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Hybrid Typing of Secure Information Flow in a JavaScript-like Language

As JavaScript is highly dynamic by nature, static information flow analyses are often too coarse to deal with the dynamic constructs of the language. To cope with this challenge, we present and prove the soundness of a new hybrid typing analysis for securing information flow in a JavaScript-like language. Our analysis combines static and dynamic typing in order to avoid rejecting programs due to imprecise typing information. Program regions that cannot be precisely typed at static time are wrapped inside an internal boundary statement used by the semantics to interleave the execution of statically verified code with the execution of code that must be dynamically checked.

Introduction

The dynamic aspects of JavaScript make the analysis of JavaScript programs very challenging. On one hand, one may use a purely static analysis, but either restrict the language to exclude these dynamic aspects or over-approximate them; this is too coarse to be applicable in practice. On the other hand, one may use purely dynamic mechanisms, such as monitoring or secure multi-executions [START_REF] Bichhawat | Information flow control in WebKit's JavaScript bytecode[END_REF][START_REF] De Groef | Flowfox: a web browser with flexible and precise information flow control[END_REF][START_REF] Hedin | Information-flow security for a core of JavaScript[END_REF][START_REF] Santos | An information flow monitor-inlining compiler for securing a core of JavaScript[END_REF]; but the gained precision comes at the cost of a much lower performance compared to the original code [START_REF] Hedin | JSFlow: Tracking information flow in JavaScript and its APIs[END_REF].

We propose a general hybrid analysis to statically verify secure information flow in a core of JavaScript. Following the hybrid typing motto "static analysis where possible with dynamic checks where necessary" [START_REF] Flanagan | Hybrid type checking[END_REF], we are able to reduce the runtime overhead introduced by purely dynamic analyses without excluding dynamic field operations. In fact, our analysis can handle some of the most challenging JavaScript features, such as prototype-based inheritance, extensible objects, and constructs for checking the existence of object properties. Its key ingredient is an internal boundary statement inspired by recent work in inter-language interoperability [START_REF] Matthews | Operational semantics for multi-language programs[END_REF]. The static component of our analysis wraps program regions that cannot be precisely verified inside an internal boundary statement instead of rejecting the whole program. This boundary statement identifies the regions of the program that must be verified at runtime-which may be as small as a single statement-and enables the initial set up required by the dynamic analysis. In summary, the proposed boundary statement allows the semantics to effortlessly interleave the execution of statically verified code with the execution of code that must be verified at runtime. Although our work is generally motivated by the verification of dynamic features of JavaScript, we choose to focus on the particular case of constructs that rely on dynamic computation of object field names, which we call dynamic field operations. In JavaScript, one can access a field f of an object o either by writing o.f or o [e], where e is an expression that dynamically evaluates to the string f. Dynamic computation of field names is one of the major sources of imprecision of static analyses for JavaScript [START_REF] Maffeis | Language-based isolation of untrusted JavaScript[END_REF]. Example 1 (Running example: the challenge of typing dynamic field operations). Below we present a program that creates an object o with a secret field secret1 and two public fields public1 and public2. The secret field secret1 gets a secret input via function secret_input, while the two public fields public1 and public2 each get a public input via function public_input. The program then assigns the value of one of the three fields to the public variable public, as determined by the return value of function g. Concretely, when g returns the string "secret1", the program assigns a secret value to public and the execution is insecure. On the other hand, when g returns either "public1" or "public2", the program assigns a public value to public and the execution is secure. However, in order to make sure that g never returns "secret1", a static analysis needs to predict the dynamic behaviour of g, which is, in general, undecidable.

The loss of precision introduced by the dynamic computation of field names is not exclusive to field projections. It also occurs in method calls, field deletions, and membership checks. We account for the use of these operations by verifying them at runtime. When verifying a statement containing a dynamic field operation, the static component of the analysis wraps it inside a boundary statement. In the case of the running example, all statements except the last one are statically typed. In contrast, the last assignment is re-written as @monitor(@type_env, @pc, @ret, public = o[g()]), where the first three arguments of the monitor statement are used for the setup of the runtime analysis. Hence, when the program is executed the only overhead introduced by the dynamic component of our hybrid analysis regards the security checks for validating or rejecting the statement public = o[g()].

