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GEOMETRIC OPTICS EXPANSIONS FOR HYPERBOLIC CORNER PROBLEMS II :1

FROM WEAK STABILITY TO VIOLENT INSTABILITY.2

ANTOINE BENOIT∗3

Abstract. In this article we are interested in the rigorous construction of geometric optics expansions for weakly well-posed4
hyperbolic corner problems. More precisely we focus on the case where selfinteracting phases occur and where one of them is5
exactly the phase where the uniform Kreiss-Lopatinskii condition fails. We show that the associated WKB expansion suffers6
arbitrarily many amplifications before a fixed finite time. As a consequence, we show that such a corner problem can not be7
weakly well-posed even at the price of a huge loss of derivatives. The new result, in that framework, is that the violent instability8
(or Hadamard instability) does not come from the degeneracy of the weak Kreiss-Lopatinskii condition, but of the accumulation9
of arbitrarily many weak instabilities.10
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1. Introduction. The main study in this article is the rigorous construction of geometric optics expan-13

sions for hyperbolic corner problem that is to say, problems reading :14

(1)


L(∂)u := ∂tu+A1∂1u+A2∂2u = f, for x1, x2 > 0
B1u|x1=0 = g1, on x1 > 0,
B2u|x2=0 = g2, on x2 > 0,
u|t≤0 = 0,

15

where the matrices Ai ∈MN (R) and where Bi ∈Mpi×N (R) (the values of p1 and p2 will be made precise in16

Assumption 2).17

Under the uniform Kreiss-Lopatinskii condition

kerB1 ∩ Es1(ζ) = {0} , and kerB2 ∩ Es2(ζ) = {0} ,

where the Es1(ζ) and Es2(ζ) are stable subspaces depending of a set of frequency parameters ζ (see Definition18

7 for a more precise definition). It is known that the associated initial boundary value problem in the half19

space is strongly well-posed (in the sense that we have existence and uniqueness of the solution and that this20

solution is as regular (in the L2-norm) as the source terms in (1)) if and only if the uniform Kreiss-Lopatinskii21

condition is satisfied.22

The analogous result have not, in the author knowledge, been demonstrated yet for initial boundary value23

problems in the quarter space. However the results of [17]-[18] indicate that an extra condition of invertibility24

will be needed in the quarter space geometry and thus that imposing the uniform Kreiss-Lopatinskii condition25

on each side of the boundary will not be sufficient to ensure strong well-posedness.26

However even if the well-posedness is not establish for corner problems, the geometric optics expansions27

have been studied in [19] and more recently by the author in [3] and [4]. More precisely in [19] the authors give28

precious intuitions and some elements of proof about this construction which are used in [3]-[4] to construct29

rigorously the expansions.30

31

In particular a new phenomenon, proper to the corner problem, has been investigated, the selfinter-32

action phenomenon. In more details, this phenomenon induces that some phases in the WKB expansion33

can generate themselves after a suitable number of reflections on the sides of the quarter space (see [3]-[4]).34

That is to say that some information lying on the side {x1 = 0, x2 > 0} can be transported towards the side35

{x1 > 0, x2 = 0}, be reflected in the phase that send back the information towards {x1 = 0, x2 > 0} and the36

same process is then repeated one more time. However it is possible that during the fourth rebound the37

obtained phase is exactly the one that was initially considered. So this phase will be generated several times.38

This was not the case for the half space geometry because a reflected phase automatically espaces to infinity.39

On one hand, in terms of the geometry of the characteristic variety, such systems contain a rectangle whose40

corners are elements of the characteristic variety (with suitable group velocities) and whose side are parallel41
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2 A. BENOIT,

to the axis of the frequency space. On the other hand, in terms of the resolution of the WKB cascade, a new42

amplitude equation, whose provenance is intrinsically linked with the uniform Kreiss-Lopatinskii condition43

has to be solved to initialize the resolution of the cascade.44

45

We are here interested in corner problems whose, one of the boundary condition, to fix the ideas, let
us say B1, does not satisfy the uniform Kreiss-Lopatinskii condition that is that there exists at least one
frequency parameter ζ such that:

kerB1 ∩ Es1(ζ) 6= {0} .

The other boundary condition is assumed to be as convenient as necessary, that is it satisfies the uniform46

Kreiss-Lopatinskii condition or even it is strictly dissipative see [6]. The litterature about the hyperbolic47

boundary value problem in the half space tells us that such problems can not be strongly well-posed because48

of the failure of the uniform Kreiss-Lopatinskii condition. However they can be weakly well-posed in the49

sense that we still have existence and uniqueness but that the solution of (1) is now less regular that the50

sources terms in (1). We also say that the solution suffers losses of derivatives.51

The number of losses depends on the particular structure of Es1(ζ) at the considered ζ. There are four52

possible kinds of degeneracy of the uniform Kreiss-Lopatinskii condition relying on the structure of Es1(ζ) at53

the frequency where the uniform Kreiss-Lopatinskii condition breaks down (see Definition 4). Namely, the54

degeneracies of the uniform Kreiss-Lopatinskii condition can occur in the so-called hyperbolic, elliptic, mixed55

or glancing regions. In terms of geometric optics expansions hyperbolic modes are associated to transport56

phenomenon whereas elliptic ones are associated to boundary layers.57

Concerning boundary value problems in the half space for which the uniform Kreiss-Lopatinskii condition58

is violated, the construction of the associated geometric optics expansions has already been made in all but59

the glancing region. We refer to [8] for the construction when the degeneracy takes place in the hyperbolic60

region and to [2] and [14] for the construction associated to a degeneracy in the elliptic or in the mixed region.61

With this expansions it is then possible to saturate the energy estimates for the solution of (1) and to show62

that the obtained losses in the litterature are sharp.63

64

We will here focus our attention on a degeneracy of the uniform Kreiss-Lopatinskii condition in the65

hyperbolic region, and thus for a frequency that induce a transport phenomenon. Such problems are refer as66

the WR class in the sense of [5]. Some conjectures about the behaviours of the geometric optics expansions67

when the degeneracy of the uniform Kreiss-Lopatinskii condition occurs in the elliptic or in the mixed region68

can be found in Section 9.69

70

In [8], the authors construct the geometric optics expansions for such WR problems in the half space and
show that if the source terms are of order one compared to the small parameter ε which encodes the high
oscillating behaviour, then the leading term in the geometric optics expansion is of order zero compared to
ε. Then, they used this construction to show that the energy estimate with losses of derivatives established
by [7]:

‖u‖2L2(ΩT ) + ‖u|x1=0‖2L2(ΩT ) ≤ CT
(
‖f‖2L2

x1
(H1(∂Ω1,T )) + ‖g1|x1=0

‖2(H1(∂Ω1,T ))

)
,

is sharp in terms of losses of derivatives.71

72

Concerning corner problems, the litterature is much more poor. Indeed, as already mentionned the full73

characterization of strongly well-posed problems is, to our knowledge, not achieved yet. So, the full charac-74

terization of weakly well-posed corner problems seems, in the author opinion, to be a long range problem. As75

a consequence the fact that we construct the geometric optics expansions for these (expected to be) weakly76

well-posed problems can be seen as a ”Majda’s project” (see [1] and [13]). That is to say, that the author77

believies that the use of geometric optics expansions can give some intuition about what can be the good78

number of losses of derivatives in the associated corner problems.79

80

In this article, we will focus our attention on the particular case of corner problems in the WR where the81

frequency of degeneracy is one of the selfinteracting phases. Our purpose is thus to construct the geometric82

optics expansion for such a corner problem. As we will see in Section 7, for any arbitrarily large M ∈ N, the83

fact that the phase for which the uniform Kreiss-Lopatinskii condition breaks down is generated an arbitrarily84

number of times will imply a leading term in the geometric optics expansion of order zero, compared with85
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the small parameter ε, when one considers a source term on the boundary {x1 = 0} of orderM+1 in terms of ε.86

87

Using this geometric optics expansion, we will show that such a corner problem can not be weakly well-88

posed on a finite interval of time because it loses an arbitrarily large number of derivatives before the time89

T . In terms of losses of derivatives, it is the worst case that we can imagine because we have a violent or90

Hadamard’s instability.91

92

The paper is organized as follows : in Section 2, we precise the terms of the previous discussion on an93

example. The analysis made in Section 2 is purely formal and aims to illustrate the amplification and the94

self-interaction phenomenons. Then Section 3 gives some classical definitions and introduce some notations.95

In Section 4 we give a formal study of our problem and we describe what are the expected phases and the96

associated amplitudes in the WKB expansion. Then in Section 6, we give a general framework in which the97

previous formal discussion becomes rigorous. This section uses the same tools as these introduced in [4] to98

describe, with precision, the set of expected phases in the WKB expansion. However, we believe that it is99

important to recall these tools for the sake of completness.100

Section 7 is devoted to the construction of the geometric optics expansion and is the main section of101

the paper. The most difficult part of the construction is to find a way to initialize the resolution of the102

WKB cascade of equations. Indeed in [4] a new amplitude equation whose resolution permits to initialize103

the WKB expansion was derived from the uniform Kreiss-Lopatinskii condition. However the obtention of104

this new equation is intrinsically linked with the uniform Kreiss-Lopatinskii condition. As a consequence to105

initialize the resolution of the WKB cascade when the uniform Kreiss-Lopatinskii condition degenerates, we106

need a new amplitude equation. This equation comes from an adaptation of the method described in [8]. The107

hardest point to handle with is that in [8], due to the ”nice” geometry of the half space, it was possible to108

determine all the outgoing phases (which act as source terms in the equation determining the amplitude for109

which the uniform Kreiss-Lopatinskii breaks down) before all the others. However, this is not true anymore110

in the quarter space geometry. But we found a new equation for the initialization of the WKB, which one111

is given in paragraph 7.1. The resolution of this equation is made in subparagraphs 7.1.4 and 7.1.6. The112

resolution is made after a ”necessary” reformulation of this equation, in view to show that this equation can113

in fact be rewritten under the particular form (I − T)u = G, for some operator T. This rewriting is made in114

paragraph 7.1.2.1115

116

Section 8 contains the proof of our main result, that is that a corner problem in the WR class for one117

side which admits a loop in the section of its characteristic variety and for which one of the element of the118

loop violates the uniform Kreiss-Lopatinskii condition can not be even weakly well-posed. It is not really a119

positive result because it tells us that, in such a framework, there is no hope to solve the corner problem.120

However, the author believes that this result is interesting in itself because it gives the first examples, in121

our knowledge, of ill-posed hyperbolic boundary value problems for which the ill-posedness is due to the122

accumulation of weak instabilities and not to the failure of the weak Kreiss-Lopatinskii condition. Moreover123

the instability phenomenon in this framework is much more subtle.124

125

At last, Section 9 gives examples of such ill-posed corner problems and some (more optimistic) conjectures126

about what should be the leading order sizes (and so the number of losses of derivatives) in the more favorable127

cases where the uniform Kreiss-Lopatinskii condition breaks down outside the loop.128

2. Example and formal discussion. We start this an illustrative example. We consider the following129

corner problem:130

(2)


L(∂)uε := ∂tu

ε +A1∂1u
ε +A2∂2u

ε = 0, for x1, x2 > 0,

B1u
ε
|x1=0 = εgε, for x1 = 0,

B2u
ε
|x2=0 = 0, for x2 = 0,

uε|t≤0 = 0, for x1, x2 > 0,

131

1Let us note that the particular structure (I − T)u = G was already the structure obtained in [4]. Moreover, this structure
will be very important in the following proof because it permits to write the solution u as the sum of compositions of T and
thus to express the solution u in terms of the sum of wave packets.
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4 A. BENOIT,

where the coefficients in the interior are given by

A1 :=

 0
√

5 0√
5 −4 0

0 0 − 5
7

 , and A2 :=

−1 0 0
0 1 0
0 0 1

 .
And where the boundary matrices are given by:

B1 :=
[
−
√

5 7
3 1

]
, and B2 :=

[
− 1√

5
1 0

− 1√
5

0 1

]
.

The source term gε(t, x2) := e
i
ε (t−8x2)g(t, x2), where g is zero for negative times and is also zero for all132

x2 ≤ 1.133

134

Let L be the symbol of L(∂) it is defined for all (τ, ξ1, ξ2) ∈ R3 by:

L (τ, ξ1, ξ2) := τI + ξ1A1 + ξ2A2.

It what follows it will be convenient to introduce the characteristic variety of L(∂), that is:

V :=
{

(τ, ξ1, ξ2) ∈ R3|det L (τ, ξ1, ξ2) = 0
}
,

and as the time frenquency in gε will be constant equals to one, we introduce V := V ∩{τ := 1} . The section
V is given by:

V{τ=1} =

{
(ξ1, ξ2) ∈ R2 \

(
1− 5

7
ξ1 + ξ2

)
(1− 4ξ1 + 4ξ1ξ2 − 5ξ2

1 − ξ2
2) = 0

}
,

and is composed of an ellipse and a line (see Figure 1).135

136

The aim of the following paragraph is to give a formal discussion based on the explicit example (2)137

illustrating the phenomenon of repetition of the instabilities mentioned in the introduction. The remaining138

of the article aims to give a rigorous justification of this formal discussion.139

140

The corner problem (2) is hyperbolic so it has a finite speed of propagation. As a consequence the141

information supported by gε can not hit immediately the boundary {x2 = 0}. So in a very formal way, we142

will forget the quarter space geometry and work in the half space {x1 ≥ 0, x2 ∈ R}. The problem now reads:143

144

(3)


∂tu

ε +A1∂1u
ε +A2∂2u

ε = 0, for x1 ∈ R+, x2 ∈ R,
B1u

ε
|x1=0 = εgε, for x1 = 0, x2 ∈ R,

uε|t≤0 = 0, for x1 > 0, x2 ∈ R,
145

and we are looking for an approximation solution of (3) via a WKB expansion.146

We thus postulate exactly the same ansatz as in the half space:147

(4) uε ∼
∑
n≥0

e
i
εϕ1(t,x)εnu1,n +

∑
n≥0

e
i
εϕ4(t,x)εnu4,n +

∑
n≥0

e
i
εϕ0(t,x)εnu0,n,148

where the phases functions , ϕ0, ϕ1 and ϕ4 are given by: In particular, we remark that there is a loop149

with phases ϕ1, ...ϕ4 defined by:150

ϕ0(t, x) := t− 49

5
x1 − 8x2, ϕ1(t, x) := t− 21

5
x1 − 8x2, and ϕ4(t, x) := t− 3x1 − 8x2,151

and we remark that the points
(
− 49

5 ,−8
)
,
(
− 21

5 ,−8
)

and (−3,−8) are the three points of intersection between152

V and the line {ξ2 = 8}.153
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5

Plugging the ansatz (4) in the boundary value problem in the half space (3) gives the cascade of equations154

in the interior:155

(5)

{
L (dϕk)u0,k = 0, for k ∈ {0, 1, 4} ,
iL (dϕk)un+1,k + L(∂)un,k = 0, ∀n ∈ N, k ∈ {0, 1, 4} ,

156

the boundary conditions:157

(6) B1

 ∑
k∈{0,1,4}

un,k


|x1=0

= δn,1g, ∀n ∈ N,158

and finally the initial conditions:159

(7) un,k|x1=0
= 0, ∀n ∈ N, k ∈ {0, 1, 4} .160

The first equation of (5) implies that u0,k ∈ ker L (dϕk), k ∈ {0, 1, 4} (recall that by definition of ϕk this161

kernel is non-trivial). This is the so-called polarization condition.162

We introduce P k the projector upon ker L (dϕk) and Qk the projector on A1 ker L (dϕk) (we will not give
a precise definition of this projectors here, we refer to Definition 25). We have kerQk = Ran L (dϕk). Thus
multiplying the second equation of (5) written for n = 1 and using the polarization condition P ku0,k = u0,k

we obtain:
QkL(∂)P ku0,k = 0.

