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Molding direction constraints in structural
optimization via a level-set method

Grégoire Allaire, François Jouve and Georgios Michailidis

Abstract In the framework of structural optimization via a level-set method, we
develop an approach to handle the directional molding constraint for cast parts. A
novel molding condition is formulated and a penalization method is used to en-
force the constraint. A first advantage of our new approach is that it does not re-
quire to start from a feasible initialization, but it guarantees the convergence to a
castable shape. A second advantage is that our approach can incorporate thickness
constraints too. We do not adress the optimization of the casting system, which
is considered a priori defined. We show several 3d examples of compliance mini-
mization in linearized elasticity under molding and minimal or maximal thickness
constraints. We also compare our results with formulations already existing in the
literature.

1 Introduction

The increasing number of publications on industrial applications of shape and topol-
ogy optimization reflects the interest of engineers to introduce these techniques in
the design process of mechanical structures. Especially in case of complicated prob-
lems, where mechanical intuition is very limited, shape and topology optimization
can serve as a valuable tool both in order to obtain an optimized structure and to
accelerate the design process.
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Among the several methods that appeared in the literature, such as SIMP (Solid
Isotropic Material with Penalization) method [14, 49, 16], the homogenization
method [3, 13, 15], the phase field method [18, 41, 51, 17] or the Soft Kill Op-
tion [31, 23], the level-set method for shape and topology optimization [10, 11, 35,
38, 44] seems to fulfill industrial requirements in a satisfying way. Using a level-set
function to describe implicitly the boundary of a shape [36, 37] allows topological
changes to appear in an easy way, while the geometric nature of the method is a ben-
efit for the study of problems where the position of the interface plays a significant
role (stress constraints, thermal problems with flux across the boundary, etc.). The
method is independent of the objective function under study [7, 12, 20, 21] and the
ability to adapt the mesh on the boundary [5, 6, 45] alleviates possible numerical
difficulties due to the ”ersatz” material or to the discontinuity of the material prop-
erties.
Moreover, industrial design introduces significant constraints according to the fab-
rication method, the tooling limitations and the total cost that can be afforded. Some
of them are essentially geometric constraints, related to a notion of local thickness.
We have shown in our previous work [9] that thickness can be explicitly controlled
using a level-set method, which constitutes a great advantage for the industrializa-
tion of the method. Such constraints are of great significance for cast parts, i.e.
structures that are intended to be constructed by casting.
Casting [19] is the fabrication process where molten liquid is poured into a cavity
formed by molds. The final structure is obtained after solidification of the liquid
and removal of the molds. Thus, the structure should have such a shape, so that the
construction and the removal of the molds is possible without destroying either the
structure or the mold. This is called the ”molding constraint”. The casting process
imposes further specifications of mechanical nature on the shape of the structure,
mainly related to the solidification and filling process. In [32], we argued that such
constraints can be translated, in the context of topology optimization, into geomet-
rical constraints on the maximum and minimum allowable feature size, since the
complete casting system (molding, solidification and filling system) is usually de-
signed after the structural form definition.
According to the choice of shape and topology optimization algorithm, different
ways have been proposed to handle the molding constraint. In the framework of the
SIMP method, which is a density method, Zhou et al. [50] implemented a penaliza-
tion scheme that favors higher densities at the lower part of the structure. Leiva et al.
[29] have chosen to introduce directly the growth direction in the parametrization
of the problem, while methods of topology control, such as connectivity and growth
direction control, have been applied for the Soft Kill Option [24]. A complete re-
view of these methods and a comparison of results of topology optimization with
and without manufacturing constraints can be found in [25, 26].
In the framework of the level-set method, the only works on the topic -to our
knowledge- are those of Xia et al. [46, 47]. In [46] the authors have proposed a
molding condition on the design velocity, i.e. a modification of the descent direc-
tion that ensures the castability of the shape at each iteration, provided that the initial
shape is also castable. In this work, the molding system is a priori defined. In [47]



Molding direction constraints in structural optimization via a level-set method 3

the authors have added the optimization of the draw direction in the optimization
problem. The same choice for the design velocity is done. Although the method
allows those topological changes that do not come in conflict with castability, it is
mentioned in [46] that the shape cannot expand orthogonally to the casting direc-
tion. This is a great disadvantage in case one wants to impose a minimum thickness
contraint.
In the present paper, we introduce a new approach to handle the molding constraint
in the framework of the level-set method for shape and topology optimization. A
pointwise constraint is formulated using the signed distance function and a penalty
functional is then constructed to turn the constraint into a global one. A shape deriva-
tive [2], [27], [33], [34], [39] is calculated for this new functional and a simple pe-
nalization method is applied which guarantees that the optimal shape is castable at
convergence. A first advantage of our new approach is that it does not require to
start from a feasible initialization. This is of course a key feature since, in many in-
dustrial problems, it is very hard to find out a feasible design to start with. A second
advantage is that our approach can incorporate thickness constraints, contrary to the
previous method in [46, 47].
The contents of our paper is as follows. Section 2 describes our model shape opti-
mization problem. For simplicity we focus on compliance minimization with vol-
ume constraint: the main difficulty on which we shall focus is the addition of fur-
ther molding and thickness constraints. Section 3 is a short review of the level-set
method. Section 4 discusses the casting process while Section 5 introduces our new
molding direction constraint. We also recall the approach of Xia et al. [46, 47], as
well as the ”uniform cross-section surface constraint” of Yamada et al. [48], which
simplifies a lot the shape of the desired molds. Section 6 is devoted to the computa-
tion of the shape derivatives of these molding constraints. Finally Section 7 features
our 3-d numerical results which are obtained in the finite element software SYSTUS
of ESI-Group [40], which is well adapted to an industrial context. Our results were
partially announced in [8].