Contributions. The main contribution of the paper is the design of a new hybrid analysis for verifying secure information flow in a JavaScript-like language. To achieve this, we introduce: (1) a type language specifically designed to control information flow in a subset of JavaScript, (2) a static type system for verifying statements not containing dynamic field operations, (3) a dynamic typing analysis for verifying statements containing dynamic field operations, and (4) a novel boundary operator for interleaving the execution of statically verified regions with dynamically verified ones. Finally, we have implemented a prototype as well as a case study, available online at [START_REF] Santos | Online materials -hybrid type system[END_REF]. 1. Expressions include values, the keyword this, variables, variable assignments, object literals, static and dynamic field projections, static and dynamic field assignments, static and dynamic membership checks, static and dynamic field deletions, function literals, function calls, and static and dynamic method calls. Statements include expression statements, variable declarations, sequences, conditional statements, and return statements. We distinguish two types of values: literal values and runtime values. Literal values include numbers, booleans, strings, and undefined. Runtime values, ranged over by v, include parsed literal values, locations, and parsed function literals. Object literals, function literals, and variable declarations are annotated with their respective security types (which are explained in Section 3). In the following, we use Expr for the set of Core JS dynamic field operations.
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Memory Model. A heap H ∈ Heap : Loc × X
Val is a partial mapping from locations in Loc and field names in X to values in Val. We denote a heap cell by (l, f ) → v, the union of two disjoint heaps by H 1 H 2 , a read operation by H(l, f ), and a heap update operation by H[l.f → v]. An object can be seen as a set of heaps cells addressed by the same location but with different field names. We use l → {f 1 : v 1 , . . . , f n : v n } as an abbreviation for the object (l,

f 1 ) → v 1 . . . (l, f n ) → v n .
Every object has a prototype, whose location is stored in a special field proto . In order to determine the value of a field f of an object o, the semantics first checks whether f is one of the fields of o. If that is the case, the field look-up yields that value. Otherwise, the semantics checks whether f belongs to the fields of the prototype of o and so forth. The sequence of objects that can be accessed from a given object through the inspection of the respective prototypes is called a prototype chain. The prototype chain inspection procedure is modelled by the semantic function π given in appendix. Informally, the expression π(H, l, f ) denotes the location of the first object that defines f in the prototype chain of the object pointed to by l (if no such object exists, π returns null). Given that most implementations of JavaScript allow for explicit prototype mutation, we include this feature in Core JS. For instance, x. proto evaluates to the the prototype of the object bound to x and x. proto = y sets the prototype of the object bound to x to the object bound to y.

Scope is modelled using environment records. An environment record is simply an internal object that maps variable names to their respective values.

Ê ::= | x = Ê | Ê.f | Ê[e] | l[ Ê] | Ê.f = e | Ê[e 1 ] = e 2 | l[ Ê] = e | l[f ] = Ê | [ Ê] in e | [f ] in Ê | delete Ê.f | delete Ê[e] | delete l[ Ê] | Ê(e) | l( Ê) | Ê.f (e) | Ê[e](e) | l[ Ê](e) | l[f ]( Ê) E ::= Ê | E; s | if( Ê) {s 1 } else {s 2 } | return Ê Table 2. Evaluation Contexts
An environment record is created for every function or method call. We use act(l, x, v, s, l ) to denote the environment record that: [START_REF] Bichhawat | Information flow control in WebKit's JavaScript bytecode[END_REF] is identified by location l where it is stored, (2) maps x to v, (3) maps all the variables declared in s to undefined, and (4) maps the field @this to the location l . (Note that environment records map a single variable because functions have a single argument. Moreover, in the execution of a method call, the field @this is used to store the location of the object on which the method was invoked.) Variables are resolved with respect to a list of environment record locations, called scope chain. The variable inspection procedure is modelled by the semantic function σ given in appendix. We let σ(H, L, x) denote the location of the first environment record that defines x in the scope chain L. The global object, assumed to be pointed to by a fixed location l g , is the environment record that binds global variables. Since functions are first-class citizens, the evaluation of a function literal triggers the creation of a special type of object, called function object. Every function object has two fields: @body and @scope, which respectively store the corresponding parsed function literal and the scope chain that was active when the function literal was evaluated. Functions execute in the scope in which the they were evaluated.

Semantics. Figure 1 presents a fragment of the semantics of Core JS in the style of Wright and Felleisen [START_REF] Wright | A syntactic approach to type soundness[END_REF] (the full semantics is given in appendix). A configuration Ψ has the form H, L, s where H is the current heap, L the current scope chain, and s the statement to execute. Transitions are labelled with an internal event α for the use of the dynamic analysis. The evaluation order is specified with the help of evaluation contexts, whose syntax is given in Table 2.

