N

HAL

open science

Association Discovery in Two-View Data

Matthijs van Leeuwen, Esther Galbrun

» To cite this version:

Matthijs van Leeuwen, Esther Galbrun. Association Discovery in Two-View Data. IEEE Transactions
on Knowledge and Data Engineering, 2015, 27 (12), pp.3190 - 3202 10.1109/TKDE.2015.2453159 .

hal-01242988

HAL Id: hal-01242988
https://hal.science/hal-01242988
Submitted on 14 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01242988
https://hal.archives-ouvertes.fr

Association Discovery in Two-View Data

Matthijs van Leeuwen and Esther Galbrun

Abstract— Two-view datasets are datasets whose attributes are naturally split into two sets, each providing a different view on the
same set of objects. We introduce the task of finding small and non-redundant sets of associations that describe how the two views are
related. To achieve this, we propose a novel approach in which sets of rules are used to translate one view to the other and vice versa.
Our models, dubbed translation tables, contain both unidirectional and bidirectional rules that span both views and provide lossless

translation from either of the views to the opposite view.

To be able to evaluate different translation tables and perform model selection, we present a score based on the Minimum Description
Length (MDL) principle. Next, we introduce three TRANSLATOR algorithms to find good models according to this score. The first
algorithm is parameter-free and iteratively adds the rule that improves compression most. The other two algorithms use heuristics
to achieve better trade-offs between runtime and compression. The empirical evaluation on real-world data demonstrates that only
modest numbers of associations are needed to characterize the two-view structure present in the data, while the obtained translation

rules are easily interpretable and provide insight into the data.

Index Terms—Association discovery, Two-view data, Minimum description length, Association rule mining, Redescription mining

1 INTRODUCTION

WO-VIEW datasets are datasets whose attributes are
split into two sets, providing two alternative views
on the same set of objects. Two-view data is a form
of multi-view data, in which an arbitrary number of
views can occur. In practice, a data analyst is often given
different sets of descriptors on the same set of objects,
and asked to analyze associations across these views.
In the medical domain, for example, persons could
be the objects of interest, and one could have both
demographic and medical data. The two views repre-
sent clearly different fypes of information. Alternatively,
products could be the objects, and one could have both
product information and aggregated customer data (e.g.,
sales, churn, sentiment). Or consider movies, for which
we could have properties like genres and actors on one
hand and collectively obtained tags on the other hand.
In each of these examples, there are two views that
convey different information concerning the same ob-
jects. An obvious question to a data analyst would be:
what associations are present in these views? This is a typical
exploratory data mining [3] question: the task is to discover
patterns that together describe the structure of the data.
In particular, we are interested in associations that span
both views. For instance, certain demographic proper-
ties might imply a certain medical condition with high
probability. Sometimes, such an association might hold
in both directions, implying that the two observations
occur mostly together.

o M. van Leeuwen is with the Machine Learning group, Department of
Computer Science, KU Leuven, Leuven, Belgium
E-mail: matthijs.vanleeuwen@cs.kuleuven.be

e E. Galbrun is with the Department of Computer Science, Boston Univer-
sity, Boston, MA, United States
E-mail: galbrun@cs.bu.edu

It is important to note that we explicitly aim to find
a compact and non-redundant set of such associations,
to avoid overwhelming the analyst with a plethora of
discoveries. On the other hand, the set should also
be complete with respect to the structure in the data
it describes. Furthermore, we are primarily interested
in scenarios where the two views are expressed over
different, typically disjoint, sets of attributes, rather than two
sets of tuples over the same attributes.

As another example, which we will revisit during the
empirical evaluation, consider a set of music tracks for
which we have both music features, such as genres and
instruments, and manually collected information on the
evoked emotions. In this case it would be of interest
to investigate which emotions are evoked by which
types of music: how are the music features associated
to emotions? Example patterns our method finds are,
e.g., that R&B songs are typically catchy and associated
with positive feelings, that alternative rock music is often
listened to while driving, and that aggressive vocals are
associated with high energy songs.

Existing association discovery and pattern mining
techniques were not designed to be used with multi-
view data. As a consequence, these methods cannot be
directly applied on two-view data, while merging the
two views would result in the loss of the distinction be-
tween the views. Association rule mining [1] algorithms
can be modified to return only rules that span two views
of a dataset, but these methods suffer from the infamous
pattern explosion: the number of rules found is enormous
and it is therefore impracticable for a data analyst to
manually inspect and interpret them. Acknowledging
this problem, methods have been proposed to discover
smaller sets of rules, for example via closed itemsets [25]
or statistical testing [21]. We will empirically compare to
the latter approach, as it results in small sets of high-
confidence rules. Other pattern set mining methods, such

as KRIMP [19], also address the pattern explosion, but
no existing techniques target the (symmetric) two-view
setting that we consider.

1.1 Approach and contributions

The problem we address in this paper is to discover a
small and non-redundant set of rules that together provide
an accurate and complete description of the associative
structure across a Boolean two-view dataset. Solving this
problem will enable data analysts to perform exploratory
mining on two-view data and discover new knowledge.

For this, we consider sets of objects characterized by
two Boolean datasets over two disjoint item vocabular-
ies. Without loss of generality, we refer to these as left-
hand side and right-hand side datasets and denote them
by Dy, (over Zy,) and Dgr (over Ir) respectively.