We can then use Lax’s lemma [11] which establishs that the previous equation is in fact a transport equation,163

that is:164

(8) (∂t + vk · ∇x)u0,k = 0,165

where the velocity of the transport vk is the so-called group velocity. Note that the group velocity is by166

definition (see Definition 5) olinear to the inner normal to V computed at (ξk1 , ξ
k
2 ) (where (ξk1 , ξ

k
2 ) is the167

spatial frequency of ϕk).168

We have easily:169

v0 :=

[
− 5

7
1

]
, v1 :=

[
3
− 2

5

]
, and v4 :=

[
− 5

7
1

]
,(9)170

The interesting point here is that the first component of v1 is strictly positive while the second component171

of each v0 and v4 are strictly negative. As a consequence, for k = 1 the transport in (12) goes from the172

boundary to the interior and it is thus needed to know the value of u0,1 at the boundary. But for k = 0, 4173

the transport in (12) goes from the interior to the boundary and consequently no boundary condition have174

to be imposed on the boundary.175

From this observation we deduce that for k = 0, 4, u0,k solves the homogeneous transport equation:176

(10)

{
(∂t + vk · ∇x)u0,k = 0, for x1 > 0, x2 ∈ R,
u0,k|t≤0

= 0, for x1 > 0, x2 ∈ R,
177

and we thus have: u0,k ≡ 0 for k = 0, 4 and it only remains to determine u0,1. To do this we need to know178

its trace on {x1 = 0}. To determine this trace we use the boundary condition (6) which reads:179

(11) B1u0,1|x1=0
= 0.180

However there is an issue. Indeed, from the polarization condition we can write u0,1:=νe where e is a generator
of ker L (1,− 21

5 ,−8). An easy computation gives:

e :=

 7
3√
5

0

 ,
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6 A. BENOIT,

and we remark that B1e = 0. As a conseuence ker L (1,− 21
5 ,−8)∩kerB1 = vect {e}, the boundary condition181

(11) is trivialy satisfied and does not give any information about u0,1|x1=0
. It is this situation that we refered182

to the failure of the uniform Kreiss-Lopatinskii condition in the introduction, more precisely as this failure183

happens for a phase with real values we say that we are in the WR class.184

185

To obtain the value of u0,1|x1=0
we study the only other equation in which u0,1|x1=0

appears that is the

boundary condition (6) written for n = 1:

B1u1,1|x1=0
= g −B1

 ∑
k∈{0,4}

u1,k


|x1=0

,

in which we make the decomposition u1,k = P ku1,k + (1− P k)u1,k to obtain:

B1P
1u1,1|x1=0

= g −B1

 ∑
k∈{0,4}

P ku1,k +
∑

k∈{0,4}

(I − P k)u1,k


|x1=0

−B1(I − P 1)u1,1|x1=0
,

and recall that the left hand side is zero.186

To make this equation more explicit we first determine the (I − P k)u1,k, that is the unpolarized part.
To do this we introduce the pseudo-inverse characterized by:

RkL (dϕk) = I − P k, and P kRk = RkQk = 0,

and we compose the second equation of the cascade (5) written for n = 0 by Rk. It follows:

(I − P k)u1,k = iRkL(∂)u0,k.

In particular for k = 0, 4 (recall that u0,k ≡ 0) we obtain that (I −P k)u1,k ≡ 0. To determine P ku1,k we use187

again Lax’s lemma to show that the polarized part satisfies the transport equation:188

(12)

{
(∂t + vk · ∇x)QkP ku1,k = −QkL(∂)(I − P k)u1,k = 0, for x1 > 0, x2 ∈ R,
P ku1,k|t≤0

= 0, for x1 > 0, x2 ∈ R,
189

which implies that P ku1,k ≡ 0 for k = 0, 4. So the boundary condition of order one in fact reads:(
B1R

1L(∂)u0,1

)
|x1=0

= −ig.

And with the notation u0,1(t,x)=ν(t,x)e we obtain:190

(13)
(
R1e∂tν +R1A1e∂1ν +R1A2e∂2ν

)
|x1=0

= −ig,191

which is a transport equation in ν. However to solve (13) we have to make its coefficients more explicit.
After some computations we obtain:

P 1 =

 7
2

7
6

√
5 0

− 3
2

√
5 − 5

2 0
0 0 0

 , Q1 =

 7
2 − 3

2

√
5 0

7
6

√
5 − 5

2 0
0 0 0

 , and R1 =

 25
36

5
12

√
5 0

5
12

√
5 5

4 0
0 0 − 1

7

 .
And consequently:

B1R
1e =

16

9

5

6

√
5, B1R

1A2e =
2

9

5

6

√
5 and B1R

1A1e = 0.

The transport equation (13) in its final form reads:192

(14)


(
∂t + 1

8∂2)ν|x1=0 = − 27
40
√

5
ig, for (t, x2) ∈ R2,

ν|x1=0|t≤0
= 0, for x2 ∈ R,

193
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and we can solve this equation by integration along the characteristics to obtain the value of ν|x1=0 and then194

integrate along the characteristics the transport equation for u0,1:195

(15)


(∂t + v1 · ∇x)u0,1 = 0, for (t, x1, x2) ∈ R× R+ × R,
u0,1|x1=0

= ν|x1=0e, for (t, x2) ∈ R2,

u0,1|t≤0
for (x1, x2) ∈ R× R+,

196

to obtain the value of u0,1.197

198

An important remark is that from (14), the leading order term u0,1 is not zero. But one have to recall199

that in (3) the source term on the boundary {x1 = 0} is of order one compared to ε. As a consequence,200

the leading order of the WKB expansion is of order zero for a source term of order one. It is exactly the201

amplification phenomenon that we introduced in the introduction. An other remark is that the coefficient in202

front of the x2-derivative in (14) is nothing but 1
ξ12

.203

204

Then we study the behaviour of the amplitude u0,1 as v1 as a negative second component, the transported205

information hits the boundaray {x2 = 0} after some times. When its happens we formaly consider (recall that206

u0,1|x2=0
has its support away from x1 = 0) the boundary value problem in the half space {x1 ∈ R, x2 ≥ 0}207

whose information on the boundary has been turned on by u0,1:208

(16)


∂tu

ε +A1∂1u
ε +A2∂2u

ε = 0, for x1 ∈ R, x2 ∈ R+,

B2u
ε
|x2=0 = −B2u0,1|x2=0

, for x2 = 0, x1 ∈ R,
uε|t≤0 = 0, for x1 ∈ R, x2 ∈ R+,

209

and we thus add in the ansatz (4) the amplitudes un,2 associated to the phase ϕ2 defined by:

ϕ2(t, x) := t− 21

5
x1 − 4x2.

And the amplitude un,5 associated to the phase ϕ5 defined by:

ϕ5(t, x) := t− 21

5
x1 −

44

5
x2.

This new phases correspond to the intersection of V with the line
{
ξ1 = − 21

5

}
. Note that the group velocity

for the phase ϕ2 is given by:

v2 :=

[
− 5

7
1

]
,

while the group velocity v5 has both its components positive. From Lax’s lemma we have to solve the210

transport equation:211

(17)


(∂t + v2 · ∇x)Q2P 2u0,2 = 0, for x2 > 0, x1 ∈ R,
B2 [u0,2 + u0,5]|x2=0 = −B2u0,1|x2=0

, for x2 = 0, x1 ∈ R,
P 2u0,2|t≤0

= 0, for x2 > 0, x1 ∈ R,
212

to determine u0,2. However, this time we have ker L (1,− 21
5 ,−4) = vect {e2} and ker L

(
1,− 21

5 ,−
44
5

)
=

vect {e5} with

e2 :=

0
0
1

 , and e5 :=

√5
7
3
0

 ,
and we remark that the matrix B2 restricted to vect {e2, e5} is invertible. This is the uniform Kreiss-
Lopatinskii condition mentioned in the introduction. More precisely this inverse is given by:

φ2 :=

 3
7

√
5 0

1 0
0 1

 ,
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So we can apply φ2 in the boundary condition and project upon ker L (1,− 21
5 ,−4) to obtain the value of the213

trace of u0,2|x2=0
. This permits to solve (17) by integration along the characteristics to determine u0,2. The214

determination of u0,5 is similar and will not be describe here.215

216

We now repeat the same process, the group velocity v5 has both its components positive, so when one
solves the associated transport equation, the transported information spreads to infinity. It will never hits the
boundary {x1 = 0}, will never be reflected and consequently it will never creates a new phase by reflection.
However the information carried by u0,2 will hits the boundary {x1 = 0} and it will be reflected in a new
amplitude. To determine this new amplitude we consider again the boundary value problem in the half space
{x1 ≥ 0, x2 ∈ R} and we add in the ansatz (4) the amplitudes un,3 associated to the phase ϕ3 defined by:

ϕ3(t, x) := t− 3x1 − 4x2,

with group velocity:

v3 :=

[
5
−2

]
.

217

(18) ϕ4(t, x) := t− 3x1 − 8x2, v2 :=

[
5
−2

]
.218

To determine u0,3 we have to solve the transport equation:219

(19)


(∂t + v3 · ∇x)Q3P 3u0,2 = 0, for x1 > 0, x2 ∈ R,
B1u0,3|x1=0

= −B1u0,2|x1=0
, for x1 = 0, x2 ∈ R,

P 3u0,2|t≤0
= 0, for x1 > 0, x2 ∈ R,

220

and we remark that compared to (12), this time B1e3, where e3 is a generator of ker L (1,−3,−4) is not zero.221

As a consequence from the uniform Kreiss-Lopatinskii condition we can invert B1 in the boundary condition222

of (19) to obtain the value of u0,3|x1=0
and solve (19). An important remark is that this time the amplitude223

u0,3 is not amplified and remains of order O(1) compared with ε.224

The information transported by (19) will hit the boundary {x2 = 0} so it leads us to study the boundary
value problem in the half space {x1 ∈ R, x2 ≥ 0} whose source term on the boundary has been turned on by
the amplitude u0,3. So we add in the ansatz the amplitudes for the phases associated to the intersections
between V and the line {ξ1 = −3} that is:

ϕ6(t, x) := t− 3x1 −
22

7
x2,

and ϕ4. It is interesting to remark that even if the amplitude u0,4 has been initially removed of the ansatz
(because it was initially zero) nothing prevent that this amplitude has to be considered after several rebounds.
To dedtermine u0,4 we have to solve a transport equation and to do this we need the value of u0,4|x2=0

. Once

again we remark that ker L (1,−3,−8) = vect {e4} and ker L (1,−3,− 22
7 ) = vect {e6}, with

e4 :=

√5
3
0

 , and e6 :=

0
0
1

 ,
and consequently by the uniform Kreiss-Lopatinskii condition, the matrix B2 restricted to vect 4, e6} is
invertible. The inverse is given by:

φ4 :=

 1
3

√
5 0

1 0
0 1

 ,
which permits to determine the traces u0,4|x2=0

and to solve the associated transport equation. The trans-225

ported information will hit the side {x1 = 0, x2 ∈ R} and we have to determine its rebounds. To do this we226

add in the ansatz (4) the phases associated to the intersection point between V and the line {ξ2 = −8}.227

228

This manuscript is for review purposes only.



9

It is there interesting to remark that one of these points gives exactly the phase ϕ1. As a consequence, the
associated amplitude is generated a second time. This phenomenon is refered to selfinteraction phenomenon
because it means that some phases can regenerated themselves after a suitable number of rebounds. We thus
consider the boundary value problem in the half space {x1 ≥ 0, x2 ∈ R} whose source term on the boundary
as been turned on by the amplitude u0,4 and we add in the ansatz (4) a new contribution for the phase ϕ1.
The ansatz now reads:

uε ∼
∑
n≥0

6∑
k=1

e
i
εϕk(t,x)εnun,k +

∑
n≥−1

e
i
εϕ1(t,x)εnũn,1.

To determine the new amplitude ũ−1,1 we again apply Lax’s lemma which leads us to solve the transport229

equation:230

(20)

{
(∂t + v1 · ∇x)ũ0,1 = 0, for x1 > 0, x2 ∈ R,
ũ0,1|t≤0

= 0, for x1 > 0, x2 ∈ R.
231

Once again to solve this equation it is needed to determine first the value of the trace ũ−1,1|x1=0
. To do232

this we reiterate the computations made for u0,1. That is we consider the equation for ũ0,1|x1=0
We thus233

obtain that ũ−1,1|x1=0
solves the transport equation (14) but with a source term depending on u0,4|x1=0

and234

consequently the amplitude ũ−1,1 is not zero. So we obtain that the leading order in the WKB expansion is235

now of order O(ε−1) while the source term on the boundary gε is of order O(ε). There are consequently two236

amplifications in the WKB expansion.237

238

Then we can reiterate exactly the same computations to determine the new amplitudes ũ−1,k, k = 2, ..., 4.239

They do not suffer any amplification due to the Kreiss-Lopatinskii condition, but when one study the rebound240

of ũ−1,4. The phase ϕ1 is generated again, this induce a new amplification and one has to add in the ansatz241

a term of order O(ε−2) and so on. This process can be repeating an arbitratily number of times to obtain a242

WKB expansion with M amplifications where M is arbitrarily large.243

244

Of course the previous discussion is totally formal. Indeed, at each step of the computations we restrict245

ourselves to boundary value problems in the half space and we are not considering boundary value problems246

in the quarter space as we should. However this discussion has the advantage of simplicity and illustrates the247

expected phenomenons. The aim of what follows is to give a rigorous justification of this formal analysis.

Fig. 1. The characteristic variety for the corner problem (2).