In the following, we use l :: L for the list obtained by prepending l to L and head(L) for the first element of L.

Rule Variable uses σ to determine the location l of the environment record that defines x and reads its value from the heap. Rule Dyn Field Projection uses π to determine the location l of the object that defines f in the prototype chain of the object pointed to by l and then reads its value from the heap. Rule Dyn Field Assignment updates the current heap with a mapping from l and f to v. Rule Membership Check -True checks if f is defined in the prototype chain of the object pointed to by l and evaluates to true. Rule Function Literal adds a new function object to the heap. Rule Function Call extends the heap with a new environment record for the evaluation of the function pointed to by l. The current scope chain L is replaced with the scope chain L that was active when the corresponding function literal was evaluated extended with the location l of the newly created environment record. The se- mantics makes use of an internal statement @FunExe(L, s) for keeping track of the caller's scope chain during the execution of the function's body. Rule If -True checks if the guard of the conditional does not belong to the set of falsy values -{false, 0, undefined, null}-and replaces the whole conditional with its then-branch followed by an internal statement @EI for notifying the dynamic analysis of the end of that branch. Contextual Propagation is standard.

Variable l = head(L) l = σ(H, L, x) v = H(l , x) H, L, x var l (x) → H, L, v Dyn. Field Projection l = head(L) l = π(H, l , f ) v = H(l , f ) H, L, l [f ] f-proj l (f ) → H, L, v Dyn. Field Assignment l = head(L) H = H[l.f → v] H, L, l[f ] = v f-ass l (f ) → H , L, v Membership Check -True l = head(L) π(H, l, f ) = null H, L, [f ] in l in l (f ) → H, L, true Function Literal l = head(L) l = fresh(H, τ ) H = H l → {@scope : L, @body : λx : τ .s} H, L, function (x)[ τ ]{s} push l ( τ ) → H , L, l Function Call l = head(L) l ∈ dom(H) λx : τ .s = H(l, @body) L = H(l, @scope) H = H act(l , x, v, s, lg) H, L, l(v) f-call l → H , l :: L , @FunExe(L, s) If End l = head(L) H, L, @EI(v) l → H, L, v If -True l = head(L) ¬false(v) s = @EI(s1) H, L, if(v) {s1} else {s2} if l → H, L, s Contextual Propagation H, L, s α → H , L , s H, L, E[s] α → H , L , E[s ]

Static Typing Secure Information Flow in Core JS

In this section, we present both a new type language for controlling information flow in JavaScript and the static component of our analysis. Here, the specification of security policies relies on two key elements: a lattice of security levels and a typing environment that maps resources to security types, which can be viewed as safety types annotated with security levels. In the examples, we use L = {H, L} with L H, meaning that L-labelled resources (low resources) are less confidential than those labelled with H (high). We use , ⊥, and for the least upper bound (lub), the bottom level, and the top level, respectively.

Security Types. A security type τ = τ σ is obtained by pairing up a raw type τ with a security level σ, called its external level. The external level of a security type establishes an upper bound on the levels of the resources on which the values of that type may depend. For instance, a primitive value of type PRIM L may only depend on low resources. The syntax of raw types is given and explained below:

τ ::= PRIM | τ . τ σ → τ | κ. τ σ → τ | µκ. f σ : τ , • • • , f σ : τ , * σ : τ | µκ. f σ : τ , • • • , f σ : τ
-The type PRIM is the type of expressions which evaluate to primitive values.

-The type τ0. τ1 σ → τ2 is the type of expressions which evaluate to functions that map values of type τ1 to values of type τ2 and during the execution of which, the keyword this is bound to an object of type τ0 . Level σ is the writing effect [START_REF] Sabelfeld | Language-based information-flow security[END_REF] of functions of this type, that is, a lower bound on the levels of the resources updated or created during their execution. When specifying a function type inside an object type, one can use the type variable bound by that object type as the type of the keyword this (in the syntax of types, κ ranges over the set of type variables).