In this context, consider a rule r = X — Y, where X
is an itemset over Z1, and Y is an itemset over Zr. Such
a rule can be interpreted as indicating that if X occurs
in a transaction of Dy, then Y is likely to occur in the
corresponding transaction of Dr. In other words, given
the left-hand side of the data, rules provide information
about occurrences of items in the right-hand side. Thus,
they can be used to translate Dy, to Dgr and are therefore
dubbed translation rules. Similarly, we define rules in
the other direction, and symmetric rules for which both
directions hold.

After discussing related work in Section 2, Section 3
presents the first main contribution of the paper: we
introduce pattern-based models for Boolean two-view data. A
model, called translation table, consists of translation rules
and can be used to reconstruct one side of the data given
the other, and vice versa. We introduce a translation
scheme that takes a Boolean view and translation table
as input, and returns a reconstructed opposite view
as output. Each individual rule spans both views of
the data and hence provides insight in how the two
sides are related. In addition, we use both bidirectional
and unidirectional rules, which allows us to construct
succinct models that allow for easy interpretation.

Given a dataset, different translations tables will
clearly result in different translations and an important
question is how good a specific translation table is. In gen-
eral, some items might be missing from the reconstructed
view while some might be introduced erroneously. To
make translation completely lossless, we add a so-called
correction table that corrects both of these types of errors;
the larger the reconstruction error, the larger the number
of corrections. Given this, we could try to find the model
that minimizes the size of the correction table, but this
would result in overly complex translation tables.

For that reason, Section 4 presents our second main
contribution: model selection for translation tables based on
the Minimum Description Length (MDL) principle [7]. The
MDL principle takes both the complexity of the model
and the complexity of the data given the model into
account, and is therefore very useful for model selection

when a balance between these complexities is desirable.
In the current context, we use it to select small sets of
rules that provide accurate translations.

Having defined our models and a way to score them,
we need to search for the optimal translation table with
respect to this score. Unfortunately, exhaustive search
for the globally optimal translation table is practically
unfeasible. Still, it is possible to find the single rule that
gives the largest gain in compression given a dataset
and current translation table, allowing us to construct
a good translation table in a greedy manner. Our third
main contribution, described in Section 5, consists of
three TRANSLATOR algorithms, each of which takes a two-
view dataset as input and induces a good translation
table by starting from an empty table and iteratively
adding rules. By introducing an exact method for finding
the best rule in each iteration, we have the best pos-
sible baseline to which we can compare the heuristic
approaches (on modestly sized problem instances).

Then, the proposed model and algorithms are empir-
ically evaluated in Section 6. The obtained compression
ratios indicate that two-view structure in datasets can
be discovered. Comparisons demonstrate that TRANS-
LATOR discovers more compact and complete models
than existing methods. Finally, we show by means of
examples that the translation rules found are expressive
and intelligible. Section 7 concludes the paper.

2 RELATED WORK

Two-view data, an instance of multi-view data, is
strongly related to the concept of parallel universes [22],
which also concerns multiple descriptor spaces over
the same set of objects. However, learning in parallel
universes usually has the goal to also identify structure
within each of the individual views, whereas multi-view
learning focuses on structure across the different views,
as we do in this paper.

Multi-view data and parallel universes have both been
extensively studied in the context of traditional learning
and clustering tasks [2], [11], [14], [22], but have received
little attention in the context of (rule-based) association
discovery and pattern mining. Subspace clustering [8]
aims to find all (low-dimensional) clusters in all sub-
spaces of high-dimensional data, but does not distin-
guish between different views. The relation between
subspace clustering and pattern mining was recently
surveyed [20].

In the remainder of this section, we focus on work
most closely related to ours, divided into three parts:
pattern mining for two-view data, association rule min-
ing, and compression-based model selection.

2.1 Pattern mining for two-view data

Both Exceptional Model Mining (EMM) [9] and Re-
description Mining (RM) [6], [13] are concerned with
finding patterns in two-view data. EMM aims at finding
subsets of the data that stand out with respect to a

designated ‘target’. As such, EMM is highly asymmetric,
with one side used for descriptions and the other purely
as target, as is the case with multilabel classification [17].
Redescription Mining, on the other hand, aims at finding
pairs of queries, one for each view, that are satisfied
by almost the same set of objects. Such query pairs
are called redescriptions, and quality is usually measured
with the Jaccard coefficient of the queried object sets.
Similar to the approach discussed here and unlike EMM,
RM treats both sides equally. However, there are two im-
portant differences with our work. First, associations are
required to hold in both directions, i.e., a redescription
can be interpreted as a bidirectional high confidence as-
sociation rule. Second, redescriptions are judged individ-
ually and the complete set of redescriptions is therefore
often redundant in practice. Hence, redescription mining
discovers individual high-confidence, bidirectional rules,
whereas our approach induces non-redundant, global
models consisting of both unidirectional and bidirec-
tional rules. We empirically compare our proposed ap-
proach to redescription mining in Section 6.

2.2 Association rule mining

At first sight, mining association rules across the two
views might seem an obvious alternative to our pro-
posal. Association rules have been widely studied since
their introduction in [1]. Unfortunately, association rules
are unidirectional and have other disadvantages [21],
the most important being the so-called pattern explosion:
humongous amounts of highly similar rules are found
and, consequently, support and confidence thresholds
are hard to tune. Acknowledging this problem, meth-
ods have been proposed to find smaller sets of the
rules [25]. One recent and well-known such method
employs statistical testing [21]. In particular, a Bonferroni
correction is applied to correct for multiple testing, and
the discovered patterns are assessed on holdout data.
This results in relatively strict rule selection and we
will therefore empirically compare our method to this
statistical approach in Section 6.

