
HAL Id: hal-01243029
https://hal.science/hal-01243029

Submitted on 14 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Hybrid Typing of Secure Information Flow in a
JavaScript-like Language

José Fragoso Santos, Thomas Jensen, Tamara Rezk, Alan Schmitt

To cite this version:
José Fragoso Santos, Thomas Jensen, Tamara Rezk, Alan Schmitt. Hybrid Typing of Secure Informa-
tion Flow in a JavaScript-like Language. International Symposium on Trustworthy Global Computing,
Aug 2015, Madrid, Spain. �hal-01243029�

https://hal.science/hal-01243029
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Hybrid Typing of Secure Information Flow in a
JavaScript-like Language

José Fragoso Santos1, Thomas Jensen2, Tamara Rezk2, Alan Schmitt2

1 Imperial College London, jfaustin@imperial.ac.uk
2 Inria, firstname.lastname@inria.fr

Abstract. As JavaScript is highly dynamic by nature, static informa-
tion flow analyses are often too coarse to deal with the dynamic con-
structs of the language. To cope with this challenge, we present and
prove the soundness of a new hybrid typing analysis for securing infor-
mation flow in a JavaScript-like language. Our analysis combines static
and dynamic typing in order to avoid rejecting programs due to impre-
cise typing information. Program regions that cannot be precisely typed
at static time are wrapped inside an internal boundary statement used
by the semantics to interleave the execution of statically verified code
with the execution of code that must be dynamically checked.

1 Introduction

The dynamic aspects of JavaScript make the analysis of JavaScript programs
very challenging. On one hand, one may use a purely static analysis, but either re-
strict the language to exclude these dynamic aspects or over-approximate them;
this is too coarse to be applicable in practice. On the other hand, one may use
purely dynamic mechanisms, such as monitoring or secure multi-executions [1,
6, 8, 16]; but the gained precision comes at the cost of a much lower performance
compared to the original code [7].

We propose a general hybrid analysis to statically verify secure information
flow in a core of JavaScript. Following the hybrid typing motto “static anal-
ysis where possible with dynamic checks where necessary”[5], we are able to
reduce the runtime overhead introduced by purely dynamic analyses without
excluding dynamic field operations. In fact, our analysis can handle some of the
most challenging JavaScript features, such as prototype-based inheritance, ex-
tensible objects, and constructs for checking the existence of object properties.
Its key ingredient is an internal boundary statement inspired by recent work in
inter-language interoperability [10]. The static component of our analysis wraps
program regions that cannot be precisely verified inside an internal boundary
statement instead of rejecting the whole program. This boundary statement
identifies the regions of the program that must be verified at runtime—which
may be as small as a single statement—and enables the initial set up required
by the dynamic analysis. In summary, the proposed boundary statement allows
the semantics to effortlessly interleave the execution of statically verified code
with the execution of code that must be verified at runtime.

Although our work is generally motivated by the verification of dynamic
features of JavaScript, we choose to focus on the particular case of constructs
that rely on dynamic computation of object field names, which we call dynamic
field operations. In JavaScript, one can access a field f of an object o either by
writing o.f or o[e], where e is an expression that dynamically evaluates to the
string f. Dynamic computation of field names is one of the major sources of
imprecision of static analyses for JavaScript [9].

Example 1 (Running example: the challenge of typing dynamic field operations).
Below we present a program that creates an object o with a secret field secret1

and two public fields public1 and public2.

o = {}; o.secret1 = secret_input();
o.public1 = public_input(); o.public2 = public_input(); public = o[g()]

The secret field secret1 gets a secret input via function secret_input, while
the two public fields public1 and public2 each get a public input via function
public_input. The program then assigns the value of one of the three fields to
the public variable public, as determined by the return value of function g.
Concretely, when g returns the string "secret1", the program assigns a secret
value to public and the execution is insecure. On the other hand, when g returns
either "public1" or "public2", the program assigns a public value to public and
the execution is secure. However, in order to make sure that g never returns
"secret1", a static analysis needs to predict the dynamic behaviour of g, which
is, in general, undecidable.

The loss of precision introduced by the dynamic computation of field names
is not exclusive to field projections. It also occurs in method calls, field dele-
tions, and membership checks. We account for the use of these operations by
verifying them at runtime. When verifying a statement containing a dynamic
field operation, the static component of the analysis wraps it inside a bound-
ary statement. In the case of the running example, all statements except the
last one are statically typed. In contrast, the last assignment is re-written as
@monitor(@type_env, @pc, @ret, public = o[g()]), where the first three arguments
of the monitor statement are used for the setup of the runtime analysis. Hence,
when the program is executed the only overhead introduced by the dynamic
component of our hybrid analysis regards the security checks for validating or
rejecting the statement public = o[g()].