-The type µκ. f σ 0 0 : τ0, • • • , f σn n : τn, * σ * : τ * is the type of expressions which evaluate to objects that may define the fields f 0 to f n mapping each field f i to a value of security type τi . The security type assigned to * is the default security type, which is the security type of all fields not in {f 0 , • • • , f n }. Every field f i is further associated with an existence level σ i that establishes an upper bound on the levels of the contexts in which the field can be created or deleted. The level σ * is the default existence level. When no default security type is declared, the objects of the type may only define explicitly declared fields. The reason why we do not precisely track the presence of fields in object types is that we do not want the type of an object to change at runtime even though its structure may change. Notice that the absence of a field in a type does not mean it cannot be accessed in objects of that type: this field may still be defined in the prototype chain. We could have flattened security types for objects by requiring every object type to explicitly declare all the fields accessible through the prototype chains of the objects of that type, but this would have two disadvantages. First, object types would be less precise, and second, they would be much larger as the types of prototype fields would be duplicated. The cost of this design choice is a more complex Static Field Projection typing rule that has to take the prototype chain into account.

Given a security type τ , the expression lev( τ ) denotes its external level and τ its raw type (for instance, lev(PRIM L ) = L and PRIM L = PRIM). We define τ σ as τ lev( τ ) σ (for example, (PRIM L ) H = PRIM H ). Given a function security type τ = τ0 . τ1 σ → τ2 σ , we use τ .this, τ .arg, τ .ret, and τ .wef to denote τ0 , τ1 , τ2 , and σ, respectively. Given an object security type τ , we use dom( τ ) for the set containing all field names explicitly declared in τ (including * , if present). Given a field name f and an object security type τ , τ .f ( τ .f , resp.) denotes either the security type (existence level resp.) with which τ associates f or its default security type (existence level, resp.) when f ∈ dom( τ ) and * ∈ dom( τ ). The ordering on security levels induces a simple ordering on security types: τ0 τ1 iff lev( τ0 ) lev( τ1 ) and τ0 = τ1 . We use τg for the type of the global object. Finally, a typing environment Γ is simply a mapping from variables to security types.

Γ (public) = PRIM L Γ (secret) = PRIM H Γ (secret input) = τg. H → PRIM H L Γ (public input) = τg. H → PRIM L L Γ (g) = τg. H → PRIM L L τo = µκ • public1 L : PRIM L , public2 L : PRIM L , secret1 H : PRIM H secret2 H : PRIM H L Γ (o0) = µκ. proto H : τo L Γ (o) = Γ (o1) = Γ (o2) = τo
Example 2. Table 3 presents the typing environment used to type the programs given in Examples 1 to 6. Since secret input, public input, and g are to be used as functions, their respective types use the type of the global object as the type of the keyword this. Since none of these three functions expects an argument or updates the heap, their respective types omit the type of the argument and declare a high writing effect. Our design choice of not flattening object types can also be seen in this example: the type of o0 is much shorter as it does not need to mention at top level the fields declared in τo .

Static Type System. The key insight of the static type system is that it wraps program regions which cannot be precisely analysed at static time within a boundary statement @monitor(Γ, pc, τr, s) responsible for turning on the typing analysis at runtime. The parameters Γ , pc, and τr are the typing environment, the context level [START_REF] Sabelfeld | Language-based information-flow security[END_REF], and the type of the function whose body is being typed, respectively. Given a typing environment Γ , a level pc, and an expression e, the typing judgment Γ, pc e e → e : τ means that e is rewritten as a semantically equivalent expression e , which may include boundary statements, has raw type τ , and reads variables or fields of level at most lev( τ ). Typing judgements for statements, with the form Γ, pc, τr s s → s , differ from typing judgements for expressions in that they do not assign a type to the statement. When e (s resp.) coincides with e (s resp.), we omit → e ( → s resp.) from the typing rules. The most relevant typing rules are given in Figure 2 and described below. (We omit the explanations of Rules Literal, Variable, and Assignment as they are standard.)

Static field projection As a given field may be defined anywhere in the prototype chain of the inspected object, this rule needs to take into account the whole prototype chain of that object. To this end, we overload function π to model a static prototype chain inspection procedure. Informally, π( τ , f ) computes the lub between the security types of f in the prototype chain of objects of type τ and upgrades the external level of this type with the lub between the existence levels of the field proto in that prototype chain. both o1 and o2, which is set to 0 in o1 and to 1 in o2. Depending on the value of a high variable secret, the prototype of o0 is either set to o1 or to o2. Finally, the low variable public1 is set to the value of the field public1 of the prototype of o0 (because o0 does not define that field), thereby creating an implicit information flow between secret and public. Letting Γ be the typing environment of Table 3, it follows that π(Γ (o0), public1) = PRIM H because Γ (o0). proto = H. Hence, the assignment public = o0.public1 is not typable as the type of o0.public1, PRIM H , is not lower than or equal to PRIM L .