Supervised pattern set mining methods [4] approach
the problem from a classification perspective, which
assumes the existence of a single property of interest,
i.e., the class label or target. We do not assume any
such target and instead of inducing predictive models
consisting only of high-confidence rules, we aim at dis-
covering descriptive, non-redundant models that include
bidirectional rules.

2.3 MDL based model selection

A recent trend that addresses the pattern explosion in lo-
cal pattern mining, is the development of pattern-based
models using the Minimum Description Length (MDL)
principle [7]. Examples include methods for Boolean
data [19] and for sequences [16]. Advantages of this
approach over exploratory data mining are twofold.
First, it results in small, pattern-based models, which are

interpretable and may hence provide the data analyst
with valuable insight in the data. Second, using com-
pression allows the models to be used for other tasks [5],
such as clustering [18].

Our high-level approach is related to existing meth-
ods, but our work differs in two main aspects. First, we
explicitly consider two-view datasets and their particular
structure to discover sets of rules. Concatenating the
two sides of the data and applying KRIMP, for example,
yields very different results, as we will demonstrate in
the experiments. Particularly, our framework compresses
the mapping across two views rather than the data
itself, to ensure that we (only) find associations across
the two sides of the data. Second, in contrast to existing
approaches, we present an exact method for finding the
best rule given a translation table. Within the context of
greedy search, which is unavoidable, this gives us the
best possible baseline to compare our heuristics to.

3 TRANSLATION MODELS FOR BOOLEAN
Two-VIEw DATA

We consider Boolean data over a set of objects denoted
by O. Each object is characterized by a transaction over
two sets of items, 7y, and Zr (L for left, R for right).
That is, each transaction ¢ can be regarded as a pair of
itemsets t = (t1,,tr) concerning the same object 0 € O,
such that ¢, C 71, and tgr C Zr. A two-view dataset D is a
bag of transactions. Let |D| denote its size, i.e., |{t € D}|.
We use Dy, (resp. Dr) to denote the dataset D projected
onto 7y, (resp. Zr). An itemset Z is said to occur in a
transaction ¢t iff Z C t, Utg. The support of an itemset Z
in dataset D is the bag of transactions in which Z occurs,
ie, suppp(Z) ={t € D | Z C tr,Utr}. We typically omit
the index when D is unambiguous from the context.

Given this notation, we now introduce and formally
define the patterns and pattern-based models that we
consider in this paper, i.e., translation rules and tables.
In the following, we assume a given dataset D with
corresponding item vocabularies Zy, and Zgr over which
all itemsets are defined.

Definition 1 (Translation Rule): A translation rule, de-
noted X ¢V, consists of a left-hand side itemset X C T,
(X # 0), a direction ¢ € {—, <, <}, and a right-hand
side itemset Y C Zg (Y # 0).

Definition 2 (Translation Table): A translation table T is a
three-column table in which each row contains a trans-
lation rule X oY, where the three columns correspond to
X, o, and Y respectively. T denotes the set of all possible
translation tables for a given dataset.

A translation table can be used to translate one side
of the data to the other side. Next we present the
mechanism that performs this translation. For ease of
presentation, we introduce the definitions and methods
only for translating Dy, to Dr given a translation table
T. However, the translation scheme is symmetric and we
assume the reverse direction to be defined analogously.

L—-R

1: Translate L -
S
R

(A)c(G/H)
A C[G/H Z
OE Dr Cr
B\ (F/G
(A|B F(G[H
(AIG/H] —
Dy ¢ Ao
c ®
B\ /F /G
2: Correct @B FBH
@ pEm
N /
(/L I)L

2: Correct

LrU
PQ

(JAGH
6 BFG
@5
A0

Dr T

TITT

1: Translate
L+ R

Fig. 1. Translating a toy dataset, consisting of the two views Dy, and Dgr, with translation table 7' (on the right). The
blue and green arrows indicate left to right and right to left translations respectively. For each translation, the first step
is to obtain the translated dataset Dy (resp. Dy,) by applying the rules in T in the appropriate direction. To complete
lossless translation, the second step is to flip the values for all items in correction table Cr (resp. C1.).

A translation is an exact mapping from one view of a
multi-view dataset to another view. In two-view data, we
have two such mappings: one from left to right and one
from right to left, which we denote by Dr,_,r and Drr
respectively. In other words, Dy,_,r can be regarded as
a function that translates ¢1, to tg for each t € D.

Translation can be done on a per transaction basis, be-
cause transactions are assumed to be independent from
one another. The translation scheme is presented as Al-
gorithm 1. It takes ¢r, and T as input and returns a trans-
lated transaction tg, i.e., tg = TRANSLATELr(tr,T).
The algorithm first initializes ¢z = () and then considers
each translation rule X ¢Y € T in turn. For each rule
of the foorm X — Y or X « Y, it checks whether
the antecedent occurs in the left-hand side, i.e., whether
X C ty,. If this is the case, Y is added to tg.

Note that with this scheme, the order of the rules
in T does not influence translation. Also, a translation
table may contain both unidirectional and bidirectional
rules and thus allows both symmetric and asymmetric
associations to be used.