2 Setting of the problem

Our goal is to optimize a shape Ω ⊂ RN (N = 2 or 3), a bounded domain occu-
pied by a linear isotropic elastic material with Hooke’s law A (a positive definite
fourth-order tensor). Typically, the boundary of Ω is comprised of three disjoint
parts, such that ∂Ω = ΓD∪ΓN ∪Γ0, with Dirichlet boundary conditions on ΓD, non-
homogeneous Neumann boundary conditions on ΓN and homogeneous Neumann
boundary conditions on Γ0. We introduce a working domain D (a bounded domain
of RN) which contains all admissible shapes, that is Ω ⊂ D. The volume and sur-
face loads are given as two vector-valued functions defined on D, f ∈ L2(D)N and
g ∈ H1(D)N . The displacement field u is the unique solution in H1(Ω)N of the lin-
earized elasticity system
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−div(Ae(u)) = f in Ω ,

u = 0 on ΓD,(
Ae(u)

)
n = g on ΓN ,(

Ae(u)
)
n = 0 on Γ0,

(1)

where e(u) is the strain tensor, equal to the symmetrized gradient of u. A classical
choice for the objective function J (Ω) to be minimized is the compliance (the work
done by the loads). It reads

J(Ω) =
∫

Ω

f ·udx+
∫

ΓN

g ·uds =
∫

Ω

Ae(u) · e(u)dx. (2)

A typical shape optimization problem is

inf
Ω∈Uad

J (Ω) , (3)

where Uad is the set of admissible shapes. Imposing that all shapes belong to the
working domain D and that they satisfy a volume constraint 0 <V < |D|, a possible
choice of admissible set is

Uad = {Ω ⊂ D such that |Ω |=V} . (4)

As it is well-known [2, 16], problem (3) may lack an optimal solution. Numeri-
cally, the non-existence of a minimizer of (3) is reflected by the fact that approximate
numerical solutions are mesh dependent (the finer the mesh the more details or finer
members in the solution). Classically, to obtain existence of optimal shapes, one
needs to restrict further the admissible set Uad by imposing additional geometrical,
topological or smoothness constraints [2, 34, 39].

In order to find a descent direction for advecting the shape, we rely on the
Hadamard method of shape differentiation, following the approach of Murat and
Simon [34]. Starting from a smooth reference open set Ω , we consider domains of
the type

Ωθ =
(
Id +θ

)
(Ω),

with θ ∈W 1,∞(RN ,RN). It is well known that, for sufficiently small θ , (Id+θ) is a
diffeomorphism in RN .

Definition 1. The shape derivative of J(Ω) at Ω is defined as the Fréchet derivative
in W 1,∞(RN ,RN) at 0 of the application θ → J

(
(Id +θ)(Ω)

)
, i.e.

J
(
(Id +θ)(Ω)

)
= J(Ω)+ J′(Ω)(θ)+o(θ) with lim

θ→0

|o(θ)|
‖θ‖

= 0 ,

where J′(Ω) is a continuous linear form on W 1,∞(RN ,RN).

A classical result states that the shape derivative J′(Ω)(θ) depends only on the nor-
mal trace θ · n on the boundary ∂Ω [27], [34], [39]. We refer to [11] for various
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examples of shapes derivatives in the elasticity setting, including that for compli-
ance.

3 Level-set framework

3.1 Shape representation

We favor an Eulerian approach and use the level-set method [36] to capture the
shape Ω on a fixed mesh. Then, the boundary of Ω is defined by means of a level
set function ψ (see Figure 1) such that

ψ(x) = 0⇔ x ∈ ∂Ω ∩D,
ψ(x)< 0⇔ x ∈Ω ,
ψ(x)> 0⇔ x ∈

(
D\Ω

)
.

During the optimization process the shape is being advected with a scalar (normal)
velocity V (x) derived from shape differentiation, as we will see in the sequel. The
advection is described in the level-set framework by introducing a pseudo-time t ∈
R+ and solving the well-known Hamilton-Jacobi equation

∂ψ

∂ t
+V |∇ψ|= 0. (5)

using an explicit second order upwind scheme [37].

Fig. 1 Level-set representation of a shape.
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3.2 Signed distance function

We recall that if Ω ⊂ RN is a bounded domain, then the signed distance function
to the boundary ∂Ω is the function RN 3 x 7→ dΩ (x) defined by :

dΩ (x) =


−d(x,∂Ω) if x ∈Ω

0 if x ∈ ∂Ω

d(x,∂Ω) if x ∈
(
RN \Ω

) ,

where d(x,∂Ω) is the usual Euclidean distance from x to ∂Ω .
Very often, the Hamilton-Jacobi equation (5) is initialized, or re-initialized, with the
signed distance function. However, at later times t, the level set function ψ(t,x),
solution of (5), is not a signed distance function. Furthermore, the functions ψ and
dΩ do not share the same boundary conditions (see [9] for details). Therefore one
cannot retrieve geometrical informations on the shape Ω(t) from ψ(t,x). However,
at every time t it is not hard to compute the signed distance function of Ω(t). As in
the case of thickness constraints [9], we shall use this signed distance function to
get all necessary information for the formulation of our molding constraints.