Example 3 (Leaks via Prototype Mutations

Static Member Check Since the domain of an object can change at execution time and since programs can check if a given field is defined using the keyword in, the mere existence of a field may disclose secret information. The existence security levels declared in object security types serve to control this type of information flows. However, analogously to field projections, this rule needs to take into account the whole prototype chain of the inspected object, because the field whose existence is being checked may be defined anywhere in that prototype chain. To this end, we make use of the static function π( τ , f ) that computes the lub between the existence levels of f and proto in the prototype chain of objects of type τ .

Example 4 (Leaks via Membership Checks). The program below creates an object with two fields secret1 and secret2. Then, depending on the value of a high variable secret, it deletes either secret1 or secret2 from the domain of o. Finally, the low variable public is assigned to true if secret1 is defined in the prototype chain of o or to false if it is not, thereby creating an implicit flow between secret and public. Letting Γ be the typing environment of Table 3, it follows that π(Γ (o), secret1) = PRIM H because Γ (o).secret1 = H. Hence, the last assignment is not typable as the type of the expression secret1 in o, PRIM H , is not lower than or equal to PRIM L .

Static field assignment

The first constraint of the rule checks if the type of the assigned expression is a subtype of the assigned field type, thus preventing the assignment of a secret value to a public field. The second constraint checks if the context level is lower than or equal to the existence level of the assigned field, thereby preventing the creation of a visible field depending on secret information.

Field Deletion

The rule checks if the context level is lower than or equal to the field's existence level, thereby preventing visible fields from being deleted in invisible contexts.

Functional literal This rule checks if the context level is lower than or equal to the writing effect of the type of the function literal, thereby preventing the evaluation of function literals that update or create public resources inside secret contexts. Then, the type system types the body of the function literal using the typing environment obtained by extending the current one with the type of the the formal argument, the type of the keyword this, and the types of the variables declared in the body of the function literal. To this end, we make use of a syntactic function hoist that extends the typing environment given as its first argument with the mappings from the variables declared in the statement given as its second argument to their respective security types. Note that this rule may re-write the the body of the function literal in order to enable the dynamic analysis.

Method call This rule first verifies if the context level is lower than or equal to the writing effect of the method to call, thereby preventing the calling of a method that creates or updates public resources depending on secret values.

Then, the rule checks if the type of the object on which the method is called and the type of the function argument match the type of the keyword this and the type of the formal parameter. The method call is finally typed with the return type of the method type upgraded with the context level.

Dyn. expression statement This rule wraps every expression that contains a dynamic field operation inside a boundary statement. Recall that Expr denotes the set of Core JS dynamic field operations.

Conditional If the conditional guard contains a dynamic field operation, the whole conditional is wrapped inside a boundary statement. In the opposite case, the type system types both branches, upgrading the context level with the external level of the security type of the conditional guard. 3. When typing the assignment public = o[g()], which contains a dynamic field operation, the type system applies the Dyn. expression statement rule and wraps the whole assignment inside a boundary statement. All the other statements, which do not contain dynamic field operations, are fully statically verified and, therefore, left unchanged. Hence, the resulting program is given by: o = {}; o.secret1 = secret_input(); o.public1 = public_input(); o.public2 = public_input(); @monitor(@type_env, @pc, @ret, public = o[g()])

If, instead, the type system tried to statically type this assignment, it would need to check that the type of o[g()] was less than or equal to the type of public, PRIM L . Since we do not know the value to which the call to g evaluates, the type system would need to use the lub between the types of all the fields declared in the type of o. Consequently, as one of those fields has type PRIM H , the assignment would not be typable.

Dynamic Typing Secure Information Flow in Core JS

The goal of a boundary statement is to enable and disable the information flow analysis at runtime. In this section, we define the semantics of the boundary operator by extending the semantics of Core JS with optional tracking of security types and verification of security constraints.