Ideally, we would have ti = tg for each transaction.
However, for any realistic dataset D it will be impossible
to find a translation table T' that achieves this for all
transactions. Therefore, we introduce a correction table
Cr that represents the errors between the original and

Algorithm 1 The TRANSLATE,_,r algorithm

Input: Transaction ty,, translation table T°
Output: Translated transaction tg
tg < 0
cforall XoY €T do
if o € {—, >} AX C ¢ then
tg — RUY
return {p

SN

translated datasets. For each transaction ¢, ¢g € Cg is
the difference between tr and the translated itemset tf,
ie., i =tr @ tR, where @ denotes exclusive or.
Putting everything together, translation Dy,_,g can be
performed losslessly using 7" and correction table Cg: for
each tg € Dr we have tg = TRANSLATE, g (t1, T)®ck.
To illustrate the translation scheme, Fig. 1 shows trans-
lations in both directions on a toy dataset. Translation
D1, R, for example, is indicated by the blue arrows. The
antecedent of the first rule in T occurs in the first, fourth
and fifth rows of Dy, which results in the addition of
items L and U in the corresponding transactions in Dg.
Similarly, the second rule is matched and applied to the
second and third transactions, resulting in the item S
in the translated transactions. After all rules in 7" have
been applied using the TRANSLATE algorithm, correction
table Cr is applied using exclusive or. This both adds
and removes items from Dy, e.g., L is removed from
the second transaction while both P and () are added,
which results exactly in Dg. Translation Dy g goes in
the other direction and is indicated with green arrows.

4 SCORING TRANSLATION TABLES

Having defined our models, i.e., translation tables, a
natural question that arises is how good a given model is.
Given a dataset and a set of candidate models, we need
to be able to score them so that we can choose the best
one. Since it is our goal to find compact yet descriptive
translation tables, we use the Minimum Description
Length principle [7]. The MDL principle embraces the
slogan Induction by Compression and is the induction
principle for descriptions.

The MDL principle states that given a set of models
M and a dataset D, the best model is the model M € M
that minimizes

L(D| M)+ L(M),

where L(D | M) is the length, in bits, of the data encoded
with M and L(M) is the length, in bits, of the model.
Simply put, the best model is the one that gives the best
compression of data and model combined.

Our model class M is defined as the set of possi-
ble translation tables T. In the standard situation, such
as with KRIMP, encoding the data is straightforward:
each transaction is encoded by the model. However, the
current problem is different and we are not interested
in encoding the data directly. Instead, to capture any
cross-view associations we are interested in encoding
the translations Di,_,r and D r. Translation tables do
not directly capture the underlying data distributions,
instead they capture these translations.

Hence, it is these translations that should be consid-
ered as ‘data’ and compressed accordingly. Combining
the left-to-right and right-to-left translations to make
the problem symmetric, the total encoded length of
a bidirectional translation given a model, denoted by
L(DLor | T), is defined as

L(DLsr |T) = L(PLsr | T)+ L(Drer | T).

In Section 3 we defined the space of possible models T
and presented the translation mechanism. In particular,
we showed how Dy, can be perfectly translated into Dg
using 7" and the correction table Cr. The translation table
is our model and therefore encoded on itself, i.e., L(M) is
replaced by L(T). To encode a translation Dy_.g given
T, we only need to encode Cgr: given the translation
and correction tables, Dg can be losslessly reconstructed
from Dy,.

Hence, the encoded length of the left-to-right transla-
tion given T' becomes

L(DLor | T)=L(Cr |T),

and vice versa for the other direction

L(Drer |T) = L(CL | T).

Given this, the task becomes that of finding the trans-
lation table that best compresses the translations between
the two sides of a given two-view dataset.

Problem 1: Given a two-view dataset D =
with corresponding translation Dy,.,r, find

L(T)+ L(CL | T) + L(Cr | T),

(Dv,Dr)

argmin L(DLor,T) =
TeT
where 7 is the set of possible translation tables for D,
and Cr and Cfy, are the correction tables for Dy,_,r given
T and Drr given T, respectively.
To complete the definition of our problem, we need to
specify how to compute these encoded lengths.

4.1

To encode a translation table, we need to specify how to
encode the itemsets it contains. The solution is to encode
each item independently, assigning a code with length

Computing encoded lengths

based on its empirical probability of occurring in the
data. For each I € 7y, this probability is given by
|{teDL|Iet}|
D

From information theory, we have that the optimal code
length corresponding to probability distribution P is
L(I | D) = —logy, P(I | D). The encoded length of
an itemset X is now given by

Z log, P

> L(I|DL) =
IeX IeX

P(I|DL) =

L(X |Dy) = (I | Dy).
We use this encoding for the itemsets over 7y, in the first
column of a translation table, and similarly for itemsets
over Zr in the third column. For the directions, i.e., the
second column of the table, a first bit indicates whether
a rule is unidirectional or bidirectional, and a second bit
represents the direction in case of a unidirectional rule.
The length of a direction ¢ is thus

L(o) = {;

Summing up, the encoded length of a translation table
T is given by

if o =<«
otherwise

L(T) = Y L(XoY), with
XoYeT
L(XoY) = L(X|DL)+L(o)+ LY | Dr).

