)

The order of this kind of DAE is defined with respect to the highest order of present
derivatives. For example, if f is function of ẏ and no higher derivatives then f is a 1st

order DAE. If ÿ occurs then f is a 2nd order DAE, and so on. Nevertheless, all DAEs
can be rewritten in DAE of 1st order by increasing the size of the system.

3.2 Semi-explicit DAEs or in Hessenberg form

The second, and the most used DAE form in science and engineering, is the semi-
explicit DAEs, or also called DAEs in Hessenberg form. In this formalism, the index
is a differentiation index [10], that is to say the distance to the related ODE. For
example, the index 1 Hessenberg form is described by:{

ẏ = f(t,x,y)
0 = g(t,x,y)

(3.2)

while the index 2 Hessenberg form is described by:{
ẏ = f(t,x,y)

0 = g(t,x)
(3.3)

In the way that some of dependent variables occur without their derivatives, these
differential systems are different from an ODE with an additive constraint (which are
independent).

11
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3.3 Review of literature

If there exists many tools for solving DAEs in a numerical way (DAETS, Sundials,
Mathematica) and some particular implementation embedded in simulation softwares
(Simulink, Dymola), only few attempts have been done in a guaranteed approach.

We can notice an extension of Valencia-IVP [30], a tool for ODE validated sim-
ulation. The chosen approach starts with an approximation of the solution obtained
by a numerical method (DASSL, DAETS) and try a posteriori to enclose the solution
in a guaranteed way (with a Krawczyk iteration). The validity of this approach is
not proven, in particular the fact that the existence test of the algebraic variable is
separated from the state variable should not lead to a correct solution.

Another method [3] consists to compute the reachable set of DAEs by an error
linearization and the help of zonotopes. This approach seems close to [30], and it
is not clear on some points, such as existence and uniqueness proofs. Moreover, the
results are not sufficiently explained to judge the quality of the method.

An alternative paper dealing with validated solution of DAEs available in the
literature is based on Taylor models [21]. This method starts by computing a high-
order polynomial approximating the solution of the ODE, and after that attempts to
inflate it till validating an inclusion test. The approach presented is then different
than our method. Unfortunately, none of these two latter approaches seems to be
continued.

Finally, and more recently, one important work has been done in [32, 33]. In these
papers, authors present the analysis and the computation of bounds by using i) an
existence and uniqueness test for the solutions of DAEs, based on Hansen-Sengupta,
and ii) sufficient conditions for two functions to enclose lower and upper bounds of
the solution. Another method is presented unifying these two steps. Regrettably, the
algorithms are not sufficiently clearly described to allow a real analysis and compar-
ison. The results presented are also difficult to estimate. Nevertheless, we are able
to make few remarks. Firstly, the presented approach is not completely validated (as
honestly said in the paper). Secondly, if it is well known that Hansen-Sengupta test
is more efficient than Krawczyk one [18], in [32] it is used in non-parametric version
while we advocate to use Krawczyk in parametric version. Indeed, Hansen-Sengupta
requires the solving of a linear interval system, which can be time consuming function
of problem size and done many times at each integration step (till obtain conditions
of Theorem 2.2.1). Moreover, the operator is applied to a non linear function with
state variable as interval parameter, which can be large due to initial state, the use
of a parametric version is then necessary to obtain a sufficiently sharp solution (see
Section 4.1).

It is important to remark that the problem of existence and uniqueness of the
solution is a common issue considered in the literature, whether in the validated ap-
proaches - presented above - or in the numerical field, for which consistent initialization
is one of the main issue [35].



Chapter 4

Our Method for Validated
Simulation of DAE

In this work, we present a method to solve the initial value problems written in index-1
Hessenberg form:{

ẏ = f(t,x,y)
0 = g(t,x,y)

with y(0) ∈ [y0] and x(0) ∈ [x0] . (4.1)

In Section 2.1, we recalled the classical two steps method presented before by Lohner
[24], and used by the community of ODE validated integration. We used the same
approach for our DAE integration method, as [33]. The two steps are:

• Compute an a priori enclosure of all the solution of the DAE on an integration
step [t, t+ h] with a novel Picard-like operator;

• Refine this enclosure at t + h with integration Runge-Kutta scheme and con-
tractors.

In the next subsections, we will present these two steps in details.

