
HAL Id: hal-01242960
https://hal.science/hal-01242960

Submitted on 14 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BeC3: a Crowd-Centric Composition Testbed for the
Internet of Things

Zahra Movahedi, Sylvain Cherrier, Yacine Ghamri-Doudane

To cite this version:
Zahra Movahedi, Sylvain Cherrier, Yacine Ghamri-Doudane. BeC3: a Crowd-Centric Composition
Testbed for the Internet of Things. IEEE Consumer Communications and Networking Conference,
Jan 2016, Las Vegas, United States. �hal-01242960�

https://hal.science/hal-01242960
https://hal.archives-ouvertes.fr


BeC3: a Crowd-Centric Composition Testbed for the
Internet of Things

Zahra Movahedi, Sylvain Cherrier
University of Paris-Est

Paris, France
Email: name@univ-mlv.fr

Yacine M. Ghamri-Doudane
University of La Rochelle

La Rochelle, France
Email: yacine.ghamri@univ-lr.fr

Abstract—With the emergence of IoT devices, such as smart-
phones, temperature and light devices, etc., the ways of creating
IoT applications has changed. IoT applications are often created
and managed by a set of central points (orchestration) for
different users. However, users may desire to create and manage
their own applications based on their own logic in a decentralized
way (choreography). Hence, in this paper, we demonstrate BeC3,
a tool for creating and deploying Crowd-based applications
using the choreography method. BeC3 is based on D-LiTE, a
lightweight RESTful virtual machine designed for IoT devices.
The users could then compose the D-LiTe-enabled devices using
the BeC3 tool. BeC3 provides a simple and intuitive way to
compose interaction between IoT components.

I. INTRODUCTION

Since the number of IoT devices with simple functionality
is increasing, a composition method to provide IoT appli-
cations with complex functionalities by composing simple
functionaires is highly required. On one hand, some projects
like FI-Ware1, Octopus2, and SENSEI3 work on the inter-
action of IoT devices. Some other works in the domain of
macroprogramming [1] are also interesting because they offer
a simple and high-level solution to quickly create IoT applica-
tions. These works are important to build the IoT application,
However, they are not destined to the simple users that are
not familiar with the technical issues and require mostly the
technical efforts for constructing IoT applications.

In BeC3, we believe that a user is both the developer
and the architect of its own IoT applications. He may need
frequently to reconfigure his applications according to his
requirements. As a new approach, this paper demonstrates
BeC3, a Crowd-centric tool that allows users to create and
deploy IoT applications in a simple way.

A. BeC3 system overview

BeC3 tool has been developed based on two main elements:
D-LITe and XMPP-REST. D-LITe is a lightweight RESTful
virtual machine deployed on IoT device. It represents hetero-
geneous devices functionalities in an abstract way. It provides
also a universal access to the functionalities of heterogeneous
devices using XMPP-REST choreography approach. In D-
LITe, a set of possible device’ basic functionalities (called
features) such as button, switch, timer, led, etc. are firstly

1http://www.fiware.org/
2http://www.octopus-project.eu/
3http://www.sensei-project.eu/

defined. Each feature is driven by a set of potential small
algorithms that specified the device functionality and control
its usage. The behaviours are described using Transducers;
A Transducer is an advanced form of Finite State Machines;
i.e. each Thing is seen as a component with a current state,
inputs, outputs, and transitions. Inputs and outputs are the
message events exchanged by nodes through the network,
and states are the nodes reaction to received messages. A
transition links two states. A transition can be triggered by an
input. States, transitions, and inputs describes the algorithm
to be executed. Transducers add an output to the well-known
Finite State Machines description. The output is generated by
the Transition when triggered. The transducer representations
used in D-LITe (and their specificities) are described with
SALT [2], a simple description language that limits bandwidth
and memory consumption.
D-LITe uses message exchanges between devices in order to
compose devices interactions and to create IoT applications.
To control the correctness of composition, typical messages
exchanges (called Interaction Patterns) are defined. In this
sense, two devices A and B could connect to each other if
and only if the device A’ output is matched with the device
B’ input using these Interaction Patterns. D-LITe allows an
end-user to deploy a specific behaviour on each device. Each
D-LITe enabled node contains a rules analyzer to execute the
behaviour. D-LITe devices also have a messaging service to
interact with each other using XMPP protocol, a standardized
protocol for real time communication. This protocol offers
instant messaging and presence management. Thus, the discov-
ery of new nodes is dynamic and their integration in the global
structure is easy. The XMPP-REST (an extension we have
created for D-LITe, allowing to send REST commands through
XMPP) handles behaviours on each device using GET, PUT,
DELETE, and POST methods. GET RESTful method helps
to discover existing features supported by the device, PUT
method deploys a behaviour on a device, DELETE method
removes an existing behaviour from the device, and POST
method exchanges messages between two device behaviours.
The implementation of REST approach within XMPP allows
the use of the presence and chat mechanism offered by the
instant messaging protocol, while this extension mimics the
calls to a web service with the REST commands.