For the encoding of the correction tables, note that
we are only interested in the discovery of cross-view
associations. This implies that we should not exploit any
structure within one of the two views for compression,
because that would prevent us from finding all cross-
view structure. That is, we assume that we can capture
all relevant structure in the translation table, and the
contents of the correction table should be regarded as
residue. Under this assumption, we can use the same
‘independent’ encoding for the itemsets in the correction
tables as for the translation table, giving

L(Cr |T)=) L(c|Dr).
ceCr

Note that using the empirical data distribution of the
complete dataset for the encoding of both the translation
and correction tables may lead to an encoding that is not
completely optimal: their distributions may deviate from
the overall distribution. However, we accept and proceed
with this choice for three reasons. First, as we will show
later, translation tables are relatively small, hence using
the optimal encoding would hardly change the results in
practice. Second, we want compression to be the result
only of structure captured by the rules, not of structure
within the correction table. Third, this choice makes it
possible to devise an exact algorithm for finding the best
rule, which would otherwise be practically infeasible.
Encoding details For ease of presentation we did not
mention three design choices so far, but they are im-
portant to make our encoding lossless. Requirements for

this are that the model can be transmitted in L(7) bits,
independent of the data, and that the translation can be
fully constructed given 7" and the encoded data. We will
now briefly discuss these details, and explain why we
can safely ignore them in the remainder of the paper.

First, we need a code table that assigns a code to each
item I € 7. Since the lengths of these codes are based on
their empirical probabilities in the data, P(I | D), such a
code table adds the same additive constant to L(DroR)
for any M over Z. Therefore it can be disregarded when
minimizing the total encoded size; for a fixed dataset D
it is always the same.

Second, we do not mark the end of the rows in
either of the correction tables, i.e., we do not use stop-
characters. Instead, we assume given two sufficiently
large frameworks that need to be filled out with the
correct items upon decoding. Since such frameworks are
the same for all correction tables for D, this is again an
additive constant we can disregard.

Last, each row of the translation table can be encoded
and decoded by first encoding the direction and then the
union of its two itemsets. Since we are only interested
in the complexity of the content of the translation table,
we disregard the complexity of its structure. That is, as
for the correction tables, we assume a static framework
that fits any possible translation table. The complexity of
this framework is equal for any translation table 7" and
dataset D over Z, and therefore we can also disregard
this additive constant when calculating L(D, T).

5 THE TRANSLATOR ALGORITHMS

Given a dataset D, there are 217t/ —1 (resp. 2178l —1) non-
empty itemsets for the left-hand side (resp. right-hand
side). Since each pair of non-empty itemsets, one over 7y,
and over Zg, can form three different rules (—, <, «),
there are |R| = 3 x (2/7t] — 1) x (27®| — 1) possible rules.
Without further assumptions on the number of rules in
a translation table, each possible subset of R needs to be
considered.

Since there is no structure that can be used to prune
the search space, we resort to a greedy method, as
is usual when the MDL principle is used for model
selection [15]. Specifically, we start with an empty model
and iteratively add the best rule until no rule that
improves compression can be found. This parameter-
free algorithm, dubbed TRANSLATOR-EXACT, allows to
find good translation tables on datasets with a moderate
number of attributes. We also introduce two variants
that select rules from a fixed candidate set, making the
approach applicable on larger datasets.

5.1 Computing the gain of a single rule

Before presenting our algorithms, we investigate how to
efficiently compute the gain in compression that can be
attained by adding a single rule to a translation table.
Each item in a correction table C' occurs for one of
two reasons: either the item is missing after translation

Algorithm 2 The TRANSLATOR-EXACT algorithm

Input: Two-view dataset D
Output: Translation table T’
1. T+ 0
2: repeat
3 r* <4 argmax,c.p Ap (1)
4 if L(D, TU{r*}) < L(D,T) then
5
6
7

T+ TU{r}
: until no rule added to T
: return T

and needs to be added, or it is introduced erroneously
and needs to be removed. Hence, we can split C' into
two separate tables U and E, as follows. Let Ug, for
Uncovered, be a table such that U = tr \ ti for each
t € D, where t; =TRANSLATE(¢r,, T') as before. Similarly,
let Er, for Errors, be a table such that F; =ty \ tr for
each t € D. From this it follows that U N £ = () and
C=UUE.

In practice, U initially equals D; T is empty, and
all items are uncovered. By adding rules to 7', more
items become covered, U becomes smaller, and thus the
encoded length of C decreases. On the other hand, E is
empty when we start and can only become larger (but
to a lesser extent than the decrease of C, or rules would
not be added). Once an error is inserted into F it cannot
be removed by adding rules.

Now, let Ap (X ¢Y) denote the decrease in total
compressed size obtained by adding a rule r = X oY to
a translation table T, i.e. Ap (X ¢Y) = L(Dror,T) —
L(Dror,T U{r}). Given the previous, this can be de-
fined as the reduction in length of the correction table
minus the length of the rule itself, as follows:

AD$T(X<>Y) =
Apr(X =Y) =

Apir(X oY)~ L(X oY), (1)

> LYNUR|Dr) ()
tEDAX Cty,

~L(Y \ (tr U Eg) | Dr).

These equations follow directly from the definitions
given so far. App(X < Y) is defined analogously with
L and R reversed, and Ap (X « Y) is simply the sum
of the two unidirectional variants. Given this, the best
candidate rule is the one that maximizes Ap r(X ¢Y).