Contributions. The main contribution of the paper is the design of a new
hybrid analysis for verifying secure information flow in a JavaScript-like lan-
guage. To achieve this, we introduce: (1) a type language specifically designed
to control information flow in a subset of JavaScript, (2) a static type system
for verifying statements not containing dynamic field operations, (3) a dynamic
typing analysis for verifying statements containing dynamic field operations, and
(4) a novel boundary operator for interleaving the execution of statically verified
regions with dynamically verified ones. Finally, we have implemented a prototype
as well as a case study, available online at [15].

v ∈ Val ::= lit | lit | l | λx : τ̇ .s

e ∈ Expr ::= v | this | x | x = e | { } [τ̇] | e.f | e1[e2] | e1.f = e2

| e1[e2] = e3 | f in e | [e1] in e2 | delete e.f | delete e1[e2]

| function (x)[τ̇]{s} | e1(e2) | e1.x(e) | e1[e2](e3)

s ∈ Stmt ::= e | var x [τ̇] | s1; s2 | if(e) {s1} else {s2} | return e

Table 1. Core JS Syntax - Expressions and Statements

2 Core JS

Syntax. The syntax of Core JS is given in Table 1. Expressions include values,
the keyword this, variables, variable assignments, object literals, static and dy-
namic field projections, static and dynamic field assignments, static and dynamic
membership checks, static and dynamic field deletions, function literals, func-
tion calls, and static and dynamic method calls. Statements include expression
statements, variable declarations, sequences, conditional statements, and return
statements. We distinguish two types of values: literal values and runtime val-
ues. Literal values include numbers, booleans, strings, and undefined. Runtime
values, ranged over by v, include parsed literal values, locations, and parsed
function literals. Object literals, function literals, and variable declarations are
annotated with their respective security types (which are explained in Section 3).
In the following, we use Expr for the set of Core JS dynamic field operations.

Memory Model. A heap H ∈ Heap : Loc × X ⇀ Val is a partial mapping
from locations in Loc and field names in X to values in Val. We denote a heap
cell by (l, f) 7→ v, the union of two disjoint heaps by H1] H2, a read operation
by H(l, f), and a heap update operation by H[l.f 7→ v]. An object can be seen
as a set of heaps cells addressed by the same location but with different field
names. We use l 7→ {f1 : v1, . . . , fn : vn} as an abbreviation for the object
(l, f1) 7→ v1] . . .] (l, fn) 7→ vn.

Every object has a prototype, whose location is stored in a special field
proto . In order to determine the value of a field f of an object o, the semantics

first checks whether f is one of the fields of o. If that is the case, the field look-up
yields that value. Otherwise, the semantics checks whether f belongs to the fields
of the prototype of o and so forth. The sequence of objects that can be accessed
from a given object through the inspection of the respective prototypes is called
a prototype chain. The prototype chain inspection procedure is modelled by
the semantic function π given in appendix. Informally, the expression π(H, l, f)
denotes the location of the first object that defines f in the prototype chain
of the object pointed to by l (if no such object exists, π returns null). Given
that most implementations of JavaScript allow for explicit prototype mutation,
we include this feature in Core JS. For instance, x. proto evaluates to the the
prototype of the object bound to x and x. proto = y sets the prototype of the
object bound to x to the object bound to y.

Scope is modelled using environment records. An environment record is sim-
ply an internal object that maps variable names to their respective values.

Ê ::= � | x = Ê | Ê.f | Ê[e] | l[Ê] | Ê.f = e | Ê[e1] = e2

| l[Ê] = e | l[f] = Ê | [Ê] in e | [f] in Ê | delete Ê.f | delete Ê[e]

| delete l[Ê] | Ê(e) | l(Ê) | Ê.f(e) | Êe | l[Ê](e) | l[f](Ê)

E ::= Ê | E; s | if(Ê) {s1} else {s2} | return Ê

Table 2. Evaluation Contexts

An environment record is created for every function or method call. We use
act(l, x, v, s, l′) to denote the environment record that: (1) is identified by loca-
tion l where it is stored, (2) maps x to v, (3) maps all the variables declared in
s to undefined, and (4) maps the field @this to the location l′. (Note that envi-
ronment records map a single variable because functions have a single argument.
Moreover, in the execution of a method call, the field @this is used to store the
location of the object on which the method was invoked.) Variables are resolved
with respect to a list of environment record locations, called scope chain. The
variable inspection procedure is modelled by the semantic function σ given in
appendix. We let σ(H,L, x) denote the location of the first environment record
that defines x in the scope chain L. The global object, assumed to be pointed
to by a fixed location lg, is the environment record that binds global variables.

Since functions are first-class citizens, the evaluation of a function literal
triggers the creation of a special type of object, called function object. Every
function object has two fields: @body and @scope, which respectively store the
corresponding parsed function literal and the scope chain that was active when
the function literal was evaluated. Functions execute in the scope in which the
they were evaluated.

Semantics. Figure 1 presents a fragment of the semantics of Core JS in the
style of Wright and Felleisen [19] (the full semantics is given in appendix). A
configuration Ψ has the form 〈H,L, s〉 where H is the current heap, L the current
scope chain, and s the statement to execute. Transitions are labelled with an
internal event α for the use of the dynamic analysis. The evaluation order is
specified with the help of evaluation contexts, whose syntax is given in Table 2.
In the following, we use l ::L for the list obtained by prepending l to L and
head(L) for the first element of L.