248

3. Notations and assumptions.249
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10 A. BENOIT,

3.1. About the operator L(∂). Let250

Ω :=
{

(x1, x2) ∈ R2 \ x1 ≥ 0, x2 ≥ 0
}
, ∂Ω1 := Ω ∩ {x1 = 0} , and ∂Ω2 := Ω ∩ {x2 = 0} ,251

be the quarter space and both of its edges. For T > 0, we will denote:252

ΩT := ]−∞, T ]× Ω, ∂Ω1,T := ]−∞, T ]× ∂Ω1, and ∂Ω2,T := ]−∞, T ]× ∂Ω2.253

Hereof L will be the symbol of the differential operator L(∂). It is defined for τ ∈ R and ξ ∈ R2 by:254

L (τ, ξ) := τI +

2∑
j=1

ξjAj .255

The characteristic variety V of L(∂) is thus given by:256

V :=
{

(τ, ξ) ∈ R× R2 \ det L (τ, ξ) = 0
}
.257

In this article we choose to restrict our subject, in view to save some notations, to strictly hyperbolic op-258

erators. The following constructions of the geometric optics expansions should also operate in the framework259

of constantly hyperbolic operators. However this simplifying assumption will make the analysis of Section 5260

slightly easier. We will give in the core of the proof some comments about the expected modifications about261

the proof for constantly hyperbolic operators. We thus assume the following property on L(∂):262

Hypothesis 1. There exist N real valued functions, denoted by λj , analytic on R2 \ {0} such that:263

∀ξ ∈ S1, det L (τ, ξ) =

N∏
j=1

(τ + λj(ξ)),264

where the eigenvalues λj(ξ) satisfy λ1(ξ) < ... < λN (ξ).265

We also assume that the boundary of Ω is non-characteristic, and that the matrices B1 and B2 induce the266

good number of boundary conditions, that is to say :267

Hypothesis 2. The matrices A1, A2 are invertible. Moreover p1 (resp. p2), the number of lines of B1268

(resp. B2), equals the number of strictly positive eigenvalues of A1 (resp. A2). At last B1 and B2 are269

assumed to be of maximal rank.270

One can easily convince himself that they are effectively the good number of conditions by considering the271

case d = 1 in which (1) is equivalent to solve N scalar transport equations.272

Under Hypothesis 2, we can define the resolvent matrices with are obtained by taking the Laplace273

transform of the evolution equation of (1) and Fourier transform in one of the space variable:274

A1(ζ) := −A−1
1 (σI + iηA2) and A2(ζ) := −A−1

2 (σI + iηA1) ,275

where ζ denotes an element of the frequency space :276

Ξ := {ζ := (σ = γ + iτ, η) ∈ C× R, γ ≥ 0} \ {(0, 0)} .277

For convenience, we also introduce Ξ0 the boundary of Ξ :

Ξ0 := Ξ ∩ {γ = 0} .

and the notation :

for j = 1, 2, ζj := (σ, ξ3−j),

For j = 1, 2, ζj ∈ (Ξ \ Ξ0), we denote by Esj (ζj) the stable subspace of Aj(ζj) and Euj (ζj) its unstable278

subspace. These spaces are well-defined according to [9]. For all ζj ∈ (Ξ \ Ξ0), the stable subspace Esj (ζj)279

has dimension pj , while the space Euj (ζ) has dimension N − pj . Let us recall the following theorem due to280

Kreiss [10]2 :281

2For constantly (resp. geometrically regular) hyperbolic operators, this Theorem still holds, see [15] (resp. [16]).
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Theorem 3. Under Hypothesis 1 and 2, for all ζ ∈ Ξ, there exist a neighborhood V of ζ in Ξ, integers282

L1, L2 ≥ 1, two partitions N = ν1,1 + ... + ν1,L1
= ν2,1 + ... + ν2,L2

with ν1,l, ν2,l ≥ 1, and two invertible283

matrices T1, T2, regular on V such that:284

∀ζ ∈ V , T1(ζ)−1A1(ζ)T1(ζ) = diag (A1,1(ζ), ...,A1,L1(ζ)) ,285

T2(ζ)−1A2(ζ)T2(ζ) = diag (A2,1(ζ), ...,A2,L2(ζ)) ,286

where the blocks Aj,l(ζ) have size νj,l and satisfy one of the following alternatives:287

i) All the elements in the spectrum of Aj,l(ζ) have positive real part.288

ii) All the elements in the spectrum of Aj,l(ζ) have negative real part.289

iii) νj,l = 1, Aj,l(ζ) ∈ iR, ∂γAj,l(ζ) ∈ R \ {0}, and Aj,l(ζ) ∈ iR for all ζ ∈ V ∩ Ξ0.290

iv) νj,l > 1, ∃kj,l ∈ iR such that291

Aj,l(ζ) =

kj,l i 0
. . . i

0 kj,l

 ,292

the coefficient in the lower left corner of ∂γAj,l(ζ) is real and non-zero, and moreover Aj,l(ζ) ∈ iMνj,l(R)293

for all ζ ∈ V ∩ Ξ0.294

Thanks to Theorem 3 it is possible to describe the four kinds of frequencies, for each part of the boundary295

∂Ω :296

Definition 4. For j = 1, 2, we denote by:297

1) Ej the set of elliptic frequencies, that is to say the set of ζ ∈ Ξ0 such that Theorem 3 for the matrix298

Aj(ζ) is satisfied with one block of type i) and one block of type ii) only.299

2) Hj the set of hyperbolic frequencies, that is to say the set of ζ ∈ Ξ0 such that Theorem 3 for the300

matrix Aj(ζ) is satisfied with blocks of type iii) only.301

3) E H j the set of mixed frequencies, that is to say the set of ζ ∈ Ξ0 such that Theorem 3 for the matrix302

Aj(ζ) is satisfied with one block of type i), one of type ii) and at least one of type iii), but without block of303

type iv).304

4) Gj the set of glancing frequencies, that is to say the set of ζ ∈ Ξ0 such that Theorem 3 for the matrix305

Aj(ζ) is satisfied with at least one block of type iv).306

Thus, by definition, Ξ0 admits the following decomposition:307

Ξ0 = Ej ∪ E H j ∪Hj ∪ Gj .308

The study made in [10] shows that the subspaces Es1(ζj) and Es2(ζj) admit a continuous extension up to the309

boundary of the frequency set Ξ0. Moreover, for j = 1, 2, for ζ
j
∈ Ξ0 \ (G1 ∪ G2) one can decompose:310

CN = Esj (iτ , ξ
3−j)⊕ E

u
j (iτ , ξ

3−j),(27)311

where the spaces Esj and Euj can also be decomposed in the following way:312

Esj (iτ , ξ
3−j) = Es,ej (iτ , ξ

3−j)⊕ E
s,h
j (iτ , ξ

3−j), and Euj (iτ , ξ
3−j) = Eu,ej (iτ , ξ

3−j)⊕ E
u,h
j (iτ , ξ

3−j).313

Here Es,ej (iτ , ξ
3−j) (resp. Eu,ej (iτ , ξ

3−j)) is the generalized eigenspace associated with eigenvalues of the ma-314

trix Aj(iτ , ξ3−j) with negative (resp. positive) real part, and where spaces Es,hj (iτ , ξ
3−j) and Eu,hj (iτ , ξ

3−j)315

are sums of eigenspaces of Aj(iτ , ξ3−j) associated with some purely imaginary eigenvalues of Aj(iτ , ξ3−j).316

317

Moreover since the matrices A1 and A2 are invertible we can also write (27) in the following way :for318

j = 1, 2319

(28) CN = AjE
s
j (iτ , ξ

3−j)⊕AjE
u
j (iτ , ξ

3−j),320

In fact, it is possible to give a more precise decomposition of the spaces Es,hj (ζ
j
) and Eu,hj (ζ

j
). Indeed,

let ωm,j be a purely imaginary eigenvalue of Aj(ζj), that is satisfying:

det(τ + ηA1 + ωm,2A2) = det(τ + ωm,1A1 + ηA2) = 0.
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12 A. BENOIT,

Then, using Hypothesis 1, we deduce that there exists an index km,j satisfying:321

τ + λkm,2(η, ωm,2) = τ + λkm,1(ωm,1, η) = 0,322

where λkm,j is smooth in both variables. Let us then introduce the following classification :323

Definition 5. • The set of incoming (resp. outgoing) phases for the side ∂Ω1, denoted by I1 (resp.324

O1), is the set of indices m such that the group velocity vm := ∇λkm,1(ωm,1, η) satisfies ∂1λkm,1(ωm,1, η) > 0325

(resp. ∂1λkm,1(ωm,1, η) < 0).326

• The set of incoming (resp. outgoing) phases for the side ∂Ω2, denoted by I2 (resp. O2, is the327

set of indices m such that the group velocity vm := ∇λkm,2(η, ωm,2) satisfies ∂2λkm,2(η, ωm,2) > 0 (resp.328

∂2λkm,2(η, ωm,2) < 0).329

• The set of incoming-incoming (resp. outgoing-outgoing) phases Iii (resp. Ioo) is defined by Iii :=330

I1 ∩ I2 (resp. Ioo := O1 ∩O2).331

• The set of incoming-outgoing (resp. outgoing-incoming) phases Iio (resp. Ioi) is defined by Iio :=332

I1 ∩O2 (resp. Ioi := O1 ∩ I2).333

Note that we do not considered the phases whose one of the component of the group velocity vanishs. This334

phases correspond to glancing modes and the construction of the geometric optics expansions is much more335

technical when we consider these phases [20].336

337

Thanks to Definition 5, we can write the following decomposition of the stable and unstable components338

Es,hj (ζ) and Eu,hj (ζ):339

Lemma 6. For all ζ ∈Hj ∪ E H j, j = 1, 2 we have340

Es,h1 (ζ) = ⊕m∈I1 ker L (τ , ωm,1, η), Eu,h1 (ζ) = ⊕m∈O1 ker L (τ , ωm,1, η),(30)341

Es,h2 (ζ) = ⊕m∈I2 ker L (τ , η, ωm,2), Eu,h2 (ζ) = ⊕m∈O2 ker L (τ , η, ωm,2).(31)342

We refer, for example, to [8] or [20] for a proof of this lemma.343

344

3.2. About the boundary conditions. Let us introduce the initial boundary value problem in the345

half space {x1 ≥ 0, x2 ∈ R} :346

(32)

 L(∂)u = f, on {x1 ≥ 0, x2 ∈ R}
B1u|x1=0 = g1,
u|t≤0 = 0.

347

We recall the following result due to Kreiss [10] which establishs that the boundary value problem (32) is348

strongly well-posed if and only if it satisfies the following condition:349

Definition 7 (Uniform Kreiss-Lopatinskii condition). We say that the system (32) satisfies the uniform
Kreiss-Lopatinskii condition if we have:

∀ζ ∈ Ξ, kerB1 ∩ Es1(ζ) = {0} ,

where Es1(ζ) still denotes the continuation of the stable subspace of the resolvent matrix A1(ζ) up to Ξ0.350

Definition 8. We denote by Υ the set of frequencies for which the ibvp (32) does not satisfy the uniform351

Kreiss-Lopatinskii condition i.e.352

Υ := {ζ1 ∈ Ξ : kerB1 ∩ Es1(ζ1) 6= {0}} .353

If Υ ∩ (Ξ \ Ξ0) 6= ∅ then we say that this problem does not satisfy the Kreiss-Lopatinskii condition and it354

is a well-known fact, we refer for example to [10] or [6], that such problem can not be strongly or weakly355

well-posed. As a consequence, the only possible frequencies where the uniform Kreiss-Lopatinskii can fail356

without causing ill-posedness of the problem are located on Ξ0.357

The kind of degeneracy that we will consider in this article are thus on Ξ0 and correspond to hyperbolic358

frequencies that is that A1(ζ) is diagonalizable with only imaginary eigenvalues. We recall that these fre-359

quencies induce a transport of the information. More precisely we will use the following definition due to [5]:360

361
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Definition 9. The ibvp (32) is in the WR class if it satisfies the following conditions:362

i)The ibvp (32) satisfies the weak Kreiss-Lopatinskii condition i.e. Υ ∩ (Ξ \ Ξ0) = ∅.363

ii) Υ 6= ∅ and Υ ⊂ H̊1.364

iii) For all ζ ∈ Υ, there is a neighborhood V of ζ in Ξ, a regular basis (Es1,1, ..., E
s
1,p1)(ζ) of Es1(ζ) on V ,365

an invertible p1 × p1 matrix P (ζ), regular on V and a smooth real valued function Θ such that366

∀ ζ ∈ V , B1

[
Es1,1, ..., E

s
1,p1

]
(ζ) = P (ζ)diag(γ + iΘ(ζ), 1, ..., 1).367

In particular, one can find a Lopatinskii’s determinant under the form:368

∀ ζ ∈ V , ∆(ζ) = (γ + iΘ(ζ)) detP (ζ).369

These definitions about hyperbolic boundary value problems in the half space motivate the following370

definition for the corner problem:371

Definition 10. We say that the corner problem (1) is in the WR class for the side ∂Ω1 if the boundary372

value problem (32) is in the WR class.373

In all this paper, the boundary condition for the side ∂Ω1 will not satisfy the uniform Kreiss-Lopatinskii374

condition (precisely we will then work with corner problem in the WR class for the side ∂Ω1) and so weak375

well-posedness is expected. While, as mentioned in the introduction, the boundary condition for the side376

∂Ω2 will be chosen as convenient as possible in terms of well-posedness. However, we will see in Theorem377

14 that even if the boundary condition on ∂Ω2 is in the most favorable class of strictly dissipative boundary378

conditions (see [6]), it can not compensate the ”bad” boundary condition on ∂Ω1.379

380

To make things more precise, let us thus assume the following :381

Hypothesis 11. The corner problem (1) is in the WR class for the side ∂Ω1 and the boundary condition
on the side ∂Ω2 is strictly dissipative or satisfies (at least) the uniform Kreiss-Lopatinskii condition. In the
first case, that is to say that the following inequality holds:

∀v ∈ kerB2, 〈A2v, v〉 < 0.

While in the second case, it means that ∀ ζ ∈ Ξ, we have:

kerB2 ∩ Es2(ζ) = {0} .

In both cases (we refer to [6] for a proof that strict dissipativity implies the uniform Kreiss-Lopatinskii382

condition) the restriction of B2 to Es2(ζ) is invertible. We denote this inverse by φ2(ζ).383

When one studies geometric optics expansion for weakly well-posed boundary value problems, it is useful384

to define the following vectors (this definition comes from [8] and was also used later in [2]) :385

Definition 12. Let (1) be in the WR class for the side ∂Ω1, then there exist:386

� a vector e ∈ CN \ {0} such that kerB1 ∩ Es1(ζ) = vect(e).387

� A vector b ∈ Cp1 \ {0} such that b ·Bw = 0, for all w ∈ Es1(ζ).388

4. Formal phase generation process. In this paragraph we briefly discuss the expected phases in389

the WKB expansion and the associated amplitudes for corner problem in the WR class for the side ∂Ω1. We390

will not here give a precise description of the phase generation process in itself (we refer to [4] and [19] for a391

complete discussion) but we will focus on the expected sizes of the amplitudes according to the small param-392

eter ε. More especially we will also discuss after how many time of travel the amplifications are expected.393

394

Let us consider the hyperbolic corner problem:395

(35)


L(∂)uε = 0, on ΩT
B1u

ε
|x1=0 = gε, on ∂Ω1,T ,

B2u
ε
|x2=0 = 0, on ∂Ω2,T ,

uε|t≤0 = 0,

396

and we assume that (35) satisfies Assumptions 1-2 and 11. We also suppose that this corner problem admits
four selfinteracting planar phases (see Assumption 21 or [4] for more details) namely

ϕnj (t, x) := τt+ ξ
nj
1 x1 + ξ

nj
2 x2, j = 1, ...4.
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14 A. BENOIT,

To be considered as selfinteracting these phases have firstly to satisfy

ξn1
1 = ξn2

1 , ξn2
2 = ξn3

2 , ξn3
1 = ξn4

1 , and ξn4
2 = ξn1

2 ,

in other words it is possible to draw a rectangle whose vertices are on the characteristic variety. We will also397

impose that the phase ϕn1 and ϕn3 are incoming-outgoing whereas ϕn2 and ϕn4 are outgoing-incoming in398

view to have the good velocities for a selfinteraction.399

We also choose the source term gε in (35) in such a way that it ”turns on” the phase ϕn1
. Finally400

we assume that the phase ϕn1
is associated to the only frequency for which the uniform Kreiss-Lopatinskii401

condition is violated.402

403

Let us choose gε, zero for negative times, with compact support away from the corner for all positive
times (or at least a function which is zero on a neighborhood of the corner for all positive times). Then by
finite speed of propagation arguments, the information carried by gε can not hit the side ∂Ω2 immediately.
So, at least during a short time, we can forget the boundary condition on {x1 > 0, x2 = 0} and see the corner
problem (35) as a problem in the WR class for the half space {x1 > 0, x2 ∈ R}. It is thus natural to start by
taking the ansatz for this problem lying in the half space. This ansatz involves the phases ϕj defined by:

ϕj(t, x) := τt+ ξj1x1 + ξn1
2 x2, j = 1, ...N,

where the (ξj1) are the roots in the ξ1 variable of the dispersion relation:

det L (τ , ξ1, ξ
n1
2 ) = 0,

associated to incoming-outgoing or incoming-incoming group velocities (see [4] for more details). Let us stress404

that, by assumption, the phase ϕn1
is contained in the {ϕj}j and that since the corner problem (35) is in405

the WR class, in particular (iτ , ξn1
2 ) ∈H1, then there is exactly N roots in the ξ1 variable of the dispersion406

relation det L (τ , ξ1, ξ
n1
2 ) = 0.407

408

However the analysis of [8] tells us that when the uniform Kreiss-Lopatinskii condition breaks down,409

due to a transport phenomenon along the side ∂Ω1, the leading order is one order less than the order of the410

source term on the boundary {x1 = 0, x2 > 0}. More precisely, if the source term is of order one, then the411

leading order in the WKB expansion is of order zero. This transport phenomenon along the side ∂Ω1, in the412

presence of a source term on the boundary, is immediately turned on. We thus expect that this property413

which comes from the study of the problem in the half space remains true for the corner problem (35), at414

least during a short time.415

416

In all this paper, we will assume that the transport along the side ∂Ω1 spreads the information away417

from the corner. If it is not the case then the information will hit the corner in finite time. Until now, we418

are not able to construct geometric optics expansions if such a situation occurs and we thus have a maximal419

time of existence for the geometric optics expansions corresponding to the time of impact. However as first420

noticed in [8], in the particular framework d = 2, then the velocity of the transport along the side ∂Ω1 is421

explicitly computable. More precisely it is given by − τ

ξ
n1
2

(see [8]). So in this particular setting ask that the422

transport phenomenon along the side ∂Ω1 spreads the information away from the corner is equivalent to ask423

that τ and ξn1
2 have opposite signs, which is easily verifiable in practice.424

425

The rays associated to the phase ϕj are incoming-outgoing or incoming-incoming. As a consequence if426

the phase ϕj the information that it carried will hit the boundary ∂Ω2 after some time of travel and we will427

have to determine its reflections or if it is incoming-incoming then it escapes to infinity and it will never428

be reflected. Let us now study the reflections of the incoming-outgoing ones. More precisely we will only429

describe the reflections ϕn1
which are the capital ones for our current discussion. We refer to [4] for a precise430

description of the reflections for the other rays.431

432

The ray associated to the phase ϕn1
is incoming-outgoing so it hits the side ∂Ω2 after a finite time of

travel. However, when it happens, the striking ray still have its support away from the corner. Thus, once
again, by finite speed of propagation arguments, at least during a small time, we can see the corner problem
(35) as a problem in the half space {x1 ∈ R, x2 > 0} for which the information on the side ∂Ω2 has been
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”turned on” by the incoming-outgoing phase ϕn1 . We thus add in the ansatz the amplitudes associated with
the phases

ϕj(t, x) := τt+ ξn1
1 x1 + ξj2x2, j = 1, ...N2,

where the (ξj2) are the roots in the ξ2 variable of the dispersion relation :

det L (τ , ξn1
1 , ξ2) = 0.

Note that ϕn2
is included in this set.433

Let us here insist on the fact that there can be less than N roots for this dispersion relation and that434

these roots can be complex valued. Indeed, the boundary value problem in the half space {x1 ∈ R, x2 > 0}435

is not assumed to be in the WR class. According to [4] we only consider the real roots associated with436

outgoing-incoming or incoming-incoming group velocities and a class representative of the complex valued437

roots with positive imaginary part (see Section 6 or [4] for more details).438

439

As the boundary condition on the side ∂Ω2 is assumed to satisfy the uniform Kreiss-Lopatinskii condi-440

tion, this time there is no transport phenomenon along the boundary and the leading order of the WKB441

expansion remains of order zero (for a source term on the boundary ∂Ω1 of order one).442

443

We can then repeat exactly the same arguments to show that the phases ϕn3
and ϕn4

are generated444

when we consider the reflections of the ray associated to ϕn2
on ∂Ω1

3 and the reflection of the ray associated445

to ϕn3
on ∂Ω2.446

It is then interesting to study the reflection of the ray associated to ϕn4 against the side ∂Ω1. This447

reflection starts after a strictly positive time t0 at a strictly positive distance of the corner y0 (the precise448

values of this parameters are given in Section 7 and will be fundamental in our proof). By selfinteraction449

phenomenon, we know that during this reflection the phase ϕn1
is regenerated. However due to the degen-450

eracy of the uniform Kreiss-Lopatinskii condition for the phase ϕn1
, a new transport along the boundary is451

expected and shall induce a new amplification phenomenon. All the amplitudes in the ansatz then should452

lose one power of ε, that is to say that the amplitude of order zero becomes of order −1, the amplitude of453

order one becomes of order zero and so on.454

455

As a consequence, if one starts with a source term of order two in ε then before the time t0, the leading456

order of the geometric optics expansion is expected to be of order one, but after the time t0, the leading order457

in this expansion is expected to be of order zero. Moreover the traces of the amplitudes associated to the458

phase ϕn1 are now expected to be zero for x2 less than y0. We can then repeat exactly the same arguments.459

That is to say that after another complete circuit around the loop, the amplitude associated to ϕn4 hits again460

the side ∂Ω1 and regenerates the phase ϕn1
. A new amplification thus happens and all the amplitudes lose461

one order in terms of ε. The leading order in the geometric optics expansion is now expected to be of order462

zero for a source term on the boundary of order three.463

464

So if one wants to construct a geometric optics expansion with M + 1 amplifications before a fixed time465

T , it will be sufficient to choose the support of the source term g close enough of the corner to ensure that466

the rays have made M complete circuits around the loop before the time T .467

Moreover, the fact that we choose to work with a fixed maximal time of resolution T and with a source468

term g having its support away from the corner permits us to assume that the number of generated phases in469

the phase generation process is finite and avoid the technical difficulties pointed in [4]. Indeed, in [4] it was470

shown that the phase generation process consists of considering sequences of phases with incoming-outgoing471

and then outgoing-incoming group velocities and to stop the sequence when we meet a phase with incoming-472

incoming group velocity. However, here each transport phenomenon from one side to the other takes some473

(explicitly computable) time) because the transported information has its support away from the corner. So474

when we apply the phase generation process we can stop the sequence as soon as the sum of the time needed475

to generate the considered phase exceeds the fixed maximal time T .476

5. Main result. In this paragraph we describe the main result of this paper. Roughly speaking, this477

result states that when one deals with a corner problem that does not satisfy the uniform Kreiss-Lopatinskii478

3Let us stress that during this reflection on the side ∂Ω1 there is no amplification because the considered phases are ϕn2

and ϕn3 but not ϕn1 .
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condition on each boundary then he should be careful. Indeed, Theorem 14 demonstrates that such a problem479

can, in some situations depending on the geometry of the characteristic variety, be ill-posed. The violent480

instability is, in this framework, caused by an accumulation of weak instabilities and differs from the failure481

of the weak Kreiss-Lopatinskii condition which is, to our knowledge, the only known example of violent482

instability for hyperbolic boundary value problem. Before to state the main theorem, let us define more483

precisely the terms of the previous discussion:484

Definition 13. The corner problem (1) is said to be weakly well-posed (or to generate a weak instability)485

if there exists (K,K1,K2) ∈ R3
+ \ {0} such that for all source terms f ∈ HK(ΩT ), g1 ∈ HK1(∂Ω1,T ), g2 ∈486

HK2(∂Ω2,T ), the corner problem (1) admits a unique solution u ∈ L2(ΩT ) with traces u|x1=0 ∈ L2(∂Ω1,T ),487

u|x2=0 ∈ L2(∂Ω2,T ) satisfying the energy estimate:488

‖u‖2L2(ΩT ) + ‖u|x1=0‖2L2(∂Ω1,T ) + ‖u|x2=0‖2L2(∂Ω2,T ) ≤489

CT

(
‖f‖2HK(ΩT ) + ‖g1‖2HK1 (∂Ω1,T ) + ‖g2‖2HK2 (∂Ω2,T )

)
,490

for some positive constant CT .491

492

The corner problem (1) is said to be ill-posed (or to generate a violent instability) if it is not strongly493

well-posed and if such integers do not exist.494

The main theorem of this paper is the following :495

Theorem 14. Let (1) be a corner problem satisfying Hypothesis 1-2-21 and 22 then (1) can not be weakly
well-posed. In other words, for all K,K2 ∈ N, f ∈ HK(ΩT ), g2 ∈ HK2(ΩT ) and for all K1 ∈ N∗ one can find
g1 ∈ HK1(∂Ω1,T ), such that the energy estimate

‖u‖2L2(ΩT ) + ‖u|x1=0‖2L2(∂Ω1,T ) + ‖u|x2=0‖2L2(∂Ω2,T ) ≤ CT
(
‖f‖2HK(ΩT ) + ‖g1‖2HK1 (∂Ω1,T ) + ‖g2‖2HK2 (∂Ω2,T )

)
,

is violated.496

The proof of Theorem 14 is given in Section 8. This proof is based on the rigorous construction of497

geometric optics expansions for the corner problem (1) with an arbitrary number of amplifications compared498

to the source term on the side ∂Ω1. This construction, which is the technical part of the proof, is made in499

Section 7.500

6. General framework. In this section we recall some notations and definitions used in [4] to describe501

rigorously the set of phases obtained by reflection against the side of the quarter space.502

6.1. Definition of the frequency set and first properties. Let us start with the definition of what503

we mean by a frequency set:504

Definition 15. Let I be a subset of N and τ ∈ R, τ 6= 0. A set indexed by I ,

F :=
{
f i := (τ , ξi1, ξ

i
2), i ∈ I

}
,

will be a frequency set for the corner problem (1) if for all i ∈ I , fi satisfies

det L (f i) = 0,

and one of the following alternatives:505

i) ξi1, ξ
i
2 ∈ R.506

ii) ξi1 ∈ (C \ R) , ξi2 ∈ R and Im ξi1 > 0.507

iii) ξi2 ∈ (C \ R) , ξi1 ∈ R and Im ξi2 > 0.508

In all what follows, if F is a frequency set for the corner problem (1), we will define:509

Fos :=
{
f i ∈ F satisfying i)

}
,510

Fev1 :=
{
f i ∈ F satisfying ii)

}
,511

Fev2 :=
{
f i ∈ F satisfying iii)

}
.512

It is clear that the sets Fos, Fev1 and Fev2 give a partition of F . Moreover to each f i ∈ Fos, we can513

associate a group velocity vi := (vi,1, vi,2). Let us recall that the group velocity vi has beeen introduced in514
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Definition 5. The set Fos can thus be decomposed as follows:515

Fii :=
{
f i ∈ Fos \ vi,1, vi,2 > 0

}
, Fio :=

{
f i ∈ Fos \ vi,1 > 0, vi,2 < 0

}
,516

Foi :=
{
f i ∈ Fos \ vi,1 < 0, vi,2 > 0

}
, Foo :=

{
f i ∈ Fos \ vi,1, 0, vi,2 < 0

}
.517

Fg :=
{
f i ∈ Fos \ vi,1 = 0 or vi,2 = 0

}
.518

The partition of F induces the following partition of I :519

I = Ig ∪Ioo ∪Iio ∪Ioi ∪Iii ∪Iev1 ∪Iev2,520

where we have denoted by Iio (resp. g, oo, oi, ii, ev1, ev2) the set of indices i ∈ I such that the corresponding521

frequency f i ∈ Fio (resp. g, oo, oi, ii, ev1, ev2).522

523

From now on, the source term gε1 on the ∂Ω1 boundary in (1) reads :524

(36) gε1(t, x2) := e
i
ε (τt+ξ

2
x2)εM+1g(t, x2),525

for some fixed integer M and where the amplitude g has its support in space away from the corner and is526

zero for negative times.527

The following definition gives a precise framework for the phase generation process described in paragraph528

4. More precisely, this definition qualifies the frequency set that contains all (and only) the frequencies linked529

with the expected non-zero amplitudes in the WKB expansion:530

Definition 16. The corner problem (1) is said to be complete for reflections if there exists a set of531

frequencies F satisfying the following properties:532

i) F contains the real roots (in the variable ξ1) associated with incoming-outgoing or incoming-incoming
group velocities and the complex roots with positive imaginary part, to the dispersion relation

det L (τ , ξ1, ξ2
) = 0.

ii) Fg = ∅.533

534

iii) If (τ , ξi1, ξ
i
2) ∈ Fio, then F contains all the roots (in the ξ2-variable), denoted by ξp2 , to the dispersion535

relation det L (τ , ξi1, ξ2) = 0, that satisfy one of the following two alternatives:536

iii′) ξp2 ∈ R and the frequency (τ , ξi1, ξ
p
2) is associated with an outgoing-incoming group velocity or an537

incoming-incoming group velocity.538

iii′′) Im ξp2 > 0.539

540

iv) If (τ , ξi1, ξ
i
2) ∈ Foi, then F contains all the roots (in the ξ1-variable), denoted by ξp1 , to the dispersion541

relation det L (τ , ξ1, ξ
i
2) = 0, that satisfy one of the following two alternatives:542

iv′) ξp1 ∈ R and the frequency (τ , ξp1 , ξ
i
2) is associated with an incoming-outgoing or an incoming-incoming543

group velocity.544

iv′′) Im ξp1 > 0.545

546

v) F is minimal (for the inclusion) for the four preceding properties.547

Point i) imposes that the frequency set F contains all (and only all) the incoming phases for ∂Ω1 that are548

induced by the source term gε1.549

Point iii) (resp. iv)) explains the generation by reflection on the side ∂Ω2 (resp. ∂Ω1) of a wave packet550

that emanates from the side ∂Ω1 (resp. ∂Ω2).551

An immediate consequence of the minimality of F is that Foo is empty. Moreover let us stress that552

according to the discussion made in paragraph 4, because we are dealing with finite time and a source term553

which has its support away from the corner, without loss of generality we can assume that #F < +∞.554

555

Let us recall that if the corner problem is complete for reflections, one can define two applications, defined556

on the index set I and which give, in the output, the indices ”in the direct vicinity” of the input index:557

Φ, Ψ : I −→PN (I ),558
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where PN (I ) denotes the power set of I with at most N elements. More precisely, the definitions of Φ559

and Ψ are: for i ∈ I , f i = (τ , ξi1, ξ
i
2),560

Φ(i) :=
{
j ∈ I \ ξj2 = ξi2

}
and Ψ(i) :=

{
j ∈ I \ ξj1 = ξi1

}
.561

For convenience let us introduce the short-hand notations:562

Φ∗(i) := Φ(i) \ {i} and Ψ∗(i) := Ψ(i) \ {i} .563

Thanks to these functions, the index set I can be seen as a graph. This graph structure will be more abstract564

than the desciption of I based on the wave packet reflections, but it will be easier to handle with when we565

will construct the WKB expansion. This graph structure is defined by the following relation : two points566

i, j ∈ I are linked by an edge if and only if i ∈ Φ(j) or i ∈ Ψ(j).567

In terms of wave packet reflection, the set Φ(i) (resp. Ψ(i)) is the set of all indices of the phases that are568

considered in the reflection of the wave packet with phase f i on ∂Ω2. Let us stress that the index i is not569

necessarily the index of an incident ray but can be the index of one of the reflected rays.570

Applications Φ and Ψ satisfy the following properties:571

Proposition 17. If the corner problem (1) is complete for reflections, then Φ and Ψ satisfy:572

573

i) ∀i ∈ I , i ∈ Ψ(i), i ∈ Φ(i).574

575

ii) ∀i ∈ I , ∀j ∈ Ψ(i), ∀k ∈ Φ(i) we have Ψ(i) = Ψ(j) and Φ(i) = Φ(k).576

577

iii) ∀i ∈ I , Φ(i) ∩ Iev2 = ∅ and Ψ(i) ∩ Iev1 = ∅. And, ∀i ∈ Iev1,∀j ∈ Iev2, we have Ψ(i) ⊂ Iev1,578

Φ(i) ⊂ Iev2.579

580

iv) ∀i ∈ Ios, #(Φ(i) ∩Iev1 ∩Iio ∩Iii) ≤ p1 , and #(Ψ(i) ∩Iev2 ∩Ioi ∩Iii) ≤ p2.581

582

v) ∀i ∈ I , we have on the one hand ∀i1, i2 ∈ Φ(i), i1 6= i2:583

Φ(i) ∩Ψ(i1) = {i1} and Ψ(i1) ∩Ψ(i2) = ∅,584

and on the other hand, ∀j1, j2 ∈ Ψ(i), j1 6= j2 :585

Ψ(i) ∩ Φ(j1) = {j1} and Φ(j1) ∩ Φ(j2) = ∅.586

We refer to [4] for a proof of this proposition.587

Thanks to applications Φ and Ψ it is easy to define the notion of two linked indices in the graph structure588

of I :589

Definition 18. If i ∈ Iio, we say that the index j ∈ Iio∪Iev1 (resp. j ∈ Ioi∪Iev2) is linked with the590

index i, if there exist p ∈ 2N + 1 (resp. p ∈ 2N) and a sequence of indices ` = (`1, `2, ..., `p) ∈ I p such that:591

α′) `1 ∈ Ψ(i) ∩Ioi, `2 ∈ Φ(`1) ∈ Iio, ... , j ∈ Φ(`p) (resp. j ∈ Ψ(`p)).592

593

We say that the index j ∈ Iii is linked with the index i, if there is a sequence of indices ` = (`1, `2, ..., `p) ∈594

I p such that:595

β′) `1 ∈ Ψ(i) ∩Ioi, `2 ∈ Φ(`1) ∩Iio, ...,

{
j ∈ Φ(`p), p is odd,
j ∈ Ψ(`p), p is even.