5.2 lteratively finding the best rule

The idea of the TRANSLATOR-EXACT algorithm, pre-
sented in Algorithm 2, is to iteratively add the optimal
rule to the current translation table. The greedy scheme
starts from an empty translation table, and iteratively
adds the rule that improves compression most, until
no further improvement can be achieved. Note that the
order of the rules in the table does not matter, and that
provisional results can be inspected at any time.

To find the optimal rule r* that maximizes the gain
in compression, we use a search based on the ECLAT

algorithm [24], traversing the pattern space depth-first
while maintaining transaction sets for both X and Y and
pruning where possible. Without additional pruning, all
non-empty itemset pairs X and Y that occur in the
data would be enumerated. For each such pair, all three
possible rules are evaluated, i.e., one for each direction.
To find r* we only need to keep track of the best solution
found so far.

To make search efficient, it is essential to find good
solutions as early as possible, and to prune the search
space based on the best solution so far. Unfortunately,
Ap (X oY) is not (anti)monotonic. However, each XY
should occur in the data and therefore all XY that do
not occur in D are pruned (we do not consider rules for
which either X = () or Y = 0, as these are not cross-
view associations). Furthermore, from the definition of
the gain of a rule in Equation 2, we observe that any
positive gain must come from covering items that are
currently uncovered. We can exploit this with a pruning
technique similar to those used in high-utility itemset
mining [23]. We trivially have that L(Y N Uk | Dr) <
L(UL | Dr) for any Y and U, and will use it to derive
an upper-bound.

That is, for each tg € D the gain for that transaction
is upper-bounded by the encoded size of its uncovered
items. Let tub(tr) denote this transaction-based upper-
bound, defined as tub(tr) = L(Uk | Dr). Since for any
transaction tub(tgr) is constant during search for a single
rule, these values are computed once prior to search.
We can now check in which rows of the database a
rule would be applied and sum the transaction-based
bounds. For any rule X — Y/, this gives the following:

>

teD st tp DX

AD7T(X — Y) < tub(tR).

For a given X oY, the bidirectional instantiation always
has the highest potential gain, so we should sum the
bounds for the two directions. We therefore have:

AD’T(XOY) < Z Z

teD s.t. tLOX teD s.t. tr2Y

tub(tr) + tub(tL).

Finally, we should take the size of the rule into account:
extensions of the current rule will be at least as large as
the current rule. We thus define the rule-based upper-
bound, denoted rub, as

2

rub(X oY) =
teD st tL DX

D

teD st trDY

tub(tr) +
tub(ty,) — L(X < Y).

This bound is based on the supports of itemsets X and
Y and decreases monotonically with either support car-
dinality. Therefore, X ¢Y and all its possible extensions
can be safely pruned when the potential gain given by
this bound is lower than the gain of the current best rule.
That is, the pruning condition is rub(X oY) < Ap 7 (r*).

Prior to search, all I € Z are ordered descending by
tub({I}), which determines the order of the depth-first

Algorithm 3 The TRANSLATOR-SELECT algorithm

Input: Two-view dataset D, integer k, candidates C
Output: Translation table T’
1. T+ 0
2: repeat
R < select k rules with highest Ap (r) from C
used < ()
fori=1...%k do
consider R; as X oY
if X Nused =0 AY Nused =) then
if L(D,TU{XoY}) < L(D,T) then
T+ TU{XoY}
10: used <+ used U X UY
11: until no rule added to T
12: return T

search. This helps find rules with high compression gain
as quickly as possible and thus increases the amount of
pruning that can be performed.

Finally, the gain for any rule X oY can be quickly
bounded by an upper-bound on the bidirectional rule:

|supp(X)| L(Y" | Dr) +
|supp(Y)| L(X | DL) — L(X < Y).

qub(X oY) =

Although this gives no guarantee for rule extensions and
thus cannot be used to prune the search space, it is useful
to quickly determine whether computing Ap 7(X — Y)
is needed; this computation can be skipped when qub(X<¢
Y) < AD’T(T*).

Depending on the dataset and current translation ta-
ble, exhaustive search for the best rule may still be com-
putationally too intensive. Therefore, we also propose
two faster, approximate methods.

5.3 Iteratively finding good rules

The second algorithm, dubbed TRANSLATOR-SELECT,
strongly resembles its exact counterpart: it also greed-
ily adds rules to the table, but does not guarantee to
find the best possible rule in each iteration. Instead
of generating candidate rules on-the-fly, it selects them
from a fixed set of candidates. This set consists of two-
view frequent itemsets, i.e., all itemsets Z for which
|supp(Z)| > minsup, Z NZy, # 0, and Z NZIr # 0. These
candidates are given as input, and can be mined using
any frequent itemset mining algorithm that is modified
such that each itemset contains items from both views.

TRANSLATOR-SELECT(k), presented in Algorithm 3,
selects the top-k rules with regard to compression gain
Ap r among all possible rules that can be constructed
from the candidate itemsets. Three rules can be con-
structed for each candidate itemset: one for each direc-
tion. When £ is set to 1, this implies that the single best
rule among the candidates is chosen in each iteration,
similar to Algorithm 2. To further speed-up the process,
it is possible to choose a larger k, so that multiple rules
are selected in each iteration. The selected rules are

TABLE 1
Dataset properties. The densities of Dy, and Dgr are
denoted by di, and dr, respectively. L(D,) denotes the
uncompressed size (empty translation table).

