
HAL Id: hal-01243017
https://hal.science/hal-01243017

Submitted on 14 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

HOCore in Coq
Petar Maksimovic, Alan Schmitt

To cite this version:
Petar Maksimovic, Alan Schmitt. HOCore in Coq. Interactive Theorem Proving, Aug 2015, Nanjing,
China. �10.1007/978-3-319-22102-1_19�. �hal-01243017�

https://hal.science/hal-01243017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

HOCore in Coq

Petar Maksimović1,2 & Alan Schmitt1

1 Inria, France
2 Mathematical Institute of the Serbian Academy of Sciences and Arts, Serbia

Abstract. We consider a recent publication on higher-order process cal-
culi [12] and describe how its main results have been formalized in the
Coq proof assistant. We highlight a number of important technical is-
sues that we have uncovered in the original publication. We believe that
these issues are not unique to the paper under consideration and require
particular care to be avoided.

1 Introduction

Computer-aided verification has reached a point where it can be applied to
state-of-the-art research domains, including compilers, programming languages,
and mathematical theorems. Our goal is to contribute to this growing effort by
formalizing a recent paper on process calculi.

The paper that we are examining is [12], by Lanese et al. It introduces
HOCore—a minimal higher-order process calculus, which features input-prefixed
processes, output processes, and parallel composition. Its syntax is as follows:

P ::= a(x).P | a〈P 〉 | P ‖ P | x | 0.
HOCore is minimal, in the sense that it features only the operators strictly

necessary for higher-order communication. For one, there are no continuations
following output messages. More importantly, there is no restriction operator,
rendering all channels global and the dynamic creation of new channels impos-
sible. The semantics of HOCore is presented in [12] in the form of a labeled
transition system and it is shown that HOCore is a Turing-complete calculus.
On the other hand, its observational equivalence is proven to be decidable. In
fact, the main forms of strong bisimilarity considered in the literature (contextual
equivalence, barbed congruence, higher-order bisimilarity, context bisimilarity,
and normal bisimilarity [4,11,18,22]) all coincide in HOCore. Moreover, their
synchronous and asynchronous versions coincide as well. Therefore, it is possible
to decide that two processes are equivalent, yet it is impossible, in the general
case, to decide whether or not they terminate. In addition, the authors give
in [12] a sound and complete axiomatization of observational equivalence. Our

This work has been partially supported by the ANR project 2010-BLAN-0305 Pi-
Coq, as well as by the Serbian Ministry of Education, Science and Technological
Development, through projects III44006 and ON174026.

2

formalization in Coq [13] addresses all of the results of [12] concerning decid-
ability of observational equivalence, coincidence of synchronous bisimilarities, as
well as the soundness and completeness of the axiomatization.

Contributions. We present a formalization of the HOCore calculus and its behav-
ioral theory in Coq. Throughout the development, we have strived to preserve
a high degree of visual and technical correspondence between, on the one hand,
the formulations of theorems and their proofs in the original paper and, on the
other hand, their Coq counterparts. We introduce in Section 2 the syntactic and
semantic concepts of HOCore: processes, freshness of variables and channels,
structural congruence, and the labeled transition system. In particular, we focus
on modeling bound variables using the canonical approach of Pollack et al. [16].

Sections 3 and 4 contain the main contributions of this paper. In Section 3,
we present the formalization of various strong bisimilarities used in [12]: higher-
order, context, normal, open normal, and IO-bisimilarity, together with the for-
mal proofs that these five bisimilarities coincide and that they are decidable.
In Section 4, we present the axiomatization of HOCore and the formal proof
of its soundness and completeness. In both of these sections, we detail the er-
rors, inaccuracies, and implicit assumptions made in the pen-and-paper proofs,
and show how to correct them. These issues are not unique to the paper under
consideration, and require particular care to be avoided.

Section 5 is reserved for the overview of related work. Finally, we summarize
what we have learned in Section 6. The complete formalization, available online,3
contains approximately 4 thousands of lines of code (kloc) of specification and
22 kloc of proofs. It was developed intermittently over a period of three years by
the authors, Simon Boulier, and Martín Escarrá. It relies on the TLC library—a
general purpose Coq library equipped with many tactics for proof automation—
developed by Arthur Charguéraud.4 Due to lack of space, the details for some of
the definitions and proofs can be found in the Appendix that is available online.

2 Formalizing HOCore

2.1 Syntax

HOCore is a minimal higher-order process calculus, based on the core of well-
known calculi such as CHOCS [21], Plain CHOCS [23], and Higher-Order
π-calculus [18,19,20]. The main syntactic categories of HOCore are channels
(a, b, c), variables (x, y, z), and processes (P,Q,R). Channels and variables are
atomic, whereas processes are defined inductively.

