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Abstract:
This paper is devoted to the validation of a two-fluid two-phase flow model in some
highly unsteady situations involving strong rarefaction waves and shocks in water-
vapour flows. The two-fluid model and its associated numerical method that were in-
troduced in a previous work are first recalled, and details on the computational scheme
and the verification of interfacial mass transfer terms are provided. Consistency with
experimental data is checked in three configurations. First, a comparison with the
speed of sound in a two-phase mixture is detailed. Afterwards, numerical approxi-
mations obtained with the two-fluid approach are discussed and compared with some
experimental data documented in the Simpson water-hammer experiment and the high
depressurization with flashing associated with Canon experiment.
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1 Introduction
The development of models and associated numerical methods for the simulation of
two-phase flows should be achieved in three distinct but evolutionary steps. The deriva-
tion of suitable models, both from a mathematical and physical point of view, is the first
step that provides closed sets of equations involving non linear PDEs. Then numeri-
cal algorithms must be found that would provide convergent series of approximations
towards solutions of the latter PDEs, and this corresponds to the verification process.
Afterwards numerical results obtained with that set of PDEs must be compared with
available experimental data, making sure that the mesh size is sufficiently small so that
numerical approximations are no longer sensitive to a further mesh refinement. This
last step is referred as the validation step; it is mandatory and is in fact the main ob-
jective of the whole approach. Once these three steps have been achieved with the
most intense scrutiny, one may tackle the difficult problem of the quantification of
uncertainities, but it would be meaningless to begin that work before the modeling /
verification / validation steps had been completed, as recalled in [5] for instance.

We focus in this paper on water-vapour flows with mass transfer, with emphasis on
water-hammer flows and thus on shock waves occuring in the transient, and on sudden
depressurizations that might arise if some loss of fluid would happen in a coolant cir-
cuit. This of course requires the application of a two-phase flow model that can handle
heat and mass transfer in highly unsteady situations. Actually, the main aim in the cur-
rent work is to scrutinize a few available validation test cases of unsteady two-phase
flows, and in that sense, this work may be seen as a sequel of the paper [28] where
emphasis was put on the presentation of a two-fluid model, together with suitable nu-
merical methods and their verification, while restricting to gas-liquid flows without any
mass transfer.

Thus we will first recall and summarize herein the main characteristics concern-
ing the two-fluid two-phase flow model that will be used, and its associated numerical
method, and then we will investigate features linked with mass transfer. The two-phase
flow model describes the dynamics of seven quantities: the statistical fractions, the
mean densities, mean velocities and mean temperatures within each phase. The model
and its main properties will be briefly recalled in section 2. For further details on this
class of two-fluid models, the reader is referred to [4, 7, 8, 10, 16, 18, 19, 20, 22, 24,
11, 29, 32, 33] among others. Afterwards, we will rather quickly provide the main
numerical tools that are used in the approximation of the two-fluid model in the Finite
Volume code. Basically, the algorithm relies on the use of a fractional step method that
complies with the entropy inequality, and it treats separately convective terms and re-
laxation terms. The most important properties and constraints will be briefly described,
and a more detailed discussion on some possible way to cope with mass transfer be-
tween phases will follow. Obviously, other approaches might be considered as well,
such as those introduced in [1, 2, 3, 22, 40, 43] for instance. The last section will be
devoted to the presentation of three distinct cases and associated comments.
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2 The two-fluid model
The derivation of the two-fluid model which is described in the sequel relies on clas-
sical statistical averaging and closure laws, following a standard thermodynamical ap-
proach, the keystone of which is the entropy inequality. Many details and comments
can be found in [20, 29], and also in [16, 31, 32, 24, 7]. We would like to emphasize
that :

• this particular model does not take the counterpart of single-phase Reynolds
stresses into account (these are neglected). Some possible extensions in that di-
rection are currently examined, but this remains beyond the scope of the present
work, which basically aims at investigating some validation test cases;

• instantaneous single-phase equations of state rely of stiffened gas EOS. Thus
a straightforward consequence is that averaged EOS may be written exactly as
functions of the sole main unknowns (mean pressure, mean internal energy and
mean density);

• some high-order statistical correlations involving pressure and velocity fluctua-
tions are neglected. As underlined in [29], some non-trivial closure laws might
be accounted for, while keeping the same entropy-entropy flux formulation, fol-
lowing the basic approach of Ristorcelli [38], but we also know that this would
render the system of PDEs even more intricate ([6, 44]); hence these extensions
have not been examined in detail up to now.

Before going further on, we recall that the main specifications for the model deriva-
tion are such that:

• a physically relevant entropy inequality should hold for the smooth solutions of
the whole model, including viscous terms and sources;

• the homogeneous model obtained by getting rid of viscous and source contribu-
tions should be hyperbolic for physically relevant phasic states (thus for positive
densities, positive internal energies and positive statistical void fractions);

• unique and meaningful jump conditions should be associated with the latter ho-
mogeneous model.

2.1 Governing equations
We use classical notations in this paper. Thus αk(x, t) will denote the statistical void
fraction of phase k = l,v, so that :

αl(x, t)+αv(x, t) = 1

Variables ρk, Uk, Pk respectively stand for the mean density, the mean velocity, the
mean pressure within phase k. We also define partial masses:

mk = αkρk

The total mean energy Ek within phase k = l,v is defined as:

Ek = ρkεk(Pk,ρk)+ρkU2
k /2
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where the function associated with the mean internal energy εk only depends on the
mean pressure and the mean density (Pk,ρk).