3.3 Ersatz material

Using the so-called ”ersatz material” approach, we extend the state equations to the
whole domain D. To do this, we fill the holes D \Ω by a weak phase that mimics
the void, but at the same time avoids the singularity of the rigidity matrix. More
precisely, we define an elasticity tensor A∗(x) which is a mixture of A in Ω and of
the weak material mimicking holes in D\Ω

A∗(x) = ρ(x)A with ρ =

{
1 in Ω ,
10−3 in D\Ω .

(6)

Decomposing the boundary ∂D of the working domain in three parts

∂D = ∂DD∪∂DN ∪∂D0,

and demanding that the shape boundary ∂Ω = ΓD∪ΓN ∪Γ0 must further satisfy

ΓD ⊂ ∂DD, ΓN ⊂ ∂DN ,

where ∂D0 supports homogeneous Neumann boundary conditions, the displacement
u is finally computed as the solution of
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−div(A∗ e(u)) = f in D,

u = 0 on ∂DD,(
A∗ e(u)

)
n = g on ∂DN ,(

A∗ e(u)
)
n = 0 on ∂D0.

(7)

4 Casting process

We give in this section a short description of the casting process. A simplified se-
quence of steps for the construction of a cast part is the following:

1. Molds are used in order to create a cavity, having the shape of the structure that
we intend to construct.

2. The cavity is filled with molten liquid metal.
3. The liquid solidifies.
4. The molds are removed and the cast part is revealed.

There are many different types of casting (metal casting, sand casting, investment
casting, etc.) and the choice among them depends on the type of cast part. Each
type inserts different constraints on the casting process. We address the interested
reader to [19] for a complete presentation of the casting process. Here we confine
ourselves to permanent mold casting, in which the molds are removed without
being destroyed. We call parting direction the direction along which one mold is
removed and parting surface, the surface on which different molds come in contact
[46]. Note that several molds can be used in the casting system and each one has
its own parting direction (see Figure 3). The parting surface between two molds can
be predefined or it can be constructed after the optimization using suitable methods
[1, 22]. In most of the industrial applications, planar parting surface are preferred
because of reasons of cost and simplicity [46].
Each of the above steps introduces different constraints in the shape of the cast part.
In this work we are mainly interested to ensure the feasibility of the last step, i.e.
the removal of the molds. Thus, we need to impose that the cast part has such a
shape, so that the molds can actually be removed after the end of the solidification
process. Let us give a 2d example of the above mentioned. Suppose that for an
optimization problem like the one described by equations (1) to (4) we obtain the
optimized shape Ω , shown in Figure 2. In Figure 3 we see that depending on the
molding system considered, this shape can be moldable or not. In the right figure
of Figure 3, some parts of the shape oppose to the removal of the molds in their
corresponding parting direction.
The construction of the casting system is usually based on the intuition of the caster.
Changes on the number and on the position of the molds can turn a non-moldable
shape to a moldable one. The design of the whole casting system is very difficult (if
possible) to be formulated mathematically and be subjected to optimization. Works
in this direction are mostly concerned with parametric or shape optimization of parts
of the molds [30, 43] or of the riser [42]. In the present paper, we do not consider the
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optimization of the casting process, but the molding system is considered a priori
defined.

5 Formulation of the molding direction constraint

5.1 Molding direction condition on design velocity

A molding direction condition on the design velocity was proposed by Xia et al.
in [46], which is inspired by Fu et al. [22]. According to these authors, if a shape
is feasible with respect to the molding direction specification for its corresponding
molding system, then the boundary of the structure ∂Ω can be divided into m dis-
joint parts Γi, i = {1, ...,m}, such that Γi∩Γj = /0, j = {1, ...,m} ,∪m

i=1Γi = ∂Ω and Γi
can be parted in the direction di. Thus, a molding direction condition for this shape
is

Fig. 2 Possible optimized shape of a cast part.

Fig. 3 Left: moldable shape; right: non-moldable shape.
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di ·n(x)≥ 0, ∀x ∈ Γi, (8)

where n(x) is the exterior unit normal at x ∈ Γi. The shape on the left in Figure 4
satisfies the condition (8), while the shape on the right does not. In fact, as it is
mentioned in [46], undercuts (slots that hint the removal on the mold in its parting
direction) and interior voids are not allowed.
Based on the the molding condition (8), Xia et al. [46] proposed the following

method : starting from a shape that satisfies the constraint (8), consider an advec-
tion velocity of the form

θi(x) = λ (x)di, ∀x ∈ Γi. (9)

In this way, the shape remains always moldable, since no undercut can be created
during the advection of the shape with this type of velocity and no interior void can
be nucleated. The topological changes that can occur using this advection velocity
cannot turn the shape from moldable to non-moldable [46].
This method, despite its simplicity and effectiveness, presents two major drawbacks.
First, the shape must be initialized as being castable so that it can satisfy the mold-

Fig. 4 Top: moldable shape; bottom: non-moldable shape.