Rule Variable uses σ to determine the location l′ of the environment record
that defines x and reads its value from the heap. Rule Dyn Field Projection
uses π to determine the location l′′ of the object that defines f in the pro-
totype chain of the object pointed to by l′ and then reads its value from the
heap. Rule Dyn Field Assignment updates the current heap with a mapping
from l and f to v. Rule Membership Check - True checks if f is defined in
the prototype chain of the object pointed to by l and evaluates to true. Rule
Function Literal adds a new function object to the heap. Rule Function
Call extends the heap with a new environment record for the evaluation of the
function pointed to by l. The current scope chain L is replaced with the scope
chain L′ that was active when the corresponding function literal was evaluated
extended with the location l′′ of the newly created environment record. The se-

Variable
l = head(L) l′ = σ(H,L, x)
v = H(l′, x)

〈H,L, x〉 varl(x)→ 〈H,L, v〉

Dyn. Field Projection
l = head(L) l′′ = π(H, l′, f)
v = H(l′′, f)

〈H,L, l′[f]〉 f-projl(f)→ 〈H,L, v〉

Dyn. Field Assignment
l′ = head(L) H ′ = H[l.f 7→ v]

〈H,L, l[f] = v〉
f-assl′ (f)→ 〈H ′, L, v〉

Membership Check - True
l′ = head(L) π(H, l, f) 6= null

〈H,L, [f] in l〉
inl′ (f)→ 〈H,L, true〉

Function Literal
l = head(L) l′ = fresh(H, τ̇) H ′ = H] l′ 7→ {@scope : L,@body : λx : τ̇ .s}

〈H,L, function (x)[τ̇]{s}〉 pushl(τ̇)→ 〈H ′, L, l′〉

Function Call
l′ = head(L) l′′ 6∈ dom(H) λx : τ̇ .s = H(l,@body)
L′ = H(l,@scope) H ′ = H] act(l′′, x, v, s, lg)

〈H,L, l(v)〉
f-calll′→ 〈H ′, l′′ ::L′,@FunExe(L, s)〉

If End
l = head(L)

〈H,L,@EI(v)〉 �l→ 〈H,L, v〉

If - True
l = head(L) ¬false(v) s′ = @EI(s1)

〈H,L, if(v) {s1} else {s2}〉
ifl→ 〈H,L, s′〉

Contextual Propagation
〈H,L, s〉 α→ 〈H ′, L′, s′〉

〈H,L,E[s]〉 α→ 〈H ′, L′, E[s′]〉

Fig. 1. Fragment of the Small-Step Semantics of Core JS

mantics makes use of an internal statement @FunExe(L, s) for keeping track of the
caller’s scope chain during the execution of the function’s body. Rule If - True
checks if the guard of the conditional does not belong to the set of falsy values
–{false, 0, undefined, null}– and replaces the whole conditional with its then-branch
followed by an internal statement @EI for notifying the dynamic analysis of the
end of that branch. Contextual Propagation is standard.

3 Static Typing Secure Information Flow in Core JS

In this section, we present both a new type language for controlling information
flow in JavaScript and the static component of our analysis. Here, the specifi-
cation of security policies relies on two key elements: a lattice of security levels
and a typing environment that maps resources to security types, which can be
viewed as safety types annotated with security levels. In the examples, we use
L = {H,L} with L @ H, meaning that L-labelled resources (low resources) are
less confidential than those labelled with H (high). We use t, ⊥, and > for the
least upper bound (lub), the bottom level, and the top level, respectively.

Security Types. A security type τ̇ = τσ is obtained by pairing up a raw type τ
with a security level σ, called its external level. The external level of a security
type establishes an upper bound on the levels of the resources on which the values

of that type may depend. For instance, a primitive value of type PRIM
L may only

depend on low resources. The syntax of raw types is given and explained below:

τ ::= PRIM | 〈τ̇ .τ̇ σ→ τ̇〉 | 〈κ.τ̇ σ→ τ̇〉
| µκ.〈fσ : τ̇ , · · · , fσ : τ̇ , ∗σ : τ̇〉 | µκ.〈fσ : τ̇ , · · · , fσ : τ̇〉

– The type PRIM is the type of expressions which evaluate to primitive values.
– The type 〈τ̇0.τ̇1

σ→ τ̇2〉 is the type of expressions which evaluate to functions
that map values of type τ̇1 to values of type τ̇2 and during the execution
of which, the keyword this is bound to an object of type τ̇0. Level σ is the
writing effect [14] of functions of this type, that is, a lower bound on the levels
of the resources updated or created during their execution. When specifying
a function type inside an object type, one can use the type variable bound
by that object type as the type of the keyword this (in the syntax of types,
κ ranges over the set of type variables).

– The type µκ.〈fσ00 : τ̇0, · · · , fσnn : τ̇n, ∗σ∗ : τ̇∗〉 is the type of expressions which
evaluate to objects that may define the fields f0 to fn mapping each field fi
to a value of security type τ̇i. The security type assigned to ∗ is the default
security type, which is the security type of all fields not in {f0, · · · , fn}.
Every field fi is further associated with an existence level σi that establishes
an upper bound on the levels of the contexts in which the field can be created
or deleted. The level σ∗ is the default existence level. When no default security
type is declared, the objects of the type may only define explicitly declared
fields.
The reason why we do not precisely track the presence of fields in object
types is that we do not want the type of an object to change at runtime even
though its structure may change. Notice that the absence of a field in a type
does not mean it cannot be accessed in objects of that type: this field may
still be defined in the prototype chain. We could have flattened security types
for objects by requiring every object type to explicitly declare all the fields
accessible through the prototype chains of the objects of that type, but this
would have two disadvantages. First, object types would be less precise, and
second, they would be much larger as the types of prototype fields would be
duplicated. The cost of this design choice is a more complex Static Field
Projection typing rule that has to take the prototype chain into account.