We can now introduce the set of governing equations for the main unknown W :

W t = (αv,ml ,mv,mlUl ,mvUv,αlEl ,αvEv)

These governing equations of the two-fluid model read, for k = l,v:

∂t (αv)+Vint(W )∂x (αv) = φv(W )
∂t (mk)+∂x (mkUk) = Γk(W )
∂t (mkUk)+∂x

(
mkU2

k

)
+∂x (αkPk)−Πint(W )∂x (αk) = Dk(W )+Γk(W )U int(W )

∂t (αkEk)+∂x (αkUk(Ek +Pk))+Πint(W )∂t (αk) = ψk(W )+U int(W )Dk(W )+Γk(W )H int(W )
(1)

setting: U int = (Ul +Uv)/2, and: H int =UlUv/2.

As it has been emphasized in [20, 29] among other references, admissible closure
laws for Πint(W ) may be exhibited in order to comply with a physical entropy inequal-
ity. In practice, this means that, assuming a convex form for Vint(W ):

Vint(W ) = ξ (W )Ul +(1−ξ (W ))Uv . (2)

the closure law for Πint(W ) should be of the form:

Πint(W ) = χ(W )Pl +(1−χ(W ))Pv (3)

with:

χ(W ) =
(1−ξ (W ))/Tl

(1−ξ (W ))/Tl +ξ (W )/Tv
(4)

The latter function χ(W ) depends on the mean temperatures Tk which are defined by:

1/Tk = ∂Pk (Sk)/∂Pk (εk)

where the Sk(Pk,ρk) denote the mean phasic entropies that must comply with:

c2
k∂Pk (Sk)+∂ρk (Sk) = 0 (5)

denoting:

c2
k = (∂Pk (εk(Pk,ρk)))

−1
(

Pk

(ρk)2 −∂ρk (εk(Pk,ρk))

)
.

We also set:
µk = εk +Pk/ρk−TkSk

At this stage, it only remains to define the source terms Γk(W ), Dk(W ),ψk(W ),
which respectively stand for the interfacial mass transfer, the drag effects and the in-
terfacial heat transfer, but also the right-hand side in the governing equation of the
statistical void fraction φk(W ). The latter one arises due to the statistical averaging (see
[16, 29]). Obviously we have:

∑
k=l,v

Γk(W ) = 0 ; ∑
k=l,v

ψk(W ) = 0 ; ∑
k=l,v

Dk(W ) = 0 (6)
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and also:
∑

k=l,v
φk(W ) = 0 . (7)

Closure laws for the former three Γl(W ),Dl(W ),ψl(W ) correspond to classical
terms arising in the two-fluid literature, that is:

Γl(W ) =
1

τΓ(W )

mlmv

ml +mv
(K0

lv)
−1(µv(W )/Tv−µl(W )/Tl); (8)

Dl(W ) =
1

τU (W )

mlmv

ml +mv
(Uv−Ul); (9)

ψl(W ) =
1

τT (W )

mlmvC0
lv

ml +mv
(Tv−Tl). (10)

where τU,Γ,T (W ) respectively denote the velocity / chemical potential / temperature re-
laxation time scales, and where the positive constants K0

lv,C
0
lv have the same dimension

as the heat capacity Cv,l . For large times -with respect to the relaxation time scales-,
these relaxation terms tend to lead physical states towards a triple velocity-chemical
potential-temperature equilibrium. The remaining source term φl(W ) is defined as:

φl(W ) =
1

τP(W )

αlαv

Πlv
(Pl−Pv) (11)

The product τP(W )Πlv complies with the closure laws recalled in [21]. This sole con-
tribution is expected to re-equilibrate phasic pressures, but this can only be checked
by coupling the time evolution of the statistical fraction with the time evolution of the
total phasic energies Ek (see [20, 26, 30]). The internal structure of mean EOS plays a
crucial role in this particular process. This remark is important since we use it in order
to derive stable and physically relevant numerical methods when computing pressure
relaxation source terms (see step 2 in section 3.3). Obviously, we note that we retrieve,
at least in a formal way, the structure of the two-fluid six-equation models when τP(W )
is set to 0.

Eventually, as noticed in the early paper [20], we recall that we retrieve the con-
vective structure of the Baer-Nunziato model [4] when setting: ξ (W ) = 0 (and hence
Vint(W ) =Uv and Πint(W ) = Pl), or ξ (W ) = 1 (and thus Vint(W ) =Ul and Πint(W ) =
Pv). The reader is also refered to [4, 33, 8] for slightly different forms of source
terms within this specific class, and to [24, 7, 32] where alternative formulations of
Vint(W ),Πint(W ) are proposed.

2.2 Main properties of the two-fluid model
The following properties are classical (see [20]). They are recalled for sake of com-
pleteness, and they are also mandatory since we only use a sub-class associated to
(ξ (W )−1)ξ (W ) = 0 in the sequel. We will also use the entropy inequality for numer-
ical purposes.