10 Grégoire Allaire, François Jouve and Georgios Michailidis

ing constraint during the entire optimization process ; this is a severe limitation on
the choice of admissible initial guess shapes. Nevertheless, if such an initialization
can be found, then it turns out that the method is flexible enough, especially in
3d, in order for complicated topologies to appear from very trivial initializations.
Second, and more important from our point of view, the very form (9) of the ad-
vection velocity does not allow all possible deformations of the shape, including
those which are required for some other constraints. As it is stated in [46], there
is no component of the advection velocity normal to the parting direction. There-
fore, the shape can shrink by extinction of some part, but it cannot expand normal
to its corresponding parting direction. As an example, consider the case where a
minimum thickness constraint is also applied [9]. Then, if the measured thickness
is in a direction orthogonal to the parting direction, the shape cannot expand in this
orthogonal direction (in order to meet the constraint of minimal thickness) because
it can move only parallel to its parting direction. Therefore, in such a situation, the
thickness constraint will not be respected. Therefore, it is necessary to formulate a
more general molding constraint, free of the above limitations.

5.2 Generalised molding constraint

A first idea for a generalized way to treat the molding direction constraint consists
simply in regarding (8) as a pointwise constraint in our optimization problem. Then,
it can be exactly penalized as we shall do in (16) to compute its shape derivative.
A second idea is to use the signed distance function to the boundary of the domain
to derive all necessary information, as we have done for thickness constraints in
[9]. Denoting Ω the actual shape and D the design domain, a generalized molding
direction constraint can be formulated as:

dΩ (x+ξ di)≥ 0 ∀x ∈ Γi,∀ξ ∈ [0,dist(x,∂D)] , (10)

or equivalently

dΩ (x+ξ di)≥ 0 ∀x ∈ Γi,∀ξ ∈ [0,diam(D)] , (11)

where we denote diam(D) = supx,y {dist(x,y), x,y ∈ D} the diameter of the fixed
domain D. We prefer to use formulation (11) instead of (10), in order to avoid the
dependence of the term dist(x,∂D) on the shape Ω .
Intuitively, this formulation says that, starting from a point on the boundary, which
will be casted in the direction di and travelling along this direction, we should not
meet again some part of the structure (see Figure 5). In case that the parting surface
is not defined a priori, but is revealed at a second step after the design has been
completed and for a system of two molds (see Figure 3, right image), the constraint
(11) becomes:

dΩ (x+ξ sign(n ·d)d)≥ 0 ∀x ∈ ∂Ω ,∀ξ ∈ [0,diam(D)] . (12)
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5.3 Uniform cross-section surface constraint

Another useful constraint for cast parts is the so-called ”uniform cross-section sur-
face constraint” [48], since it simplifies a lot the shape of the desired molds. To
our knowledge, Yamada et al. [48] were the first to study this type of constraint in
shape and topology optimization using a combination of a phase-field and a level-
set method. The constraint states that the cast part should have a uniform constant
thickness along some direction d. An example of a uniform cross-section cantilever
of thickness h is given in Figure 6. The boundary conditions may not be uniform
along this direction and therefore the problem cannot be reduced to a 2d problem.
We can formulate this type of constraint at least in two ways. The first formulation
states that the normal to the boundary cannot have a non-zero component in this
direction d:

d ·n(x) = 0, ∀x ∈ ∂Ω \∂D. (13)

A second way to enforce the constraint is to limit the admissible advection fields
θ . Starting from an initial guess shape that has a uniform cross-section along the
desired direction d and constraining the advection fields to be zero along this direc-
tion, the thickness along d will not change. In fact, this is the easiest way to follow,
since no mathematical constraint is imposed in the optimization process and the cal-
culation of the velocity field is reduced to a 2d problem, as we will see in the next
section.
By enforcing the constraint (13), the feasibility of the shape is guaranteed for casting
along the direction d, i.e. this constraint is a sufficient but not a necessary condition.

Fig. 5 Checking castability along the parting direction d at the point x ∈ ∂Ω .
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6 Shape derivative

6.1 Derivative of the condition on design velocity

Xia et al. proposed in [46] a modification of the advection velocity according to
(9), that guarantees a descent direction. Starting from the general form of the shape
derivative for a functional J(Ω)

J′(Ω)(θ) =
∫

∂Ω

θ(s) ·n(s)V (s)ds =
m

∑
i=1

∫
Γi

θi(s) ·n(s)Vi(s)ds

and considering admissible advection fields of the type (9), we get

J′(Ω)(θ) =
m

∑
i=1

∫
Γi

λi(s)di ·n(s)Vi(s)ds,

and choosing
λi(s) =−Vi(s)di ·n(s), ∀i = 1, ...,m

for each part Γi of the boundary ∂Ω , the shape derivative becomes

J′(Ω)(θ) =−
m

∑
i=1

∫
Γi

(di ·n(s))2(Vi(s))2ds≤ 0,

which shows that the chosen advection velocity

θi(s) =−Vi(s)(di ·n(s))di, ∀i = 1, ...,m (14)

(a) (b)

Fig. 6 (a): uniform cross-section cantilever of thickness h; (b): cross-section S.
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is indeed a descent direction. We replace the Hamilton-Jacobi equation (5) by the
linear transport equation

∂ψ

∂ t
+θ ·∇ψ = 0, (15)

where the vectorial velocity θ is an extension of the advection velocity (14) and the
normal n is the normal associated with the initial shape.

6.2 Derivative of the generalized molding constraint

We start with the derivation of constraint (8). One advantage of this constraint is
that it is of local nature, i.e. it contains information only for points on the boundary
without searching along rays emerging from them. On the other hand, it contains
the exterior normal vector, whose derivation is more complicated than the one of
the signed distance function. In a first step, a global penalty functional can be for-
mulated as

PGMC(Ω) =
∫

∂Ω

[(d ·n(s))−]2ds, (16)

with the usual notations ( f )+ = max( f ,0) and ( f )− = min( f ,0).