An input-prefixed process a(x).P awaits to receive a process, e.g., Q, on the
channel a; it then replaces all occurrences of the variable x in the process P with
Q, akin to λ-abstraction. An output process5 a〈Q〉 emits the process Q on the
channel a. Parallel composition allows senders and receivers to interact.
3 http://www.irisa.fr/celtique/aschmitt/research/hocore/
4 http://www.chargueraud.org/softs/tlc/
5 We also refer to an output process as an output message or, simply, a message.

http://www.irisa.fr/celtique/aschmitt/research/hocore/
http://www.chargueraud.org/softs/tlc/

3

P, Q ::= a〈P 〉 output process
| a(x).P input prefixed process
| x process variable
| P ‖ Q parallel composition
| 0 empty process

The only binding in HOCore occurs in input-prefixed processes. We denote
the free variables of a process P by fv(P), and the bound ones by bv(P). In [12],
processes are identified up to the renaming of bound variables. Processes that
do not contain free variables are closed and those that do are open. If a variable
x does not occur within a process P , we say that it is fresh with respect to that
process, and denote this in the Coq development by x]P . We denote lists with
the symbol ˜ : a list of variables is, for instance, denoted by x̃. In addition, we
define two notions of size for a process P : s‖(P), for which parallel compositions
count; and s(P), for which they do not. (see online Appendix)

Structural congruence. The structural congruence relation (≡) is the smallest
congruence relation on processes for which parallel composition is associative,
commutative, and has 0 as the neutral element.

Canonical representation of terms. We first address our treatment of bound
variables and α-conversion. We have opted for the locally named approach of
Pollack et al. [16]. There, the set of variables is divided into two distinct subsets:
free (global) variables, denoted by X,Y, Z, and bound (local) variables, denoted
by x, y, z. The main idea is to dispense with α-equivalence by calculating the
value of a local variable canonically at the time of its binding. For this calculation,
we rely on a height function f that takes a global variable X and a term P
within which X will be bound, and computes the value of the corresponding
local variable x. We then replace every occurrence of X with x in P .

To illustrate, consider the process a(x).(x ‖ x). It is α-equivalent to a(y).(y ‖
y), for any local variable y. We wish to choose a canonical representative for
this entire family of processes. To that end, we start from the process X ‖ X,
where X is free, calculate x = fX(X ‖ X), and take this x to be our canonical
representative. In the following, we write a[X]f .P for a(fX(P)).[fX(P)/X]P .

The height function needs to meet several criteria so that it does not, for
one, return a local variable already used in a binding position around the global
variable to be replaced, resulting in a capture. We use the criteria presented in
[16] that guarantee its well-definedness. Although it is not strictly necessary to
choose a particular height function f satisfying these criteria, it is important to
demonstrate that it exists, which we do. (see online Appendix)

Adjusting the syntax. The separation of variables into local and global ones is
reflected in the syntax of processes

P, Q ::= a(x).P | a〈P 〉 | P ‖ Q | x | X | 0

4

which is encoded in Coq inductively as follows:

Inductive process : Set :=
| Send : chan -> process -> process
| Receive : chan -> lvar -> process -> process
| Lvar : lvar -> process
| Gvar : var -> process
| Par : process -> process -> process
| Nil : process.

Here, chan, lvar, and var are types representing channels, local variables, and
global variables, respectively. We can now define substitution without any com-
plications that would normally arise from the renaming of variables. (see online
Appendix) We write [Q/X]P for the substitution of the variableX with the pro-
cess Q in P , and [Q̃/X̃]P for the simultaneous substitution of distinct variables
X̃ with processes Q̃ in P .

Well-formed processes. Given our height function f , we define well-formed pro-
cesses as processes in which all local variables are bound6 and computed using f .
We refer to them as wf-processes and define the predicate wf that characterizes
them inductively. Since all subsequent definitions, such as those of the labeled
transition system, congruence, and bisimulations, consider wf-processes only, we
define a dependent type corresponding to wf-processes, by pairing processes with
the proof that they are well-formed.

Record wfprocess : Set := mkWfP {proc :> process; wf_cond : wf proc}.

A wfprocess is a record with one constructor, mkWfP. This record contains
two fields: a process, named proc, and a proof that proc is well-formed, named
wf_cond. We use Coq’s coercion mechanism to treat a wfprocess as a process
when needed. This approach allows us to reason about wf-processes directly,
without additional hypotheses in lemmas or definitions. Each time a wf-process
is constructed, however, we are required to provide a proof of its well-formedness.
To this end, we introduce well-formed counterparts for all process constructors;
e.g., we express parallel composition of wf-processes in the following way:

Definition wfp_Par (p q : wfprocess) :=
mkWfP (Par p q) (WfPar p q (wf_cond p) (wf_cond q)).

where WfPar is used to construct well-formedness proofs for parallel processes:

6 Here we have a slight overloading of terminology w.r.t. free and bound variables—
while local variables are intended to model the bound variables of the object lan-
guage, they can still appear free with respect to our adjusted syntax. For example, x
is free in the process Lvar x, and we do not consider this process to be well-formed.

5

| WfPar : forall (p q : process), (wf p) -> (wf q) -> (wf (Par p q))

Our initial development did not use dependent types, but relied on additional
well-formedness hypotheses for most lemmas instead. We have discovered that, in
practice, it is more convenient to bundle processes and well-formedness together.
We can, for instance, use Coq’s built-in notion of reflexive relations without hav-
ing to worry about relating non wf-processes. Also, we can define transitions and
congruence directly on wf-processes, thus streamlining the proofs by removing a
substantial amount of code otherwise required to show that processes obtained
and constructed during the proofs are indeed well-formed.