• 1- Entropy inequality
For smooth solutions W of (1) with closure laws (2), (3), (4), the governing
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equation of the entropy of the two-fluid model η(W ) = ∑k=l,v mkSk is:

∂t (η(W ))+∂x

(
∑

k=l,v
mkUkSk

)
= Γl(W )(µv(W )/Tv−µl(W )/Tl)

+ Dl(W )(Uv−Ul)(1/(2Tv)+1/(2Tl))

+ ψl(W )(Tv−Tl)/(TvTl)

+ φl(W )(Pl−Pv)((1−χ(W ))/Tv +χ(W )/Tl)

• 2- Hyperbolicity
The set of equations associated with the left-hand side of (1) has seven real
eigenvalues which read:

λ1 =Vint(W ) (12)
λ2 =Uv, λ3 =Uv− cv(W ), λ4 =Uv + cv(W ), (13)

λ5 =Ul , λ6 =Ul− cl(W ), λ7 =Ul + cl(W ) (14)
(15)

Associated righteigenvectors span the whole space R7, if: |Uk−Vint(W )|/ck 6= 1.

• 3- Structure of the 1-field in the convective subset
If we assume that : ξ (W ) = 0, or (1− ξ (W )) = 0, or: ξ (W ) = ml/(ml +mv),
then the 1−field associated with λ1 =Vint(W ) is linearly degenerate (LD).

• 4- Structure of the remaining fields in the convective subset
Fields associated with eigenvalues λ2,5 are linearly degenerate. Other fields as-
sociated with eigenvalues λ3,4,6,7 are genuinely non linear (GNL).

• 5- Jump conditions
If the 1-field is linearly degenerate, unique jump conditions can be written within
each single field. When restricting to the case ξ (W ) = 0, these read:

[I p
1 (W )]rl = 0

for p = 1,5 in the 1− 2-field, where l,r states respectively refer to the left and
right states apart from the 1− 2-wave, and noting I p

1 (W ) the Riemann invari-
ants of the 1−2 field:

I 1
1 (W ) =Uv; (16)

I 2
1 (W ) = ml(Uv−Ul); (17)

I 3
1 (W ) = ml(Uv−Ul)

2 +αvPv +αlPl ; (18)

I 4
1 (W ) = εl +

Pl

ρl
+

1
2
(Uv−Ul)

2 (19)

I 5
1 (W ) = Sl . (20)
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Moreover, classical single-phase jump relations hold in the GNL fields:

[ρk(Uk−σ)]rl = 0 (21)
[ρkUk(Uk−σ)+Pk]

r
l = 0 (22)

[(Uk−σ)Ek +UkPk]
r
l = 0 (23)

[Uk′ ]
r
l = [ρk′ ]

r
l = [Pk′ ]

r
l = 0 (24)

(25)

where σ denotes the speed of the shock wave separating left and right states,
setting k = v,k′ = l in the 3,4 fields (respectively k = l,k′ = v in the 6,7 fields) .

A dual formulation arises when ξ (W ) = 1. As recalled above, proofs are available
in [20, 29]. Other properties pertaining to the symetrizing variables and to the con-
vexity of entropy can be found in [13], and the framework of admissible closure laws
for Vint(W ) might even be broadened (see [11]). Actually, we insist that the fifth prop-
erty is indeed crucial: it simply means that meaningful unsteady solutions involving
(unique) shocks make sense in that case. On the contrary, if the 1-field is not linearly
degenerate, one may expect that, for a given test case (for instance a Riemann problem
involving at least one shock), all converged approximations will differ, depending on
the inner numerical viscosity of the scheme. This is known from long, and is due to the
occurence of the non-conservative products Πint(W )∂x (αk) and Πint(W )Vint(W )∂x (αk)
in the phasic momentum and energy equations (see the work [25] for instance).

In the sequel, we will restrict to the case ξ (W ) = 0. Thus, for schemes that
provide convergent approximations when the mesh is refined, we expect that approxi-
mations will converge towards the unique shock solution. It must also be recalled that
in that case, exact solutions of the Riemann problem can be built, using a connection
through Riemann invariants of the 1-field, which separates left and right initial states of
the statistical void fraction, and the classical single-phase connection of states through
the remaining LD or GNL fields. This simple technique has actually been intensively
used in order to verify schemes by computing convective contributions (see the next
section).
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3 Numerical methods

3.1 Fractional step method
The numerical algorithm is grounded on the fractional step strategy. This algorithm
was first detailed in [28], when focusing on gas-liquid mixtures, and thus neglecting
mass transfer. As a consequence, we only recall herein the main ingredients, together
with a detailed formulation of the relaxation step that handles mass transfer. We re-
call that the present fractional step method involves several steps that comply with the
whole entropy inequality (see section 2.2). For more details on steps that are not de-
scribed herein, we thus refer to [14, 20, 26, 27, 28, 30]. We nonetheless recall below
very briefly all steps of the fractional step method, which contains an evolution step,
which deals with convective contributions, and a relaxation step, which handles relax-
ation source terms (mass transfer, drag effects, energy transfer and pressure relaxation
terms).

Thus the entropy-consistent fractional step method first computes approximate so-
lutions of the homogeneous system :

• Evolution step
∂t (αv)+Vint(W )∂x (αv) = 0
∂t (mk)+∂x (mkUk) = 0
∂t (mkUk)+∂x

(
mkU2

k

)
+∂x (αkPk)−Πint(W )∂x (αk) = 0

∂t (αkEk)+∂x (αkUk(Ek +Pk))+Πint(W )∂t (αk) = 0

(26)

starting with given initial values W n, through the time interval [tn, tn +∆t], and
providing W̃ at the end.

Then, using initial data W̃ , cell values W n+1 are computed by approximating so-
lutions of the coupled ODEs:

• Relaxation step
∂t (αv) = φv(W )
∂t (mk) = Γk(W )
∂t (mkUk) = Dk(W )+Γk(W )U int(W )
∂t (αkEk)+Πint(W )∂t (αk) = ψk(W )+U intDk(W )+Γk(W )H int(W )

(27)

This gives the final cell values W n+1.