596

597

If i ∈ Ioi, we say that the index j ∈ Iio ∪Iev1 (resp. j ∈ Ioi ∪Iev2) is linked with the index i, if there598

exist p ∈ 2N (resp. p ∈ 2N + 1) and a sequence of indices ` = (`1, `2, ..., `p) ∈ I p such that:599

α′′) `1 ∈ Φ(i) ∩Iio, `2 ∈ Ψ(`1) ∈ Ioi, ... , j ∈ Φ(`p) (resp. j ∈ Ψ(`p)).600

601

We say that the index j ∈ Iii is linked with the index i, if there exists a sequence of indices ` =602

(`1, `2, ..., `p) ∈ I p such that:603

β′′) `1 ∈ Φ(i) ∩Iio, `2 ∈ Ψ(`1) ∩Ioi, ...,

{
j ∈ Ψ(`p), p is odd,
j ∈ Φ(`p), p is even.

604

605
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Finally, if i ∈ Iii ∪Iev1 ∪Iev2, we say that there is no element of I linked with i.606

607

Moreover, we will say that an index j ∈ I is linked with the index i by a sequence of type H (for608

”horizontal”) (resp. V (for ”vertical”)) and we will note i�
H
j (resp. i�

V
j) if the sequence (i, `1, `2, ..., `p, j)609

satisfies α′′) or β′′) (resp. α′) or β′)).610

Applications Φ and Ψ also enable us to define a set of class of representative for the complex valued611

frequencies (or evanescent frequencies) in view to treat these frequencies in a ”monoblock” way as it is done612

in [12]. That is to say that for an index i ∈ Iev1 (resp. i ∈ Iev2), all the elements j ∈ Iev1 ∩ Φ(i) (resp.613

j ∈ Iev2 ∩Ψ(i)) will contribute to a single vector valued amplitude. To write off the ansatz and to describe614

with enough precision the boundary conditions, it is useful to introduce the two equivalence relations ∼
Φ

and615

∼
Ψ

defined by:616

i ∼
Φ
j ⇐⇒ j ∈ Φ(i), and i ∼

Ψ
j ⇐⇒ j ∈ Ψ(i).617

Let C1 (resp. C2) be the set of equivalence classes for the relation ∼
Φ

(resp. ∼
Ψ

), and R1 (resp. R2), be618

a set of class representative for C1 (resp. C2). So R1 (resp. R2) is a set of indices which includes all the619

possible values for ξ2 (resp. ξ1) of the different frequencies. We also define R1 and R2 by:620

R1 := {i ∈ R1 \ Φ(i) ∩Iev1 6= ∅} ,(41)621

R2 := {i ∈ R2 \Ψ(i) ∩Iev2 6= ∅} .(42)622

R1 (resp. R2) is a set of class representative of the values in ξ2 (resp. ξ1) for which there is an evanescent623

mode for the side ∂Ω1 (resp. ∂Ω2). At last, without loss of generality, we can always assume that n1 ∈ R2,624

in other words, we choose n1 as a class representative of its own equivalence class.625

626

To conclude, let us recall the following proposition which is an immediate consequence of Definitions 4.2627

and 4.3.628

Proposition 19. Let F be a complete for reflections frequency set indexed by I . Let I0 be the set of
indices in I generated by the source term gε1, that is to say:

I0 :=
{
i ∈ Iio ∪Iii ∪Iev1 \ det L (τ , ξi1, ξ2) = 0

}
.

Let IR be the set of indices in I linked with one of the elements of I0. Then

IR = I .

6.2. Frequency sets with loop. As in [4] we will assume that the considered corner problem admits a629

unique selfinteraction loop4. Let us now give the definition of the loop that has been mentionned in Section630

4:631

Definition 20. Let i ∈ I , p ∈ 2N + 1 and ` = (`1, ..., `p) ∈ I p.632

• We say that the index i ∈ I admits a loop if there exists a sequence ` satisfying :633

`1 ∈ Φ(i), `2 ∈ Ψ(`1), ..., i ∈ Ψ(`p).634

• A loop for an index i is said to be simple if the sequence ` does not contain a periodically repeated subse-635

quence.636

• An index i ∈ Iio (resp. i ∈ Ioi) admits a selfinteraction loop if i admits a simple loop and if the sequence637

(i, `, i) is of type V (resp. H) according to Definition 18.638

Let us assume that :639

Hypothesis 21. Let (1) be complete for reflections, we assume that the frequency set F contains a unique
loop, of size 3 and that this loop is a selfinteraction loop. More precisely, we ask that the following properties
are satisfied:
vi) ∃(n1, n3) ∈ I 2

io, (n2, n4) ∈ I 2
oi such that

n2 ∈ Ψ(n1), n3 ∈ Φ(n2), n4 ∈ Ψ(n3), n1 ∈ Φ(n4).

vii) Let i ∈ I an index with a loop ` = (`1, ..., `p). Then p = 3 and {i, `1, `2, `3} = {n1, n2, n3, n4}.640

4Compared to [4], for convenience, we have exchanged the indices n2 and n4. It is due to the fact that here we are more
interested in a precise description in terms of wave packets reflection than in [4].

This manuscript is for review purposes only.



20 A. BENOIT,

(ξ
1
, ξ2)

n1
(ξ1, ξ2)

n4

(ξ1, ξ2
)

n3
(ξ

1
, ξ

2
)
n2

Fig. 2. The coefficients of the loop’s elements.

We now fix the notations for the fnj , the frequencies associated to the loop’s elements. For j = 1, ..., 4 we641

write :642

(44) fn1 := (τ , ξ
1
, ξ2), fn2 := (τ , ξ

1
, ξ

2
), fn3 := (τ , ξ1, ξ2

) and, fn4 := (τ , ξ1, ξ2).643

We also assume that the only index of I for which uniform Kreiss-Lopatinskii condition is violated is n1. We644

summarize the previous requests on the set of indices for the corner problem (1) in the following Hypothesis645

(which specifies Hypothesis 2.3):646

Hypothesis 22. The corner problem (1) is in the class WR for the side ∂Ω1 and satisfies the uniform647

Kreiss-Lopatinskii condition on the side ∂Ω2. The set where the uniform Kreiss-Lopatinskii condition for the648

side ∂Ω1 breaks down Υ (see Definition 8) is given by Υ =
{
f̃n1 := (iτ , ξ

1
, ξ2)

}
.649

Moreover to make sure that the transport along the boundary spreads the information away from the650

corner we will ask that τ and ξ2 have opposite signs.651

To conclude let us remark that when the frequency set F , indexed by I , is complete for the reflections652

and that when it admits a unique loop, then it follows from the definition of linked indices 18 that we have653

the following propositions: Firstly654

Proposition 23. Let i ∈ I then there exists a unique type V sequence linking n1 to i.655

656

Moreover, one can write I \ {n1, n2, n3, n4} as a partition:657

(45) (I \ {n1, n2, n3, n4}) =
(
∪l≤{1

Aal
)⋃(

∪m≤{2
Bbm

)⋃(
∪q≤{3

Ccq
)⋃(

∪r≤{4
Ddr

)
,658

where Aal denotes the set of indices i ∈ I from which the type V sequence linking n1 to i starts by al, Bbm659

denotes the set of indices i ∈ I from which the type V sequence linking n1 to i starts by (n2, bl), Ccq denotes660

the set of indices i ∈ I from which the type V sequence linking n1 to i starts by (n2, n3, cq) and Ddr is the661

set of indices i ∈ I such that the type V sequence linking n1 to i starts by (n2, n3, n4, dr).662

Secondly663

Proposition 24. Let F be complete for the reflections, under Assumption 21. Let I be the index set ;664

then Φ and Ψ satisfy, in addition to the properties of Proposition 17, the four extra properties:665

viii)666

Φ(n1) \ {n2} ⊂ Iio ∪Iii ∪Iev1, Ψ(n1) \ {n1} ⊂ Ioi ∪Iii ∪Iev2,667

Φ(n4) \ {n4} ⊂ Iio ∪Iii ∪Iev1, Ψ(n3) \ {n3} ⊂ Ioi ∪Iii ∪Iev2.668

ix) Let i ∈ Iii ∪Iev1 and j ∈ Iii ∪Iev2 then669

i ∈ Φ(n1) =⇒ Ψ(i) = {i}, j ∈ Ψ(n1) =⇒ Φ(j) = {j} ,670

i ∈ Φ(n4) =⇒ Ψ(i) = {i}, j ∈ Ψ(n3) =⇒ Φ(j) = {j} .671

Let j ∈ Aa \ {a}, we denote by ` = (`1, ...`p) the sequence of type H linking j to a. Then, according to672

the parity of p, we have:673

x′) If p ∈ 2N, then j /∈ Ioi. Moreover, if j ∈ Iev1 ∪Iii then Ψ(j) =
{
j
}

.674

x′′) If p ∈ 2N + 1, then j /∈ Iio. Moreover, if j ∈ Iev2 ∪Iii then Φ(j) =
{
j
}

.675
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Fig. 3. ”Tree structure” of the frequency set F .

Propositions 23 and 24 then permit to show that the set of indices I has the ”tree” structure depicted676

in the figure 2.677

678

To conclude this section we define the following matrices which will be useful during the construction of679

the geometric optics expansions.680

Definition 25. For j = 1, 2 and k ∈ Rj. Let fk = (τ , ξk1 , ξ
k
2 ) be the associated frequency with the index681

k. We define P kev,j (resp. Qkev,j) the projector on Es,ej (iτ , ξk3−j) (resp. AjE
s,e
j (iτ , ξk3−j)) with respect to the682

decomposition (27) (resp. (28)).683

For j = 1, 2 and k ∈ Ios. Let fk = (τ , ξk1 , ξ
k
2 ) be the associated frequency with the index k. We define684

P kj (resp. Qkj ) the projector on ker L (fk) (resp. Aj ker L (fk)) with respect to the decomposition (27) (resp.685

(28)). We also define Rkj the partial-inverse of L (fk) uniquely determined by:686

(46) RkjL (fk) = I − P kj , P kj Rkj = RkjQ
k
j = 0.687

7. Geometric optics expansions for selfinteracting problems in the WR class. The corner688

problem that we are now interested in reads:689

(47)


L(∂)uε = 0, on ΩT ,

B1u
ε
|x1=0 = gεM , on ∂Ω1,T ,

B2u
ε
|x2=0 = 0, on ∂Ω2,T ,

uε|t≤0 = 0, on Ω,

690

where the source term gεM is given by:691

(48) gεM (t, x2) := εM+1e
i
ε (τt+ξ2x2)g(t, x2),692

with τ > 0 fixed, ξ2 < 0 defined in (44) and where M ∈ N \ {0} is fixed5. The function g is zero for negative
times and has its support in space away from the corner for all positive times. More precisely, there exists
y

0
> 0 such that:

∀t ∈ R+, ∀x2 < y
0
, g(t, x2) = 0.

5The case M = 0 corresponds to the boundary value problem in the half space and will not be discussed here. We refer to
[8] for a study in such a configuration.
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The aim of this section is to construct the geometric optics expansion associated to the corner problem693

(47) up to a fixed time T > 0. More precisely, we want to show that, up to choose the support of the function694

g close enough to the corner, the geometric optics expansion suffers a number of amplifications that can be ar-695

bitrarily large. Indeed, due to the presence of the loop, the amplification arising for the amplitude associated696

to n1 will be repeated at each cycle around the loop. More precisely, if one sets M in (48) and wants to show697

that the leading order in the WKB expansion is of order zero then it will be sufficient to choose g such that698

its support is close enough to the corner to ensure that M complete circuits has been made before the time T .699

700

Let us give more details about these times of travel. We fix a point (0, y0) ∈ ∂Ω1 such that g(0, y0) 6= 0

and we draw the characteristic with group velocity vn1 passing through (0, y0). This characteristic intersects

∂Ω2 in a point (x0, 0) after a certain time of travel t1(y0). In a second time we draw the characteristic

with group velocity vn2 passing through (x0, 0). It intersects ∂Ω1 in a point (0, y1) after a time t2(y0). We

repeat the same process for the characteristics with group velocities vn3
and vn4

. Let (x1, 0), (0, y2) be

the corresponding points of intersection and t3(y0), t4(y0) be the corresponding times of travel. An easy
computation shows that:

y2 := βy0, and, T1(y0) :=

4∑
j=1

tj(y
0) = αy0,

where the scalars α and β are given by:701

(49) α := − 1

vn1,2

(
1− vn1,1

vn2,1
+
vn1,1vn2,2

vn2,1vn3,2
− vn1,1vn2,2vn3,1

vn2,1vn3,2vn4,1

)
,702

703

(50) β :=

4∏
j=1

βj , with, βj :=


vnj,1

vnj,2
, if j is odd,

vnj,2

vnj,1
, if j is even,

704

and where the vnj :=
[
vnj ,1 vnj ,2

]
are the group velocities for the indices of the loop.705

After m ∈ N∗ circuits around the loop the initial point (0, y0) comes back on ∂Ω1 in (0, y2m) after a total
time of travel Tm. It is easy to show that :

y2m := βmy0, and, Tm = Tm(y0) := αy0
m−1∑
k=0

βk.