4.1 New Picard-like operator

For an ordinary differential equation with interval parameter (similar to differential
inclusion) described by

ẏ = f(t,y,p) with y(0) ∈ [y0] and p ∈ [p] . (4.2)

We have the habit to use the Picard-Lindelöf operator. The Picard-Lindelöf operator,
based on the Theorem 2.2.1 and defined in Equation (2.2), allows one to compute the
a priori enclosure [ỹj ] such that

∀t ∈ [tj , tj+1], {y(t; yj) : ∀yj ∈ [yj ]} ⊆ [ỹj ] .

In the case of a DAE expressed by Equation (4.1), the further issue is to compute the
a priori enclosure [x̃j ] such that

∀t ∈ [tj , tj+1], {x(t; yj) : ∀yj ∈ [yj ]} ⊆ [x̃j ],

under the constraint g(x(t),y(t)) = 0, ∀t ∈ [tj , tj+1].

13
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4.1.1 Analysis of existence and uniqueness

If we assume that ∂g
∂x

is locally reversal, we are theoretically able to find the unique
x = ψ(y) (with the help of the implicit function theorem), and then we can write
ẏ = f(t, ψ(y),y). Finally, we could apply Picard-Lindelöf to f in order to prove
existence and uniqueness of the solution. Of course it is not feasible nor realistic
in general, because ψ is unknown and uncomputable. Anyway, this approach leads us
to the following solution.

We propose a theorem based on Frobenius theorem with a set membership view.
Frobenius theorem is too long to be completely recalled here, but it is available in [15].

Theorem 4.1.1 (Part of Frobenius theorem) Let X and Y be Banach spaces,
and A ⊂ X , B ⊂ Y a pair of open sets. Let F : A × B → L(X ,Y) be a continu-
ously differentiable function of the Cartesian product (which inherits a differentiable
structure from its inclusion into X × Y) into the space L(X ,Y) of continuous linear
transformations of X into Y. A differentiable mapping u : A → B is a solution of the
differential equation

ẏ = F (x, y) (4.3)

if u̇(x) = F (x, u(x)) for all x ∈ A.

Equation (4.3) is completely integrable if for each (x0, y0) ∈ A × B, there is a
neighborhood U of x0 such that Equation (4.3) has a unique solution u(x) defined on
U such that u(x0) = y0.

Theorem 4.1.2 (Banach space version of Implicit Function Theorem) Let X ,
Y,Z be Banach spaces. Let the mapping f : X ×Y → Z be continuously Fréchet differ-
entiable. If (x0, y0) ∈ X×Y, f(x0, y0) = 0, and y 7→ Df(x0, y0)(0, y) is a Banach space
isomorphism from Y onto Z, then there exist neighborhoods U of x0 and V of y0 and
a Fréchet differentiable function g : U → V such that f(x, g(x)) = 0 and f(x, y) = 0 if
and only if y = g(x), for all (x, y) ∈ U × V.

Proposition 4.1.1 (Set membership view of Frobenius) Let A and B two Ba-
nach spaces and g, f two continuously differentiable function of Cartesian product A×B
into the set L(A,B) of continuous linear transformations of A into B, defined by:

ẏ = f(t, x, y) (4.4)

and

g(x, y) = 0 (4.5)

Let X ⊂ A, and Y ⊂ B be a pairs of set. If ∀y ∈ Y, ∃! x ∈ X satisfaying Equation (4.5)
and ∀x ∈ X , ∃! y ∈ Y satisfaying Equation (4.4), simultaneously, then Equation (4.4)
is completely integrable and the solution exists and is unique in Y.

Proof: If ∀y ∈ Y, ∃! x ∈ X : g(x, y) = 0, then the Implicit Function Theorem prove
that there is a unique function x = ψ(y) for all (x, y) ∈ A × B. Then the differential
Equation (4.4) becomes ẏ = f(t, ψ(y), y) with ψ(y) maps Y into X . Finally, the
statement ∀x ∈ X , ∃! y ∈ Y : ẏ = f(t, y, x) implies, with the help of Frobenius
theorem, that there exists a unique mapping solution of Equation (4.4) in Y.
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4.1.2 Adapted to DAEs

A direct translation of Proposition 4.1.1 to our problem gives:

Proposition 4.1.2 Let [ỹ] be a Picard solution of ẏ ∈ f(t, [x̃],y) and [x̃] defined such
that for each y ∈ [ỹ],∃! x ∈ [x̃] : g(x,y) = 0, then ∃! ψ on the neighborhood of [x̃],
and the solution of DAE exists and is unique in [ỹ]. In addition, the algebraic variable
is enclosed by [x̃].