The Crowd-centric aspect allows a community-based de-
sign, granting a wide panel of modular and incremental in-
teractions for a wide variety of components. Following this
aspect, a set of different categories of users are involved in
the BeC3 community to make the system functional. Indeed,



(a) BeC3 Authentication page (b) User’ devices are appeared on the left

(c) The user creates his IoT application (d) The user deployed his created IoT application

Fig. 1: The BeC3 mashup tool: BeC3 provides an intuitive user Interface for the creation and deployment of IoT applications.

BeC3 relies on the ‘participation inequality’ [3] that describes
the 01/09/90% rule. The 90% are simple users who want
to create and deploy their own IoT applications with no
required programming skills. The 9% create Behaviours that
run on a specific object category. They are in fact FSTs that
provide semantically “meaningful” usages for the 90%, and
comply with Interaction Patterns to allow a maximum device
interoperability. The last 1% takes care of implementing D-
LITe on legacy devices such as sensors, phones and appliances.
They may also punctually define new Interaction pattern.

B. BeC3 Demonstration

BeC3 front-end interface gives inexperienced users the
ability to organise, interconnect and compose both state of
the art web-services and IoT components to create interactive
2.0-like IoT applications. In this section, we provide a use-
case scenario to present the BeC3 environment. We firstly start
by the creation of a simple IoT application composing of a
Button feature and a Led feature. The aim is to On/Off the
light, toggling the Button. We then add some more features
such as Timer, another more Buttons to enrich the created IoT
application illustrating the dynamicity of the BeC3 system.

To use the BeC3 tool, each user should create an account
with a unique ID and password. User’ devices (here, the button,
and the light) are firstly configured to connect to the XMPP
server by giving the account of the owner, his password, and
the node’s name. We connect then to the BeC3 mashup tool
with our account (Fig. 1a). When we authenticate on the BeC3
tool, the button and the light appear on the left side of the
setting screen (Fig. 1b). To involve a device in our application,
we drag icons from left side to the central panel, and choose a
Behaviour from a proposed list of compatible ones. In our
scenario, we selected the behaviour Button toggle for the
Button device and the behaviour Light Toggle for the light

device. Then, we link the button device to the light device, just
by drawing arrows between them (Fig. 1c). Once it is finished,
we try to send our choice to the devices. After checking the
consistency of the assembly by the system, the BeC3 mashup
tool sends messages to each device in order to describe the
logic it has to follow (the Behaviour) and the observer’s list
of that node (arrows) using XMPP-REST (Fig.s 1d).

To enrich our application, we add a timer to the light
device selecting the behaviour toggle lighting timer. We
should also provide a duration for the timer when deploying
the application. In this sense, after the deployment of the
application, when we toggle the button, the light turn on and
then turn off after the time duration. Furthermore, we add two
other button devices with Button toggle behaviour, so that
the light device can be turned on/off by each of these button
devices. we can then add a timer to the light, etc.

II. CONCLUSION

We proposed and developed a crowd-centric tool named
BeC3 for creating IoT applications. In the demonstration, we
show that how a simple user can create and deploy complex
IoT applications using the BeC3 tool. In the future, we aim
to extend the BeC3 tool in order to support the multi-tenancy
aspect for shared IoT devices.

REFERENCES

[1] Luca Mottola and Gian Pietro Picco. Programming wireless sensor
networks: Fundamental concepts and state of the art. ACM Comput.
Surv., 43(3):19:1–19:51, April 2011.

[2] S. Cherrier, Y.M. Ghamri-Doudane, S. Lohier, and G. Roussel. Salt:
A simple application logic description using transducers for internet of
things. In Communications (ICC), 2013 IEEE International Conference
on, pages 3006–3011, June 2013.

[3] J. Nielsen. Participation inequality: lurkers vs. contributors in internet
communities. Jakob Nielsen’s Alertbox, 2006.