Monitored Semantics A configuration of the monitored semantics has the form Ψ, Ω where Ψ is a Core JS configuration and Ω is a possibly empty set of monitor configurations. A monitor configuration ω is associated to a specific function call and has the form ω = Γ, τr , l, o, ρ where: (1) Γ is a typing environment, (2) τr is the type of the function that is executing, (3) l is the identifier of the environment record associated to the function call that is being monitored, (4) o is a control context, which is a list containing the levels of the expressions on which the monitored statement branched in order to reach the current context, and (5) ρ is an expression context, which is a list consisting of the security types of the values of the current evaluation context. The rules of the monitored

Monitor sync Ψ α l → Ψ ω α l → ω Ψ, Ω ∪ {ω} → Ψ , Ω ∪ {ω } Unmonitored step Ψ α l → Ψ ∀ω∈Ω er(ω) = l Ψ, Ω → Ψ , Ω Monitor configuration + l = head(L) ∀ω∈Ω er(ω) = l ω = Γ, τr, l, pc :: [ ], [ ] H, L, E[@monitor(Γ, τr, pc, s)] , Ω → H, L, E[@monitor(s)] , Ω ∪ {ω } Monitor configuration -1 Ψ = H, L, E[@monitor(v)] head(L) = er(ω) Ψ = H, L, E[v] Ψ, Ω ∪ {ω} → Ψ , Ω Monitor configuration -2 Ψ = H, L, E[@monitor(return v)] head(L) = er(ω) Ψ = H, L, E[return v] Ψ, Ω ∪ {ω} → Ψ , Ω Fig. 3. Monitored Semantics Rules
semantics are given in Figure 3 and described below. We use er(ω) to denote the location of the environment record associated with ω.

Rule Monitor sync corresponds to a monitored step. The transition of the monitor is synchronised with the transition of Core JS semantics through an internal event α l , where l identifies the running function that performed a computation step.

Rule Unmonitored step models the case where there is no matching monitor configuration for the current computation step. In this case, Core JS semantics performs an unconstrained computation step (that takes place outside a boundary statement).

Rule Monitor configuration + generates a new monitor configuration for verifying the statement inside a boundary statement. In order to account for computation steps inside boundary statements, we extend the syntax of evaluation contexts with a special boundary context: E = @monitor(E ).

Rules Monitor configuration -1 and Monitor configuration -2 remove a monitor configuration from the current set of monitor configurations when its corresponding statement finishes executing. Monitoring Rules Monitor transitions are defined in Figure 4. We use Γ, τr , l o, ρ α l → o , ρ as shorthand for Γ, τr , l, o, ρ α l → Γ, τr , l, o , ρ . The constraints enforced by the monitor are the same as the constraints enforced by the type system of Section 3. However, in contrast to the type system, the monitor can precisely type dynamic expressions, since it has access to field names computed at runtime.

Example 6 (Monitoring a Dynamic Field Look-up). In the following, we present the sequence of monitor configurations generated when executing the statement: @monitor(@type_env, @pc, @ret, public = o[g()]) (check the running example). We consider two different cases: the case in which g() evaluates to public1 and the case in which it evaluates to secret1. While in the first case, the execution is allowed to go through, in the second one it gets stuck, because the program tries to assign a secret value to a public variable.

⊥, [ ]

var l (o) → L, τo var l (g) → L, τg. H → PRIM L L :: τo f-call l → L, PRIM L :: τo If g() returns public1: f-proj l (public1) → L, PRIM L v-ass l (public) → L, PRIM L If g() returns private1: f-proj l (private1) → L, PRIM H
Let us now briefly explain the rules that better illustrate our choices when designing the monitor. Since, by default, all literal values are public, when a literal value is evaluated, the monitor simply pushes PRIM ⊥ onto the expression stack. In contrast, when a variable is evaluated, the monitor has to read its type from the typing environment and push it onto the expression stack. When a field projection is evaluated, the first two types on the expression stack are the types of the expressions that evaluate to the field name and to the inspected object, respectively. Furthermore, the name of the inspected field is available in the internal event that labels the transition. Hence, the monitor simply has to replace the first two types of the expression stack with the type of the inspected field upgraded with the external levels of the types of the current subexpressions. When an if statement is evaluated, the type of the conditional guard is on top of the expression stack. Hence, the monitor simply pops that type out of the Implementation. Instead of wrapping statements containing dynamic field operations within boundary statements, which are not part of the JavaScript language, the prototype of the hybrid type system [START_REF] Santos | Online materials -hybrid type system[END_REF] in-lines the monitoring logic in the statement itself [START_REF] Santos | An information flow monitor-inlining compiler for securing a core of JavaScript[END_REF]. This approach has the advantage of being immediately deployable. The prototype implementation was used to secure simple Web application accessible online [START_REF] Santos | Online materials -hybrid type system[END_REF].