We point the fact that if β < 1, that is to say when the rays get closer and closer to the corner, the limit706

of the sum defining Tm when m goes to infinity is finite. In other words, the rays reach the corner in a finite707

time Tmax := αy0
∑∞
k=0 β

k. In this particular situation we will thus assume that T < Tmax.708

It is clear that one can always choose y0 in such a way that:

TM ≤ T < TM+1.

As already mentioned, if t ∈
[
T k,min(T k+1, T )

[
one expects all the amplitudes of order less than M−k+1709

to be zero. Moreover it is also expected that the traces on ∂Ω1 of the amplitudes associated to the index n1710

vanish for x2 < y2k. Indeed, for t ∈
[
T k,min(T k+1, T )

[
, the information has only make k complete circuits711

around the loop, so it can not have been amplified more than k times and can not have been transported712

under the threshold y2k. This observation motivates the following definition:713

Definition 26. Let us write, for n ∈ N,

un,n1(t, x) := νn,n1(t, x)e+ v̌n(t, x),

where the vector e has been introduced in Definition 12 (this decomposition will be explained in paragraph714

7.1) and where v̌n ∈ ⊕j∈Φ∗(n1) ker L (f j). For M ∈ N we distinguish the two following subcases:715

� if β ≤ 1, we say that the sequence of amplitudes (un,n1
)n∈N is in P≤ if for all n ∈ N, νn,n1|x1=0

is in716

PM−n
b,≤ . Where the space PM−n

b,≤ is the set of functions µ ∈ C∞(]−∞, T [ ,D(R+)) satisfying:717

i) If M−n > 0, then for −∞ < t < TM−n, µ(t, x2) = 0 ∀x2 ∈ R+, and for all k such that M−n ≤ k ≤M ,718

if T k ≤ t < min(T, T k+1), µ(t, x2) = 0 ∀x2 < y2k.719
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ii) If M − n ≤ 0, then µ is zero for negative times, and for all k such that 0 ≤ k ≤ M , if T k ≤ t <720

min(T, T k+1), µ(t, x) = 0 ∀x2 < y2k.721

iii) If n ≤ −1 then PM−n
b = {0}.722

723

� If β > 1, we say that the sequence of amplitudes (un,n1
)n∈N is in P> if for all n ∈ N, νn,n1|x1=0

is in724

PM−n
b,> . Where the space PM−n

b,> is the set of functions µ ∈ C∞(]−∞, T [ ,D(R+)) satisfying:725

i) If M−n > 0, then for −∞ < t < TM−n, µ(t, x2) = 0 ∀x ∈ R+, and for all k such that M−n ≤ k ≤M ,726

if T k ≤ t < min(T, T k+1), µ(t, x2) = 0 ∀x < y
0
.727

ii) If n ≤ −1 then PM−n
b = {0}.728

The fact that we distinguish the profile space for β ≤ 1 and for β > 1 is due to technical reasons which will729

be explained in paragraph 7.1.4. Notice that by definition we have PM−n
b,≤ = P0

b,≤ for all n > M .730

731

We are now able to describe the expected space of profiles:732

Definition 27. When β ≤ 1, a sequence (un,k)n∈N,k∈Ios is said to be in the space of profiles Pos,≤ if733

(un,n1
) ∈P≤ and if for all k ∈ Ios \ {n1}, for all n ∈ N, un,k lies in H∞(ΩT ).734

When β > 1, a sequence (un,k)n∈N,k∈Ios is said to be in the space of profiles Pos,< if (un,n1) ∈P< and735

if for all k ∈ Ios \ {n1}, for all n ∈ N, un,k lies in H∞(ΩT ).736

737

For i = 1, 2, the set Pev,i of evanescent profiles for the side ∂Ωi is the set of U(t, x,Xi) ∈ H∞(ΩT ×R+)738

for which there exists a positive δ such that eδXiU(t, x,Xi) ∈ H∞(ΩT × R+).739

As already mentioned, we will have to consider three kinds of phases, the oscillating ones, the evanescent740

ones for the side ∂Ω1 and the evanescent ones for the side ∂Ω2. According to their kind the phases be denoted741

by:742

ϕk(t, x) :=
〈
(t, x), fk

〉
, fk ∈ Fos,743

ψk,1(t, x2) :=
〈
(t, 0, x2), fk

〉
, fk ∈ Fev1 ∪Fos,744

ψk,2(t, x1) :=
〈
(t, x1, 0), fk

〉
, fk ∈ Fev2 ∪Fos.745

Once the expected phases are defined, we postulate the ansatz:746

uε(t, x) ∼
∑
n≥0

∑
k∈Ios

εne
i
εϕk(t,x)un,k(t, x)(51)747

+
∑
n≥0

∑
k∈R1

εne
i
εψk,1(t,x2)Un,k,1

(
t, x,

x1

ε

)
+
∑
n≥0

∑
k∈R2

εne
i
εψk,2(t,x1)Un,k,2

(
t, x,

x2

ε

)
,748

where (un,k)n∈N,k∈Ios ∈ Pos,≤ (resp. Pos,<) for β ≤ 1 (resp. β > 1), and for all n ∈ N,∀ k ∈ R1 (resp. R2),749

Un,k,1 (resp. Un,k,2) is in Pev,1 (resp. Pev,2).750

751

Plugging the ansatz (51) into the evolution equation of (47) leads us to the following cascade of equations752

in the interior :753

(52)



L (dϕk)u0,k = 0, ∀k ∈ Ios,

iL (dϕk)un+1,k + L(∂)un,k = 0, ∀n ∈ N, ∀k ∈ Ios,

Lk(∂X1
)U0,k,1 = 0, ∀k ∈ R1,

Lk(∂X1
)Un+1,k,1 + L(∂)Un,k,1 = 0, ∀n ∈ N, ∀k ∈ R1,

Lk(∂X2
)U0,k,2 = 0, ∀k ∈ R2,

Lk(∂X2
)Un+1,k,2 + L(∂)Un,k,2 = 0, ∀n ∈ N, ∀k ∈ R2,

754

where the operators of differentiation in the fast variables Lk(∂X1
) and Lk(∂X2

) are defined by:755

Lk(∂X1
) := A1(∂X1

−A1(τ , ξk2 )) for k ∈ R1,(53)756

Lk(∂X2
) := A2(∂X2

−A2(τ , ξk1 )) for k ∈ R2.(54)757
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Then, plugging the ansatz (51) in the boundary conditions on ∂Ω1 and on ∂Ω2 gives:758

(55)



B1

[∑
j∈Φ(n1) un,j

]
|x1=0

= δn,M+1g, ∀n ∈ N

B1

[∑
j∈Φ(k)∩Ios

un,j + Un,k,1|X1=0

]
|x1=0

= 0, ∀n ∈ N, ∀k ∈ (R1 \ {n1}) ∩R1,

B1

[∑
j∈Φ(k) un,j

]
|x1=0

= 0, ∀n ∈ N,∀k /∈ (R1 \ {n1}) ∩R1,

B2

[∑
j∈Ψ(k)∩Ios

un,j + Un,k,2|X2=0

]
|x2=0

= 0, ∀n ∈ N, ∀k ∈ R2,

B2

[∑
j∈Ψ(k) un,j

]
|x2=0

= 0, ∀n ∈ N,∀k ∈ R2 \R2,

759

where δn,p denotes the Kronecker symbol.760

Finally, plugging the ansatz (51) into the initial condition of (47), gives:761

(56) ∀n ∈ N,


un,k|t=0

= 0, ∀k ∈ Ios,

Un,k,1|t=0
= 0, ∀k ∈ R1,

Un,k,2|t=0
= 0, ∀k ∈ R2.

762

Thanks to the cascades of equations (52)-(55) and (56) we are now able to state our main result about763

the construction of the geometric optics expansions:764

Theorem 28. Let T > 0 and assume that the corner problem (47) satisfies Assumptions 1-2-21 and 22.765

� If β > 1, then for all M ∈ N the corner problem (47) admits a WKB expansion under the form (51).766

More precisely there exist sequences of functions (un,k)n∈N,k∈Ios ∈ Pos,>, (Un,k,1) ∈ Pev1, and (Un,k,2) ∈ Pev2767

satisfying the cascades of equations (52)-(55) and (56). Moreover one can always choose g in such a way768

that the leading order in (51) is not identically zero.769

770

� If β ≤ 1, assume that T < Tmax if β < 1, then for all M ∈ N the corner problem (47) admits a WKB771

expansion under the form (51). More precisely there exist sequences of functions (un,k)n∈N,k∈Ios ∈ Pos,≤ ,772

(Un,k,1) ∈ Pev1, and (Un,k,2) ∈ Pev2 satisfying the cascades of equations (52)-(55) and (56). Moreover one773

can always choose g in such a way that the leading order in (51) is not identically zero.774

775

The question is now to solve the cascades of equations (52)-(55) and (56). More precisely, to solve the776

cascades, we are looking for an order of resolution of the different equations and an equation which can be777

solved before all the others in view to initialize the resolution.778

779

In [4] it is shown that to construct any amplitude in one of the ”trees” (that is the sets composing the780

partition (45) of I depicted in Figure 2) it is in fact sufficient, thanks to the uniqueness of the type V781

sequence linking any index of the ”tree” to its root (see Proposition 23) and the uniform Kreiss-Lopatinskii782

condition, to know the amplitude associated to the root. This is also the case here because this determination783

only uses the uniform Kreiss-Lopatinskii condition which holds outside of the loop. Then it is shown that to784

know the amplitudes associated to the roots it is sufficient to know the amplitudes associated to the loop’s785

indices. Thus the order of resolution will be exactly the same as in [4]. And also has in [4] the first amplitudes786

that should be determined are the loop’s amplitudes. So we need an new aplitude equation to determine the787

loop’s amplitudes and to initialize the resolution of the cascades of equations.788

789

The first equation of the cascade (52) implies that we have the well-known polarization condition for the790

oscillating amplitudes u0,k, in particular for k = n1, we have u0,n1 ∈ ker L (dϕn1), in other words we can791

write:792

(57) Pn1
1 u0,n1

= u0,n1
.793

But, thanks to Assumption 1, ker L (dϕn1
) is one dimensional. Assumption 22 then permits to write:794

(58) u0,n1
(t, x) = ν0,n1

(t, x)e,795

for some unknown scalar function ν0,n1 and where e is the vector defined in 12.6 For other indices k ∈ Ios796

6Let us remark that (58) is not true anymore if the operator L(∂) is hyperbolic with constant multiplicity. In that framework,

This manuscript is for review purposes only.



25

we can always write:797

(59) u0,k = ν0,kek,798

where ν0,k is a scalar function and where ek is a generator of ker L (dϕk).799

800

More generally for any n let us intoduce the notation:801

(60) Pn1
1 un,n1(t, x) = νn(t, x)e,802

where e is defined in Definition 12.803

804

Next let us study the second equation of the cascade (52) written for n = 0 and k = n1. If we compose
this equation by Qn1

1 and use the fact that kerQn1
1 = RanL (dϕn1

) thanks to the polarization condition (57)
we obtain that u0,n1 satisfies the equation :

Qn1
1 L(∂)Pn1

1 u0,n1 = 0.

From Lax’s lemma [11], we have:805

(61) Qn1
1 L(∂)Pn1

1 u0,n1
= (∂t + vn1

· ∇x)ν0,n1
= 0,806

where we used the fact that Qn1
1 induces an isomorphism from RanPn1

1 to RanQn1
1 . Using the fact that the807

group velocity vn1 is incoming-outgoing, to solve equation (61) we only need to determine the trace of ν0,n1808

on {x1 = 0}.809

810

However, the degeneracy of the uniform Kreiss-Lopatinskii condition prevents to determine this trace by811

the easy classical way. Indeed because without the uniform Kreiss-Lopatinskii condition we can not invert812

the matrix B1 upon the stable subspace ker L (dϕ1) to recover the value of this trace. The only equation813

where the trace of ν0,n1 on ∂Ω1 seems to appear is the boundary condition (55) written for n = 0 that is:814

B1

 ∑
j∈Φ(n1)

u0,j


|x1=0

= 0.815

From (58) and the fact that, by definition e ∈ kerB1, the boundary condition reads:816

B1

 ∑
j∈Φ∗(n1)

u0,j


|x1=0

= 0,817

where we recall that Φ∗(n1) stands for Φ(n1) \ {n1}. As a consequence this equation does not give any infor-818

mation about ν0,n1|x1=0
. So it seems that we shall find another way to determine ν0,n1|x1=0

. To do that, we819

will start by using the method of [8] which has been introduced to construct the geometric optics expansion820

for the initial boundary value problem belonging to the WR class in the half space and we will see how to821

adapt this method.822

823

Before to recall the main ideas of the method of determination of ν0,n1|x1=0
by [8], let us remark the824

following fact. If one assumes that ν0,n1|x1=0
is known and write, once again in view to simplify the notations:825

826

(64) ν0,n1|x1=0
(t, x2) := µ0(t, x2),827

(58) has to be remplaced by a decomposition reading :

u0,n1 (t, x) = ν0,n1 (t, x)e+ v̌(t, x),

where v̌ lies in some subspace of Es1(iτ , ξ2). We can still apply Kreiss-Lopatinskii condition on this subspace. However, it seems
that in that case, one can always determine v̌ by reiterating the arguments of [4] which lead to ask for the invertibility of an
operator reading under the form (I − T).
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then it is easy to determine the others amplitudes u0,k, for k = n2, ..., n4. Indeed, the transport equation828

determining ν0,n1
reads:829 

(∂t + vn1 · ∇x)ν0,n1 = 0, on ΩT ,

ν0,n1|x1=0
= µ0, on ∂Ω1,T ,

ν0,n1|t≤0
= 0, on Ω.

830

Integrating along the characteristics we obtain the explicit formula:831

(66) ν0,n1
(t, x1, x2) = µ0

(
t− 1

vn1,1
x1, x2 − β−1

1 x1

)
.832

In particular, the trace of u0,n1 on {x2 = 0} is given by

u0,n1|x2=0
= ν0,n1(t, x1, 0)e,

so, thanks to the uniform Kreiss-Lopatinskii condition for the boundary condition (55) written for n = 0 and
k = n2 we are able to determine the trace on {x2 = 0} of ν0,n2 . More precisely, from viii) Proposition 24),
the boundary condition for u0,n2 reads:

B2

 ∑
j∈(Ψ(n2)∩Ios)\{n1}

u0,j + U0,n2,2|X2=0


|x2=0

= −B2u0,n1|x2=0, if n2 ∈ R2,

and

B2

 ∑
j∈(Ψ(n2)∩Ios)\{n1}

u0,j


|x2=0

= −B2u0,n1|x2=0, if n2 ∈ R2 \R2,

Note that in both case the vector in the left hand side is an element of Es2(iτ, ξ
1
) so we can apply the uniform

Kreiss-Lopatinskii condition. Recall that the inverse of B2 on Es2(iτ, ξ
1
) is denoted by φn2

2 , we apply this
inverse and obtain: ∑

j∈(Ψ(n2)∩Ios)\{n1}

u0,j + U0,n2,2|X2=0


|x2=0

= −φn2
2 B2u0,n1|x2=0, if n2 ∈ R2,

and  ∑
j∈(Ψ(n2)∩Ios)\{n1}

u0,j


|x2=0

= −φn2
2 B2u0,n1|x2=0, if n2 ∈ R2 \R2.

We then apply Pn2
2 and recall the value of u0,n1|x2=0 to obtain that in both case:

u0,n2|x2=0
= ν0,n2|x2=0

e2 = −ν0,n1|x2=0
Pn2

2 φn2
2 B2e.