Given a security type τ̇ , the expression lev(τ̇) denotes its external level and
bτ̇c its raw type (for instance, lev(PRIML) = L and bPRIMLc = PRIM). We define τ̇σ

as bτ̇clev(τ̇)tσ (for example, (PRIML)H = PRIM
H). Given a function security type

τ̇ = 〈τ̇0.τ̇1
σ→ τ̇2〉σ

′
, we use τ̇ .this, τ̇ .arg, τ̇ .ret, and τ̇ .wef to denote τ̇0, τ̇1, τ̇2,

and σ, respectively. Given an object security type τ̇ , we use dom(τ̇) for the set
containing all field names explicitly declared in τ̇ (including ∗, if present). Given
a field name f and an object security type τ̇ , τ̇ .f (τ̇ .f , resp.) denotes either
the security type (existence level resp.) with which τ̇ associates f or its default
security type (existence level, resp.) when f 6∈ dom(τ̇) and ∗ ∈ dom(τ̇). The
ordering v on security levels induces a simple ordering � on security types:
τ̇0 � τ̇1 iff lev(τ̇0) v lev(τ̇1) and bτ̇0c = bτ̇1c. We use τ̇g for the type of the global

Γ (public) = PRIM
L

Γ (secret) = PRIM
H

Γ (secret input) = 〈τ̇g.
H→ PRIM

H〉L

Γ (public input) = 〈τ̇g.
H→ PRIM

L〉L

Γ (g) = 〈τ̇g.
H→ PRIM

L〉L

τ̇o = µκ ·〈public1L : PRIM
L,

public2L : PRIM
L,

secret1H : PRIM
H

secret2H : PRIM
H
〉

L

Γ (o0) = µκ.〈 proto H : τ̇o〉L

Γ (o) = Γ (o1) = Γ (o2) = τ̇o

Table 3. Typing Environment for the Examples 1 to 6

object. Finally, a typing environment Γ is simply a mapping from variables to
security types.

Example 2. Table 3 presents the typing environment used to type the programs
given in Examples 1 to 6. Since secret input, public input, and g are to be
used as functions, their respective types use the type of the global object as the
type of the keyword this. Since none of these three functions expects an argument
or updates the heap, their respective types omit the type of the argument and
declare a high writing effect. Our design choice of not flattening object types can
also be seen in this example: the type of o0 is much shorter as it does not need
to mention at top level the fields declared in τ̇o.

Static Type System. The key insight of the static type system is that it
wraps program regions which cannot be precisely analysed at static time within
a boundary statement @monitor(Γ, pc, τ̇r, s) responsible for turning on the typing
analysis at runtime. The parameters Γ , pc, and τ̇r are the typing environment,
the context level [14], and the type of the function whose body is being typed,
respectively. Given a typing environment Γ , a level pc, and an expression e, the
typing judgment Γ, pc `e e ↪→ e′ : τ̇ means that e is rewritten as a semantically
equivalent expression e′, which may include boundary statements, has raw type
bτ̇c, and reads variables or fields of level at most lev(τ̇). Typing judgements for
statements, with the form Γ, pc, τ̇r `s s ↪→ s′, differ from typing judgements for
expressions in that they do not assign a type to the statement. When e (s resp.)
coincides with e′ (s′ resp.), we omit ↪→ e′ (↪→ s′ resp.) from the typing rules.
The most relevant typing rules are given in Figure 2 and described below. (We
omit the explanations of Rules Literal, Variable, and Assignment as they
are standard.)

Static field projection As a given field may be defined anywhere in the
prototype chain of the inspected object, this rule needs to take into account
the whole prototype chain of that object. To this end, we overload function
π to model a static prototype chain inspection procedure. Informally, π(τ̇ , f)
computes the lub between the security types of f in the prototype chain of objects
of type τ̇ and upgrades the external level of this type with the lub between the
existence levels of the field proto in that prototype chain.

Example 3 (Leaks via Prototype Mutations). The program below creates three
empty objects bound to: o0, o1, and o2. Then, it creates a field named public1 in

Literal

Γ, pc `e lit : PRIM⊥
Variable
Γ, pc `e x : Γ (x)

Assignment
Γ, pc `e e : τ̇ τ̇pc � Γ (x)

Γ, pc `e x = e : τ̇

Static Field Projection
Γ, pc `e e : τ̇ τ̇f = π(τ̇ , f)

Γ, pc `e e.f : τ̇
lev(τ̇)
f

Static Member Check
Γ, pc `e e : τ̇ σ = lev(τ̇) t π̄(τ̇ , f)

Γ, pc `e f in e : PRIM
σ

Static Field Assignment
∀i=1,2 Γ, pc `e ei : τ̇i
τ̇2 � τ̇1.f pc t lev(τ̇1) v τ̇1.f

Γ, pc `e e1.f = e2 : τ̇2

Static Field Deletion
Γ, pc `e delete e : τ̇

pc t lev(τ̇) v τ̇ .f = σf

Γ, pc `e delete e.f : PRIMσf

Function Literal
Γ ′ = hoist(Γ [x 7→ τ̇ .arg, this 7→ τ̇ .this], s)
pc′ = τ̇ .wef lev(τ̇) t pc v pc′ Γ ′, pc′, τ̇ `s s ↪→ s′