Proof: Direct application of Proposition 4.1.1.

4.1.3 The operator

Finally, with the last Proposition 4.1.2, we define a novel operator Picard-Krawczyk
PK:

If

(
P([ỹ], [x̃])
K([ỹ], [x̃])

)
⊂ Int

(
[ỹ]
[x̃]

)
then ∃! solution of DAE in [ỹ] (4.6)

with

• P a Picard-Lindelöf operator for the differential inclusion ẏ ∈ f([x̃],y)

• K a parametric preconditioned Krawczyk operator for the constraint g(x,y) =
0, ∀y ∈ [ỹ]

In details, the operators are given by:

Picard-Lindelöf operator with Taylor (N = 3):

Pf ([yj ], [xj ], [r], [x̃], h) = [yj ] +

N∑
k=0

f [k]([xj ], [yj ])[0, h
k] + f [N+1]([x̃], [r])[0, hN+1] .

(4.7)
If Pf ([yj ], [xj ], [r], [x̃], h) ⊂ Int([r]) then f is integrable and [yj+1] ⊂ [r].

Parametric preconditioned Krawczyk operator:

Kg([ỹ], [r]) = m([r])− Cg(m([r]),m([ỹ]))−

(C
∂g

∂x
([r], [ỹ])− I)([r]−m([r]))−

C
∂g

∂y
(m([r]), [ỹ])([ỹ]−m([ỹ])) (4.8)

If Kg([ỹ], [r]) ⊂ Int([r]) then for each y ∈ [ỹ] there exists one and only one x ∈ [r] :
g(x,y) = 0.

Parametric preconditioned Krawczyk operator in hybrid form:
An hybrid form [19] is also available:

[s] = Cg(m([r]),m([ỹ])) + C
∂g

∂y
(m([r]), [ỹ])([ỹ]−m([ỹ]))

[s] = [s] ∩ (Cg(m([r]), [ỹ]))

Kg([ỹ], [r]) = m([r])− [s]− (C
∂g

∂x
([r], [ỹ])− I)([r]−m([r]))

If Kg([ỹ], [r]) ⊂ Int([r]) then for each y ∈ [ỹ] there exists one and only one x ∈ [r] :
g(x,y) = 0.
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4.1.4 Algorithm implementing the Picard-Krawczyk op-
erator

We propose an algorithm implementing this Picard-Krawczyk operator to compute
the enclosures of the algebraic and state variables simultaneously in Algorithm 1. The
inputs are the initial estimation for enclosures 0[x̃], 0[ỹ], a tolerancy on LTE tol and
a guessed step size h. The outputs are wheither a success flag with the validated
enclosures 1[x̃], 1[ỹ] and the already computed lte, either a fail flag. We iterate two
times the size of function f in order to prapagate enoughly the inflation.

Algorithm 1 Compute the a priori enclosures

Require: 0[x̃], 0[ỹ], tol, h, iter = 0
1[x̃] = K(0[ỹ],0 [x̃]) // 4.1.3
1[ỹ] = P(0[ỹ],0 [x̃]) // 4.1.3
while (1[x̃] 6⊂0 [x̃]) and (1[ỹ] 6⊂0 [ỹ]) and (iter < 2 ∗ size(f)) do
iter = iter + 1
0[ỹ] =1 [ỹ]± 1%
0[x̃] =1 [x̃]± 1%
1[x̃] = K(0[ỹ],0 [x̃]) // 4.1.3
1[ỹ] = P(0[ỹ],0 [x̃]) // 4.1.3

end while
if (1[x̃] ⊂0 [x̃]) and (1[ỹ] ⊂0 [ỹ]) then // conditions of 4.1.2 obtained

lte = LTE(1[x̃],1 [ỹ]) // 2.4
if lte < tol then // Acceptable lte

return SUCCESS(1[x̃], 1[ỹ], lte)
end if

end if
return FAILED // No enclosures found with the inputs

4.2 Contractors

After the guaranteed enclosures on [t, t+h] obtained, we can contract these enclosures
around t+ h, because obviously x(t+ h) ⊂ [x̃] and y(t+ h) ⊂ [ỹ]. Firstly, it is more
efficient to start by the contraction of the state variable y, which can be strongly
refined by the well chosen integration scheme. The differential inclusion to integrate
is given by: ẏ ∈ f(t, [x̃],y). This differential equation is often stiff (this assumption
will be verified in section 5.1) and has interval coefficient. As demonstrated in [2],
an implicit Runge-Kutta scheme is efficient for this kind of interval parametrized
differential equation. In the family of Implicit Runge-Kutta (IRK), Radau IIA is
one of the more powerful method at order 3 for stiff problem. Its Butcher tableau is
given in Fig. 4.1.