Dataset |D| |ZL] |Zr| dy, dr L(D, 0)
Abalone? 4177 27 31 0.185 0.120 170748
Adult! 48842 44 53 0.179 0.132 2845491
CAL5003 502 78 97 0.241 0.074 76 862
car? 1728 15 10 0.267 0.300 42708
ChessKRvK! 28056 24 34 0.167 0.088 889555
Crime? 2215 244 294 0.201 0.194 1865057
Elections 1846 82 867 0.061 0.034 451823
Emotions® 593 430 12 0.167 0.501 375288
House? 435 26 24 0.347 0.334 31625
Mammals 2575 95 94 0.172 0.169 468742
Nursery! 12960 19 13 0.263 0.308 453443
Tictactoe! 958 15 14 0.333 0.357 36396
Wine! 178 35 33 0.200 0.212 11608
Yeast? 1484 24 26 0.167 0.192 52697

added to the translation table one by one, but rules that
contain an itemset that overlaps with an itemset of a rule
previously added in the current iteration are discarded
(to this aim, the set of used items is maintained). The
reason for this is that the compression gain of such a
rule has decreased, and it can therefore no longer be
assumed to be part of the top-k for this round.

5.4 Greedily finding good rules

Our third method, called TRANSLATOR-GREEDY, em-
ploys single-pass filtering: given a dataset and a can-
didate set of frequent itemsets (ordered descendingly
first by length, then by support in case of equality),
it iteratively considers all itemsets one by one. For
each itemset that is considered, compression gain is
computed for each of the three possible rules, one for
each direction. The corresponding rule with the largest
gain is added if that gain is strictly positive. If there is
no such rule for an itemset, it is discarded and never
considered again. This very greedy procedure resembles
the selection mechanism of KRIMP.

6 EXPERIMENTS

In this section we empirically evaluate the performance
of the three TRANSLATOR methods, compare to existing
methods, and present examples of obtained rules.

Data pre-processing. Except for Mammals and
Elections, all datasets were obtained from the
LUCS/KDD,! UCI,? and MULAN? repositories. Statistics
of the datasets are presented in Table 1.

The LUCS/KDD repository provides Boolean datasets,
the datasets from the other two repositories were pre-
processed to make them Boolean: numerical attributes

1. http://cgi.csc.liviac.uk/~frans/KDD/Software/
LUCS-KDD-DN/DataSets/dataSets.html

2. http:/ /archive.ics.uci.edu/ml/

3. http:/ /mulan.sourceforge.net/

were discretized using five equal-height bins and each
categorical attribute-value was converted into an item.
For cAL500, the genre, instruments and vocals attributes
are used as right-hand side, the rest as left-hand side.
In Emotions, all audio features form the left-hand
side, while the right-hand side consists of the different
emotion labels. For the other repository datasets, the
attributes were split such that the items were evenly
distributed over two views having similar densities.

The Mammals dataset contains presence records of
mammal species in Europe and is a natively Boolean
real-world dataset [10]. We split the dataset into two
views of similar sizes and densities.

Elections contains information about the candi-
dates that participated in the 2011 Finnish parliamen-
tary elections.* This dataset was collected from www.
vaalikone.fi, the “election engine” of the Finnish newspa-
per Helsingin Sanomat. The left-hand side contains candi-
date properties such as party, age, and education, while
the answers provided to 30 multiple-choice questions
and the assigned importances form the right-hand side.
We created an item for each attribute-value. Items that
occurred in more than half of the transactions were
discarded because they would result in many rules of
little interest. Like CALS500, it is a good example of a
natural two-view dataset, where one looks for associa-
tions between candidate profiles and political views.

Evaluation criteria. To compare the different methods,
we primarily focus on three criteria: the number of
rules found (denoted by |T'|), the ratio between the
compressed and uncompressed size of the translation
(L% = L(D,T)/L(D,0)), and the runtime needed to
mine the pattern set (runtime).

In addition, to facilitate a more extensive comparison
to existing methods, we consider the relative size of the
correction table and we introduce maximum confidence.
According to our problem statement, the aim is to find a
small set of patterns that accurately describes a transla-
tion. Hence, the number of rules should be low and the
number of ones in the correction table should be small.
We therefore define |C|% as the fraction of items in C' to
the total size of D, i.e,,

Cl
(17| + [Zr)IDI
Note that |C| = |U| + |E|.
The confidence of a rule X — Y is normally defined as

 Jsupp(X UY)|
= Y) = o]

However, in the current context we have both unidi-
rectional and bidirectional rules. To avoid penalizing
methods that induce bidirectional rules, we take the
maximum confidence in either direction of a rule, and
define ¢t as

(X oY) =maz{c(X = Y),c(X +Y)}

1C1% =

4. http:/ /blogit.hs.fi/hsnext/hsn-vaalikone-on-nyt-avointa- tietoa

¢t slightly resembles all-confidence [12], which also
combines confidences for different “rule instantiations”.

In the following, we will report average ¢t values
computed over result sets. Note, however, that it is not
our intention to discover rule sets that maximize average
confidence. This could be easily achieved by, e.g., mining
the top-k rules with respect to confidence. Unfortunately,
due to redundancy in the pattern space, the top-k rules
are usually very similar and therefore not of interest to
a data analyst. Our aim is therefore to discover a non-
redundant set of rules that accurately describe the complete
translation; confidence should be reasonably high, but
our aims are better captured by the combination of the
other evaluation criteria.