In the sequel we introduce the following mixture variables M ,U ,E :

M = ml +mv; (28)
U = (mlUl +mvUv)/M ; (29)

E = αlEl +αvEv. (30)

3.2 Evolution step: numerical schemes and their verification
Finite volume methods are used to compute approximations of solutions of the evolu-
tion step, which is an hyperbolic system that has no conservative form. Without any

8



loss of generality, this evolution system may be rewritten in the equivalent form (even
for discontinuous solutions):

∂t (αv)+Vint(W )∂x (αv) = 0
∂t (mvUv)+∂x

(
mvU2

v
)
+∂x (αvPv)−Πint(W )∂x (αv) = 0

∂t (αvEv)+∂x (αvUv(Ev +Pv))+Πint(W )∂t (αv) = 0
∂t (mv)+∂x (mvUv) = 0
∂t (M )+∂x

(
Σk=l,vmkUk

)
= 0

∂t (MU )+∂x
(
Σk=l,v(mkU2

k +αkPk)
)
= 0

∂t (E )+∂x
(
Σk=l,v(αkUk(Ek +Pk))

)
= 0

(31)

Several Finite volume algorithms have been used up to now. The first one is a non
conservative version of Rusanov scheme, which is described in detail in [20, 28]. A
second algorithm was built using the VFRoe-ncv approximate Godunov solver detailed
in [20], that relies on the non-conservative symetrizing variable αv,Uk,Pk,Sk (see [13]).
Eventually an efficient relaxation solver was proposed in [39, 12], that enables to han-
dle evanescent phases. Classical second-order extensions of the latter schemes are of
course possible, as underlined for instance in [14]. Obviously, many other schemes may
be used, such as the relaxation solvers introduced in [2] or [3], or other approximate
Riemann solvers (see [40, 43] among others). For all numerical simulations, an explicit
CFL condition enforces the time step in order to stabilize numerical approximations.
As emphasized in [28, 14], a h1/2 (respectively h2/3) rate of convergence is retrieved
when the mesh size h tends to 0, when focusing on one-dimensional Riemann problems
involving shocks, contact and rarefaction waves, which is precisely what is expected for
first-order schemes (respectively second-order schemes) when a contact discontinuity
occurs in the exact solution. One should keep in mind the fact that the two-fluid model
described in section 2.1 involves two (or even three when ξ (W ) = ml/(ml +mv)) con-
tact discontinuities. We also recall here that the accurate measure of convergence rates
requires using very fine meshes (with more than 105 cells in a 1D Riemann problem),
since the global L1 norm of the error behaves as eL1(T ) =CLD(T )h1/2 +CGNL(T )h, so
that the error associated with shock and rarefaction GNL waves may hide the rather
poor convergence rate associated with LD fields. In some cases, consistency errors due
to a wrong computation of -well-posed- non-conservative products may even be hidden
beyond ”admissible” consistent errors on too coarse meshes. The verification process
confirms that Riemann problems involving ”well-balanced initial data” (with respect
to λ1), that is to say couples (WL,WR) such that:

I k
1 (WL) = I k

1 (WR) for: k = 1 to 5

are of particular interest (see [14]).

Eventually, we wish to emphasize once more that all these verifications are made
possible due to the fact that exact unsteady solutions including complex waves with
discontinuities can be exhibited, which is of course not true for some other two-fluid
models, as recently pointed out in [5] for instance.

3.3 Relaxation step: numerical schemes and their verification
The relaxation step is split into four sub-steps. Each step treats separately velocity re-
laxation, pressure relaxation, temperature relaxation and mass transfer.
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3.3.1 Velocity-pressure-temperature relaxation steps

We recall now the three steps that enable to take velocity/pressure/temperature relax-
ation effects into account.

Step 1: velocity relaxation
Compute approximate solutions on each cell of:

∂t (αvEv) =U intDk(W )
∂t (mvUv) = Dk(W )
∂t (αv) = ∂t (mv) = 0
∂t (M ) = ∂t (MU ) = ∂t (E ) = 0

(32)

Step 2: pressure relaxation
Compute approximate solutions on each cell of:

∂t (αv) = φv(W )
∂t (αvEv)+Πint(W )∂t (αv) = 0
∂t (mv) = ∂t (mvUv) = 0
∂t (M ) = ∂t (MU ) = ∂t (E ) = 0

(33)

Step 3: temperature relaxation
Compute approximate solutions on each cell of: ∂t (αvEv) = ψv(W )

∂t (αv) = ∂t (mv) = ∂t (mvUv) = 0
∂t (M ) = ∂t (MU ) = ∂t (E ) = 0

(34)

Complete details of first-order implicit Euler schemes used to approximate so-
lutions for the first three steps together with verification test cases can be found in
[26, 27, 28, 30]. It must be emphasized that both partial masses mk, and also U and E
remain invariant through these three steps, which is in agreement with the continuous
framework.

Moreover we note that:

• No additional constraint on the time step ∆t arises through the latter three steps in
order to guarantee that statistical fractions, partial masses and internal energies
remain positive when using stiffened gas EOS:

ρkεk(Pk,ρk) = (Pk + γkΠk)/(γk−1)

within each phase (see [26, 28, 30]).