2.2 Semantics

The original semantics of HOCore is expressed via a labeled transition system
(LTS) applied to a calculus with α-conversion. It features the following transition
types: internal transitions P τ−−→ P ′, input transitions P a(x)−−−→ P ′, where P
receives on the channel a a process that is to replace a local variable x in the
continuation P ′, and output transitions P a〈P ′′〉−−−−−→ P ′, where P emits the process
P ′′ on channel a and evolves to P ′. This LTS is not satisfactory because input
transitions mention the name of their bound variable. For one, the following
transition has to be prevented to avoid name capture: x ‖ a(x).x a(x)−−−→ x ‖ x.
To this end, side conditions are introduced and the entire semantics is defined
“up-to α-conversion” to make sure terms do not get stuck because of the choice
of a bound name. To simplify the formalization, we restate it using abstractions.

Abstractions and agents. An agent A is either a process P or an abstraction
F . An abstraction can be viewed as a λ-abstraction inside a context.

A ::= P | F F ::= (x).P | F ‖ P | P ‖ F

We call these abstractions localized, since the binder (x) does not move (the
usual approach to abstractions involves “lifting” the binder so that the abstrac-
tion remains of the form (x).P). Our approach, similar to the one in [24], allows
us to avoid recalculation of bound variables. The application of an abstraction
to a process, denoted by F •Q, follows the inductive definition of abstractions.

((x).P) •Q = [Q/x]P (F ‖ P) •Q = (F •Q) ‖ P (P ‖ F) •Q = P ‖ (F •Q)

Removal transitions. To simplify the definition of bisimulations that allow an
occurrence of a free variable to be deleted from related processes, we also add
transitions X X−−→ 0, where a global variable dissolves into an empty process.

6

The Labeled Transition System. The LTS consists of the following seven rules.

Inp a(x).P a−−→ (x).P Out a〈P 〉 a〈P 〉−−−−→ 0 Rem X X−−→ 0

Act1 If P α−−→ A, then P ‖ Q α−−→ A ‖ Q.
Act2 If Q α−−→ A, then P ‖ Q α−−→ P ‖ A.
Tau1 If P a〈P ′′〉−−−−−→ P ′ and Q a−−→ F , then P ‖ Q τ−−→ P ′ ‖ (F • P ′′).
Tau2 If P a−−→ F and Q a〈P ′′〉−−−−−→ Q′, then P ‖ Q τ−−→ (F • P ′′) ‖ Q′.

In these rules, α denotes an arbitrary transition label. In Coq, we represent
transitions inductively, providing a constructor for each rule. To illustrate, we
present constructors corresponding to the rules Out, In, and Rem.

| TrOut : forall a p, {{wfp_Send a p -- LabOut a p ->> AP wfp_Nil}}
| TrIn : forall a X p, {{wfp_Abs a X p -- LabIn a ->> AA (AbsPure X p)}}
| TrRem : forall X, {{wfp_Gvar X -- LabRem X ->> AP wfp_Nil}}

3 Coincidence and Decidability of Bisimilarities

We now present the formalization of the decidability and coincidence theorems of
HOCore. We emphasize that, in order to arrive at those results, it was necessary
to prove a number of auxiliary lemmas about structural congruence, substitution,
multiple substitution, and transitions that were implicitly considered true in
the original paper. Some of these lemmas were purely mechanical, while others
required a substantial effort. (see online Appendix)

We begin by presenting the five forms of strong bisimilarity commonly used
in higher-order process calculi and describe their formalization in Coq. Following
[12], we first define a number of basic bisimulation clauses. We show here only
those adjusted during the formalization. (see online Appendix)

Definition 1. A relation R on HOCore processes is:

– a variable relation, if when P R Q and P X−−→ P ′, there exists a process Q′,
such that Q X−−→ Q′ and P ′ R Q′.

– an input relation, if when P R Q and P a−−→ F , there exists an abstraction
F ′, such that Q a−−→ F ′, and for all global variables X fresh in P and Q, it
holds that (F •X) R (F ′ •X).

– an input normal relation, if when P R Q and P a−−→ F , there exists an
abstraction F ′, such that Q a−−→ F ′, and for all channels m fresh in P and
Q it holds that (F •m〈0〉) R (F ′ •m〈0〉).

– closed, if when P R Q and P a−−→ F , then there exist Q′ and F ′, such that
Q a−−→ F ′, and for all closed R, it holds that (F •R) R (F ′ •R).

Definition var_relation (R : RelWfP) : Prop :=
forall (p q : wfprocess), (R p q) ->

forall (X : var) (p’ : wfprocess), {{p -- LabRem X ->> (AP p’)}} ->
exists (q’ : wfprocess), {{q -- LabRem X ->> (AP q’)}} /\ (R p’ q’).

7

There are two main differences between these definitions and the ones pre-
sented in [12]. The first one, as previously mentioned, is the use of abstractions
in place of variables in input transitions. The second difference is found in the
definition of a variable relation; we use the transition Rem, while the one in [12]
uses structural congruence. This change was motivated by the fact that we have
chosen to define bisimulations semantically, in terms of processes capable of exe-
cuting transitions. In that context, preserving the definition of a variable relation
from [12] and involving structural congruence would be inconsistent. Moreover,
working under the hypothesis that two processes are structurally congruent is
very inconvenient, as their structure may be completely different.

Using these clauses, we define the five forms of strong bisimulation: higher-
order (∼HO), context (∼CON), normal (∼NOR), input-output (∼o

IO), and open normal
(∼o

NOR) bisimulations. We present here only the ones that differ from those in [12].