Proposition 1. For a smooth shape Ω , the shape derivative of (16) reads

P′GMC(Ω)(θ) =
∫

∂Ω

θ(s) ·n(s)
(

2d ·∇s(d ·n(s))−−H(s)[(d ·n(s))−]2
)

ds, (17)

where H is the mean curvature and ∇s the tangential gradient.

Proof. Using a classical result about shape derivation of integrals with shape-
dependent integrands (see Proposition 6.28 in [2]), the shape derivative of (16) reads

P′GMC(Ω)(θ) =∫
∂Ω

θ(s) ·n(s)
[
H(s)[(d ·n(s))−]2 + ∂ ([(d ·n(s))−]2)

∂n

]
ds

+
∫

∂Ω

∂ ([(d ·n(s))−]2)
∂Ω

(θ)ds =∫
∂Ω

θ(s) ·n(s)
[
H(s)[(d ·n(s))−]2 +2(d ·n(s))− ∂ (d ·n(s))

∂n

]
ds

+
∫

∂Ω

2(d ·n(s))−d ·n′(s)(θ)ds =∫
∂Ω

θ(s) ·n(s)
[
H(s)[(d ·n(s))−]2 +2(d ·n(s))−d · ((∇n)n)

]
ds

+
∫

∂Ω

2(d ·n(s))−d ·n′(s)(θ)ds,

(18)

where n′(s)(θ) is the shape derivative of the normal. Under the smoothness as-
sumption on the shape, there exists an extension of the unit normal in a tubular area
around the boundary by n(x) = ∇dΩ (x). Now, the unit normal satisfies the equa-
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tion |n(x)|2 = 1 from which differentiating both sides, we obtain (∇n)n = 0. Thus,
equation (18) reduces to

P′GMC(Ω)(θ) =
∫

∂Ω

θ(s) ·n(s)H(s)[(d ·n(s))−]2ds

+
∫

∂Ω

2(d ·n(s))−d ·n′(s)(θ)ds.
(19)

What remains is the calculation of the shape derivative of the unit normal to the
boundary. From Lemma 4.8 in [34], we have that the transported of the unit normal
n(Ω ,x) is

n((Id +θ)(Ω),x+θ(x)) =
((I +∇θ)−1)T n
|((I +∇θ)−1)T n|

=
n− (∇θ)T n+o(θ)

1− (∇θ)T n ·n+o(θ)
= (n− (∇θ)T n+o(θ))(1+(∇θ)T n ·n+o(θ))
= n(Ω ,x)− (∇θ)T n+((∇θ)T n ·n)n+o(θ),

and so the Lagrangian shape derivative of the unit normal is

Y (θ ,x) =−(∇θ)T n+((∇θ)T n ·n)n.

Since by the Hadamard structure theorem [2], [27], [34], [39], the shape derivative in
the direction θ depends only on the normal component θ ·n on the boundary ∂Ω , we
can restrict our attention to a vector field θ(x) of the form θ(x) = w(x)n(x), where
w is any scalar function. In such a case, we find that (∇n)T θ = w(x)(∇n)T n = 0 and
thus

Y (θ ,x) = −(∇θ)T n− (∇n)T θ +((∇θ)T n ·n)n+((∇n)T θ ·n)n
= −∇(θ ·n)+

[
n ·∇(θ ·n)

]
n

= −∇s(θ ·n)
= −∇s(w(x)).

The Eulerian shape derivative of the unit normal reads

n′(x)(θ) = Y (θ ,x)−∇nθ(x) = Y (θ ,x) =−∇s(w(x)).

The same result was found in [28], using similar variational principles. In view of
the above results, equation (19) becomes

P′GMC(Ω)(θ) =
∫

∂Ω

w(s)H(s)[(d ·n(s))−]2ds−
∫

∂Ω

2(d ·n(s))−d ·∇sw(s)ds.

On the other hand, using the identity (see [28])∫
∂Ω

a ·∇sbds+
∫

∂Ω

(∇s ·a)bds =
∫

∂Ω

a ·nH bds,

where a is a vector field and b is a scalar field, we deduce
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P′GMC(Ω)(θ) =
∫

∂Ω

w(s)
(
∇s · (2(d ·n(s))−d)−H(s)[(d ·n(s))−]2

)
ds

=
∫

∂Ω

w(s)
(
2d ·∇s(d ·n(s))−−H(s)[(d ·n(s))−]2

)
ds,

which completes the proof.

Lemma 1. The shape derivative (17) can be also written in the form

P′GMC(Ω)(θ) =∫
∂Ω

θ(s) ·n(s)

(
N−1

∑
i=1

κi(s)(d · ei(s))2(−sign((d ·n(s))−))−H(s)[(d ·n(s))−]2
)

ds,

where κi are the principal curvatures of ∂Ω at a point s ∈ ∂Ω and ei the associated
principal curvature directions (i = 1, ...,N−1).

Proof. For a point s ∈ ∂Ω we can write ∇sn(s) in the form (see [4]):

∇sn(s) =
N−1

∑
i=1

κi(s)ei(s)⊗ ei(s). (20)

Substituting (20) in (17) yields the desired result.