• The first-order implicit scheme used to compute approximations of solutions of
(33) yields to the computation of a statistical void fraction per cell which is solu-
tion of a non-linear scalar equation (see [28], pages 61−62). A similar remark
holds for the temperature relaxation step (34) (see [28], pages 60− 61). The
-implicit- update of the velocity in (32) can be achieved in a straightforward
manner, using explicit formula within each cell (see [28], page 60).

• Verification test cases for the latter three steps can be found in [26, 30] and in
[28] (pages 62−65).
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3.3.2 Chemical potential relaxation step

The last step takes mass transfer into account.

Step 4: mass transfer
Compute approximate solutions on each cell of:

∂t (mv) = Γv(W )
∂t (mvUv) = Γv(W )U int(W )
∂t (αvEv) = Γv(W )H int(W )
∂t (αv) = 0
∂t (M ) = ∂t (MU ) = ∂t (E ) = 0

(35)

We focus now on the computation of the mass transfer terms in the fourth step,
assuming that:

ξ (W ) = 0,

and thus: Vint(W ) =Uv, Πint(W ) = Pl , since this closure law corresponds to what will
be used in the validation section.

Starting with the first three equations in (35), we get at once:

∂t (mvεv) = ∂t (mlεl) = 0

Hence, setting the main scalar unknown X(t) = mv(t), and using the fact that the mass
transfer term is a function Γv(W ) = Γ(ρl ,ρv,εl ,εv), we need to solve:

∂t (X(t)) = Γ

(
M n−X

αn
l

,
X
αn

v
,
(mlεl)

n

M n−X
,
(mvεv)

n

X

)
The relaxation time scale τΓ(W ) is frozen at time tn within the time step, and a simple
implicit Euler scheme is used to solve the latter equation:

(Xn+1−Xn)

∆t
=

1
τΓ(W n)

Γ̃(W n+1(Xn+1)) (36)

setting:

Γ̃(W n+1(X)) =
X(M n−X)

K0
lvM

n

(
µl(W n+1(X))

Tl(W n+1(X))
− µv(W n+1(X))

Tv(W n+1(X))

)
with:

ρ
n+1
l (X) =

M n−X
αn

l
, ρ

n+1
v (X) =

X
αn

v
,

and:

ε
n+1
l (X) =

(mlεl)
n

M n−X
, ε

n+1
v (X) =

(mvεv)
n

X
.

Thus we are looking for Xn+1 ∈]0,M n[ solution of the equation f (Xn+1) = 0,
where:

f (X) = X−mn
v−

∆t
τΓ(W n)

Γ̃

(
M n−X

αn
l

,
X
αn

v
,
(mlεl)

n

M n−X
,
(mvεv)

n

X

)
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We recall that the time step ∆t is provided by the evolution step.

Proposition:
Assume that the equation of state within each phase (for k = l,v) is a stiffened gas EOS
of the form:

εk−qk =
Pk + γkΠk

(γk−1)ρk

where qk,Πk are non-negative constants and 1 < γk. Then, whatever the ratio ∆t
τΓ(W n)

is, the equation f (X) = 0 admits a unique solution in ]0,M n[.

Proof:

When plugging stiffened gas EOS within each phase, we can check at once that:

Sk = (Cv)kLn
(
(Pk +Πk)ρ

−γk
k

)
+S0

k

Hence, defining:

µ
n
k = γk(Cv)k− (Cv)kLn

(
(γk−1)((mkεk)n−Πkαn

k )

(αn
k )

1−γk

)
−S0

k

we get:

µv

Tv
= µ

n
v + γv(Cv)vLn(X) and:

µl

Tl
= µ

n
l + γl(Cv)lLn(M n−X)

Consequently, f (X) takes the following form:

f (X)=X−mn
v +

∆t
τΓ(W n)

X(M n−X)

M nK0
lv

(µn
v −µ

n
l + γv(Cv)vLn(X)− γl(Cv)lLn(M n−X))

For X ∈]0,M n[, we may introduce a function:

g(X) =
f (X)

X(M n−X)
,

and we get at once:

limX→0+g(X) =−∞ and: limX→(M n)−g(X) = +∞

Moreover, straightforward calculations yield, for X ∈]0,M n[:

g′(X) =
X2−2Xmn

v +M nmn
v

(X(M n−X))2 +
∆t

K0
lvM

nτΓ(W n)

(
γv(Cv)v

X
+

γl(Cv)l

M n−X

)
Obviously:

X2−2Xmn
v +M nmn

v > 0

since the discriminant δ is always negative:

δ = (mn
v)

2−M nmn
v = mn

v(m
n
v−M n) =−mn

vmn
l < 0

Thus we have:
g′(X)> 0 for : ∀X ∈]0,M n[

12



whatever ∆t
τΓ(W n) is. This in turn means that the equation: g(X) = 0 admits at unique

admissible solution X ∈]0,M n[ since g(X) is continuous and increasing in ]0,M n[.
This enables to conclude that the equation: f (X) = 0 has the same unique solution.
Even more, this proof shows that the framework of admissible couples of EOS could
be broadened.

In practice, a dichotomic algorithm is used to solve the latter scalar equation g(Xn+1)=
0. Appendix A provides a verification test case for that particular step. It includes the
description of the analytic solution, and it provides convergence rates for that step.
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4 Validation of the two-fluid model against experimen-
tal data

Three distinct cases are considered in this section for the validation of the two-fluid
model. Numerical results are compared with available experimental data. We focus
here on the ability of the two-fluid model to reproduce correct pressure (acoustic, shock
or rarefaction) wave propagation in air/water mixtures. Phase transition is also checked
on applications characterized by high pressure variations.

