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Introduction

The development of models and associated numerical methods for the simulation of two-phase flows should be achieved in three distinct but evolutionary steps. The derivation of suitable models, both from a mathematical and physical point of view, is the first step that provides closed sets of equations involving non linear PDEs. Then numerical algorithms must be found that would provide convergent series of approximations towards solutions of the latter PDEs, and this corresponds to the verification process. Afterwards numerical results obtained with that set of PDEs must be compared with available experimental data, making sure that the mesh size is sufficiently small so that numerical approximations are no longer sensitive to a further mesh refinement. This last step is referred as the validation step; it is mandatory and is in fact the main objective of the whole approach. Once these three steps have been achieved with the most intense scrutiny, one may tackle the difficult problem of the quantification of uncertainities, but it would be meaningless to begin that work before the modeling / verification / validation steps had been completed, as recalled in [START_REF] Berry | Demonstrating seven-equation, two-phase simulation in a single pipe, two-phase reactor core and steam separator dryer[END_REF] for instance.

We focus in this paper on water-vapour flows with mass transfer, with emphasis on water-hammer flows and thus on shock waves occuring in the transient, and on sudden depressurizations that might arise if some loss of fluid would happen in a coolant circuit. This of course requires the application of a two-phase flow model that can handle heat and mass transfer in highly unsteady situations. Actually, the main aim in the current work is to scrutinize a few available validation test cases of unsteady two-phase flows, and in that sense, this work may be seen as a sequel of the paper [START_REF] Hérard | A fractional step method to compute a class of compressible gas liquid flows[END_REF] where emphasis was put on the presentation of a two-fluid model, together with suitable numerical methods and their verification, while restricting to gas-liquid flows without any mass transfer. Thus we will first recall and summarize herein the main characteristics concerning the two-fluid two-phase flow model that will be used, and its associated numerical method, and then we will investigate features linked with mass transfer. The two-phase flow model describes the dynamics of seven quantities: the statistical fractions, the mean densities, mean velocities and mean temperatures within each phase. The model and its main properties will be briefly recalled in section 2. For further details on this class of two-fluid models, the reader is referred to [START_REF] Baer | A two-phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials[END_REF][START_REF] Bo | Comparison and validation of multi phase closure models[END_REF][START_REF] Bdzil | Two phase modelling of deflagration to detonation transition in granular materials: a critical examination of modelling issues[END_REF][START_REF] Coquel | Modeling compressible multiphase flows[END_REF][START_REF] Drew | Theory of multi-component fluids[END_REF][START_REF] Forestier | Criterion of hyperbolicity for nonconservative quasilinear systems admitting a partially convex conservation law[END_REF][START_REF] Gallouët | Hyperbolic relaxation models for granular flows[END_REF][START_REF] Gallouët | Numerical modelling of two phase flows using the two-fluid two-pressure approach[END_REF][START_REF] Gavrilyuk | Mathematical and numerical modelling of two-phase compressible flows with micro-inertia[END_REF][START_REF] Glimm | Two-phase flow modelling of a fluid mixing layer[END_REF][START_REF] Coquel | A class of two-fluid two-phase flow models[END_REF][START_REF] Hérard | Une approche bifluide statistique de modélisation des écoulements diphasiques à phases compressibles[END_REF][START_REF] Jin | Compressible two-pressure two-phase flow models[END_REF][START_REF] Kapila | Two phase modeling of a DDT: structure of the velocity relaxation zone[END_REF] among others. Afterwards, we will rather quickly provide the main numerical tools that are used in the approximation of the two-fluid model in the Finite Volume code. Basically, the algorithm relies on the use of a fractional step method that complies with the entropy inequality, and it treats separately convective terms and relaxation terms. The most important properties and constraints will be briefly described, and a more detailed discussion on some possible way to cope with mass transfer between phases will follow. Obviously, other approaches might be considered as well, such as those introduced in [START_REF] Abgrall | An asymptotic preserving scheme for the barotropic Baer-Nunziato model[END_REF][START_REF] Ambroso | Relaxation and numerical approximation of a two-fluid two-pressure diphasic model[END_REF][START_REF] Ambroso | A Godunov-type method for the sevenequation model of compressible two-phase flow[END_REF][START_REF] Gavrilyuk | Mathematical and numerical modelling of two-phase compressible flows with micro-inertia[END_REF][START_REF] Schwendemann | The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow[END_REF][START_REF] Tokareva | HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow[END_REF] for instance. The last section will be devoted to the presentation of three distinct cases and associated comments.

The two-fluid model

The derivation of the two-fluid model which is described in the sequel relies on classical statistical averaging and closure laws, following a standard thermodynamical approach, the keystone of which is the entropy inequality. Many details and comments can be found in [START_REF] Gallouët | Numerical modelling of two phase flows using the two-fluid two-pressure approach[END_REF][START_REF] Hérard | Une approche bifluide statistique de modélisation des écoulements diphasiques à phases compressibles[END_REF], and also in [START_REF] Drew | Theory of multi-component fluids[END_REF][START_REF] Ishii | Thermofluid dynamic theory of two-phase flow[END_REF][START_REF] Jin | Compressible two-pressure two-phase flow models[END_REF][START_REF] Glimm | Two-phase flow modelling of a fluid mixing layer[END_REF][START_REF] Bo | Comparison and validation of multi phase closure models[END_REF]. We would like to emphasize that :

• this particular model does not take the counterpart of single-phase Reynolds stresses into account (these are neglected). Some possible extensions in that direction are currently examined, but this remains beyond the scope of the present work, which basically aims at investigating some validation test cases;

• instantaneous single-phase equations of state rely of stiffened gas EOS. Thus a straightforward consequence is that averaged EOS may be written exactly as functions of the sole main unknowns (mean pressure, mean internal energy and mean density);

• some high-order statistical correlations involving pressure and velocity fluctuations are neglected. As underlined in [START_REF] Hérard | Une approche bifluide statistique de modélisation des écoulements diphasiques à phases compressibles[END_REF], some non-trivial closure laws might be accounted for, while keeping the same entropy-entropy flux formulation, following the basic approach of Ristorcelli [START_REF] Ristorcelli | A representation for the turbulent mass flux contribution to Reynolds stress and two-equation closures for compressible turbulence[END_REF], but we also know that this would render the system of PDEs even more intricate ( [START_REF] Berthon | An approximate solution of the Riemann problem for a realisable second-moment turbulent closure[END_REF][START_REF] Uhlmann | Etude de modèles de fermeture au second ordre et contribution à la résolution numérique des écoulements turbulents compressibles[END_REF]); hence these extensions have not been examined in detail up to now.