Definition 2. A relation R on HOCore processes is:

– an input-output (IO) bisimulation if it is symmetric, an input relation, an
output relation, and a variable relation;

– an open normal bisimulation if it is symmetric, a τ -relation, an input rela-
tion, an output normal relation, and a variable relation.

Definition IO_bisimulation (R : RelWfP) : Prop :=
(Symmetric R) /\ (in_relation R) /\ (out_relation R) /\ (var_relation R).

For each of these bisimulations, we also consider a corresponding bisimilarity,
i.e., the union of all corresponding bisimulations, and each of these bisimilarities
is proven to be a bisimulation itself. Bisimilarity can naturally be viewed as
a co-inductive notion, but its co-inductive aspects can also be expressed in a
set-theoretic way, as follows:

Definition IObis (p q : wfprocess) : Prop :=
exists R, (IO_bisimulation R) /\ (R p q).

To compare the set-theoretic and the native Coq co-inductive versions of
bisimilarity, we have also defined the latter and proven it equivalent to the
set-theoretic one by using a variation of Park’s principle [7]. We use these two
definitions interchangeably, depending on which is more suited to a given proof.
For instance, the co-inductive definition is more convenient for statements in
which the candidate relations are simple and follow the formulation of the state-
ment, as there is no need to supply the relation during the proof process. In the
cases where the candidate relations are more complicated, however, we find it
more natural and closer to the paper proofs to use the set-theoretic definition.

We also define the extensions of ∼HO, ∼CON, and ∼NOR to open processes by
adding abstractions that bind all free variables, and denote these extensions by
∼?HO, ∼?CON, and ∼?NOR, respectively. (see online Appendix)

8

Relations and Bisimilarities “up-to”. An important notion used in our devel-
opment is that of two processes P and Q being in a relation R up to another
relation R′: assuming the processes are related by R before a transition, they
are related by R′RR′ after the transition. We establish the following connec-
tion between bisimilarities and bisimilarities “up-to”, illustrated here only for
∼o

NOR-bisimilarity, but holding for all five.

Lemma 1. Let R′ be an equivalence relation that is also an ONOR-bisimulation.
Then, p ∼o

NOR q if and only if p ∼o
NOR q up to R′.

We mainly use this technique to reason up to structural congruence. We prove
≡ is an equivalence relation, and that it is an ∼o

NOR-bisimulation. By Lemma
1, we may reason up to ≡ to show that processes are ∼o

NOR-bisimilar. This allows
us to consider small bisimulation candidates and use ≡ after a transition to get
back in the candidate.

Existential vs. Universal Quantification of Freshness. Definitions of input, in-
put normal, and output normal relations all feature universal quantification
on a fresh channel and/or variable. Our formalization has revealed that this
condition leads to major problems in proving a number of statements, such
as transitivity of ∼o

NOR-bisimilarity, Lemma 1, and Lemma 3; these problems
were not addressed in [12]. (see online Appendix) To correct this, we defined
existentially-quantified ∼o

IO-, ∼NOR-, and ∼o
NOR-bisimilarities and proved they co-

incide with their universally-quantified counterparts. We could consider closing
candidate relations under variable freshness instead, but this would complicate
the formal proofs substantially. Much more importantly, existentially-quantified
IO-bisimulation cannot be avoided in the formalization of the decidability pro-
cedure.

Decidability of IO-bisimilarity. The simplicity of IO-bisimilarity lets us show
directly that not only it is a congruence, but that it is also decidable.

Lemma 2. The following properties concerning ∼o
IO hold:

1. ∼o
IO is a congruence: if P ∼o

IO P
′, then: (1) a[X]f .P ∼o

IO a[X]f .P
′; (2) for

all Q, P ‖ Q ∼o
IO P

′ ‖ Q; and (3) a〈P 〉 ∼o
IO a〈P ′〉.

2. IO-bisimilarity and existential IO-bisimilarity coincide.
3. IO-bisimilarity and IO-bisimilarity up to ≡ coincide.
4. ∼o

IO is a τ -bisimulation.
5. ∼o

IO is decidable.

To show decidability, we specify a brute force algorithm that tests every pos-
sible transition for the two processes, up to a given depth. As IO-bisimilarity
testing always results in smaller processes (there is no τ clause in this bisim-
ilarity), we can show that this algorithm decides IO-bisimilarity, if the depth
considered is large enough. This allows us to conclude:

9

Theorem IObis_constructive_decidable : forall p q, {p ≈ q} + {~(p ≈ q)}.

We should note here that the brute force algorithm would not be applicable
to the definition of IO-bisimilarity as stated in Definition 2, because we would
need to consider universal quantification on the fresh variable X in the case of an
input transition. However, since we have proven the equivalence of universally-
and existentially-quantified IO-bisimilarities, it is sufficient to check bisimilarity
for only one arbitrary fresh X. More importantly, we strongly emphasize that,
although the TLC library is based on classical logic, the decidability procedure
that we have formalized is fully constructive.

Coincidence of Bisimilarities. First, we address one of the two most technically
challenging lemmas of this part of the development (Lemma 4.15 of [12]).

Lemma 3. If (m[X]f .P
′) ‖ P ∼o

NOR (m[X]f .Q
′) ‖ Q for some fresh m, then

P ∼o
NOR Q and P ′ ∼o

NOR Q
′.