4.1 Propagation of a pressure disturbance in air/water mixtures
During a water hammer transient, it is known that the celerity of pressure waves can
be strongly modified by the presence of vapour, even in a very small quantity of the
mixture (see the review [23]). In the absence of mass transfer, the speed of acoustics
wave in air/water mixtures follows the following analytical relation:

1
M č2 = αl

ρlc2
l
+ αv

ρvc2
v

(37)

still setting: M = αlρl +αvρv. This well-known relation is referred as Wood speed of
sound [46] or Wallis speed of sound [45]. This relation can be obtained considering
two-phase flows with negligible relative motion (Ul = Uv), negligible surface tension
effect (Pl = Pv), no mass transfer and adiabatic conditions [9]. One of the main features
is that the speed of sound of the mixture can be smaller than that of either of its com-
ponents. The analytical relation given in Eq. (37) is in very good agreement with the
experimental data at moderate frequencies obtained by Karplus [34] (see for example
[9]).

As previously shown, the two-fluid model is characterized by two pure phasic
speeds of sound, i.e. cl and cv, and not by a mixture speed of sound in contrast to
the homogeneous models. Thus, the concept of mixture speed of sound has to be in-
troduced in the two-fluid model framework. Then, it is relevant to check whether the
influence of the presence of vapour on this mixture speed of sound can be numerically
reproduced by the approximated solutions of the two-fluid model. For this purpose, an
acoustic pressure disturbance is propagated in a two-phase flow mixture without tem-
perature and mass transfer under atmospheric conditions. The numerical setup used
here is detailed in the following.

The considered 1-D computational domain is [0;1]. The initial conditions corre-
spond to an infinitesimal pressure disturbance in a uniform two-phase flow at rest with
pressure and velocity equilibria:

ρv = 1.2 kg.m−3, ρl = 997 kg.m−3, Uv =Ul = 0 m.s−1

and:
Pv = Pl = 105 (1+δP) Pa

with the normalized pressure disturbance:

δP = δ0 exp

(
−
(

x− x0

L

)2
)

14



where δ0 = 10−3, x0 = 0.5 m and L = 1/20 m. The thermodynamic constants for the
stiffened gas EOS within each phase:

ρk(εk(Pk,ρk)−qk) = (Pk + γkπk)/(γk−1)

are: {
γl = 5.5, πl = 3.8078×108 Pa, ql = 0, q

′
l = 0

γv = 1.43, πv = 0 Pa, qv = 0, q
′
v = 0

Temperature and free Gibbs energy relaxations are not taken into account as no phase
transition is considered in this numerical experiment, i.e τT = τΓ = ∞. In order to ne-
glect the relative motion of phases and the surface tension effect, very small pressure
and velocity relaxation time scales are considered: τP = τU = 10−10 s.

The numerical solution of this problem is symmetric with respect to x0: the pres-
sure Gaussian is split into two similar structures which propagate in each direction as
in the monophasic framework. The introduced speed of sound in the air/water mixture
corresponds to the speed of the propagation of the initial pressure profile. This is given
by c = d/T where d is the distance travelled by the pressure Gaussian during the time
T . This speed of sound is measured for several initial values of αl . The corresponding
numerical results are then compared to the Wallis/Wood speed of sound given in Eq.
(37) and to the experimental data obtained by Karplus (see Fig. (1)). Very good agree-
ment between the numerical “mixture” speed of sound of the two-fluid model with the
Wallis/Wood speed of sound is obtained. In addition, small discrepancies are obtained
with the experiments of Karplus. This demonstrates that the two-fluid model is able to
reproduce pressure wave propagation in two-phase flow mixtures.

4.2 Simpson’s valve closure water hammer experiment
The Simpson’s valve closure water hammer experiment also known as Simpson’s pipe
column separation water hammer experiment [42, 41] is considered here for the valida-
tion of the two-fluid model. The experimental setup is composed by a horizontal pipe
filled by a liquid water flow (see Fig. (2)). A tank is located at one boundary of the
pipe.

At time zero, a valve located 36 meters away from the tank, is instantaneously
closed. Due to this sudden closure, a pressure wave is generated and propagates from
the valve to the tank in the horizontal pipe. Simpson [41] varied the initial velocity of
the steady state liquid water fluid to affect the appearance of cavitation and the sever-
ity of the water hammer. This experiment is one of the fundamental benchmarks for
two-phase flow models due to the simple geometry, initial conditions and clear water
hammer initiating mechanism, i.e. a rapid valve closure. The fluid pressure is mea-
sured along the pipe at three positions: P1, P2 and P3 located at 36, 27 and 9 meters,
respectively, away from the tank. The results of the simulations of the two-fluid model
are compared to the experimental measurements.

One of the conclusions of Simpson [41] is that it is necessary to include the elas-
ticity of the pipe material to obtain agreement between simulations and experiments,
as the effective speed of sound is modified by the elasticity of the pipe. As in [15], the
parameters of the stiffened gas EOS are chosen to recover the experimental speed of
sound i.e. cl ≈ 1256 m.s−1 (see Table (1)). The initial conditions in the three parts of

15



Figure 1: Speed of sound in air/water mixtures - Comparison between the Wallis/Wood
speed of sound, the experimental data of Karplus [34] and the numerical approximation
of the two-fluid model as a function of αl .