We now switch to the derivation of the other constraints (11) and (12), which are
pointwise constraints of the same type as the minimum thickness constraint in [9].
Therefore, the same steps need to be followed for their shape derivation and the final
extraction of a descent direction. For the sake of completeness, let us mention once
more the basic steps of this procedure.

For constraint (11) we formulate a penalty functional of the form

PGMC (Ω) =
m

∑
i=1

∫
Γi

∫ diam(D)

0

[
(dΩ (s+ξ di))

−]2 dξ ds,

while for constraint (12), it reads

PGMC (Ω) =
∫

∂Ω

∫ diam(D)

0

[
(dΩ (s+ξ sign(n(s) ·d)d))−

]2
dξ ds.

The two functionals are of the same type and can be written in compact notation
(see Figure 7)

PGMC (Ω) =
∫

∂Ω

∫ diam(D)

0

[
(dΩ (xm))

−]2 dξ dx, (21)

where xm denotes an offset point of the boundary which is either xm = x+ ξ di or
xm = x+ξ sign(n(x) ·d)d.
The following result was obtained in [9] and we recall it without proof.
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Proposition 2. The shape derivative of (21) reads

P′GMC(Ω)(θ) =∫
∂Ω

∫ diam(D)

0
θ (x) ·n(x)

[
H
(
(dΩ (xm))

−)2
+2
(
(dΩ (xm))

−)
∇dΩ (xm) ·∇dΩ (x)

]
dξ dx

−
∫

∂Ω

∫ diam(D)

0
θ
(
xm|Ω

)
·n
(
xm|Ω

)
2(dΩ (xm))

− dξ dx,

where xm|Ω is the orthogonal projection of xm on ∂Ω .

The advantage of the formula of Proposition 2, compared to that of Proposition
1, is that it does not contain any tangential derivative of the normal, or equivalently
principal curvatures, which are notably hard to compute with great accuracy.

Remark 1. As already noticed in [9], a descent direction can be found in a second
step, after identifying the linear form of the shape derivative with another scalar
product. The idea is similar to that of regularization, as described in [20]. More
precisely, solving the variational formulation∫

D

(
α

2
reg∇Q ·∇v+Qv

)
dx = P′(Ω)(v) ∀v ∈ H1(D), (22)

where αreg > 0 is a positive number (of the order of the mesh size) which controls
the regularization width, yields a solution Q ∈H1(D). Then, choosing a vector field
θ =−Qn, we obtain a guaranteed descent direction for PGMC since, taking v =−Q
in (22), we get

P′GMC(Ω)(−Qn) =−
∫

D

(
α

2
reg|∇Q|2 +Q2)dx.

Fig. 7 Offset point xm and its projection xm|Ω on the boundary.
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6.3 Derivative of the uniform cross-section constraint

For the constraint (13), a quadratic penalty functional reads

PUCS(Ω) =
∫

∂Ω\∂D
(d ·n(s))2ds, (23)

which highly ressembles (16) and thus its shape derivation is omitted here.
If we work in the feasible set of shapes which are constant in the direction d, it is

even simpler to take into account this constraint. We consider shapes Ω = S× [0,h]
where S is a surface perpendicular to d (see Figure 6). In this case, we force the
advection velocity to be zero along the direction d of uniform thickness. Starting
from the general formula of a shape derivative

J′(Ω)(θ) =
∫

∂Ω

V (s)θ(s) ·n(s)ds,

where ∂Ω = ∂S× [0,h], we use Fubini’s theorem for the shape derivative

J′(Ω)(θ) =
∫

∂S

∫ h

0
V (ξ )θ(s) ·n(s)dξ ds =

∫
∂S

θ(s) ·n(s)
∫ h

0
V (ξ )dξ ds.

From this, a descent direction is revealed for the uniform cross-section optimizable
boundary ∂S with the choiceθ(s) =−n(s)

∫ h

0
V (ξ )dξ , ∀s on ∂S,

θ(s) ·d = 0, ∀s on ∂S,
(24)

where n(s) is the normal to ∂S which satisfies n · d = 0. Another, simple way to
treat this constraint is through the regularization of the velocity field via equation
(22). Choosing αreg to be a tensor, instead of a positive scalar, we can smooth the
advection field in an anisotropic way. Then, equation (22) is rewritten as

∫
D

(
N

∑
i=1

a2
i

∂Q
∂xi

∂v
∂xi

+Qv

)
dx = J′(Ω)(v) ∀v ∈ H1(D), (25)

where αreg =∑
N
i=1 aiei⊗ei is the regularization tensor in the canonical basis (ei)i=1,...,N

of RN . For example, if we want a vector field θ of the type of (24) with d = e2, we
can set a2 >> ai, i 6= 2. Then, the solution Q of (25) will be constant in the x2 direc-
tion and the descent direction θ =−Qn(s), where n(s) is the normal to ∂S, satisfies
θ · d = 0. In other words, starting from an initial shape that respects the constraint
and regularizing the advection field in the way just described, we obtain a final op-
timized shape with a uniform cross-section.
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7 Numerical examples

We have coded all numerical examples herein in the finite element software SYS-
TUS of ESI-Group [40]. A quadrangular mesh has been used both for the solution
of the elasticity system and for the level set function. For the elasticity analysis, Q1
finite elements have been used, the Young modulus E is normalized to 1 and the
Poisson ratio ν is set to 0.3. The ”ersatz material” is considered to have the same
Poisson ratio, while its Young modulus is set to 10−3.