This IRK method attains an order three with two stages, it is fully implicit as
shown in its tableau (Fig. 4.1) and A-stable. The corresponding local truncature error
(lte) can be computed by using the Butcher trees as shown in [2].

Secondly, with a tightened state variable, we are able to refine the algebraic variable
x under the constraint g(t,x,y) = 0, ∀y ∈ [ỹ]. For this task, we combine the Krawczyk
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1/3 5/12 -1/12
1 3/4 1/4

3/4 1/4

Figure 4.1: Butcher Tableau of Radau IIA order 3 (an Implicit Runge-Kutta
method)

operator from Section 4.1 and a forward/backward contractor coming from constraint
programming. The Forward/Backward contractor (also called HC4-Revise [4]) can
contract a box w.r.t. a single constraint such that no solution of the constraint is lost in
the box. Using a tree representation of the constraint for accelerating the contraction,
this contractor isolates every occurrence xi in the expression and performs a natural
evaluation of the corresponding function to contract [xi]. This combination can be
easily done by the contractor programming view of our tool.

Finally, these two obtained contractors are embedded in a fixpoint presented in
Algorithm 2. The inputs of this algotithm are the enclosures and the lte computed
with Algorithm 1. The outputs are the guaranteed enclosures of the state and algebraic
solutions at the end of current time step.

Algorithm 2 Contract the a priori enclosures around solution

Require: [x̃], [ỹ], lte
[xj+1] = [x̃], [yj+1] = [ỹ]
while ([xj+1] or [yj+1] is improved) do // fix point

[yj+1]∩ = (RADAU3f ([xj+1], [yj+1]) + lte) // 2.4 and 4.1
[xj+1]∩ = (FwdBwdg([xj+1], [yj+1]) ∩ Kg([xj+1], [yj+1])) // [4] and 4.1.3

end while

4.3 Complete algorithm

The algorithm for a validated simulation of a DAE in index-1 Hessenberg form is given
in a simplified way, without the step size controller (available in [20]), in Algorithm 3.
The inputs are initial states, a time to reach, a given minimal step size and a tolerancy.
The algorithm builds a list of data computed at each integration step, as described in
Section 2.1.
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Algorithm 3 Simulation of DAE

Require: y(0), x(0), Tfinal, hmin, tol // Problem statement
t = 0
while (t < Tfinal) do // Till desired time

[x̃] = x(t), [ỹ] = y(t)
Computation of [x̃], [ỹ], lte // Alg. 1
if SUCCESS then

Computation of [x(t + h)], [y(t + h)] // Alg. 2
Store [t, t + h], [x̃], [ỹ], [x(t + h)], [y(t + h)] in a list
t = t + h // Next integration step

else if (h > hmin) then
h = h/2 // Reducing of step size

else
Return FAILED // Integration failed (change initial states, tol or hmin)

end if
end while
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Examples

We apply our algorithm to three examples. The first one is quite basic but allows us to
show the issue appearing in DAE simulation and the results obtained by our tool. This
example is sufficient to point out the problem of stiffness generated by DAE problems.
The second example is interesting because it has a known exact solution and allows
us to verify the exactness of our method and judge the results with respect to the
best existing numerical method. Finally, the third example is the classical pendulum
problem, which permits to highlight the efficiency of our method.

5.1 Basic example

We start our experimentations with a basic example in one dimension for the state
variable and one dimension for the algebraic variable:

{
y′ = y + x+ 1

(y + 1) ∗ x+ 2 = 0
y(0) = 1.0 and x(0) ∈ [−2.0, 2.0]

We perform a simulation till Tfinal = 4 seconds with a desired tolerancy tol = 1e−
16. The initial value consistency is checked with Krawczyk which leads to x(0) = −1.
The computation takes between 16 and 30 seconds depending of computer. Our tool
provides three files containing:

• The values of state variable enclosure w.r.t. time under the form: [y(t)]; t

• The values of algebraic variable enclosure w.r.t. time under the form: [x(t)]; t

• The log reported in Tab. 5.1

With the files containing state and algebraic values w.r.t. time, we are able to plot
three figures, given in Fig. 5.1. On the figure (a) and (b), it is apparent that even if
state variable and algebraic variable evolves exponentially but quite slowly, algebraic
variable evolves in a stiff way w.r.t. state variable (c). In general, DAEs leads to a
stiff problem, which is the motivation for using RADAU IIA method. This method is
known for its efficiency in front of stiff problems.