Labelled Object Low Projection τlo = µκ. f L 1 : PRIM L , f L 2 : PRIM H , f H 3 : PRIM H L

Security Guarantees

This section describes the security guarantees offered by the proposed analysis.

To formally define the absence of information leaks, we rely on an intuitive notion of low-projection [START_REF] Sabelfeld | Language-based information-flow security[END_REF] that establishes the part of a heap that an attacker at a given security level can see. Informally, given a heap H, an attacker at level σ can observe:

1. the existence of a field f in the domain of an object whose type has external level ≤ σ and associates f with an existence level ≤ σ and 2. the value of a field f in the domain of an object whose type has external level ≤ σ and associates f with a security type with external level ≤ σ.

Figure 5 presents a labelled object together with its low-projection at level L.

The object in the figure has three fields: f 1 , f 2 , and f 3 . An attacker at level L can observe both the existence and the value of f 1 since it has low existence level and is associated with a visible value and the existence but not the value of f 2 , since it has low existence level but is associated with an invisible value. The attacker can neither observe the value nor the existence of f 3 because it has high existence level and is associated with an invisible value. Two heaps H 0 and H 1 are said to be low-equal at level σ, written H0 ∼σ H1, if they coincide in their respective low-projections. Theorem 1 states that the monitored successfully-terminating execution of a program generated by the static type system on two low-equal heaps always yields two low-equal heaps. A sketch of the proof of Theorem 1 is given in the long-version of the paper available online at [START_REF] Santos | Online materials -hybrid type system[END_REF]. 

Related Work

There is a wide variety of mechanisms for enforcing and verifying secure information flow, ranging from purely static type systems [START_REF] Volpano | A sound type system for secure flow analysis[END_REF][START_REF] Sabelfeld | Language-based information-flow security[END_REF] to different flavours of dynamic analysis [START_REF] Russo | Dynamic vs. static flow-sensitive security analysis[END_REF][START_REF] Devriese | Noninterference through secure multi-execution[END_REF]. The main mechanisms for securing information flow in JavaScript [START_REF] Bichhawat | Information flow control in WebKit's JavaScript bytecode[END_REF][START_REF] Hedin | Information-flow security for a core of JavaScript[END_REF][START_REF] De Groef | Flowfox: a web browser with flexible and precise information flow control[END_REF] are mostly-dynamic due to the dynamicity of the language.

There is a long line of research on safety types for JavaScript which dates back to the seminal work of Thieman [START_REF] Thiemann | Towards a type system for analysing JavaScript programs[END_REF]. Since then, the TypeScript programming language [START_REF]TypeScript language specification[END_REF] was proposed as a flexible language that adds optional types to JavaScript with the goal of harnessing the flexibility of real JavaScript, while at the same time providing some of the advantages otherwise reserved for statically typed languages, such as informative compiling errors. Recently, Rastogi et al. [START_REF] Rastogi | Safe & efficient gradual typing for TypeScript[END_REF] designed and implemented a new gradual type system for safely compiling TypeScript to JavaScript. The soundness of the proposed approach is guaranteed by combining strict static checks with residual runtime checks. We believe that our work can serve as a basis for extending TypeScript types with security labels in order to verify secure information flow in TypeScript web applications.

Gradual type systems for secure information flow have been proposed for a pure lambda calculus [START_REF] Disney | Gradual information flow typing[END_REF] and for a core ML-like language with references [START_REF] Fennell | Gradual security typing with references[END_REF]. The goal of these two works is significantly different from ours, as their main intent is to cater for the use of polymorphic security labels. For instance, the type language proposed in [START_REF] Fennell | Gradual security typing with references[END_REF] includes a special annotation "?" representing an unknown security level at static time. Expressions that use variables whose types contain the unknown level annotation, "?", cannot be precisely typed at static time. The programmer can introduce runtime casts in points where values of a pre-determined security type are expected. Then the dynamic analysis checks whether or not a cast can be securely performed during execution. However, in order to verify such casts at runtime, these analyses must track security labels during the execution of both dynamically verified and statically verified program regions. In contrast, our analysis only needs to dynamically verify the execution of program regions which were not statically verified.