7.1 Molding direction

The three-dimensional box-like structure of Figure 8 is our test case to apply several
molding direction constraints and compare the corresponding optimized shapes. The
entire domain is used for the analysis and is discretized using 40× 40× 20 Q1
elements. We minimize the compliance under an equality constraint for the volume.
The optimization problem reads

min
Ω∈Uad

∫
∂Ω

g ·uds

s.t.
∫

Ω

dx = aV |D|,
(26)

where u is the solution of (7) and aV ∈ [0,1] determines the final volume of the
structure as percentage of the volume of the working domain D. An augmented
Lagrangian method is used here to enforce the constraints, as in our previous work
[9]. We refer to [11] for the formula of the shape derivative for the compliance.
At a first step, we impose no molding constraint and solve the optimization problem
(26) for aV = 0.2 using the arbitrary initialization of Figure 9(a). The optimized
shape after 250 iterations is shown in Figure 9(b).

Fig. 8 Boundary and loading conditions for a 3d box.
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Let us now solve the same optimization problem for a cast part that must com-
ply with a predefined molding system. For example, if we want to use one mold in
the design domain D, remove it in the direction d = (0,0,1) and impose the plane
z = 0 to be a possible parting surface, then obviously the shape in Figure 9(b) is no
more feasible. Of course, we cannot hope that starting with a different, even much
simpler, initialization, we can obtain a castable optimized shape without enforcing
a molding direction constraint.
As we have mentioned before, in the absence of thickness constraints, we believe
that the method of [46], as described in section 5.1, gives quite satisfying results
with a very simple implementation. The only restriction is that the initial design
must satisfy the constraint. For later iterations it is enough to impose the molding
direction condition on the design velocity. Starting with a full-domain initialization
(see Figure 10(a)) and taking the initial level-set function equal to the signed dis-
tance function to the upper part of the domain, we choose an advection velocity of
the type (9), where d = (0,0,1), and we obtain the optimized shape of Figure 10(b).
A comparison of the performance with the previous test case is proposed on Figure
11.

More flexibility in shape variations is given if the casting direction is set as
d = (0,0,1) and no parting surface is imposed. In this case, the design domain D can
contain two molds, one removed in the direction d and the second in the opposite
direction (−d). The same full-domain initialization, with the signed distance func-
tion to the upper part of the domain, could be chosen, but this would unfortunately

Fig. 9 Initialization (top) and optimized shape (bottom) for the optimization problem (26) without
a molding constraint.



20 Grégoire Allaire, François Jouve and Georgios Michailidis

result in a final system with just one mold. Instead, it is more efficient to take the
initial level-set function equal to the signed distance function both to the upper and
lower part of the domain. The optimized shape is shown in Figure 12(b).

As expected, a completely different optimized shape is obtained if we change the
casting direction. Separating the molds horizontally, in the direction d = (1,0,0)
and imposing no specific parting surface, yields the optimized shape of Figure 14. In
both Figures 12 and 14 we see that topological changes can take place by ”pinching
a thin wall” [11], even though we started from a full-domain initialization.

Molding direction & Maximum Thickness

A constraint on the maximum local thickness can be combined with the molding
condition on the design velocity without any difficulty a priori. The reason is that
the maximum thickness constraint gradient will be of uniform sign, tending always
to reduce the thickness (and the volume) of the shape. As we have mentioned in
section 5.1, when an advection velocity of the type (9) is chosen, the shape can
shrink, but not expand normal to the casting direction. Adding a maximum thickness
constraint to the test case of Figure 10, where the shape is casted along the direction
d = (0,0,1) and the plane z = 0 is chosen as a possible parting surface, we solve the
optimization problem

Fig. 10 Initialization (top) and optimized shape (bottom) for the optimization problem (26), setting
d = (0,0,1) as casting direction, z= 0 as a possible parting surface and using the molding direction
condition (9).
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min
Ω∈Uad

∫
∂Ω

g ·uds

s.t.
∫

Ω

dx = aV |D|,

PMaxT (Ω) =


∫

Ω

f (dΩ (x))dΩ (x)2dx∫
Ω

f (dΩ (x))dx


1
2

≤ dmax/2,

(27)

where dmax = 0.2 and f is a regularization function that reads (see [9]):

f (dΩ (x)) = 0.5
(

1+ tanh
(
|dΩ (x)|−dmax/2

α f dmax/2

))
,

α f > 0 being a parameter that controls the regularization of the constraint. Using the
same initialization as in Figure 10(a) and enforcing z= 0 as the only possible parting
surface, the optimized shape after 250 iterations and the convergence diagrams are
shown in Figures 16 and 17.

Fig. 11 Compliance (top) and volume (bottom) convergence histories for the results in Figures
9(bottom) and 10(bottom).
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Molding direction & Minimum Thickness

Suppose now that we want to add a minimum thickness constraint with dmin = 0.4
in the shape of Figure 10(b). The molding condition (9) is no more a suitable method
to follow (see section 5.1) and we shall instead combine a minimum thickness con-
straint with the generalized molding constraint (10). The previously optimized shape
is taken as an initial guess to solve the problem

min
Ω∈Uad

∫
∂Ω

g ·uds

s.t.
∫

Ω

dx = aV |D|,

P1(Ω) = PMinT (Ω) =
∫

∂Ω

∫ dmin

0

[
(dΩ (s−ξ n(s)))+

]2
dξ ds = 0,

P2(Ω) = PGMC(Ω) =
∫

∂Ω

∫ diam(D)

0

[
(dΩ (s+ξ d))−

]2
dξ ds = 0,

(28)

without any condition on the advection velocity. An optimized shape for the opti-
mization problem (28) is shown in Figure 18(b). The convergence diagrams for the
penalty functionals P1 and P2 are shown in Fig.19.