Before going further on, we recall that the main specifications for the model derivation are such that:

• a physically relevant entropy inequality should hold for the smooth solutions of the whole model, including viscous terms and sources;

• the homogeneous model obtained by getting rid of viscous and source contributions should be hyperbolic for physically relevant phasic states (thus for positive densities, positive internal energies and positive statistical void fractions);

• unique and meaningful jump conditions should be associated with the latter homogeneous model.

Governing equations

We use classical notations in this paper. Thus α k (x,t) will denote the statistical void fraction of phase k = l, v, so that :

α l (x,t) + α v (x,t) = 1
Variables ρ k , U k , P k respectively stand for the mean density, the mean velocity, the mean pressure within phase k. We also define partial masses:

m k = α k ρ k
The total mean energy E k within phase k = l, v is defined as:

E k = ρ k ε k (P k , ρ k ) + ρ k U 2 k /2
where the function associated with the mean internal energy ε k only depends on the mean pressure and the mean density (P k , ρ k ).

We can now introduce the set of governing equations for the main unknown W :

W t = (α v , m l , m v , m l U l , m v U v , α l E l , α v E v )
These governing equations of the two-fluid model read, for k = l, v:

∂ t (α v ) +V int (W )∂ x (α v ) = φ v (W ) ∂ t (m k ) + ∂ x (m k U k ) = Γ k (W ) ∂ t (m k U k ) + ∂ x m k U 2 k + ∂ x (α k P k ) -Π int (W )∂ x (α k ) = D k (W ) + Γ k (W )U int (W ) ∂ t (α k E k ) + ∂ x (α k U k (E k + P k )) + Π int (W )∂ t (α k ) = ψ k (W ) +U int (W )D k (W ) + Γ k (W )H int (W )
(1) setting: U int = (U l +U v )/2, and:

H int = U l U v /2.
As it has been emphasized in [START_REF] Gallouët | Numerical modelling of two phase flows using the two-fluid two-pressure approach[END_REF][START_REF] Hérard | Une approche bifluide statistique de modélisation des écoulements diphasiques à phases compressibles[END_REF] among other references, admissible closure laws for Π int (W ) may be exhibited in order to comply with a physical entropy inequality. In practice, this means that, assuming a convex form for V int (W ):

V int (W ) = ξ (W )U l + (1 -ξ (W ))U v . (2) 
the closure law for Π int (W ) should be of the form:

Π int (W ) = χ(W )P l + (1 -χ(W ))P v (3) 
with:

χ(W ) = (1 -ξ (W ))/T l (1 -ξ (W ))/T l + ξ (W )/T v (4) 
The latter function χ(W ) depends on the mean temperatures T k which are defined by:

1/T k = ∂ P k (S k ) /∂ P k (ε k )
where the S k (P k , ρ k ) denote the mean phasic entropies that must comply with:

c 2 k ∂ P k (S k ) + ∂ ρ k (S k ) = 0 (5) 
denoting:

c 2 k = (∂ P k (ε k (P k , ρ k ))) -1 P k (ρ k ) 2 -∂ ρ k (ε k (P k , ρ k )) .
We also set:

µ k = ε k + P k /ρ k -T k S k
At this stage, it only remains to define the source terms Γ k (W ), D k (W ), ψ k (W ), which respectively stand for the interfacial mass transfer, the drag effects and the interfacial heat transfer, but also the right-hand side in the governing equation of the statistical void fraction φ k (W ). The latter one arises due to the statistical averaging (see [START_REF] Drew | Theory of multi-component fluids[END_REF][START_REF] Hérard | Une approche bifluide statistique de modélisation des écoulements diphasiques à phases compressibles[END_REF]). Obviously we have:

∑ k=l,v Γ k (W ) = 0 ; ∑ k=l,v ψ k (W ) = 0 ; ∑ k=l,v D k (W ) = 0 (6)
and also:

∑ k=l,v φ k (W ) = 0 . (7) 
Closure laws for the former three Γ l (W ), D l (W ), ψ l (W ) correspond to classical terms arising in the two-fluid literature, that is:

Γ l (W ) = 1 τ Γ (W ) m l m v m l + m v (K 0 lv ) -1 (µ v (W )/T v -µ l (W )/T l ); (8) 
D l (W ) = 1 τ U (W ) m l m v m l + m v (U v -U l ); (9) 
ψ l (W ) = 1 τ T (W ) m l m v C 0 lv m l + m v (T v -T l ). ( 10 
)
where τ U,Γ,T (W ) respectively denote the velocity / chemical potential / temperature relaxation time scales, and where the positive constants K 0 lv ,C 0 lv have the same dimension as the heat capacity C v,l . For large times -with respect to the relaxation time scales-, these relaxation terms tend to lead physical states towards a triple velocity-chemical potential-temperature equilibrium. The remaining source term φ l (W ) is defined as:

φ l (W ) = 1 τ P (W ) α l α v Π lv (P l -P v ) (11) 
The product τ P (W )Π lv complies with the closure laws recalled in [START_REF] Gavrilyuk | The structure of pressure relaxation terms: one-velocity case[END_REF]. This sole contribution is expected to re-equilibrate phasic pressures, but this can only be checked by coupling the time evolution of the statistical fraction with the time evolution of the total phasic energies E k (see [START_REF] Gallouët | Numerical modelling of two phase flows using the two-fluid two-pressure approach[END_REF][START_REF] Hérard | Schémas d'intégration du terme de relaxation des pressions phasiques pour un modèle bifluide hyperbolique[END_REF][START_REF] Hurisse | Note de vérification des schémas d'intégration numérique des termes sources d'un modèle diphasique à relaxation en pression[END_REF]). The internal structure of mean EOS plays a crucial role in this particular process. This remark is important since we use it in order to derive stable and physically relevant numerical methods when computing pressure relaxation source terms (see step 2 in section 3.3). Obviously, we note that we retrieve, at least in a formal way, the structure of the two-fluid six-equation models when τ P (W ) is set to 0.