19
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Log.txt file Description
Solution at t=4.00000 : Final time reached
([76.2255, 76.2294]) Solution for state variable
Diameter : (0.00395156) Diameter of the solution
Rejected Picard :11496 Number of step rejected by Alg. 1
Accepted Picard :21743 Number of step accepted by Alg. 1
Step min :2.03865e-05 Time step minimum (h)
Step max :0.00025 Time step maximum (h)
Truncature error max :2.7141e-15 Maximum lte during simulation

Table 5.1: Log file and its description

(a) (b) (c)

Figure 5.1: Plot of state variable w.r.t. time (a), algebraic variable w.r.t. time
(b) and algebraic variable w.r.t. state variable (c) (for prob. 5.1)
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5.2 Example with exact solution

The second example is a little more complex. It is described by the differential equa-
tion:

y′ =


−y2y1 − (1 + y2)x0

y2y0 − (1 + y2)x1

1

and the algebraic relation:{
(y0 − x1)/5− cos(y2

2)/2 = 0
(y1 + x0)/5− sin(y2

2)/2 = 0

with y(0) =

 5
1
0

 and x(0) ∈
(

[−1,−1][
−1.e−14, 1.e−14

] )
This problem is interesting because it has a known exact solution:

y0 = sin(t) + 5 ∗ cos((t2)/2.0)
y1 = cos(t) + 5 ∗ sin((t2)/2.0)

x0 = −cos(t)
x1 = sin(t)

We perform a simulation till Tfinal = 2 seconds with a desired tolerancy tol =
1e− 22. The initial value consistency is checked with Krawczyk which leads to

x(0) ∈
(

[−1,−1][
−1.e−18, 1.e−18

] ) .
The results at final time is given in Tab. 5.2. These results allow us to verify the
enclosure of exact solution by the solution provided by our tool. In fact, we perform a
verification of inclusion on the fly, that is to say, at each step of simulation. Moreover,
at t = 2 seconds, the diameter of our solution is lower than 0.00056 when one of the best
numerical method (without guarantee) [1], Extended Block Backward Differentiation
Formula (EBBDF) at order 4, provides a result at 0.0002 from the exact value, which
is comparable to our results (see Tab. 5.2).

Our method Exact EBBDF
[−1.17172,−1.17116] −1.171439444 −1.171279

[4.13013, 4.13054] 4.130338864 4.130540
[0.415948, 0.416352] 0.4161470936 0.416035
[0.909204, 0.909388] 0.9092973092 0.909322

Table 5.2: Solution at t = 2 with our method, exact value computation and
EBBDF results for prob. 5.2

5.3 Classical problem: Pendulum

Finally, the last example is the well known pendulum, expressed in index 1 Hessenberg
form. The problem statement is defined in Fig. 5.2.
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Problem Statement

+

p

q

l m

g

Figure 5.2: Problem statement of Ex. 5.3

A ball of mass m, suspended to a massless rod of length l, under gravity g is
defined by coordinates (p, q) such that:

p′ = u
q′ = v

mu′ = −pλ
mv′ = −qλ− g

with u and v the velocity of pendulum, and λ the force in the rod. And the algebraic
relation:

m(u2 + v2)− gq − l2λ = 0 with (p, q, u, v)0 = (1, 0, 0, 0) and λ0 ∈ [−0.1, 0.1]

We perform a simulation till Tfinal = 1 second with a desired tolerancy tol = 1e− 10.
The initial value consistency is checked with Krawczyk which leads to λ(0) = 0. The
computation takes less than 20 seconds on a dual core computer. With the files
containing state and algebraic values w.r.t. time, we are able to plot three figures,
given in Fig. 5.3.