We then write the vector in the right hand side of the previous equation as:

Pn2
2 φn2

2 B2e = S n2e2,

to obtain the value of ν0,n2|x2=0
. Apply again Lax’s Lemma we deduce that ν0,n2|x2=0

solve the transport833

equation (recall that n2 is outgoing-incoming so only the boundary condition on ∂Ω2 is needed):834 
(∂t + vn2

· ∇x)ν0,n2
= 0, on ΩT ,

ν0,n2|x2=0
= −S n2µ0, on ∂Ω2,T ,

ν0,n1|t≤0
= 0, on Ω.

835

By integration along the characteristics we obtain:836

(68) ν0,n2(t, x1, x2) = −µ0 (t2(t, x1, x2),x2(x1, x2)) Sn2 ,837
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where838

(69) t2(t, x1, x2) := t− 1

vn1,1
x1 −

[
1

vn2,2
− β−1

2

vn1,1

]
x2, x2(x1, x2) := −β−1

1 (x1 − β−1
2 x2).839

We can repeat exactly the same reasoning, applied to the amplitude u0,n3
and then to the amplitude840

u0,n4 . We thus obtain their values in terms of the unknown trace µ0. More precisely we have:841

(70) ν0,n3
(t, x1, x2) = µ0 (t3(t, x1, x2),x3(x1, x2)) Sn3

,842

843

(71) ν0,n4
(t, x1, x2) = −µ0 (t4(t, x1, x2),x4(x1, x2)) Sn4

,844

where we set for ν0,n3
:845

(72) S n3 := Sn3S n2 ,846

(73) t3(t, x1, x2) := t−Ax1 −
[

1

vn2,2
− β−1

2

vn1,1

]
x2, and, x3(x1, x2) :=

2∏
j=1

β−1
j (x2 − β−1

3 x1),847

with A a non-meaningful parameter introduced to simplify the notations. It is precisely given by:848

(74) A :=
1

vn3,1
− β−1

3

(
1

vn2,2
− β−1

2

vn1,1

)
.849

And for ν0,n4 :850

(75) S n4 := Sn4S n3 ,851

852

(76) t4(t, x1, x2) := t−Ax1 −
[

1

vn4,2
− β−1

4 A

]
x2, and, x4(x1, x2) := −

3∏
j=1

β−1
j (x1 − β−1

4 x2).853

And finally where the scalars Sn3 and Sn4 appearing in (72) and (75) are defined by the relations:

Pn3
1 φn3

1 B1e2 := Sn3e3, and Pn4
2 φn4

2 B2e3 := Sn4e4.

An important observation for what follows is to remark that the trace ν0,n4|x1=0
depends on the particular854

values, t4(t, 0, x2) and x4(0, x2). An easy computation shows that the constant in front of x2 in t4(t, 0, x2)855

can in fact be expressed in terms of the parameters α and β, introduced in (49) and (50) and which encode856

the time needed to make one complete circuit around the loop. More precisely, we have:857

(77) t(t, x2) := t4(t, 0, x2) = t− αβ−1x2, and, x(x2) := x4(0, x2) = β−1x2.858

Let us also notice, because it will be important in paragraph 7.1.5, that the knowledge of u0,n4 allows us859

to express all the amplitudes in Φ∗(n1) in terms of µ0. Indeed, Proposition 17 implies that these amplitudes860

(except n4) are in Iii ∪Iio. So, let i ∈ Φ∗(n1) \ {n4} to determine u0,i for i ∈ Iio (resp. i ∈ Iii) we have861

to solve the transport equation:862 
(∂t + vi · ∇x)u0,i = 0, on ΩT ,

B1

[∑
j∈Φ(n1)\{n4} u0,j

]
|x1=0

= −B1u0,n4|x1=0
, on ∂Ω1,T ,

u0,i|t≤0
= 0, on Ω,

(78)863

 resp.



(∂t + vi · ∇x)u0,i = 0, on ΩT ,

B1

[∑
j∈Φ(n1)\{n4} u0,j

]
|x1=0

= −B1u0,n4|x1=0
, on ∂Ω1,T ,

B2

[∑
j∈Ψ(n2) u0,j

]
|x2=0

= 0, on ∂Ω2,T

u0,i|t≤0
= 0, on Ω.

(79)864
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However, by assumption, the index i is associated with a frequency for which the uniform Kreiss-Lopatinskii
condition holds, so the boundary condition(s) of (78) (resp.(78)-(79)) can be written under the form:

u0,i|x1=0
= −P i1φ

i
1B1u0,n4|x1=0

,

(
resp.

{
u0,i|x1=0

= −P i1φ
i
1B1u0,n4|x1=0

,

u0,i|x2=0
= 0.

)

Using the expression of u0,n4|x1=0
and integrating along the characteristics we obtain the explicit expression:865

866

(80) u0,i(t, x) = µ0

(
t− 1

vi,1
x1,x−

vi,2
vi,1

x1

)
S n4P

i
1φ

i
1B1e4.867

7.1. Initialization of the resolution, determination of the loop’s indices . As already mentioned868

in the previous paragraph to determine µ0 we will adapt the method of [8] from the half space to the quarter869

space geometry.870

We study the boundary condition for the amplitude u1,n1 that is (55) written for n = 1. This is a871

natural choice because it is the only equation involoving u0,n1|x1=0
. This boundary condition reads (recall872

that M ≥ 1):873

(81) B1

 ∑
j∈Φ(n1)\{n4}

P j1u1,j


|x1=0

= −B1u1,n4 −B1

 ∑
j∈Φ(n1)\{n4}

(I − P j1 )u1,j


|x1=0

.874

Thanks to Proposition 17, we know that Φ(n1) \ {n4} is included in Iio ∪Iii, so the left hand side term is875

in B1E
s
1(iτ , ξ2). By definition of b (see Definition 12) multiply by b in the left makes this term vanish. We876

thus have:877

b ·B1

 ∑
j∈Φ(n1)\{n4}

(I − P j1 )u1,j


|x1=0

= −b ·B1u1,n4 .(82)878

879

880

To make this equation more explicit in terms of µ0, we use the cascade of equation (52) written for n = 0.
Composing by the partial inverse Rk1 defined in Definition 25, leads us to the relation:

∀j ∈ Φ(n1) \ {n4} , (I − P j1 )u1,j = iRj1L(∂)u0,j = iRj1L(∂)P j1u0,j ,

where we used the polarization condition for u0,j in the right hand side. We thus can write (82) under the881

form :882

b ·B1

 ∑
j∈Φ(n1)\{n4}

Rj1L(∂)P j1u0,j


|x1=0

= ib ·B1u1,n4|x1=0
.(83)883

Let us recall the following proposition due to [8] :884

Proposition 29 ([8], Proposition 2). For all j ∈ Φ(n1) \ {n4}, and for all k = 1, 2 let P jk , Qjk and Rjk885

be defined in Definition 25 then we have RjkAkP
j
k = 0.886

Moreover let b be the vector introduced in Definition 12. Then there exists a nonzero real number κ such887

that the following equality holds:888

b ·B1

∑
j∈Φ(n1)\{n4}

Rj1L(∂)P j1 = κ
(
Θ(iτ , ξ2)∂t + ∂ξ2Θ(iτ , ξ2)∂2

)
,889

where Θ is defined in Definition 9. Moreover, ∂tΘ(iτ , ξ2) = 1 and ∂ξ2Θ(iτ∂2, ξ2) = − τ

ξ2
:= c.890

Proof. We refer to [8] for a complete proof. We will here just show that we have the equality ∂ξ2Θ(iτ , ξ2) =891

− τ

ξ2
. This equality was already shown in [[8], Lemma 7], but since it is important for our purpose, let us892

give a proof for the sake of completeness.893
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Necessarily ξ2 6= 0 otherwise the Kreiss-Lopatinskii condition will break down for γ > 0 and it would say
that the boundary condition on ∂Ω1 does not satisfy the weak Kreiss-Lopatinskii condition. We then use the
fact that d = 2 and the relation Rj1A1P

j
1 = 0. First we have :

∀j ∈ Φ(n1) \ {n4} , L (dϕj)P
j
1 = τP j1 + ξj1A1P

j
1 + ξ2A2P

j
1 = 0,

we compose by Rj1, the term Rj1A1P
j
1 desappears. Then we sum over j ∈ Φ(n1) \ {n4} and multiply by b ·B1

to obtain :
b ·B1

∑
j∈Φ(n1)\{n4}

Rj1A2P
j
1 = − τ

ξ2

b ·B1

∑
j∈Φ(n1)\{n4}

Rj1P
j
1 .

A consequence of this proposition is to recover the transport phenomenon along the boundary already894

observed in [8]. Moreover thanks to Proposition 29, the equation (83) can be expressed under the form:895

(85)

(
∂tµ0 −

τ

ξ2

µ0

)
=
i

κ

(
b ·B1P

n4
2 u1,n4|x1=0

+ b ·B1(I − Pn4
2 )u1,n4|x1=0

)
.896

Thus to determine the unknown trace µ0, we want to solve the same transport equation as in [8]. But,897

in the analysis of Coulombel and Guès the amplitude u1,n4
which acts like a source term in (82) could be898

determinated regardless µ0. Indeed, for the geometry of the half space u1,n4
is an outgoing amplitude so it899

satisfies a transport equation which does not require any boundary condition for its resolution (see [8] for900

more details). As a consequence it can be determined just by integration along the characteristics of the901

source term in the interior and the initial data (and is even zero if these terms vanish).902

For the quarter space geometry it is not true anymore because u1,n4
depends on u1,n3

, which depends903

on u1,n2
and so on. However, equation (82) meets with the intuiton that we gave in paragraph 4 because904

this equation says that the amplification of order zero is ”turned on” by the outgoing for the side ∂Ω1 (but905

incoming for the side ∂Ω2) mode u1,n4 . Moreover, we mentioned at the end of the previous paragraph that906

amplitudes u0,j for j = n1, ...n4 can be expressed in terms of the unknown trace µ0.907

So our purpose is now to express the amplitude u1,n4
(which acts like a source term in (85)) in terms of908

the unknow trace µ0. In view to do this, we will show in a first time that the unpolarized part (I−Pn4
2 )u1,n4

909

can be expressed in terms of µ0. In a second time we will show that the polarized part Pn4
2 u1,n4

can be910

expressed in terms of µ0 and a new unknown trace µ1 (which is just the unknown part of the polarized part911

of the trace of u1,n1 on the side ∂Ω1). The determination of the dependency on (I − Pn4
2 )u1,n4 in terms of912

µ0 is made in the following paragraph.913

7.1.1. Unpolarized part of the terms of order one. In a classical way, after composition of the914

second equation of (52) (written for n = 0 and k = nj , j = 1, ..., 4) by the pseudo-inverse R
nj
· introduced in915

Definition 25, we obtain that :916

(86) (I − Pnj1 )u1,nj = iR
nj
1 L(∂)u0,nj , if j is odd,(I − Pnj2 )u1,nj = iR

nj
2 L(∂)u0,nj , if j is even,917

where we used the fact that by definition R
nj
k L (dϕnj ) = I − Pnjk , for k = 1, ..., 2.918

919

We then use the first equality in Proposition 29. Thanks to this lemma we can compute precisely the920

values of the unpolarized part of the amplitudes of order one. Indeed for (I − Pn1
1 )u1,n1

we thus have:921

(I − Pn1
1 )u1,n1

= −Rn1
1 [∂t +A1∂1 +A2∂2]µ0

(
t− 1

vn1,1
x1, x2 − β−1

1 x1

)
e,922

= − [(∂tµ0)Rn1
1 e+ (∂2µ0)Rn1

1 A2e]

(
t− 1

vn1,1
x1, x2 − β−1

1 x1

)
,(87)923

where we used the fact that Pn1
1 e = e.924

But as e ∈ ker L (dϕn1), we have (τ + ξ
1
A1 + ξ2A2)e = 0. We compose by Rn1

1 , and we use Proposition925

29 to show that:926

(88) Rn1
1 A2e = − τ

ξ2

Rn1
1 e.927

This relation permits to reformulate (87) under the form :928

(I − Pn1
1 )u1,n1

= −
[
∂tµ0 −

τ

ξ2

∂2µ0

](
t− 1

vn1,1
x1, x2 − β−1

1 x1

)
Rn1

1 e.(89)929

This manuscript is for review purposes only.



30 A. BENOIT,

The fact that one restricts the study to corner problems (1) in only two space dimensions is used in a non930

trivial way to establish relation (88) which allows us to reformulate (87) under the form (89). We will see in931

a moment why this reformulation is so important in the proof.932

We do not know if the restriction d = 2 is really necessary, however it has the advantage to make all the933

following computations much more simpler.934

The same computations can be repeated to determine the unpolarized part of the amplitudes u1,nj , for935

j = 2, ..., 4. Unfortunatly, since our aim is to determine the exact value of the trace u1,n4|x1=0
, we also need936

the exact values of the unpolarized part of the amplitudes u1,nj , for j = 2, ..., 4. After some computations,937

we find:938

(I − Pn2
2 )u1,n2

= S n2

[(
1 +

τ

vn1,1ξ1

)
∂tµ0 +

τ

ξ
1

∂2µ0

]
(t2,x2)Rn2

2 e2,(90)939

(I − Pn3
1 )u1,n3 = −S n3

[(
1− τ

vn2,2ξ2

(
1− vn2,1

vn1,1

))
∂tµ0 +

τ

ξ
2

β−1
2 β−1

1 ∂2µ0

] (
t3,x3

)
Rn3

1 e3,(91)940

(I − Pn4
2 )u1,n4 = S n4

(1 +
τ

ξ1

A

)
∂tµ0 +

τ

ξ1

3∏
j=1

β−1
j ∂2µ0

(t4,x4

)
Rn4

2 e4.(92)941

At this step of the proof, the term depending on (I −Pn4
2 )u1,n4 appearing in the right hand side of (85)942

is expressed in terms of the function µ0. So we just have to do the same for the term Pn4
2 u1,n4 . In paragraph943

7.1.3 we will see how the knowledge of the unpolarized part of the amplitudes of order one enables us to944

determine the polarized part of the amplitudes of order one. However, before to do this determination, it945

is useful (because it will simplify a lot the computations) to express the unpolarized part of the amplitudes946

of order one in terms of the transport operator along the boundary. Moreover, as we will see in paragraph947

7.1.4, this reformulation will also be essential for the resolution of the initializating equation (85).948

7.1.2. Reformulation of equations (90)-(91) and (92). The following lemma which is just an al-949

gebraic property based on a simple computation is however fundamental for our analysis. Indeed it will950

permit to reformulate equation (85) in a much more pleasant and simple form. The fact that we are able to951

reformulate (85) in a particular form (more precisely under the form (I− T̃ )(T µ0) see (131) for more details)952

is not anodyne at all when one wants to solve (85) in view to determine µ0. Indeed it will permit to express953

T µ0 as a sum of iterations of the transport operator along the boundary corresponding to the number of954

complete circuits that have been made.955

Lemma 30. If d = 2, we have the following equalities:956

1 +
τ

ξ
1
vn1,1

= −ξ2

ξ1
β−1

1 ,(93)957 (
1− τ

vn2,2ξ2

(
1− vn2,1

vn1,1

))
=
ξ2

ξ
2

β−1
1 β−1

2 ,(94)958

1 +
τ

ξ1

A = −ξ2

ξ1

β−1
1 β−1

2 β−1
3 ,(95)959

where we recall that the parameter A appearing in (95) is defined in (74).960

Proof. We will only demonstrate (95), the proofs of the two other equalities are simpler and follow exactly961

the same kind of computations.962

First let us develop :963

1 +
τ

ξ1

A =
1

ξ1

[
ξ1 +

τ

vn3,1

(
1− vn3,2

vn2,2

(
1− vn2,1

vn1,1

))]
,(96)964

=
1

vn3,1vn2,2vn1,1ξ1

[
vn3,1vn2,2vn1,1ξ1 + vn2,2vn1,1τ − vn3,2vn1,1τ + vn3,2vn2,1τ

]
.965

We recall that for all (τ, ξ1, ξ2) ∈ V , we have

τ + λ(ξ1, ξ2) = 0.
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Using the fact that λ is homogeneous of degree one, Euler’s formula implies that:966