Eventually, as noticed in the early paper [START_REF] Gallouët | Numerical modelling of two phase flows using the two-fluid two-pressure approach[END_REF], we recall that we retrieve the convective structure of the Baer-Nunziato model [START_REF] Baer | A two-phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials[END_REF] when setting: ξ (W ) = 0 (and hence V int (W ) = U v and Π int (W ) = P l ), or ξ (W ) = 1 (and thus V int (W ) = U l and Π int (W ) = P v ). The reader is also refered to [START_REF] Baer | A two-phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials[END_REF][START_REF] Kapila | Two phase modeling of a DDT: structure of the velocity relaxation zone[END_REF][START_REF] Bdzil | Two phase modelling of deflagration to detonation transition in granular materials: a critical examination of modelling issues[END_REF] for slightly different forms of source terms within this specific class, and to [START_REF] Glimm | Two-phase flow modelling of a fluid mixing layer[END_REF][START_REF] Bo | Comparison and validation of multi phase closure models[END_REF][START_REF] Jin | Compressible two-pressure two-phase flow models[END_REF] where alternative formulations of V int (W ), Π int (W ) are proposed.

Main properties of the two-fluid model

The following properties are classical (see [START_REF] Gallouët | Numerical modelling of two phase flows using the two-fluid two-pressure approach[END_REF]). They are recalled for sake of completeness, and they are also mandatory since we only use a sub-class associated to (ξ (W ) -1)ξ (W ) = 0 in the sequel. We will also use the entropy inequality for numerical purposes.

• 1-Entropy inequality

For smooth solutions W of (1) with closure laws (2), ( 3), (4), the governing equation of the entropy of the two-fluid model η(W ) = ∑ k=l,v m k S k is:

∂ t (η(W )) + ∂ x ∑ k=l,v m k U k S k = Γ l (W )(µ v (W )/T v -µ l (W )/T l ) + D l (W )(U v -U l )(1/(2T v ) + 1/(2T l )) + ψ l (W )(T v -T l )/(T v T l ) + φ l (W )(P l -P v )((1 -χ(W ))/T v + χ(W )/T l ) • 2-Hyperbolicity
The set of equations associated with the left-hand side of (1) has seven real eigenvalues which read:

λ 1 = V int (W ) (12) 
λ 2 = U v , λ 3 = U v -c v (W ), λ 4 = U v + c v (W ), (13) 
λ 5 = U l , λ 6 = U l -c l (W ), λ 7 = U l + c l (W ) (14) (15) 
Associated righteigenvectors span the whole space R 7 , if:

|U k -V int (W )|/c k = 1.
• 3-Structure of the 1-field in the convective subset If we assume that :

ξ (W ) = 0, or (1 -ξ (W )) = 0, or: ξ (W ) = m l /(m l + m v ), then the 1-field associated with λ 1 = V int (W ) is linearly degenerate (LD).
• 4-Structure of the remaining fields in the convective subset Fields associated with eigenvalues λ 2,5 are linearly degenerate. Other fields associated with eigenvalues λ 3,4,6,7 are genuinely non linear (GNL).

• 5-Jump conditions If the 1-field is linearly degenerate, unique jump conditions can be written within each single field. When restricting to the case ξ (W ) = 0, these read:

[I p 1 (W )] r l = 0 for p = 1, 5 in the 1 -2-field,
where l, r states respectively refer to the left and right states apart from the 1 -2-wave, and noting I p 1 (W ) the Riemann invariants of the 1 -2 field:

I 1 1 (W ) = U v ; (16) 
I 2 1 (W ) = m l (U v -U l ); (17) 
I 3 1 (W ) = m l (U v -U l ) 2 + α v P v + α l P l ; (18) 
I 4 1 (W ) = ε l + P l ρ l + 1 2 (U v -U l ) 2 (19) 
I 5 1 (W ) = S l . (20) 
Moreover, classical single-phase jump relations hold in the GNL fields:

[ρ k (U k -σ )] r l = 0 (21) [ρ k U k (U k -σ ) + P k ] r l = 0 (22) [(U k -σ )E k +U k P k ] r l = 0 (23) [U k ] r l = [ρ k ] r l = [P k ] r l = 0 (24) (25) 
where σ denotes the speed of the shock wave separating left and right states, setting k = v, k = l in the 3, 4 fields (respectively k = l, k = v in the 6, 7 fields) .

A dual formulation arises when ξ (W ) = 1. As recalled above, proofs are available in [START_REF] Gallouët | Numerical modelling of two phase flows using the two-fluid two-pressure approach[END_REF][START_REF] Hérard | Une approche bifluide statistique de modélisation des écoulements diphasiques à phases compressibles[END_REF]. Other properties pertaining to the symetrizing variables and to the convexity of entropy can be found in [START_REF] Coquel | Two properties of two-velocity twopressure models of two-phase flows[END_REF], and the framework of admissible closure laws for V int (W ) might even be broadened (see [START_REF] Coquel | A class of two-fluid two-phase flow models[END_REF]). Actually, we insist that the fifth property is indeed crucial: it simply means that meaningful unsteady solutions involving (unique) shocks make sense in that case. On the contrary, if the 1-field is not linearly degenerate, one may expect that, for a given test case (for instance a Riemann problem involving at least one shock), all converged approximations will differ, depending on the inner numerical viscosity of the scheme. This is known from long, and is due to the occurence of the non-conservative products

Π int (W )∂ x (α k ) and Π int (W )V int (W )∂ x (α k )
in the phasic momentum and energy equations (see the work [START_REF] Guillemaud | Modélisation et simulation numérique des écoulements diphasiques par une approche bifluide à deux pressions[END_REF] for instance).