5.4 Discussion

We see through these three examples that our method is correct (Ex. 5.2), efficient in
comparison to the existing non guaranteed methods (Ex. 5.2), able to solve a classical
problem (Ex. 5.3), while providing statistics on the computation progress (Ex. 5.1).
Nevertheless, we can also conclude that the diameter of solution growth quickly and
that time spent for the computation is sometimes significant. In the following section,
we present an add-on in order to improve our results.
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(a) (b) (c)

Figure 5.3: Plot of state variable p w.r.t. q (a), algebraic variable w.r.t. time
(b) and algebraic variable w.r.t. state variable p (c) (for prob. 5.3)
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Additive contractors

Our tool is based on contractor programming [12], it means that we are able to add any
contractors to the Alg. 2 to take into account some other constraints than g(t, x, y) = 0.
In the case of physical systems, constraints can appear from the context such as energy
conservation, mechanical constraints, or whatever. This approach is substantially
similar to [9]. In this latter, authors use the energy conservation as constraint in order
to improve the precision of a numerical simulation. More interesting, some constraints
come directly from the Pantelides algorithm [29] which is used to reduce the order of
DAEs.

For example, on the case of Pendulum (Ex. 5.3), Pantelides algorithm is used to
obtained m(u2 +v2)−gq− l2λ = 0 by differentiation of circle equation p2 +q2− l2 = 0:

p2 + q2 − l2 = 0
pu+ qv = 0

m(u2 + v2)− gq2 − l2p = 0

These three additives constraints can be used to generate a forward/backward con-
tractor (with a propagation principle between constraints) for both state and algebraic
variables. This contractor improve the result of our algorithm by changing Alg. 2 to
Alg. 4.

Algorithm 4 Contract the a priori enclosures around solution

Require: [x̃], [ỹ], lte
[xj+1] = [x̃], [yj+1] = [ỹ]
while ([xj+1] or [yj+1] is improved) do

[yj+1]∩ = (RADAU3f ([xj+1], [yj+1]) + lte)
[xj+1]∩ = (FwdBwdg([xj+1], [yj+1]) ∩ Kg([xj+1], [yj+1]))
([xj+1]; [yj+1])∩ = FwdBwdctc(([xj+1]; [yj+1]))

end while

Our tool is applied with Alg. 2 and Alg. 4 to the Pendulum problem for a simula-
tion till Tfinal = 1.6 seconds and for a desired tolerancy tol = 10−18. The results are
shown on Fig. 6.1 and Fig. 6.2. It is obvious that the addition of contractors has im-
proved the simulation by reducing the size (and thus the pessimism) of the enclosures,
approximately 50%, and even the time computation.

24
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Figure 6.1: Plot of state variable p w.r.t. q (a), algebraic variable w.r.t. time
(b) and algebraic variable w.r.t. state variable p (c) (for prob. 5.3) - with Alg. 2:
computation time 28 minutes

Figure 6.2: Plot of state variable p w.r.t. q (a), algebraic variable w.r.t. time
(b) and algebraic variable w.r.t. state variable p (c) (for prob. 5.3) - with Alg. 4:
computation time 27 minutes
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Conclusions and future
work

To conclude, we present in this paper our method for the validated simulation of differ-
ential algebraic equations. The main issue being the existence and unicity of solution,
we develop a novel operator which compute simultaneously the a priori enclosures of
algebraic and state variables. For that, our operator mixes a classical Picard-Lindelöf
(based on Taylor series) and a parametric Krawczyk operator. Then these enclo-
sures is refined with a contractor programming approach by combining an integration
scheme (Runge-Kutta RadauIIA) and an algebraic contractor (made with Krawczyk
and forward/backward). Our complete algorithm is applied to three examples that we
thought sufficient to prove the concept and the efficiency of the method. Moreover,
a third contribution is also proposed in order to improve the result obtained. In-
deed, it is often possible to obtain additive constraints on a physical system and these
constraints can be easily used as contractors for both state and algebraic variables.
Finally and to conclude on the contributions, our approach can naturally solve the
initial consistency, which is one of the main issue in DAE community.

Several potential improvements to our method can be considered. The first one
and the most important is the integration method used. Currently we have tried only
Radau IIA order 3 method. A serious improvement can be probably obtained with
an higher order Runge-Kutta method such as Radau IIA order 5 (but its coefficients
are not exact) or Gauss order 6 (which has good properties but its local truncature
error is computation time consuming). In addition, many improvement can be done
on the global algorithm such as a better stepsize control and a better estimation for
algebraic variable in the first trial of Picard-Krawczyk in order to reduce the number
of rejected steps that is very important for the computation time.

Partially funded by the Academic and Research Chair:
“Complex Systems Engineering”- Ecole polytechnique ∼ THALES ∼ FX ∼ DGA ∼

DASSAULT AVIATION ∼ DCNS Research ∼ ENSTA ParisTech ∼ Telecom ParisTech
∼ Fondation ParisTech ∼ FDO ENSTA
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