Phase π (Pa) Cp (J/kg/K) Cv (J/kg/K) γ q (J/kg) q
′

(J/kg/K)
Liquid 692754002.87 4183.00 1840.48 2.27 -1142331.00 24218.87
Vapor 0.00 1800.00 1344.06 1.34 2009800.00 1977.08

Table 1: EOS parameters for liquid and vapor water for the Simpson’s valve closure
induced water hammer experiment.
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Figure 2: Sketch of the Simpson’s valve closure water hammer experiment.

the computational domain represented in Fig. (2) are the following:
αv = 10−6, ρl = ρ0

l , ρv = ρ0
v , Ul =Uv = 0.401 m.s−1, Pl = Pv = 3.4190 bar in S1

αv = 10−6, ρl = ρ0
l , ρv = ρ0

v , Ul =Uv = 0.401 m.s−1, Pl = Pv = 3.4190 bar in S2
αv = 10−6, ρl = ρ0

l , ρv = ρ0
v , Ul =Uv = 0 m.s−1, Pl = Pv = 3.4198 bar in S3

(38)
with ρ0

l = 997.8 kg.m−3 and ρ0
v = 2.52 kg.m−3, which corresponds to the constant

temperature Tl = Tv = 296.3 K. As the temperature is assumed to be constant during
the simulation of the two-fluid model of the Simpson’s water hammer, the temperature
relaxation is not considered here: τT = ∞. The time scales used for the other relax-
ations are: τP = τU = 10−7 s and τΓ = 10−3 s. All the computations presented here are
obtained with the first-order Rusanov scheme in conjunction with the implicit pressure
relaxation, implicit velocity and the chemical potential algorithms for the relaxation
terms. First of all, four different mesh refinements are considered for grid convergence
comparisons. The grid independence of the numerical results is obtained in the present
test with 12 000 cells in the axial direction of the pipe [36]. The present numerical
solutions are obtained with the Courant number C = 0.5. The computations are per-
formed with the Europlexus fast transient dynamics software [17].

The mean pressure P = αlPl +αvPv history comparison between the simulation
and the measurement at various locations along the pipe is given in Fig. (3). Good
agreement between the computation of the two-fluid model and the experimental mea-
surements are obtained. In particular, the different pressure peaks are well estimated
with the two-fluid model.

4.3 Canon experiment: fast decompression with sudden flashing
The Canon experiment [37] is now considered, which is a blowdown experiment with
high initial temperature (493.15 K) and pressure (32 bar). This test consists in a very
fast depressurization of the water contained in a pipe 4.389 m long and 102.3 mm in-
ternal diameter by opening a full 100% break. In the Canon experiment, the pressure
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Figure 3: Mean pressure P = αlPl +αvPv vs time at the three pressure transducers P1
(a), P2 (b) and P3 (c) in the Simpson’s water hammer experiment: comparison between
the two-fluid model and the experiments [42, 41].18



is measured in several locations along the pipe whereas the void fraction is measured
in only one location (cf. Figure (4)). The pressure drops from 32 bar to 1 bar in less

Figure 4: Schematic of the Canon test facility.

than 0.7 s. During the first time of the transient, a rarefaction wave is generated and
propagates in the pipe and the liquid water flashes.

The ability of the two-fluid model to represent a very fast depressurization with
flashing is assessed via the comparison with the available experimental data [37] and
the numerical computations using the HRM model based on a tabulated water EOS
[35]. The computational domain consists in a horizontal pipe, closed end as boundary
condition at one side and atmospheric pressure tank at the other side. As in [15], the
coefficients of the stiffened gas EOS are chosen to recover the water phase diagram (cf.
Table (2)). The corresponding initial conditions are defined with constant parameters

Phase π (Pa) Cp (J/kg/K) Cv (J/kg/K) γ q (J/kg) q
′

(J/kg/K)
Liquid 769317123.86 4670.00 2807.61 1.66 -1359570.00 11671.61
Vapor 0.00 1550.00 1162.00 1.33 2032350.00 2351.11

Table 2: EOS parameters for liquid and vapor water for the Canon experiment.

in order to have the same temperature Tl = Tv = 493.15 K for the two phases in the
entire domain:{

αv = 10−3, ρv = 16.72 kg.m−3, ρl = 841.12 kg.m−3, in the pipe
αv = 0.999, ρv = 0.52 kg.m−3, ρl = 837.74 kg.m−3, in the tank

and: {
Ul =Uv = 0 m.s−1 and Pl = Pv = 32 bar in the pipe
Ul =Uv = 0 m.s−1 and Pl = Pv = 1 bar in the tank

The different relaxation time scales are:

τT = 0s, τU = τP = 10−11s and: τΓ = 5×10−5s.

A preliminary grid convergence study is performed showing that results are no longer
sensitive to mesh refinement beyond 4 000 cells in the axial direction of the pipe [36].
The computations with the two-fluid model are performed using the first-order Ru-
sanov scheme with the Courant number C = 0.5. The computations are still performed
with the Europlexus fast transient dynamics software [17]. The experiment starts at
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time t = 0 s when the end of the pipe is rapidly opened.