In the sequel, we will restrict to the case ξ (W ) = 0. Thus, for schemes that provide convergent approximations when the mesh is refined, we expect that approximations will converge towards the unique shock solution. It must also be recalled that in that case, exact solutions of the Riemann problem can be built, using a connection through Riemann invariants of the 1-field, which separates left and right initial states of the statistical void fraction, and the classical single-phase connection of states through the remaining LD or GNL fields. This simple technique has actually been intensively used in order to verify schemes by computing convective contributions (see the next section).

3 Numerical methods

Fractional step method

The numerical algorithm is grounded on the fractional step strategy. This algorithm was first detailed in [START_REF] Hérard | A fractional step method to compute a class of compressible gas liquid flows[END_REF], when focusing on gas-liquid mixtures, and thus neglecting mass transfer. As a consequence, we only recall herein the main ingredients, together with a detailed formulation of the relaxation step that handles mass transfer. We recall that the present fractional step method involves several steps that comply with the whole entropy inequality (see section 2.2). For more details on steps that are not described herein, we thus refer to [START_REF] Crouzet | Approximate solutions of the Baer Nunziato model[END_REF][START_REF] Gallouët | Numerical modelling of two phase flows using the two-fluid two-pressure approach[END_REF][START_REF] Hérard | Schémas d'intégration du terme de relaxation des pressions phasiques pour un modèle bifluide hyperbolique[END_REF][START_REF] Hérard | Computing two-fluid models of compressible two-phase flows with mass transfer[END_REF][START_REF] Hérard | A fractional step method to compute a class of compressible gas liquid flows[END_REF][START_REF] Hurisse | Note de vérification des schémas d'intégration numérique des termes sources d'un modèle diphasique à relaxation en pression[END_REF]. We nonetheless recall below very briefly all steps of the fractional step method, which contains an evolution step, which deals with convective contributions, and a relaxation step, which handles relaxation source terms (mass transfer, drag effects, energy transfer and pressure relaxation terms).

Thus the entropy-consistent fractional step method first computes approximate solutions of the homogeneous system :

• Evolution step        ∂ t (α v ) +V int (W )∂ x (α v ) = 0 ∂ t (m k ) + ∂ x (m k U k ) = 0 ∂ t (m k U k ) + ∂ x m k U 2 k + ∂ x (α k P k ) -Π int (W )∂ x (α k ) = 0 ∂ t (α k E k ) + ∂ x (α k U k (E k + P k )) + Π int (W )∂ t (α k ) = 0 (26)
starting with given initial values W n , through the time interval [t n ,t n + ∆t], and providing W at the end.

Then, using initial data W , cell values W n+1 are computed by approximating solutions of the coupled ODEs:

• Relaxation step        ∂ t (α v ) = φ v (W ) ∂ t (m k ) = Γ k (W ) ∂ t (m k U k ) = D k (W ) + Γ k (W )U int (W ) ∂ t (α k E k ) + Π int (W )∂ t (α k ) = ψ k (W ) +U int D k (W ) + Γ k (W )H int (W ) (27) 
This gives the final cell values W n+1 .

In the sequel we introduce the following mixture variables M , U , E :

M = m l + m v ; (28) U = (m l U l + m v U v )/M ; (29) E = α l E l + α v E v . ( 30 
)

Evolution step: numerical schemes and their verification

Finite volume methods are used to compute approximations of solutions of the evolution step, which is an hyperbolic system that has no conservative form. Without any loss of generality, this evolution system may be rewritten in the equivalent form (even for discontinuous solutions):

                   ∂ t (α v ) +V int (W )∂ x (α v ) = 0 ∂ t (m v U v ) + ∂ x m v U 2 v + ∂ x (α v P v ) -Π int (W )∂ x (α v ) = 0 ∂ t (α v E v ) + ∂ x (α v U v (E v + P v )) + Π int (W )∂ t (α v ) = 0 ∂ t (m v ) + ∂ x (m v U v ) = 0 ∂ t (M ) + ∂ x Σ k=l,v m k U k = 0 ∂ t (M U ) + ∂ x Σ k=l,v (m k U 2 k + α k P k ) = 0 ∂ t (E ) + ∂ x Σ k=l,v (α k U k (E k + P k )) = 0 (31)
Several Finite volume algorithms have been used up to now. The first one is a non conservative version of Rusanov scheme, which is described in detail in [START_REF] Gallouët | Numerical modelling of two phase flows using the two-fluid two-pressure approach[END_REF][START_REF] Hérard | A fractional step method to compute a class of compressible gas liquid flows[END_REF]. A second algorithm was built using the VFRoe-ncv approximate Godunov solver detailed in [START_REF] Gallouët | Numerical modelling of two phase flows using the two-fluid two-pressure approach[END_REF], that relies on the non-conservative symetrizing variable α v ,U k , P k , S k (see [START_REF] Coquel | Two properties of two-velocity twopressure models of two-phase flows[END_REF]). Eventually an efficient relaxation solver was proposed in [START_REF] Saleh | Analyse et Simulation Numérique par Relaxation d'Ecoulements Diphasiques Compressibles. Contribution au Traitement des Phases Evanescentes[END_REF][START_REF] Coquel | A robust entropy-satisfying finite volume scheme for the isentropic Baer-Nunziato model[END_REF], that enables to handle evanescent phases. Classical second-order extensions of the latter schemes are of course possible, as underlined for instance in [START_REF] Crouzet | Approximate solutions of the Baer Nunziato model[END_REF]. Obviously, many other schemes may be used, such as the relaxation solvers introduced in [START_REF] Ambroso | Relaxation and numerical approximation of a two-fluid two-pressure diphasic model[END_REF] or [START_REF] Ambroso | A Godunov-type method for the sevenequation model of compressible two-phase flow[END_REF], or other approximate Riemann solvers (see [START_REF] Schwendemann | The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow[END_REF][START_REF] Tokareva | HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow[END_REF] among others). For all numerical simulations, an explicit CFL condition enforces the time step in order to stabilize numerical approximations. As emphasized in [START_REF] Hérard | A fractional step method to compute a class of compressible gas liquid flows[END_REF][START_REF] Crouzet | Approximate solutions of the Baer Nunziato model[END_REF], a h 1/2 (respectively h 2/3 ) rate of convergence is retrieved when the mesh size h tends to 0, when focusing on one-dimensional Riemann problems involving shocks, contact and rarefaction waves, which is precisely what is expected for first-order schemes (respectively second-order schemes) when a contact discontinuity occurs in the exact solution. One should keep in mind the fact that the two-fluid model described in section 2.1 involves two (or even three when ξ (W ) = m l /(m l + m v )) contact discontinuities. We also recall here that the accurate measure of convergence rates requires using very fine meshes (with more than 10 5 cells in a 1D Riemann problem), since the global L 1 norm of the error behaves as e L 1 (T ) = C LD (T )h 1/2 +C GNL (T )h, so that the error associated with shock and rarefaction GNL waves may hide the rather poor convergence rate associated with LD fields. In some cases, consistency errors due to a wrong computation of -well-posed-non-conservative products may even be hidden beyond "admissible" consistent errors on too coarse meshes. The verification process confirms that Riemann problems involving "well-balanced initial data" (with respect to λ 1 ), that is to say couples (W L ,W R ) such that:

I k 1 (W L ) = I k 1 (W R ) for: k = 1 to 5
are of particular interest (see [START_REF] Crouzet | Approximate solutions of the Baer Nunziato model[END_REF]).

Eventually, we wish to emphasize once more that all these verifications are made possible due to the fact that exact unsteady solutions including complex waves with discontinuities can be exhibited, which is of course not true for some other two-fluid models, as recently pointed out in [START_REF] Berry | Demonstrating seven-equation, two-phase simulation in a single pipe, two-phase reactor core and steam separator dryer[END_REF] for instance.

Relaxation step: numerical schemes and their verification

The relaxation step is split into four sub-steps. Each step treats separately velocity relaxation, pressure relaxation, temperature relaxation and mass transfer.

Velocity-pressure-temperature relaxation steps

We recall now the three steps that enable to take velocity/pressure/temperature relaxation effects into account.

Step 1: velocity relaxation Compute approximate solutions on each cell of:

       ∂ t (α v E v ) = U int D k (W ) ∂ t (m v U v ) = D k (W ) ∂ t (α v ) = ∂ t (m v ) = 0 ∂ t (M ) = ∂ t (M U ) = ∂ t (E ) = 0 (32)
Step 2: pressure relaxation Compute approximate solutions on each cell of:

       ∂ t (α v ) = φ v (W ) ∂ t (α v E v ) + Π int (W )∂ t (α v ) = 0 ∂ t (m v ) = ∂ t (m v U v ) = 0 ∂ t (M ) = ∂ t (M U ) = ∂ t (E ) = 0 (33)
Step 3: temperature relaxation Compute approximate solutions on each cell of:

   ∂ t (α v E v ) = ψ v (W ) ∂ t (α v ) = ∂ t (m v ) = ∂ t (m v U v ) = 0 ∂ t (M ) = ∂ t (M U ) = ∂ t (E ) = 0 (34)
Complete details of first-order implicit Euler schemes used to approximate solutions for the first three steps together with verification test cases can be found in [START_REF] Hérard | Schémas d'intégration du terme de relaxation des pressions phasiques pour un modèle bifluide hyperbolique[END_REF][START_REF] Hérard | Computing two-fluid models of compressible two-phase flows with mass transfer[END_REF][START_REF] Hérard | A fractional step method to compute a class of compressible gas liquid flows[END_REF][START_REF] Hurisse | Note de vérification des schémas d'intégration numérique des termes sources d'un modèle diphasique à relaxation en pression[END_REF]. It must be emphasized that both partial masses m k , and also U and E remain invariant through these three steps, which is in agreement with the continuous framework.

Moreover we note that:

• No additional constraint on the time step ∆t arises through the latter three steps in order to guarantee that statistical fractions, partial masses and internal energies remain positive when using stiffened gas EOS:

ρ k ε k (P k , ρ k ) = (P k + γ k Π k )/(γ k -1)
within each phase (see [START_REF] Hérard | Schémas d'intégration du terme de relaxation des pressions phasiques pour un modèle bifluide hyperbolique[END_REF][START_REF] Hérard | A fractional step method to compute a class of compressible gas liquid flows[END_REF][START_REF] Hurisse | Note de vérification des schémas d'intégration numérique des termes sources d'un modèle diphasique à relaxation en pression[END_REF]).

• The first-order implicit scheme used to compute approximations of solutions of (33) yields to the computation of a statistical void fraction per cell which is solution of a non-linear scalar equation (see [START_REF] Hérard | A fractional step method to compute a class of compressible gas liquid flows[END_REF], pages 61 -62). A similar remark holds for the temperature relaxation step [START_REF] Karplus | The velocity of sound in a liquid containing gas bubbles[END_REF] (see [START_REF] Hérard | A fractional step method to compute a class of compressible gas liquid flows[END_REF], pages 60 -61). The -implicit-update of the velocity in [START_REF] Jin | Compressible two-pressure two-phase flow models[END_REF] can be achieved in a straightforward manner, using explicit formula within each cell (see [START_REF] Hérard | A fractional step method to compute a class of compressible gas liquid flows[END_REF], page 60).

• Verification test cases for the latter three steps can be found in [START_REF] Hérard | Schémas d'intégration du terme de relaxation des pressions phasiques pour un modèle bifluide hyperbolique[END_REF][START_REF] Hurisse | Note de vérification des schémas d'intégration numérique des termes sources d'un modèle diphasique à relaxation en pression[END_REF] and in [START_REF] Hérard | A fractional step method to compute a class of compressible gas liquid flows[END_REF] (pages 62 -65).

We recall that the time step ∆t is provided by the evolution step.

Proposition: Assume that the equation of state within each phase (for k = l, v) is a stiffened gas EOS of the form:

ε k -q k = P k + γ k Π k (γ k -1)ρ k
where q k , Π k are non-negative constants and 1 < γ k . Then, whatever the ratio ∆t

τ Γ (W n )
is, the equation f (X) = 0 admits a unique solution in ]0, M n [.