Conclusions

We propose a sound hybrid typing analysis for enforcing secure information flow in a core of JavaScript that includes dynamic field operations. Furthermore, our analysis can be easily extended to handle other dynamic constructs of the language such as eval or unknown code, which only need to be wrapped inside the proposed boundary statement. Finally, we have implemented our analysis and used it to verify a web application described available online [START_REF] Santos | Online materials -hybrid type system[END_REF]. This work follows a well-established trend on combining static and dynamic analysis to devise more permissive and efficient hybrid mechanisms [START_REF] Russo | Dynamic vs. static flow-sensitive security analysis[END_REF]. Our approach can be applied to other scenarios, such as the verification of isolation properties [START_REF] Maffeis | Language-based isolation of untrusted JavaScript[END_REF], where it could be used to derive mostly-static lightweight enforcement mechanisms from prior purely static specifications.

  o = {}; o.secret1 = secret_input(); o.public1 = public_input(); o.public2 = public_input(); public = o[g()]

Fig. 1 .

 1 Fig. 1. Fragment of the Small-Step Semantics of Core JS

  o0 = {}; o1 = {}; o2 = {}; o1.public1 = 0; o2.public1 = 1; if(secret){o0._proto_ = o1} else {o0._proto_ = o2}; public = o0.public1

  o = {}; o.secret1 = 0; o.secret2 = 0; if (secret) { delete o.secret1 } else { delete o.secret2 }; public = secret1 in o
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 5 Hybrid versus Static Typing of the Running Example). Consider the program from Example 1 and the typing environment of Table
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 134 Fig. 4. Dynamic Typing Core JS Expressions and Statements

Fig. 5 .

 5 Fig. 5. A Labelled Object and Its Low Projection

Table 1 .

 1 | var x [ τ ] | s 1 ; s 2 | if(e) {s 1 } else {s 2 } | return e Core JS Syntax -Expressions and Statements 2 Core JS Syntax. The syntax of Core JS is given in Table

1 ] in e 2 | delete e.f | delete e 1 [e 2 ] | function (x)[ τ ]{s} | e 1 (e 2 ) | e 1 .x(e) | e 1 [e 2 ](e 3 ) s ∈ Stmt ::= e

Table 3 .

 3 Typing Environment for the Examples 1 to 6

  ). The program below creates three empty objects bound to: o0, o1, and o2. Then, it creates a field named public1 in

	Literal Γ, pc e lit : PRIM ⊥		Variable Γ, pc e x : Γ (x)	Assignment Γ, pc e e : τ Γ, pc e x = e : τ pc Γ (x) τ
	Static Field Projection	Static Member Check
	Γ, pc e e : τ	τf = π( τ , f )	Γ, pc e e : τ	σ = lev( τ ) π( τ , f )
	Γ, pc e e.f :	τ lev( τ ) f		Γ, pc e f in e : PRIM σ
	Static Field Assignment	Static Field Deletion
	∀i=1,2 Γ, pc e ei : τi		Γ, pc e delete e :	τ
	τ2	τ1.f pc lev( τ1)	τ1.f	pc lev( τ )	τ .f = σ f
		Γ, pc e e1.f = e2 : τ2	

Γ, pc e delete e.f :

PRIM σ f Function Literal Γ = hoist(Γ [x → τ .arg, this → τ .this], s) pc = τ .wef lev( τ ) pc pc Γ , pc , τ s s → s Γ, pc e function (x)[ τ ]{s} → function (x)[ τ ]{s } : τ Static Method Call ∀i=1,2 Γ, pc e ei : τi τf = π( τ1, f ) σ = pc lev( τ1) lev( τf ) σ τf .wef τ σ 1 τf .this τ σ 2 τf .arg Γ, pc e e1.f

(

e2) : ( τf .ret) σ Verified Expr Stmt Γ, pc e e → e : τ Γ, pc, τret s e → e Dyn. Expression Stmt e ∈ Expr s = @monitor(Γ, pc, τr, e) Γ, pc, τr s e → s (Partially) Verified Conditional Γ, pc e e → e : τ ∀i=0,1 Γ, pc lev( τ ), τr s si → s i Γ, pc, τret s if(e) {s1} else {s2} → if(e ) {s 1 } else {s 2 } Monitored Conditional e ∈ Expr s = @monitor(Γ, pc, τret, if(e) {s1} else {s2}) Γ, pc, τret s if(e) {s1} else {s2} → s Fig. 2. Static Typing Core JS Expressions

  Theorem 1 (Noninterference). For any typing environment Γ , levels σ and pc, security type τ , statement, s, and two heaps H 0 and H 1 , such that Γ, pc, τ s s → s , H 0 ∼ σ H 1 , andH i , [ ], s , {} → * H i , [ ], v i , {} for i = 0, 1, it holds that H 0 ∼ σ H 1 .
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