We now switch to a minimum thickness constraint of dmin = 0.3 and to the case
of two mold in the z-direction, as applied to the shape of Figure 12(b). In this case,
the optimization problem reads

Fig. 12 Plots of the optimized shape for the optimization problem (26), setting d = (0,0,1) as
casting direction, no a priori defined parting surface and using the molding direction condition (9).
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min
Ω∈Uad

∫
∂Ω

g ·uds

s.t.
∫

Ω

dx = aV |D|,

P1(Ω) = PMinT (Ω) =
∫

∂Ω

∫ dmin

0

[
(dΩ (s−ξ n(s)))+

]2
dξ ds = 0,

P2(Ω) = PGMC(Ω) =
∫

∂Ω

∫ diam(D)

0

[
(dΩ (s+ξ sign(n ·d)d))−

]2
dξ ds = 0

(29)
Note that the constraint P2(Ω) is different from that in (28). We obtain the optimized
shape of Figure 20. The convergence diagrams for the penalty functionals P1 and P2
are shown in Figure 21.

Fig. 13 Compliance (top) and volume (bottom) convergence diagrams for the results in Figures
9(bottom) and 12.
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Table 1 Compliance of the optimized structures.

Compliance
Without molding constraint (Figure 9(bottom)). 90.14

With casting direction d = (0,0,1) 102.07
and no parting surface (Figure 12).
With casting direction d = (0,0,1),

no parting surface
and minimum thickness constraint (Figure 20(bottom)). 105.87

With casting direction d = (1,0,0) 114.13
and no parting surface (Figure 14).
With casting direction d = (0,0,1) 123.68

and parting surface at z = 0 (Figure 10(bottom)).
With casting direction d = (0,0,1), parting surface at z = 0 134.68

and minimum thickness constraint (Figure 18(bottom)).
With casting direction d = (0,0,1), parting surface at z = 0 143.65

and maximum thickness constraint (Figure 16).

7.2 Uniform cross-section

The 2×0.5×1 three dimensional cantilever of Figure 22, discretized by 40×10×
20 Q1 elements, is chosen as test case to apply the uniform cross-section surface

Fig. 14 Plots of the optimized shape for the optimization problem (26), setting d = (1,0,0) as
casting direction, no a priori defined parting surface and using the molding direction condition (9).
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constraint. It is clamped on one side and, at the middle of its opposite side, a unitary
vertical load is applied. At a first step, problem (26) is solved for aV = 0.25 without
imposing any further geometric constraint on the shape. Starting from the arbitrarily
perforated shape of Figure 23(a), we obtain after 200 iterations the optimized shape
of Figure 23(b).

We now look for an optimized shape with a uniform cross-section along the y-
axis. Starting from the initial shape of Figure 24(a), which has five uniform holes
along this direction, we regularize at each iteration the velocity field for the ad-
vection of the shape in an anisotropic way, based on equation (25), with a much
higher regularization coefficient in the y-direction (ay >> ax,az). In our example,
ax = az = 2∆x, ∆x being the uniform mesh size, has been used to regularize the ad-
vection velocity in a small region around the shape boundary in the direction of the
x- and z-axis, while ay =

√
10 has been set to create a uniform velocity along this

direction. The optimized shape is shown in Figure 24(b). The convergence diagrams
for the compliance and the volume are shown in Figure 25.

Fig. 15 Compliance (top) and volume (bottom) convergence diagrams for the results in Figures
9(bottom) and 14.
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Fig. 16 Optimized shape for the optimization problem (27), with a maximum thickness constraint,
setting d = (0,0,1) as casting direction and using the molding direction condition (9).
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Fig. 17 Compliance (top) and volume (middle) convergence diagrams for the results in fig-
ures 10(bottom) and 16; convergence diagram for the maximum thickness functional (bottom)
PMaxT (Ω) for the optimized shape in Figure 16.
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Fig. 18 Optimized shapes under: a molding constraint (top) and: a molding and minimum thick-
ness constraint (bottom), with a predefined parting surface at z = 0.
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Fig. 19 Convergence diagrams for the penalty functionals: P1 (top) and: P2 (bottom), for the results
of Figure (18)(bottom).



30 Grégoire Allaire, François Jouve and Georgios Michailidis

Fig. 20 Optimized shapes under: a molding constraint (top) and: a molding and minimum thick-
ness constraint (bottom), without a predefined parting surface.
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Fig. 21 Convergence diagrams for the penalty functionals: P1 (top) and: P2 (bottom), for the results
of Figure (20)(bottom).

Fig. 22 Boundary conditions for the ”uniform cross-section” test case.
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Fig. 23 Initialization (top) and optimized shape (bottom), without the ”uniform cross-section”
constraint.

Fig. 24 Initialization (top) and optimized shape (bottom), with a ”uniform cross-section” con-
straint.



Molding direction constraints in structural optimization via a level-set method 33

Fig. 25 Compliance (top) and volume (bottom) convergence diagrams for the results of figures 23
and 24.
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