Proof:

When plugging stiffened gas EOS within each phase, we can check at once that:

S k = (C v ) k Ln (P k + Π k )ρ -γ k k + S 0 k
Hence, defining:

µ n k = γ k (C v ) k -(C v ) k Ln (γ k -1)((m k ε k ) n -Π k α n k ) (α n k ) 1-γ k -S 0 k
we get:

µ v T v = µ n v + γ v (C v ) v
Ln(X) and:

µ l T l = µ n l + γ l (C v ) l Ln(M n -X)
Consequently, f (X) takes the following form:

f (X) = X -m n v + ∆t τ Γ (W n ) X(M n -X) M n K 0 lv (µ n v -µ n l + γ v (C v ) v Ln(X) -γ l (C v ) l Ln(M n -X))
For X ∈]0, M n [, we may introduce a function:

g(X) = f (X) X(M n -X) ,
and we get at once:

lim X→0 + g(X) = -∞ and: lim X→(M n ) -g(X) = +∞ Moreover, straightforward calculations yield, for X ∈]0, M n [: g (X) = X 2 -2Xm n v + M n m n v (X(M n -X)) 2 + ∆t K 0 lv M n τ Γ (W n ) γ v (C v ) v X + γ l (C v ) l M n -X Obviously: X 2 -2Xm n v + M n m n v > 0 since the discriminant δ is always negative: δ = (m n v ) 2 -M n m n v = m n v (m n v -M n ) = -m n v m n l < 0
Thus we have:

g (X) > 0 for : ∀X ∈]0, M n [ whatever ∆t τ Γ (W n ) is.
This in turn means that the equation: g(X) = 0 admits at unique admissible solution X ∈]0, M n [ since g(X) is continuous and increasing in ]0, M n [. This enables to conclude that the equation: f (X) = 0 has the same unique solution. Even more, this proof shows that the framework of admissible couples of EOS could be broadened.

In practice, a dichotomic algorithm is used to solve the latter scalar equation g(X n+1 ) = 0. Appendix A provides a verification test case for that particular step. It includes the description of the analytic solution, and it provides convergence rates for that step.

Validation of the two-fluid model against experimental data

Three distinct cases are considered in this section for the validation of the two-fluid model. Numerical results are compared with available experimental data. We focus here on the ability of the two-fluid model to reproduce correct pressure (acoustic, shock or rarefaction) wave propagation in air/water mixtures. Phase transition is also checked on applications characterized by high pressure variations.

Propagation of a pressure disturbance in air/water mixtures

During a water hammer transient, it is known that the celerity of pressure waves can be strongly modified by the presence of vapour, even in a very small quantity of the mixture (see the review [START_REF] Ghidaoui | A review of water hammer theory and practice[END_REF]). In the absence of mass transfer, the speed of acoustics wave in air/water mixtures follows the following analytical relation:

1

M č2 = α l ρ l c 2 l + α v ρ v c 2 v ( 37 
)
still setting: M = α l ρ l + α v ρ v . This well-known relation is referred as Wood speed of sound [START_REF] Wood | A Testbook of Sound[END_REF] or Wallis speed of sound [START_REF] Wallis | One Dimensional Two-Phase Flow[END_REF]. This relation can be obtained considering two-phase flows with negligible relative motion (U l = U v ), negligible surface tension effect (P l = P v ), no mass transfer and adiabatic conditions [START_REF] Brennen | Fundamentals of multiphase flow[END_REF]. One of the main features is that the speed of sound of the mixture can be smaller than that of either of its components. The analytical relation given in Eq. ( 37) is in very good agreement with the experimental data at moderate frequencies obtained by Karplus [START_REF] Karplus | The velocity of sound in a liquid containing gas bubbles[END_REF] (see for example [START_REF] Brennen | Fundamentals of multiphase flow[END_REF]).

As previously shown, the two-fluid model is characterized by two pure phasic speeds of sound, i.e. c l and c v , and not by a mixture speed of sound in contrast to the homogeneous models. Thus, the concept of mixture speed of sound has to be introduced in the two-fluid model framework. Then, it is relevant to check whether the influence of the presence of vapour on this mixture speed of sound can be numerically reproduced by the approximated solutions of the two-fluid model. For this purpose, an acoustic pressure disturbance is propagated in a two-phase flow mixture without temperature and mass transfer under atmospheric conditions. The numerical setup used here is detailed in the following.

The considered 1-D computational domain is [0; 1]. The initial conditions correspond to an infinitesimal pressure disturbance in a uniform two-phase flow at rest with pressure and velocity equilibria:

ρ v = 1.2 kg.m -3 , ρ l = 997 kg.m -3 , U v = U l = 0 m.s -1

and:

P v = P l = 10 5 (1 + δ P ) Pa with the normalized pressure disturbance:

δ P = δ 0 exp - x -x 0 L
where δ 0 = 10 -3 , x 0 = 0.5 m and L = 1/20 m. The thermodynamic constants for the stiffened gas EOS within each phase:

ρ k (ε k (P k , ρ k ) -q k ) = (P k + γ k π k )/(γ k -1)
are: γ l = 5.5, π l = 3.8078 × 10 8 Pa, q l = 0, q l = 0

γ v = 1.43, π v = 0 Pa, q v = 0, q v = 0
Temperature and free Gibbs energy relaxations are not taken into account as no phase transition is considered in this numerical experiment, i.e τ T = τ Γ = ∞. In order to neglect the relative motion of phases and the surface tension effect, very small pressure and velocity relaxation time scales are considered: τ P = τ U = 10 -10 s.

The numerical solution of this problem is symmetric with respect to x 0 : the pressure Gaussian is split into two similar structures which propagate in each direction as in the monophasic framework. The introduced speed of sound in the air/water mixture corresponds to the speed of the propagation of the initial pressure profile. This is given by c = d/T where d is the distance travelled by the pressure Gaussian during the time T . This speed of sound is measured for several initial values of α l . The corresponding numerical results are then compared to the Wallis/Wood speed of sound given in Eq. ( 37) and to the experimental data obtained by Karplus (see Fig. (1)). Very good agreement between the numerical "mixture" speed of sound of the two-fluid model with the Wallis/Wood speed of sound is obtained. In addition, small discrepancies are obtained with the experiments of Karplus. This demonstrates that the two-fluid model is able to reproduce pressure wave propagation in two-phase flow mixtures.