Proof. In order to show the first part of the lemma, we show that the relation

S=
∞⋃
j=1

(P, Q) :

 ∏
k∈1..j

mk[Xk]f .Pk

 ‖ P ∼o
NOR

 ∏
k∈1..j

mk[Xk]f .Qk

 ‖ Q


is an existential ∼o
NOR-bisimulation, where {Pi}∞1 , {Qi}∞1 are arbitrary processes,

{mi}∞1 are channels fresh with respect to P , Q, {Pi}∞1 , and {Qi}∞1 , and each
variable Xi is fresh with respect to Pi and Qi. The proof proceeds as in [12], by
examining possible transitions of P and showing these transitions are matched
by Q. To this end, we study processes of the form (

∏
k∈1..jmk[Xk]f .Pk) ‖ P

and prove several lemmas about their properties in relation to transitions and
structural congruence. The original proof silently relies on the use of existentially-
quantified ∼o

NOR-bisimilarity and up-to structural congruence proof techniques
for this bisimilarity (up-to techniques are proven, but only for IO-bisimilarity).
These assumed results were not trivial to formally establish.

For the second part, we determined that it is unnecessary to formalize the in-
formal procedure to consume ∼o

NOR-bisimilar processes presented in [12]. Instead,
it is sufficient to proceed by induction on (s(P)+ o(P)), where o(P) is the num-
ber of outputs in P , and use the already proven first part, reducing the formal
proof to a technical exercise. We believe that the formalization of this consump-
tion procedure would have been very difficult and would require a substantial
amount of time and effort. This illustrates the insights one can gain through
formal proving when it comes to proof understanding and simplification.

We are now ready to state and prove the coincidence of bisimilarities.

Theorem 1. The five strong bisimilarities coincide in HOCore.

10

Proof. We prove the following implications, the direct corollary of which is our
goal: (1) ∼o

IO implies ∼?HO ; (2) ∼?HO implies ∼?CON ; (3) ∼?CON implies ∼?NOR ; (4) ∼?NOR
implies ∼o

NOR ; (5) ∼o
NOR implies ∼o

IO .

The only major auxiliary claim that needs to be proven here is that an open
normal bisimulation also satisfies the output relation clause; this is an immediate
consequence of Lemma 3.

To conclude this section, we focus on the error discovered in the proof of the
right-to-left direction of Lemma 4.14 of [12], stating that higher order bisimilarity
implies IO-bisimilarity. Its proof was the most challenging to formalize in this
part of the development and this formalization has led us to several important
insights. First, we need the following auxiliary lemma.

Lemma 4. P ∼?HO Q if and only if for all closed R̃, [R̃/X̃]P ∼HO [R̃/X̃]Q, where
X̃ = fv(P) ∪ fv(Q). (Lemma 4.13 of [12]).

While the proof of this claim takes only several lines on paper, its Coq version
amounts to more than three hundred lines of code, requiring a number of aux-
iliary lemmas that appear evident in a pen-and-paper context. These lemmas
mostly deal with with permutations of elements inside a list and the treatment
of channels in the “opening” of ∼HO. We can now proceed to our desired claim.

Lemma 5. ∼?HO implies ∼o
IO.

Discussion. It suffices to prove that the relation R = {(P,Q) | [M̃/X̃]P ∼?HO
[M̃/X̃]Q} is an IO-bisimulation, where X̃ and M̃ are, respectively, lists of vari-
ables and messages carrying 0 on fresh channels. We show R is an input, an
output, and a variable relation . The proofs of all three cases in [12] share the
same structure that relies on the application of both directions of Lemma 4.

First, the unguarded variables7 are substituted with processes of the form
m〈0〉. Then, the remaining free variables are substituted with arbitrary closed
processes R̃, using Lemma 4 left-to-right to show that the result is still in R.
Next, the processes do a transition, and it is proposed to apply Lemma 4 right-to-
left to conclude. This last step is not justified, as we now explain. The main idea
is to show that the bisimulation diagrams are closed under multiple substitution,
i.e., that for all processes P and Q, all global variablesX, and all closed processes
R̃, given [R̃/X̃]P ∼HO [R̃/X̃]Q and [R̃/X̃]P α−−→ [R̃/X̃]P ′, there exists a Q′ such
that [R̃/X̃]Q α−−→ [R̃/X̃]Q′ and [R̃/X̃]P ′ ∼HO [R̃/X̃]Q′. Then, the idea is to apply
Lemma 4 right-to-left to obtain P ′ ∼?HO Q′. This is accomplished by first showing
that there exists an S, such that [R̃/X̃]Q α−−→ S and [R̃/X̃]P ′ ∼HO S, and then
showing that there exists a Q′, such that S = [R̃/X̃]Q′. The crucial mistake is
that Q′ here depends on R̃, unless proven otherwise. Thus, the requirement for
a unique Q′ with a universal quantification on R̃ of Lemma 4 right-to-left is not
satisfied, and the lemma cannot be applied.
7 Variables that appear in an execution context, i.e., those not “guarded” by an input.

11

Our initial attempt at this proof followed this approach, which failed when
Coq refused to let us generalize R̃ since Q′ depended on it. We thus proceeded
differently, by first substituting every free variable with processes of the form
m〈0〉, using Lemma 4 left-to-right to show that we remain in the relation. We
then applied several auxiliary lemmas to finish the proof. While the error in this
proof was corrected relatively easily, its very existence in the final version of [12]
is indicative of the need for a more formal treatment of proofs in this domain, a
need further substantiated by the findings presented in the following Section.