Γ, pc `e function (x)[τ̇]{s} ↪→ function (x)[τ̇]{s′} : τ̇

Static Method Call
∀i=1,2 Γ, pc `e ei : τ̇i τ̇f = π(τ̇1, f) σ = pc t lev(τ̇1) t lev(τ̇f)
σ v τ̇f .wef τ̇σ1 � τ̇f .this τ̇σ2 � τ̇f .arg

Γ, pc `e e1.f(e2) : (τ̇f .ret)σ

Verified Expr Stmt
Γ, pc `e e ↪→ e′ : τ̇

Γ, pc, τ̇ret `s e ↪→ e′

Dyn. Expression Stmt
e ∈ Expr s = @monitor(Γ, pc, τ̇r, e)

Γ, pc, τ̇r `s e ↪→ s

(Partially) Verified Conditional

Γ, pc `e e ↪→ e′ : τ̇ ∀i=0,1 Γ, pc t lev(τ̇), τ̇r `s si ↪→ s′i

Γ, pc, τ̇ret `s if(e) {s1} else {s2} ↪→ if(e′) {s′1} else {s′2}

Monitored Conditional
e ∈ Expr s = @monitor(Γ, pc, τ̇ret, if(e) {s1} else {s2})

Γ, pc, τ̇ret `s if(e) {s1} else {s2} ↪→ s

Fig. 2. Static Typing Core JS Expressions

both o1 and o2, which is set to 0 in o1 and to 1 in o2. Depending on the value of
a high variable secret, the prototype of o0 is either set to o1 or to o2. Finally, the
low variable public1 is set to the value of the field public1 of the prototype of o0
(because o0 does not define that field), thereby creating an implicit information
flow between secret and public.

o0 = {}; o1 = {}; o2 = {}; o1.public1 = 0; o2.public1 = 1;
if(secret){o0._proto_ = o1} else {o0._proto_ = o2}; public = o0.public1

Letting Γ be the typing environment of Table 3, it follows that π(Γ (o0), public1) =

PRIM
H because Γ (o0). proto = H. Hence, the assignment public = o0.public1 is

not typable as the type of o0.public1, PRIM
H , is not lower than or equal to PRIM

L.

Static Member Check Since the domain of an object can change at ex-
ecution time and since programs can check if a given field is defined using the
keyword in, the mere existence of a field may disclose secret information. The
existence security levels declared in object security types serve to control this
type of information flows. However, analogously to field projections, this rule
needs to take into account the whole prototype chain of the inspected object,
because the field whose existence is being checked may be defined anywhere in
that prototype chain. To this end, we make use of the static function π̄(τ̇ , f) that
computes the lub between the existence levels of f and proto in the prototype
chain of objects of type τ̇ .

Example 4 (Leaks via Membership Checks). The program below creates an ob-
ject with two fields secret1 and secret2. Then, depending on the value of a
high variable secret, it deletes either secret1 or secret2 from the domain of o.
Finally, the low variable public is assigned to true if secret1 is defined in the
prototype chain of o or to false if it is not, thereby creating an implicit flow
between secret and public.

o = {}; o.secret1 = 0; o.secret2 = 0;
if (secret) { delete o.secret1 } else { delete o.secret2 }; public = secret1 in o

Letting Γ be the typing environment of Table 3, it follows that π̄(Γ (o), secret1) =

PRIM
H because Γ (o).secret1 = H. Hence, the last assignment is not typable as the

type of the expression secret1 in o, PRIM
H , is not lower than or equal to PRIM

L.

Static field assignment The first constraint of the rule checks if the type
of the assigned expression is a subtype of the assigned field type, thus preventing
the assignment of a secret value to a public field. The second constraint checks if
the context level is lower than or equal to the existence level of the assigned field,
thereby preventing the creation of a visible field depending on secret information.

Field Deletion The rule checks if the context level is lower than or equal
to the field’s existence level, thereby preventing visible fields from being deleted
in invisible contexts.

Functional literal This rule checks if the context level is lower than or
equal to the writing effect of the type of the function literal, thereby preventing
the evaluation of function literals that update or create public resources inside
secret contexts. Then, the type system types the body of the function literal
using the typing environment obtained by extending the current one with the
type of the the formal argument, the type of the keyword this, and the types of
the variables declared in the body of the function literal. To this end, we make
use of a syntactic function hoist that extends the typing environment given as its
first argument with the mappings from the variables declared in the statement
given as its second argument to their respective security types. Note that this
rule may re-write the the body of the function literal in order to enable the
dynamic analysis.

Method call This rule first verifies if the context level is lower than or
equal to the writing effect of the method to call, thereby preventing the calling
of a method that creates or updates public resources depending on secret values.

Then, the rule checks if the type of the object on which the method is called and
the type of the function argument match the type of the keyword this and the
type of the formal parameter. The method call is finally typed with the return
type of the method type upgraded with the context level.

Dyn. expression statement This rule wraps every expression that con-
tains a dynamic field operation inside a boundary statement. Recall that Expr
denotes the set of Core JS dynamic field operations.

Conditional If the conditional guard contains a dynamic field operation,
the whole conditional is wrapped inside a boundary statement. In the opposite
case, the type system types both branches, upgrading the context level with the
external level of the security type of the conditional guard.