Simpson's valve closure water hammer experiment

The Simpson's valve closure water hammer experiment also known as Simpson's pipe column separation water hammer experiment [START_REF] Simpson | Large water-hammer pressures for column separation in pipelines 117[END_REF][START_REF] Simpson | Large water-hammer pressures due to column separation in sloping pipes (transient cavitation)[END_REF] is considered here for the validation of the two-fluid model. The experimental setup is composed by a horizontal pipe filled by a liquid water flow (see Fig. (2)). A tank is located at one boundary of the pipe.

At time zero, a valve located 36 meters away from the tank, is instantaneously closed. Due to this sudden closure, a pressure wave is generated and propagates from the valve to the tank in the horizontal pipe. Simpson [START_REF] Simpson | Large water-hammer pressures due to column separation in sloping pipes (transient cavitation)[END_REF] varied the initial velocity of the steady state liquid water fluid to affect the appearance of cavitation and the severity of the water hammer. This experiment is one of the fundamental benchmarks for two-phase flow models due to the simple geometry, initial conditions and clear water hammer initiating mechanism, i.e. a rapid valve closure. The fluid pressure is measured along the pipe at three positions: P1, P2 and P3 located at 36, 27 and 9 meters, respectively, away from the tank. The results of the simulations of the two-fluid model are compared to the experimental measurements.

One of the conclusions of Simpson [START_REF] Simpson | Large water-hammer pressures due to column separation in sloping pipes (transient cavitation)[END_REF] is that it is necessary to include the elasticity of the pipe material to obtain agreement between simulations and experiments, as the effective speed of sound is modified by the elasticity of the pipe. As in [START_REF] Daude | Numerical experiments using a HLLC-type scheme with ALE formulation for compressible two-phase flows five-equation models with phase transition[END_REF], the parameters of the stiffened gas EOS are chosen to recover the experimental speed of sound i.e. c l ≈ 1256 m.s -1 (see Table [START_REF] Abgrall | An asymptotic preserving scheme for the barotropic Baer-Nunziato model[END_REF]). The initial conditions in the three parts of 

C p (J/kg/K) C v (J/kg/K) γ q (J/kg) q (J/
   α v = 10 -6 , ρ l = ρ 0 l , ρ v = ρ 0 v , U l = U v = 0.401 m.s -1 , P l = P v = 3.4190 bar in S1 α v = 10 -6 , ρ l = ρ 0 l , ρ v = ρ 0 v , U l = U v = 0.401 m.s -1 , P l = P v = 3.4190 bar in S2 α v = 10 -6 , ρ l = ρ 0 l , ρ v = ρ 0 v , U l = U v = 0 m.s -1 , P l = P v = 3.4198 bar in S3 (38) 
with ρ 0 l = 997.8 kg.m -3 and ρ 0 v = 2.52 kg.m -3 , which corresponds to the constant temperature T l = T v = 296.3 K. As the temperature is assumed to be constant during the simulation of the two-fluid model of the Simpson's water hammer, the temperature relaxation is not considered here: τ T = ∞. The time scales used for the other relaxations are: τ P = τ U = 10 -7 s and τ Γ = 10 -3 s. All the computations presented here are obtained with the first-order Rusanov scheme in conjunction with the implicit pressure relaxation, implicit velocity and the chemical potential algorithms for the relaxation terms. First of all, four different mesh refinements are considered for grid convergence comparisons. The grid independence of the numerical results is obtained in the present test with 12 000 cells in the axial direction of the pipe [START_REF] Liu | Contribution à la vérification et à la validation d'un modèle diphasique bifluide instationnaire[END_REF]. The present numerical solutions are obtained with the Courant number C = 0.5. The computations are performed with the Europlexus fast transient dynamics software [START_REF]Europlexus user's manual[END_REF].

The mean pressure P = α l P l + α v P v history comparison between the simulation and the measurement at various locations along the pipe is given in Fig. [START_REF] Ambroso | A Godunov-type method for the sevenequation model of compressible two-phase flow[END_REF]. Good agreement between the computation of the two-fluid model and the experimental measurements are obtained. In particular, the different pressure peaks are well estimated with the two-fluid model.

Canon experiment: fast decompression with sudden flashing

The Canon experiment [START_REF] Riegel | Contribution à l'étude de la décompression d'une capacité en régime diphasique[END_REF] is now considered, which is a blowdown experiment with high initial temperature (493.15 K) and pressure (32 bar). This test consists in a very fast depressurization of the water contained in a pipe 4.389 m long and 102.3 mm internal diameter by opening a full 100% break. In the Canon experiment, the pressure The ability of the two-fluid model to represent a very fast depressurization with flashing is assessed via the comparison with the available experimental data [START_REF] Riegel | Contribution à l'étude de la décompression d'une capacité en régime diphasique[END_REF] and the numerical computations using the HRM model based on a tabulated water EOS [START_REF] Lepareux | Modèle homogène équilibré[END_REF]. The computational domain consists in a horizontal pipe, closed end as boundary condition at one side and atmospheric pressure tank at the other side. As in [START_REF] Daude | Numerical experiments using a HLLC-type scheme with ALE formulation for compressible two-phase flows five-equation models with phase transition[END_REF], the coefficients of the stiffened gas EOS are chosen to recover the water phase diagram (cf. in order to have the same temperature T l = T v = 493.15 K for the two phases in the entire domain: A preliminary grid convergence study is performed showing that results are no longer sensitive to mesh refinement beyond 4 000 cells in the axial direction of the pipe [START_REF] Liu | Contribution à la vérification et à la validation d'un modèle diphasique bifluide instationnaire[END_REF].

α v = 10 -3 , ρ v = 16 
The computations with the two-fluid model are performed using the first-order Rusanov scheme with the Courant number C = 0.5. The computations are still performed with the Europlexus fast transient dynamics software [START_REF]Europlexus user's manual[END_REF]. The experiment starts at time t = 0 s when the end of the pipe is rapidly opened.