4 Axiomatization of HOCore

In this section, we present a formal proof of the soundness and completeness of
the axiomatization of HOCore and reflect on the errors discovered in the pen-
and-paper proofs. First, we briefly outline the treatment of axiomatization in
[12]. The authors begin by formulating a cancellation lemma for ∼o

IO:

Lemma 6. For all processes P,Q,R, if P ‖ R ∼o
IO Q ‖ R, then also P ∼o

IO Q.

Next, they introduce the notion of a prime process and prime decomposition.

Definition 3. A process P is prime if P �o
IO 0 and P ∼o

IO P1 ‖ P2 implies
P1 ∼o

IO 0 or P2 ∼o
IO 0. When P ∼o

IO

∏n
i=1 Pi, with each Pi prime, we say that∏n

i=1 Pi is a prime decomposition of P .

The authors then prove that every process admits a prime decomposition unique
up to bisimilarity and permutation of indices. Next, extended structural con-
gruence (≡E ,) is defined by adding to ≡ the following distribution law:

a(x).

(
P ‖

k−1∏
1

a(x).P

)
≡E

k∏
1

a(x).P .

Next, a reduction relation and normal forms are defined as follows:

Definition 4. We write P Q if there exist processes P ′ and Q′, such that
P ≡ P ′, Q′ ≡ Q, and Q′ is obtained from P ′ by rewriting a subterm of P ′ using
the distribution law left-to-right. A process P is in normal form if it cannot be
further simplified in the system ≡E using .

Finally, the following three claims conclude the axiomatization section of [12]:

Lemma 7. If a(x).P ∼o
IO Q ‖ Q′, with Q,Q′ �o

IO 0, then a(x).P ∼o
IO

∏k
1 a(x).R,

with k > 1 and a(x).R in normal form.

Lemma 8. For all P , Q in normal form, if P ∼o
IO Q, then P ≡ Q.

Theorem 2. ≡E is a sound and complete axiomatization of ∼o
IO in HOCore.

Our formalization of this section has led to the discovery of the following
imprecisions and errors.

12

Cancellation Lemma. For the proof of Lemma 6 in [12], the authors attempt
to re-use the proof from [14], that proceeds by induction on the sum of sizes
of P , Q, and R. This, however, is not possible, as that proof was designed for
a calculus with operators structurally different than the ones used in HOCore.
Instead, we need to use the candidate relation R, parameterized by a natural
number n, such that P R Q at level n if and only if there exists a process R
such that s(P) + s(Q) + s(R) ≤ n and P ‖ R ∼o

IO Q ‖ R, and prove that this
candidate relation is an IO-bisimulation by total induction on n.

“Deep” prime decomposition. In the proof of Lemma 7, the authors in [12] claim
that every process is bisimilar to a parallel composition of a collection of prime
processes in normal form. They prove this by taking the normal form of a process,
performing a prime decomposition on this normal form, and concluding that all
of the constitutents in this prime decomposition are both prime and in normal
form. This, however, is not necessarily true, as there is no proof that taking the
prime decomposition of a process preserves the fact that it is in normal form.
In particular, the definition of primality considers only the top-level structure
of the process: we can prove that every output message a〈P 〉 is prime for all
a and P , but we cannot obtain any information on the primality of P from
this. On the other hand, normal forms are defined “in depth”. Because of these
discrepancies, the proof in [12] cannot be concluded. To remedy this, we need to
define a “deep” version of primality that recursively requires of all sub-processes
of P to be prime as well, together with the notion of “deep” prime decomposition,
using which we can prove Lemma 7 properly.

Normal forms and the proof of Lemma 8. The proof of Lemma 8 in [12] exhibits
several errors. It is performed by induction on s(P), simultanously provingA and
C, where A is an auxiliary lemma stating that if P is an input-prefixed process in
normal form, then it is prime, and C is the main claim. However, the induction
must actually be performed on A ∧ (A → C), since C cannot be proven otherwise
(the third case of item 2 on page 27 of [12] fails). Much more importantly, the
seemingly trivial case when P = a(x).P ′ ‖ 0 is not covered by the proof, and it
turned out that it cannot be covered at all with the proof structure as presented
in [12]. As we were unable to immediately discover an alternate proof method,
we decided to adjust the notion of normal form by disallowing empty processes in
parallel composition. This meant that normal forms could no longer be defined
using , but had to be defined directly instead. Interestingly, we can say that
normal forms are now “more normal” w.r.t. those in [12], as they are unique
only up to commutativity and associativity of parallel composition. With these
corrections, we were able to conclude the proof of Lemma 8.

5 Related Work

We first discuss alternative approaches to the treatment of binding and α-
conversion, starting from Nominal Isabelle [25,10,27], where nominal datatypes
are used to represent α-equivalence classes. This extension of Isabelle has been
successfully applied in a number of formalizations of various calculi with binders

13

[15,2,26], and taking advantage of it would probably reduce the size of our de-
velopment. However, since one of our main results is the formalization of the
decidability procedure for IO-bisimulation, and since stating decidability in Is-
abelle is not a trivial task, we have ultimately opted to use Coq.

The locally nameless approach [1,5] is the one most similar to the one we are
using. There, variables are also split into two categories—local and global—but
local variables are calculated by using de Bruijn indices instead of a height func-
tion. We find this approach to be both equally viable and equally demanding—
freshness and well-formedness would both have to be defined, albeit differently,
the proofs would retain their level of complexity, and the amount of code required
would not be reduced substantially.