Example 5 (Hybrid versus Static Typing of the Running Example). Consider the
program from Example 1 and the typing environment of Table 3. When typing
the assignment public = o[g()], which contains a dynamic field operation, the
type system applies the Dyn. expression statement rule and wraps the whole
assignment inside a boundary statement. All the other statements, which do not
contain dynamic field operations, are fully statically verified and, therefore, left
unchanged. Hence, the resulting program is given by:

o = {}; o.secret1 = secret_input(); o.public1 = public_input();
o.public2 = public_input(); @monitor(@type_env, @pc, @ret, public = o[g()])

If, instead, the type system tried to statically type this assignment, it would need
to check that the type of o[g()] was less than or equal to the type of public, PRIML.
Since we do not know the value to which the call to g evaluates, the type system
would need to use the lub between the types of all the fields declared in the type
of o. Consequently, as one of those fields has type PRIM

H , the assignment would
not be typable.

4 Dynamic Typing Secure Information Flow in Core JS

The goal of a boundary statement is to enable and disable the information flow
analysis at runtime. In this section, we define the semantics of the boundary
operator by extending the semantics of Core JS with optional tracking of security
types and verification of security constraints.

Monitored Semantics A configuration of the monitored semantics has the
form LΨ,ΩM where Ψ is a Core JS configuration and Ω is a possibly empty set
of monitor configurations. A monitor configuration ω is associated to a specific
function call and has the form ω = 〈Γ, τ̇r, l, o, ρ〉 where: (1) Γ is a typing environ-
ment, (2) τ̇r is the type of the function that is executing, (3) l is the identifier of
the environment record associated to the function call that is being monitored,
(4) o is a control context, which is a list containing the levels of the expressions
on which the monitored statement branched in order to reach the current con-
text, and (5) ρ is an expression context, which is a list consisting of the security
types of the values of the current evaluation context. The rules of the monitored

Monitor sync
Ψ

αl→ Ψ ′ ω
αl→ ω′

LΨ,Ω ∪ {ω}M→ LΨ ′, Ω ∪ {ω′}M

Unmonitored step
Ψ

αl→ Ψ ′ ∀ω∈Ω er(ω) 6= l

LΨ,ΩM→ LΨ ′, ΩM

Monitor configuration +
l = head(L) ∀ω∈Ω er(ω) 6= l ω′ = 〈Γ, τ̇r, l, pc :: [], []〉

L〈H,L,E[@monitor(Γ, τ̇r, pc, s)]〉, ΩM→ L〈H,L,E[@monitor(s)]〉, Ω ∪ {ω′}M

Monitor configuration - 1
Ψ = 〈H,L,E[@monitor(v)]〉
head(L) = er(ω) Ψ ′ = 〈H,L,E[v]〉

LΨ,Ω ∪ {ω}M→ LΨ ′, ΩM

Monitor configuration - 2
Ψ = 〈H,L,E[@monitor(return v)]〉
head(L) = er(ω) Ψ ′ = 〈H,L,E[return v]〉

LΨ,Ω ∪ {ω}M→ LΨ ′, ΩM

Fig. 3. Monitored Semantics Rules

semantics are given in Figure 3 and described below. We use er(ω) to denote the
location of the environment record associated with ω.

Rule Monitor sync corresponds to a monitored step. The transition of
the monitor is synchronised with the transition of Core JS semantics through
an internal event αl, where l identifies the running function that performed a
computation step.

Rule Unmonitored step models the case where there is no matching mon-
itor configuration for the current computation step. In this case, Core JS se-
mantics performs an unconstrained computation step (that takes place outside
a boundary statement).

Rule Monitor configuration + generates a new monitor configuration
for verifying the statement inside a boundary statement. In order to account for
computation steps inside boundary statements, we extend the syntax of evalua-
tion contexts with a special boundary context: E = @monitor(E′).

Rules Monitor configuration - 1 and Monitor configuration - 2
remove a monitor configuration from the current set of monitor configurations
when its corresponding statement finishes executing.

Monitoring Rules Monitor transitions are defined in Figure 4. We use Γ, τ̇r, l `
〈o, ρ〉 αl→ 〈o′, ρ′〉 as shorthand for 〈Γ, τ̇r, l, o, ρ〉

αl→ 〈Γ, τ̇r, l, o′, ρ′〉. The constraints
enforced by the monitor are the same as the constraints enforced by the type
system of Section 3. However, in contrast to the type system, the monitor can
precisely type dynamic expressions, since it has access to field names computed
at runtime.

Example 6 (Monitoring a Dynamic Field Look-up). In the following, we present
the sequence of monitor configurations generated when executing the statement:
@monitor(@type_env, @pc, @ret, public = o[g()]) (check the running example).

〈⊥, []〉 varl(o)→ 〈L, τ̇o〉
varl(g)→ 〈L, 〈τ̇g.