The time evolution of the void fraction and the mean pressure P = α l P l + α v P v at different locations is displayed in Fig. [START_REF] Berry | Demonstrating seven-equation, two-phase simulation in a single pipe, two-phase reactor core and steam separator dryer[END_REF]. The numerical results obtained with the two-fluid model are in good agreement with those obtained with the HRM model. A rarefaction wave is first generated from the break and propagates along the horizontal pipe. The pressure of the liquid water in the tube drops to the saturation pressure value. As a consequence, vaporization occurs at constant pressure: the pressure remains constant during several hundred miliseconds at sensor P5. Then, the pressure reach the atmospheric outside pressure value (1 bar). It has to be noticed that some differences are visible between numerical results and the experiments. For example, the vaporization process is numerically predicted earlier than in the experiments. 

Conclusion

A few numerical results have been reported and compared with available experimental data, while focusing on two-phase flow experiments with mass transfer involving strong rarefaction waves or shocks. The two-fluid model and its associated numerical method introduced in [START_REF] Hérard | A fractional step method to compute a class of compressible gas liquid flows[END_REF] have been recalled, and some specific details pertaining to the numerical handling of mass transfer terms and its verification have been provided. Actually, our global opinion is that:

• The two-fluid model ( 1) not only enables to perform meaningful unsteady computations involving sharp discontinuities, but it also seems to be a rather good candidate in order to get reasonable agreement with experimental data. This of course requires further work in order to complete the whole validation process.

Beyond this, a focus on hypothetical severe accident studies would be of great interest;

• Though it is sometimes depicted as a a rather crude algorithm, the fractional step method introduced in [START_REF] Hérard | A fractional step method to compute a class of compressible gas liquid flows[END_REF] is actually a useful tool, which may of course be improved by applying for second-order or even higher-order methods for the convective part (see [START_REF] Tokareva | HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow[END_REF] for instance). Other alternative algorithms also seem appealant, for instance those that aim at complying with time asymptotics ( [START_REF] Abgrall | An asymptotic preserving scheme for the barotropic Baer-Nunziato model[END_REF]);

• This two-fluid model can even be used for the numerical prediction of two-phase flows with fluid-structure computations, following the basic approach described in [START_REF]Europlexus user's manual[END_REF] and [START_REF] Liu | Contribution à la vérification et à la validation d'un modèle diphasique bifluide instationnaire[END_REF]. The comparison of numerical results and experimental data in the Romander experiment confirms the feasibility, and meanwhile enhances the fact that a correct FSI approach is mandatory in order to obtain meaningful computational approximations. 
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 1 Figure 1: Speed of sound in air/water mixtures -Comparison between the Wallis/Wood speed of sound, the experimental data of Karplus [34] and the numerical approximation of the two-fluid model as a function of α l .
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 2 Figure 2: Sketch of the Simpson's valve closure water hammer experiment.

Figure 3 :

 3 Figure 3: Mean pressure P = α l P l + α v P v vs time at the three pressure transducers P1 (a), P2 (b) and P3 (c) in the Simpson's water hammer experiment: comparison between the two-fluid model and the experiments [42, 41]. 18

Figure 4 :

 4 Figure 4: Schematic of the Canon test facility.

  .72 kg.m -3 , ρ l = 841.12 kg.m -3 , in the pipe α v = 0.999, ρ v = 0.52 kg.m -3 , ρ l = 837.74 kg.m -3 , in the tank and:U l = U v = 0 m.s -1 and P l = P v = 32 bar in the pipe U l = U v = 0 m.s -1 and P l = P v = 1bar in the tankThe different relaxation time scales are:τ T = 0s, τ U = τ P = 10 -11 s and: τ Γ = 5 × 10 -5 s.

Figure 5 :

 5 Figure 5: Vapor void fraction vs time (a) and mean pressure P = α l P l + α v P v vs time at the first (b) and the last (c) sensor in the Canon experiment: comparison between 7-equation model, HRM and experiments [37].
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 6 Figure 6: L 1 norm of the error ||φφ h || at time : t f = 10 -3 s wrt ∆t

Table 1 :

 1 EOS parameters for liquid and vapor water for the Simpson's valve closure induced water hammer experiment.

	kg/K)

Table ( 2

 ( )). The corresponding initial conditions are defined with constant parameters

	Phase	π (Pa)	C p (J/kg/K) C v (J/kg/K)	γ	q (J/kg)	q (J/kg/K)
	Liquid 769317123.86	4670.00	2807.61	1.66 -1359570.00 11671.61
	Vapor	0.00	1550.00	1162.00	1.33 2032350.00	2351.11

Table 2 :

 2 EOS parameters for liquid and vapor water for the Canon experiment.
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Chemical potential relaxation step

The last step takes mass transfer into account.

Step 4: mass transfer Compute approximate solutions on each cell of:

We focus now on the computation of the mass transfer terms in the fourth step, assuming that:

and thus: V int (W ) = U v , Π int (W ) = P l , since this closure law corresponds to what will be used in the validation section.

Starting with the first three equations in [START_REF] Lepareux | Modèle homogène équilibré[END_REF], we get at once:

Hence, setting the main scalar unknown X(t) = m v (t), and using the fact that the mass transfer term is a function

The relaxation time scale τ Γ (W ) is frozen at time t n within the time step, and a simple implicit Euler scheme is used to solve the latter equation:

setting:

with:

and:

Thus we are looking for X n+1 ∈]0, M n [ solution of the equation f (X n+1 ) = 0, where:

Appendix A

• We assume that the relaxation time scale τ Γ (W ) is constant and equal to τ Γ . We seek exact solutions X = m v of the ODE:

We assume that the following holds:

and we define a new variable F and a constant A re f as:

Hence we look for solutions of :

The latter may be integrated as:

which eventually provides:

This gives the final form of the exact solution for our verification test case.

• We turn now to the verification of the relaxation step 4 using the implicit scheme (36) introduced in section 3.3.2. We consider the final time t f = 10 -3 s, and we plot the L 1 norm e L 1 (t f ) as a function of the time step ∆t. This enables to retrieve the expected rate 1 for this test case (see figure 6).