In the Higher-Order-Abstract-Syntax (HOAS), binders of the meta-language
are used to encode the binding structure of the object language. In some set-
tings, HOAS can streamline the development and provide an elegant solution
for dealing with α-conversion, but in the case of process calculi it also brings
certain drawbacks. As stated in [9], there are difficulties with HOAS in dealing
with meta-theoretic issues concerning names, especially when it comes to the
opening of processes, to the extent that certain meta-theoretic properties that
involve substitution and freshness of names inside proofs and processes cannot
be proven inside the framework and must be postulated instead.

In light of everything previously stated in this section and since HOCore does
not have a restriction operator, we have decided to use the canonical locally
named approach [16] for variables bound by the input operator. We have not
yet considered more general approaches for name binding, such as [17]. In fact,
our development may easily be adapted to other models for binders, as long as
binders remain canonical (α-convertibility is equality).

We now turn to works related to the formalization of process calculi and
their properties. To the best of the authors’ knowledge, there have been no
formalizations of the higher-order π-calculus so far. There are, however, many
formalizations of the π-calculus in various proof assistants, including Coq, such
as [8] (where the author uses de Bruijn indices) and [9] (where the authors
use HOAS). The work closest to ours is the recent formalization in Isabelle of
higher-order Psi-calculi [15], an extension of [2] to the higher-order setting. We
have developed our own formalization because we wanted to stay as close to the
paper proofs as possible, in particular when it came to the handling of higher-
order and the definitions of the many bisimulations involved. Although we feel
that translating HOCore and its bisimulations into a higher-order psi-calculus
constitutes a very interesting problem, it is beyond the scope of this paper.

Preliminary versions of this paper have appeared in [3,6]. The former con-
tained the initial results of the effort, which included the locally nameless tech-
nique for dealing with binders, the correction of the semantics, and the results on
decidability. The latter added to this the new and more solid treatment of well-
formed processes as records and the proof of the coincidence of bisimilarities.
This version rounds this formalization effort up with results on the soundness

14

and completeness of the axiomatization, as well as the discovery and correction
of a number of errors and imprecisions made in [12].

6 Lessons Learned and Conclusions

This formalization of HOCore in Coq has given us a deeper understanding of
both the calculus itself and the level of precision required for proving properties
of bisimulations in a higher-order setting. Moreover, it has led to the discovery of
several major flaws in the proofs of [12]. First, there was the improper generaliza-
tion of a hypothesis in the proof of Lemma 5. This flaw was due to a lapse in the
tracking of the context inside which a property is derived, and it is in precisely
such tracking that proof assistants excel. Next, the proof of Lemma 6 was incor-
rect, as it relied on a previously existing technique not applicable to higher-order
process calculi. Finally, two notions crucial for the axiomatization of HOCore—
prime decomposition and normal forms—were not defined correctly and did not
take into account, respectively, the need for structural recursion in primality and
the subtle impact of empty processes in parallel composition. These errors have
all been corrected during the formalization and did not ultimately affect the
correctness of the main results of [12], but we feel that it is their very presence
in a peer-reviewed, state-of-the-art paper that strongly underlines the need for
a more precise formal treatment of proofs in this domain.

We have also identified two missing results required by some lemmas. The
first concerns existentially-quantified bisimulations: certain properties of bisim-
ulations cannot be proven if the variables or channels featured in freshness con-
ditions of bisimulation clauses are universally quantified. We solved this by in-
troducing bisimulations with existential quantification and demonstrating that
they are equivalent to the universally quantified ones. We have also discovered
that existentially-quantified bisimulations are necessary for the formulation of
the decidability procedure. The second missing result concerns transitivity of
bisimulations, which is, in turn, required to prove that open normal bisimilarity
and existential open normal bisimilarity coincide. This claim was not trivial to
formalize; it required the use of up-to techniques, which were also left untreated
for some bisimilarities in [12].

In the end, we were able to prove the decidability of IO-bisimilarity, the main
coincidence theorem, and their supporting lemmas, as well as the results on the
soundness and completeness of the axiomatization. We realized that some of the
lemmas of the paper are actually not needed, such as Lemma 5. Additionally, we
significantly simplified some proofs. For instance, the proof of Lemma 3 (Lemma
4.15 in [12]) does not require the consumption procedure described in [12]; in-
duction on the combined measure m(P) is sufficient and more elegant.

As a side effect of our precise treatment of bound variables, we have detected
and corrected an error in the original semantics of HOCore, streamlining it in
the process. Labels for input transitions no longer contain the variable to be sub-
stituted, but evolve to a localized abstraction instead. We have also introduced

15

the deletion of a variable as a transition in the LTS, removing a special case in
the definition of the bisimulations and avoiding the use of structural congruence.

In fact, many of the choices that were made during the formalization were
guided by the intent to avoid structural congruence. Although it is very conve-
nient to be able to freely change the structure of a process, doing so interferes
considerably with local reasoning. There were cases, however, where we could not
avoid it, in particular when proving properties of normal bisimulations. There,
we have used “up-to structural congruence” techniques to keep the bisimula-
tion candidates small enough. We have discovered that the discord between the
rigid syntax of a formal process and the intuition that it models a “soup” where
processes can move around freely and interact with each other made the formal-
izations of some of the proofs more difficult than anticipated.