H→ PRIM
L〉L :: τ̇o〉

f-calll→ 〈L, PRIML :: τ̇o〉
If g() returns public1:

f-projl(public1)→ 〈L, PRIML〉 v-assl(public)→ 〈L, PRIML〉

If g() returns private1:
f-projl(private1)→ 〈L, PRIMH〉

v-assl(public)

6→

Literal
ρ′ = PRIM⊥ :: ρ

Γ, τ̇r, l ` 〈o, ρ〉
litl→ 〈o, ρ′〉

This
ρ′ = Γ (this) :: ρ

Γ, τ̇r, l ` 〈o, ρ〉
thisl→ 〈o, ρ′〉

Variable
ρ′ = Γ (x) :: ρ

Γ, τ̇r ` 〈o, ρ〉
varl(x)→ 〈o, ρ′〉

Variable Assignment
pc = head(o) τ̇ = head(ρ)
τ̇pc � Γ (x)

Γ, τ̇r, l ` 〈o, ρ〉
v-assl(x)→ 〈o, ρ〉

Field Projection
pc = head(o) ρ = τ̇2 :: τ̇1 :: ρ′

τ̇ = π(τ̇1, f) σ = pc t lev(τ̇1) t lev(τ̇2)

Γ, τ̇r, l ` 〈o, ρ〉
f-projl(f)→ 〈pc :: o, ρ, τ̇σ :: ρ′〉

Membership Check
pc = head(o) ρ = τ̇2 :: τ̇1 :: ρ′

σ = π̄(τ̇1, f) t lev(τ̇1) t lev(τ̇2) t pc

Γ, τ̇r, l ` 〈o, ρ〉
inl(f)→ 〈o,PRIMσ :: ρ〉

Field Assignment
ρ = τ̇3 :: τ̇2 :: τ̇1 :: ρ′ pc = head(o)
σ = lev(τ̇1) t lev(τ̇2) t pc
τ̇σ3 � τ̇1.f σ v τ̇1.f

Γ, τ̇r, l ` 〈o, ρ〉
f-assl(f)→ 〈o, τ̇3 :: ρ′〉

Field Deletion
ρ = τ̇2 :: τ̇1 :: ρ′ σ = τ̇1.f
lev(τ̇1) t lev(τ̇2) t head(o) v σ

Γ, τ̇r, l ` 〈o, ρ〉
dell(f)→ 〈o,PRIMσ :: ρ′〉

Method Call
ρ = τ̇3 :: τ̇2 :: τ̇1 :: ρ′ pc = head(o)
τ̇f = π(τ̇1, f) σ = lev(τ̇1) t lev(τ̇2) t pc
σ v τ̇f .wef τ̇σ1 � τ̇f .this τ̇σ3 � τ̇f .arg

Γ, τ̇r, l ` 〈o, ρ〉
m-calll(f)→ 〈o, (τ̇f .ret)σ :: ρ〉

If - Branch
o′ = lev(τ̇) :: o

Γ, τ̇r, l ` 〈o, τ̇ :: ρ〉 ifl→ 〈o′, ρ〉

If - End

Γ, τ̇r, l ` 〈σ :: o, ρ〉 �
if l→ 〈o, ρ〉

Fig. 4. Dynamic Typing Core JS Expressions and Statements

We consider two different cases: the case in which g() evaluates to public1 and
the case in which it evaluates to secret1. While in the first case, the execution
is allowed to go through, in the second one it gets stuck, because the program
tries to assign a secret value to a public variable.

Let us now briefly explain the rules that better illustrate our choices when
designing the monitor. Since, by default, all literal values are public, when a
literal value is evaluated, the monitor simply pushes PRIM⊥ onto the expression
stack. In contrast, when a variable is evaluated, the monitor has to read its type
from the typing environment and push it onto the expression stack. When a
field projection is evaluated, the first two types on the expression stack are the
types of the expressions that evaluate to the field name and to the inspected
object, respectively. Furthermore, the name of the inspected field is available in
the internal event that labels the transition. Hence, the monitor simply has to
replace the first two types of the expression stack with the type of the inspected
field upgraded with the external levels of the types of the current subexpressions.
When an if statement is evaluated, the type of the conditional guard is on top
of the expression stack. Hence, the monitor simply pops that type out of the

Labelled Object Low Projection

τ̇lo = µκ.〈fL1 : PRIM
L, fL2 : PRIM

H , fH3 : PRIM
H〉L

Fig. 5. A Labelled Object and Its Low Projection

expression stack and pushes its external level (upgraded with the current pc)
onto the control stack. Complementarily, when the execution leaves the branch
of a conditional, the monitor just pops out the top of the control stack.

Implementation. Instead of wrapping statements containing dynamic field op-
erations within boundary statements, which are not part of the JavaScript lan-
guage, the prototype of the hybrid type system [15] in-lines the monitoring logic
in the statement itself [16]. This approach has the advantage of being immedi-
ately deployable. The prototype implementation was used to secure simple Web
application accessible online [15].

5 Security Guarantees

This section describes the security guarantees offered by the proposed analysis.
To formally define the absence of information leaks, we rely on an intuitive notion
of low-projection [14] that establishes the part of a heap that an attacker at a
given security level can see. Informally, given a heap H, an attacker at level σ
can observe:

1. the existence of a field f in the domain of an object whose type has external
level ≤ σ and associates f with an existence level ≤ σ and

2. the value of a field f in the domain of an object whose type has external
level ≤ σ and associates f with a security type with external level ≤ σ.

Figure 5 presents a labelled object together with its low-projection at level L.
The object in the figure has three fields: f1, f2, and f3. An attacker at level L can
observe both the existence and the value of f1 since it has low existence level and
is associated with a visible value and the existence but not the value of f2, since
it has low existence level but is associated with an invisible value. The attacker
can neither observe the value nor the existence of f3 because it has high existence
level and is associated with an invisible value. Two heaps H0 and H1 are said
to be low-equal at level σ, written H0 ∼σ H1, if they coincide in their respective
low-projections. Theorem 1 states that the monitored successfully-terminating
execution of a program generated by the static type system on two low-equal
heaps always yields two low-equal heaps. A sketch of the proof of Theorem 1 is
given in the long-version of the paper available online at [15].