Implementation. We implemented TRANSLATOR in C++.
The source code, datasets, and the splits required to be
able to reproduce the results are publicly available®.

6.1

We first compare the three different variants of the
TRANSLATOR algorithm. As candidate sets for both
TRANSLATOR-SELECT and TRANSLATOR-GREEDY we
use closed frequent two-view itemsets up to a given min-
imum support threshold. Furthermore, TRANSLATOR-
SELECT(k) is evaluated for k =1 and k = 25.

For the first batch of experiments we set the lowest
possible minimum support threshold, i.e., minsup = 1
(threshold not needed for TRANSLATOR-EXACT). Conse-
quently, for these experiments we use only datasets with
a moderate numbers of items. The results, presented
in the top half of Table 2, show large variations in
both compression ratio and runtime, which both heavily
depend on the characteristics of the dataset. We observe
that using compression as stopping criterion results in
relatively few rules: in all cases, there are much fewer
rules than there are transactions in the dataset. Together
with the observation that compression ratios up to 54%
are attained, this implies that rules that generalize well
are found. On the other hand, some datasets can hardly
be compressed, indicating that there are only few cross-
view associations and/or that they do not cover large ar-
eas of the data. This is an advantage of the compression-
based translation approach that we advocate: if there
is little or no structure connecting the two views, this
will be reflected in the attained compression ratios. Note,
however, that also other properties of the data influence
compression. For example, dense data generally results
in better compression than sparse data (see Table 1).

The four method instances all yield similar com-
pression ratios and numbers of rules. However,
TRANSLATOR-EXACT needs to dynamically construct
and explore large parts of the search space in each
iteration, and this results in relatively long runtimes.
This is caused by the fact that the pruning strategies
are only effective in the first few iterations. After that,

Comparison of search strategies

5. http:/ /patternsthatmatter.org/software.php

the gain in compression that a single rule can achieve
decreases significantly, so that a much larger part of the
search space needs to be explored. This is demonstrated
by closer inspection of the construction of translation
tables (see Section 6.2).

TRANSLATOR-SELECT and TRANSLATOR-GREEDY do
not suffer from the aforementioned problem, as they
generate a candidate set once and only perform candi-
date testing. TRANSLATOR-SELECT tests all candidates
in each iteration, TRANSLATOR-GREEDY tests each can-
didate exactly once. The compression ratios obtained
by TRANSLATOR-SELECT are slightly worse than those
obtained by the exact method, because it only considers
closed itemsets as candidates. This could be addressed
by using all itemsets, but this would lead to much larger
candidate sets and hence longer runtimes. TRANSLATOR-
GREEDY is clearly the fastest, and often approximates the
best solution quite well. However, there are exceptions
to this. For wine, for example, the compression ratios
obtained by TRANSLATOR-EXACT and TRANSLATOR-
SELECT are 10% lower (= better) than those obtained by
TRANSLATOR-GREEDY.

We now shift our focus to the lower half of Table 2,
which presents results obtained on the larger datasets.
We do not have results for the exact method because it
takes too long to finish on these datasets. We fix minsup
such that the number of candidates remains manage-
able (between 10K and 200K). We again observe vary-
ing results dependent on the data. Unsurprisingly, the
TRANSLATOR-GREEDY method is much faster than the
TRANSLATOR-SELECT alternatives, but in some cases this
also results in poor compression. For example, on House
it only achieves a compression ratio of 71.45%, compared
to 49.26% obtained by TRANSLATOR-SELECT(1).

Discussion. As expected, the three proposed TRANSLA-
TOR variants offer different trade-offs between runtime
and solution quality. TRANSLATOR-EXACT is parameter-
free, iteratively adds the optimal rule to the table, and
attains the best compression ratios, but can only be used
on small datasets. By iteratively selecting rules from a
set of candidates, TRANSLATOR-SELECT is substantially
faster and in practice approximates the best possible
compression ratio very well. As such, it provides a
very good trade-off between compression and runtime.
Depending on the dataset, choosing a larger k can be
useful to speed-up the search. For example, on Crime
compression remains practically the same while runtime
decreases from 5h 15m to 1h 27m. The third variant,
TRANSLATOR-GREEDY, greedily selects rules in a single
pass over a set of candidates and is the fastest of the
three, but does not always find a good solution. This
may be the best choice when the dataset is very large.

6.2 Construction of a translation table

Here we zoom in on TRANSLATOR-SELECT(1), the search
strategy that provides the best trade-off in terms of
compression and runtime, and the House dataset. For

10

TABLE 2
Comparison of TRANSLATOR-EXACT, TRANSLATOR-SELECT, and TRANSLATOR-GREEDY. For each experiment, we
report the number of obtained rules |T|, the compression ratio L%=L(D, T')/L(D, (), and the runtime.

T-EXACT T-SELECT(1) T-SELECT(25) T-GREEDY

Dataset msup |T| L% runtime |7 L% runtime |T| L% runtime |7 L% runtime
Abalone 1 88 54.81 3h22m 86 54.86 27m 58 86 54.95 10m 51s 114 57.75 19s
Car 1 12 9418 1Im14s 9 94.67 285 9 94.67 20s 12 95.27 3s
ChessKRvK 1 320 9489 2d 47m 311 94.94 17h 19m 315 94.95 6h 22m 314 95.