We have also proved that the co-inductive and set-theoretic definitions of
IO-bisimilarity are equivalent, and used them interchangeably, depending on the
complexity of the candidate relation at hand.

As for further work, our immediate aim is to formalize the results pre-
sented in Section 5 of [12], pertaining to the correctness and completeness of
IO-bisimilarity w.r.t. barbed congruence. At this point, we have the correctness
proof, which, given Theorem 1, means that all of the five forms of bisimilarity in
HOCore are correct w.r.t. barbed congruence. Afterwards, we plan to extend the
formalization of HOCore with name restriction, before tackling more complex
features such as passivation.

In conclusion, we hope that the experience described in this paper will serve
as a motivational step towards a more systematic use of proof assistants in the
domain of process calculi.

References

1. B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich. Engineering
formal metatheory. In ACM SIGPLAN–SIGACT Symposium on Principles of
Programming Languages (POPL), pages 3–15. ACM, Jan. 2008.

2. J. Bengtson and J. Parrow. Psi-calculi in Isabelle. In Proceedings of the 22nd
International Conference on Theorem Proving in Higher Order Logics, TPHOLs
’09, pages 99–114, Berlin, Heidelberg, Aug. 2009. Springer-Verlag.

3. S. Boulier and A. Schmitt. Formalisation de HOCore en Coq. In Actes des 23èmes
Journées Francophones des Langages Applicatifs, Jan. 2012.

4. Z. Cao. More on bisimulations for higher order pi-calculus. In Proc. of FoSSaCS’06,
volume 3921 of LNCS, pages 63–78. Springer, 2006.

5. A. Charguéraud. The locally nameless representation. Journal of Automated Rea-
soning, pages 1–46, 2011. 10.1007/s10817-011-9225-2.

6. M. Escarrá, P. Maksimović, and A. Schmitt. HOCore in Coq. In Actes des 26èmes
Journées Francophones des Langages Applicatifs, Jan. 2015.

7. E. Gimenez. A Tutorial on Recursive Types in Coq, 1998. Tech. Rep. No. 0221.
8. D. Hirschkoff. A full formalisation of pi-calculus theory in the calculus of construc-

tions. In Proceedings of the 10th International Conference on Theorem Proving in
Higher Order Logics, volume 1275, pages 153–169. Springer, Aug. 1997.

16

9. F. Honsell, M. Miculan, and I. Scagnetto. pi-calculus in (co)inductive-type theory.
Theoretical Computer Science, 253(2):239–285, Feb. 2000.

10. B. Huffman and C. Urban. A new foundation for Nominal Isabelle. In M. Kauf-
mann and L. C. Paulson, editors, Interactive Theorem Proving, First International
Conference, ITP 2010, Edinburgh, UK, July 2010., pages 35–50. Springer, 2010.

11. A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-calculus re-
visited. Log. Meth. Comput. Sci., 1(1):1–22, 2005.

12. I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt. On the expressiveness
and decidability of higher-order process calculi. Information and Computation,
209(2):198–226, Feb. 2011.

13. The Coq development team. Coq reference manual, 2014. version. 8.4.
14. R. Milner and F. Moller. Unique decomposition of processes. Theor. Comput. Sci.,

107(2):357–363, 1993.
15. J. Parrow, J. Borgström, P. Raabjerg, and J. Åman Pohjola. Higher-order psi-

calculi. Mathematical Structures in Computer Science, FirstView:1–37, 3 2014.
16. R. Pollack, M. Sato, and W. Ricciotti. A canonical locally named representation of

binding. J. Autom. Reasoning, pages 1–23, May 2011. 10.1007/s10817-011-9229-y.
17. N. Pouillard and F. Pottier. A fresh look at programming with names and binders.

In Proceedings of the fifteenth ACM SIGPLAN International Conference on Func-
tional Programming (ICFP 2010), pages 217–228, Sept. 2010.

18. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis, Univ. of Edinburgh, Dept. of Comp. Sci., 1992.

19. D. Sangiorgi. Bisimulation for higher-order process calculi. Information and Com-
putation, 131(2):141–178, dec 1996.

20. D. Sangiorgi. π-calculus, internal mobility and agent-passing calculi. Theor. Com-
put. Sci., 167(2):235–274, 1996.

21. B. Thomsen. A calculus of higher order communicating systems. In Proc. of
POPL’89, pages 143–154. ACM Press, 1989.

22. B. Thomsen. Calculi for Higher Order Communicating Systems. PhD thesis,
Imperial College, 1990.

23. B. Thomsen. Plain CHOCS: A second generation calculus for higher order pro-
cesses. Acta Inf., 30(1):1–59, 1993.

24. A. Tiu and D. Miller. Proof search specifications of bisimulation and modal logics
for the pi-calculus. ACM Transactions on Computational Logic (TOCL), 11:13:1–
13:35, January 2010.

25. C. Urban. Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning,
40(4):327–356, 2008.

26. C. Urban, J. Cheney, and S. Berghofer. Mechanizing the metatheory of LF. ACM
Trans. Comput. Log., 12(2):15, 2011.

27. C. Urban and C. Kaliszyk. General bindings and alpha-equivalence in nominal
Isabelle. In Programming Languages and Systems - 20th European Symposium on
Programming, ESOP 2011, Saarbrücken, Germany, pages 480–500. Springer, 2011.

	HOCore in Coq