The time evolution of the void fraction and the mean pressure P = αlPl +αvPv at
different locations is displayed in Fig. (5). The numerical results obtained with the
two-fluid model are in good agreement with those obtained with the HRM model. A
rarefaction wave is first generated from the break and propagates along the horizon-
tal pipe. The pressure of the liquid water in the tube drops to the saturation pressure
value. As a consequence, vaporization occurs at constant pressure: the pressure re-
mains constant during several hundred miliseconds at sensor P5. Then, the pressure
reach the atmospheric outside pressure value (1 bar). It has to be noticed that some
differences are visible between numerical results and the experiments. For example,
the vaporization process is numerically predicted earlier than in the experiments.
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Figure 5: Vapor void fraction vs time (a) and mean pressure P = αlPl +αvPv vs time
at the first (b) and the last (c) sensor in the Canon experiment: comparison between
7-equation model, HRM and experiments [37].
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5 Conclusion
A few numerical results have been reported and compared with available experimen-
tal data, while focusing on two-phase flow experiments with mass transfer involving
strong rarefaction waves or shocks. The two-fluid model and its associated numerical
method introduced in [28] have been recalled, and some specific details pertaining to
the numerical handling of mass transfer terms and its verification have been provided.
Actually, our global opinion is that:

• The two-fluid model (1) not only enables to perform meaningful unsteady com-
putations involving sharp discontinuities, but it also seems to be a rather good
candidate in order to get reasonable agreement with experimental data. This of
course requires further work in order to complete the whole validation process.
Beyond this, a focus on hypothetical severe accident studies would be of great
interest;

• Though it is sometimes depicted as a a rather crude algorithm, the fractional
step method introduced in [28] is actually a useful tool, which may of course
be improved by applying for second-order or even higher-order methods for the
convective part (see [43] for instance). Other alternative algorithms also seem
appealant, for instance those that aim at complying with time asymptotics ([1]);

• This two-fluid model can even be used for the numerical prediction of two-phase
flows with fluid-structure computations, following the basic approach described
in [17] and [36]. The comparison of numerical results and experimental data
in the Romander experiment confirms the feasibility, and meanwhile enhances
the fact that a correct FSI approach is mandatory in order to obtain meaningful
computational approximations.
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Appendix A
• We assume that the relaxation time scale τΓ(W ) is constant and equal to τΓ. We

seek exact solutions X = mv of the ODE:

∂t (X)=
−1

τΓM nK0
lv

X(M n−X)(µn
v −µ

n
l + γv(Cv)vLn(X)− γl(Cv)lLn(M n−X))

We assume that the following holds:

γv(Cv)v = γl(Cv)l =Cre f

and we define a new variable F and a constant Are f as:

F = Ln
(

X
M n−X

)
; Are f = µ

n
v −µ

n
l .

Hence we look for solutions of :

∂t (F) =
−1

τΓK0
lv
(Are f +Cre f F)

The latter may be integrated as:

F(t) =
µn

v −µn
l

Cre f

(
exp
(
−

Cre f

τΓK0
lv

t
)
−1
)
+Ln

(
mn

v

mn
l

)
exp
(
−

Cre f

τΓK0
lv

t
)

which eventually provides:

X(t) =
M nexp(F(t))
1+ exp(F(t))

This gives the final form of the exact solution for our verification test case.

• We turn now to the verification of the relaxation step 4 using the implicit scheme
(36) introduced in section 3.3.2. We consider the final time t f = 10−3s, and we
plot the L1 norm eL1(t f ) as a function of the time step ∆t. This enables to retrieve
the expected rate 1 for this test case (see figure 6).
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mation of a two-fluid two-pressure diphasic model. ESAIM: Mathematical Mod-
eling and Numerical Analysis, 43 (6), pp. 1063–1097 (2009).

[3] A. Ambroso, C. Chalons, P.A. Raviart, A Godunov-type method for the seven-
equation model of compressible two-phase flow. Computers and Fluids, 54, 67-
91.(2012)

[4] M.R. Baer, J.W. Nunziato, A two-phase mixture theory for the deflagration to
detonation transition (DDT) in reactive granular materials, International Journal
of Multiphase Flow, 12(6), pp. 861-889, (1986).

[5] R. Berry, L. Zou, H. Zhao, D. Andrs, J. Peterson, H. Zhang, R. Martineau,
Demonstrating seven-equation, two-phase simulation in a single pipe, two-phase
reactor core and steam separator dryer, INL report INL/EXT-13-28750 (2013)

[6] C. Berthon, F. Coquel, J.M. Hérard, M. Uhlmann, An approximate solution of
the Riemann problem for a realisable second-moment turbulent closure, Shock
Waves, 11, pp. 245-269, (2002).

[7] W. Bo, H. Jin, D. Kim, X. Liu, H. Lee, N. Pestiau, Y. Yu, J. Glimm, J.W. Grove,
Comparison and validation of multi phase closure models, Computers and Math-
ematics with Applications, 56, pp. 1291–1302, (2008).

[8] J.B. Bdzil, R. Menikoff, S.F. Son, A.K. Kapila, D.S. Stewart, Two phase mod-
elling of deflagration to detonation transition in granular materials: a critical
examination of modelling issues, Phys. of Fluids, 11, pp. 378–402, (1999).

24



[9] C. Brennen, Fundamentals of multiphase flow, Cambridge University Press
(2005)
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écoulements diphasiques à phases compressibles. EDF report H-I81-2013-
01162-FR (2013).

[30] O. Hurisse, J.M. Hérard, Y. Liu, Note de vérification des schémas d’intégration
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EDF report H-I83-2013-02014-FR (2014).

[31] M. Ishii, Thermofluid dynamic theory of two-phase flow, Collection de la Di-
rection des Etudes et Recherches d’Electricité de France, Collection Eyrolles,
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[44] M. Uhlmann, Etude de modèles de fermeture au second ordre et contribution à
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