Theorem 1 (Noninterference). For any typing environment Γ , levels σ and
pc, security type τ̇ , statement, s, and two heaps H0 and H1, such that Γ, pc, τ̇ `s
s ↪→ s′, H0 ∼σ H1, and L〈Hi, [], s′〉, {}M→∗ L〈H ′i, [], vi〉, {}M for i = 0, 1, it holds
that H ′0 ∼σ H ′1.

6 Related Work

There is a wide variety of mechanisms for enforcing and verifying secure infor-
mation flow, ranging from purely static type systems [18, 14] to different flavours
of dynamic analysis [13, 2]. The main mechanisms for securing information flow
in JavaScript [1, 8, 6] are mostly-dynamic due to the dynamicity of the language.

There is a long line of research on safety types for JavaScript which dates
back to the seminal work of Thieman [17]. Since then, the TypeScript program-
ming language [11] was proposed as a flexible language that adds optional types
to JavaScript with the goal of harnessing the flexibility of real JavaScript, while
at the same time providing some of the advantages otherwise reserved for stati-
cally typed languages, such as informative compiling errors. Recently, Rastogi et
al. [12] designed and implemented a new gradual type system for safely compiling
TypeScript to JavaScript. The soundness of the proposed approach is guaran-
teed by combining strict static checks with residual runtime checks. We believe
that our work can serve as a basis for extending TypeScript types with security
labels in order to verify secure information flow in TypeScript web applications.

Gradual type systems for secure information flow have been proposed for a
pure lambda calculus [3] and for a core ML-like language with references [4].
The goal of these two works is significantly different from ours, as their main
intent is to cater for the use of polymorphic security labels. For instance, the
type language proposed in [4] includes a special annotation “?” representing an
unknown security level at static time. Expressions that use variables whose types
contain the unknown level annotation, “?”, cannot be precisely typed at static
time. The programmer can introduce runtime casts in points where values of a
pre-determined security type are expected. Then the dynamic analysis checks
whether or not a cast can be securely performed during execution. However, in
order to verify such casts at runtime, these analyses must track security labels
during the execution of both dynamically verified and statically verified program
regions. In contrast, our analysis only needs to dynamically verify the execution
of program regions which were not statically verified.

7 Conclusions

We propose a sound hybrid typing analysis for enforcing secure information flow
in a core of JavaScript that includes dynamic field operations. Furthermore,
our analysis can be easily extended to handle other dynamic constructs of the
language such as eval or unknown code, which only need to be wrapped inside
the proposed boundary statement. Finally, we have implemented our analysis
and used it to verify a web application described available online [15].

This work follows a well-established trend on combining static and dynamic
analysis to devise more permissive and efficient hybrid mechanisms [13]. Our
approach can be applied to other scenarios, such as the verification of isola-
tion properties [9], where it could be used to derive mostly-static lightweight
enforcement mechanisms from prior purely static specifications.

Acknowledgments We acknowledge funding from the EPSRC grant reference
EP/K032089/1 (Fragoso Santos) and the ANR project AJACS ANR-14-CE28-
0008 (Jensen, Rezk, and Schmitt). No new data was collected in the course of
this research.

References

1. A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Information flow control in
WebKit’s JavaScript bytecode. In POST, 2014.

2. D. Devriese and F. Piessens. Noninterference through secure multi-execution. In
SP, 2010.

3. T. Disney and C. Flanagan. Gradual information flow typing. In STOP, 2011.
4. L. Fennell and P. Thiemann. Gradual security typing with references. In CSF,

2013.
5. C. Flanagan. Hybrid type checking. In POPL, 2006.
6. W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Flowfox: a web browser

with flexible and precise information flow control. In CCS, 2012.
7. D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking information

flow in JavaScript and its APIs. In SAC, 2014.
8. D. Hedin and A. Sabelfeld. Information-flow security for a core of JavaScript. In

CSF, 2012.
9. S. Maffeis and A. Taly. Language-based isolation of untrusted JavaScript. In CSF,

2009.
10. J. Matthews and R. B. Findler. Operational semantics for multi-language pro-

grams. ACM TOPLAS, 2009.
11. Microsoft. TypeScript language specification. Technical report, Microsoft, 2014.
12. A. Rastogi, N. Swamy, C. Fournet, G. Bierman, and P. Vekris. Safe & efficient

gradual typing for TypeScript. In POPL, 2015.
13. A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In

CSF, 2010.
14. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 2003.
15. J. Fragoso Santos. Online materials - hybrid type system.

http://www.doc.ic.ac.uk/̃jfaustin, 2015.
16. J. Fragoso Santos and T. Rezk. An information flow monitor-inlining compiler for

securing a core of JavaScript. In IFIP SEC, 2014.
17. P. Thiemann. Towards a type system for analysing JavaScript programs. In ESOP,

2005.
18. D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure flow

analysis. Journal of Computer Security, 1996.
19. A. Wright and M. Felleisen. A syntactic approach to type soundness. Inf. Comput.,

1994.