(97) τ + (ξ1, ξ2) · ∇ξλ(ξ1, ξ2) = 0.967

In particular, applying (97) to fn1 = (τ , ξ
1
, ξ2), fn2 = (τ , ξ

1
, ξ

2
) and fn3 = (τ , ξ1, ξ2

) we obtain respec-968

tively:969

τ + vn1,1ξ1
+ vn1,2ξ2 = 0,(98)970

τ + vn2,1ξ1
+ vn2,2ξ2

= 0,(99)971

τ + vn3,1ξ1 + vn3,2ξ2
= 0.(100)972

From (100) we deduce that:973

(101) vn3,1vn2,2vn1,1ξ1 = −vn2,2vn1,1τ − vn2,2vn1,1vn3,2ξ2
.974

Using (99) the second term in the right hand side of (101) this equation can be reformulate under the form:975

(102) vn2,2vn1,1vn3,2ξ2
= vn1,1vn3,2τ + vn2,1vn1,1vn3,2ξ1

.976

We then use (98) in the second term in the right hand side of (102). We obtain:977

(103) vn2,1vn1,1vn3,2ξ1
= −vn2,1vn3,2τ − vn1,2vn2,1vn3,2ξ2.978

Combining equations (101), (102) and (103) it follows that:979

(104) vn3,1vn2,2vn1,1ξ1 = −vn2,2vn1,1τ + vn3,2vn1,1τ − vn3,2vn2,1τ − vn1,2vn2,1vn3,2ξ2.980

Equality (95) follows from (96) combined with (104).981

�982

For simplicity we introduce the notation:983

(105) T := ∂t −
τ

ξ2

∂2,984

which is the same transport operator along the boundary as in [8].985

986

Thanks to Lemma 30 formulas (90)-(91) and (92), which give the unpolarized part of the amplitudes987

u1,ni , for i = 2, ..., 4, can be written under the following more pleasant form:988

(I − Pn2
2 )u1,n2

= −S n2
ξ2

ξ
1

β−1
1 (T µ0) (t2,x2)Rn2

2 e2,(106)989

(I − Pn3
1 )u1,n3 = −S n3

ξ2

ξ
2

2∏
j=1

β−1
j (T µ0) (t3,x3)Rn3

1 e3,(107)990

(I − Pn4
2 )u1,n4 = −S n4

ξ2

ξ1

3∏
j=1

β−1
j (T µ0) (t4,x4)Rn4

2 e4.(108)991

We thus remark that the unpolarized part of the amplitudes u1,nj , j = 1, ..., 4 depend of the same trans-992

port operator which is precisely the transport operator applied to µ0 in equation (85).993

994

Let us conclude this paragraph by the determination of the unpolarized part of the amplitudes u1,j for995

i ∈ Φ(n1)∗ \ {n4}. The knowledge of these amplitudes will be useful in paragraph 7.1.5. From (80) and the996

relation (86), one easily obtains, that after the reformulation of (I − Pn4
)u1,n4

, we have:997

(109) (I − P i1)u1,i|x1=0
= i
[
S n4R

i
1L(∂)µ0 (t4,x4)P

i
1φ

i
1B1e4

]
|x1=0

,998

from which we deduce that up to some derivatives and scalar multiplications, (I − P i1)u1,i|x1=0
depends on999

µ0 (t,x).1000
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7.1.3. Polarized part of the terms of order one. The knowledge of the unpolarized part of the1001

amplitudes of order one enables us to determine the polarized part of the amplitudes of order one, and will1002

conclude the determination of the right hand side in equation (85).1003

Indeed, let us consider equation (52) written for n = 1 and k = nj , j = 1, ...4. This equation reads:1004

iL (dϕnj )u2,nj + L(∂)P
nj
1 u1,nj = −L(∂)(I − Pnj1 )u1,nj , for j odd,1005

iL (dϕnj )u2,nj + L(∂)P
nj
2 u1,nj = −L(∂)(I − Pnj2 )u1,nj , for j even.1006

We compose by Qn1
1 , Qn3

1 in the first equation, by Qn2
2 , Qn4

2 in the second one. This makes the term depending1007

of u2,nj disappears and from Lax’s lemma we obtain that the polarized parts of order one satisfy the transport1008

equations:1009

(∂t + vnj · ∇x)Q
nj
1 P

nj
1 u1,nj = −Qnj1 L(∂)(I − Pnj1 )u1,nj , if j = 1, 3,(110)1010

(∂t + vnj · ∇x)Q
nj
2 P

nj
2 u1,nj = −Qnj2 L(∂)(I − Pnj2 )u1,nj , if j = 2, 4,(111)1011

with initial and boundary conditions given by (55)-(56). A preliminary to obtain the exact values of the1012

solutions of (110)-(111) is thus to determine the source terms. This can be done thanks to the reformulation1013

made in paragraph 7.1.2. Let us start with the term Qn1
1 L(∂)(I − Pn1

1 )u1,n1 , from equation (89), an explicit1014

computation gives:1015

Qn1
1 L(∂)(I − Pn1

1 )u1,n1
= −

[
Qn1

1 Rn1
1 e

(
∂2
ttµ0 −

τ

ξ2

∂2
t2µ0

)
+Qn1

1 A2R
n1
1 e

(
∂2
t2µ0 −

τ

ξ2

∂2
22µ0

)]
(112)1016 (

t− 1

vn1,1
x1, x2 − β−1

1 x1

)
.1017

Where we used the fact that Qn1
1 A1R

n1
1 e = 0 (see Proposition 29 for more details).1018

1019

To make this equation more explicit in terms of µ0, as it has been done for the determination of the1020

unpolarized parts of order one, we are looking for a relation linking Qn1
1 Rn1

1 e and Qn1
1 A2R

n1
1 e in view to1021

factorize (112).1022

We recall that kerQn1
1 = RanL (dϕn1) so for all X ∈ CN we have Qn1

1 L (dϕn1)X = 0. In particular, for1023

X = Rn1
1 e we obtain:1024

(113) τQn1
1 Rn1

1 e+ ξ
1
Qn1

1 A1R
n1
1 e+ ξ2Q

n1
1 A2R

n1
1 e = 0 =⇒ Qn1

1 A2R
n1
1 e = − τ

ξ2

Qn1
1 Rn1

1 e.1025

Using this relation in (112) gives:1026

Qn1
1 L(∂)(I − Pn1

1 )u1,n1
= −

[
Qn1

1 Rn1
1 e

(
∂2
ttµ0 − 2

τ

ξ2

∂2
t2µ0 +

(
τ

ξ2

)2

∂2
22µ0

)]
(114)1027 (

t− 1

vn1,1
x1, x2 − β−1

1 x1

)
,1028

= −
[
Qn1

1 Rn1
1 eT 2µ0

](
t− 1

vn1,1
x1, x2 − β−1

1 x1

)
,1029

1030

where we recall that the transport operator T is defined in (105).1031

Let us remark that, exactly as for the unpolarized part of the amplitudes of order one, the source term1032

in (110) expresses in terms of the transport operator T . However this time (114) involves some power of the1033

operator T .1034

1035

We then repeat the same kind of computations for the terms Qn2
2 L(∂)(I − Pn2

2 )u1,n2 , Qn3
1 L(∂)(I −1036

Pn3
1 )u1,n3

and Qn4
2 L(∂)(I − Pn4

2 )u2,n4
. Using analogous relations as (113), more precisely:1037

Qn2
2 A1R

n2
2 S n2e = − τ

ξ
1

Qn2
2 Rn2

2 S n2e,(115)1038

Qn3
1 A2R

n3
1 S n3e = − τ

ξ
2

Qn3
1 Rn3

1 S n3e,(116)1039

Qn4
2 A1R

n4
2 S n4e = − τ

ξ
1

Qn4
2 Rn4

2 S n4e,(117)1040
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and Lemma 30 in equations (106)-(107) and (108), some tedious (but explicit) computations give:1041

Qn2
2 L(∂)(I − Pn2

2 )u1,n2
= S n2β−2

1

(
ξ2

ξ
1

)2

(T 2µ0)(t2,x2)n2
2 Rn2

2 e2,(118)1042

Qn3
1 L(∂)(I − Pn3

1 )u1,n3 = −S n3β−2
1 β−2

2

(
ξ2

ξ
2

)2

(T 2µ0)(t3,x3)Qn3
1 Rn3

1 e3,(119)1043

Qn4
2 L(∂)(I − Pn4

2 )u1,n4
= S n4

3∏
j=1

β−2
j

(
ξ2

ξ1

)2

(T 2µ0)(t4,x4)Qn4
2 Rn4

2 e4.(120)1044

More details about those computations can be find in Appendix 9.2.1045

1046

Now that the source term in equation (110) is express in terms of T 2µ0, we can solve this equation in1047

terms of T 2µ0. From the strict dissipativity of (1), we have kerB1 = Es1(iτ , ξ2) = vect {e}. So we write as1048

in the beginning of paragraph 7.1:1049

(121) Pn1
1 u1,n1

(t, x2) := ν1,n1
(t, x2)e = µ1(t, x2)e.1050

The transport equation (110) becomes :1051

(122)


(∂t + vn1

· ∇x)ν1,n1
= −Q̃n1

1 Qn1
1 L(∂)(I − Pn1

1 )u1,n1
,

ν1,n1|x1=0
= µ1(t, x2)

ν1,n1|t≤0
= 0,

1052

where Q̃n1
1 denotes the inverse of the restriction of Qn1

1 to RanPn1
1 and where the trace function µ1 is an1053

unknown. Then integrating along the characteristics gives the exact value of ν1,n1 (and thus also of Pn1
1 u1,n1)1054

in terms of the unknown traces µ0, µ1. More precisely, we have to study two separates cases:1055

1056

• t− 1
vn1,1x1

< 0. Then the transported information is above the characteristic, the transported condition1057

is the initial one. Moreover, as the function µ0 is assumed to satisfy µ0|t≤0
, one can check on (114) that the1058

transport associated to the source term in the interior is zero. Consequently the associated solution is zero.1059

• t− 1
vn1,1

x1
> 0. Then the transported information is below the characteristic, the transported condition1060

is the boundary condition and this time the transport associated to the source term in the interior does not1061

necessarily vanish. We Integrate along the characteristics to obtain the explicit value:1062

ν1,n1 = µ1

(
t− 1

vn1,1
x1, x2 − β−1

1 x1

)
1063

+ c

∫ x1

0

T 2µ0

(
t− s

vn1,1
− s

vn1,1
(x1 − s), x2 − β−1

1 s− β−1
1 (x1 − s)

)
ds1064

= µ1

(
t− 1

vn1,1
x1, x2 − β−1

1 x1

)
+ cx1T

2µ0

(
t− s

vn1,1
x1, x2 − β−1

1 x1

)
,(123)1065

for some explicit constant c.1066

To obtain (123), one has to use the explicit value of the source term given in (114), and check that the1067

source term lies along the characteristics. So the integral term in (123) is just a multiplication by the length1068

of the characteristic.1069

From this formula, and the formula giving the unpolarized part of u1,n1 , we finally obtain the following1070

value for u1,n1 :1071

u1,n1
= Pn1

1 u1,n1
+ (I − Pn1

1 )u1,n1
1072

=
[
µ1e+ cx1T

2µ0e−T µ0R
n1
1 e
](

t− 1

vn1,1
x1, x2 − β−1

1 x1

)
,1073

from which, we deduce the value of u1,n1|x2=0
in terms of T µ0 and µ1:1074

u1,n1|x2=0
=
[
µ1e+ cx1T

2µ0e−T µ0R
n1
1 e
](

t− 1

vn1,1
x1,−β−1

1 x1

)
.(124)1075
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where c stands for an explicitly computable constant.1076

1077

The knowledge of this trace enable us to determine the amplitude u1,n2
(recall that u1,n1|x2=0

acts as

a boundary source term in the transport equation determining u1,n2
). Thus we can evaluate u1,n2|x1=0

and
then determine the amplitude u1,n3

. Finally the knowledge of u1,n3|x2=0
perits to determine the amplitude

u1,n4 and more precisely its trace on {x1 = 0} which appears in equation (85). Indeed, thanks to paragraph
7.1.1, to fully determine the u1,nj , j = 2, ..., 4 it only remains to determine their polarized parts. Let us
define:

P
nj
2 u1,nj (t, x) = ν1,nj (t, x)ej , for j = 2, 4 andPn3

1 u1,n3
(t, x) = ν1,n3

(t, x)e3,

then, thanks to the uniform Kreiss-Lopatinskii condition and the fact that n2 ∈ Ioi, ν1,n2 satisfies the1078

transport equation:1079

(125)


(∂t + vn2

· ∇x)ν1,n2
= −Q̃n2

2 Qn2
2 L(∂)(I − Pn2

2 )u1,n2
,

ν1,n2|x2=0
= −S n2u1,n1|x2=0

−S n2(I − Pn2
2 )u1,n2|x2=0

,

ν1,n2|t≤0
= 0,

1080

where as for ν1,n2
, Q̃n2

2 denotes the inverse of the restriction of Qn2
2 to RanPn2

2 . The source terms in (125)1081

are given by (118), (124) and (106). We integrate along the characteristics, once again there are two cases1082

to separate:1083

• t− 1
vn2,2

x2
≤ 0. The transported information comes from the initial condition. Noticing that the source1084

term in the interior is evaluated in t2(t, x) ≤ t− 1
vn2,2x2

(we recall that t2 is defined in (69)) we deduce that1085

the transport of the source term in the interior is also zero.1086

• t− 1
vn2,2x2

> 0. The transported information comes from the boundary condition. We integrate along1087

the characteristics. This gives:1088

ν1,n2
= −S n2

[
µ1 + cx1T

2µ0e−T µ0R
n1
1 e
]

(t2,x2) + c2x2T
2µ0(t2,x2),(126)1089

where c2 := β−2
1

(
ξ2
ξ
1

)2

Q̃n2
2 Qn2

2 Rn2
2 S n2e, however this value is not really important in the end of the proof.1090

Once again the multiplication by the factor x2 in the last term of the right hand side of (126) comes from1091

the fact that the source term in the interior of (125) lies on the characteristics.1092

So we now have an explicit formula for the polarized part of the amplitude un2,1, from which we deduce1093

the value of its trace on ∂Ω1. We then solve the transport equation and determine the trace of un2,1 on ∂Ω2.1094

Then we use this trace in the transport equation determining ν1,n3
. Integrating along the characteristics1095

we obtain the trace of Pn3
1 un3,1. The important fact is that (as in the resolution of the resolution of (122)1096

and (125)), the source term in the interior already lies along the characteristics so its contribution to the1097

transport phenomenon is just a multiplication by x1 of itself. Moreover equations (107) and (119) tell us that1098

the source terms in the transport equation determining ν1,n3
depends on µ1, T µ0 and T 2µ0, all evaluated1099

in (t2,x2). As a consequence Pn3
1 u1,n3

depends on µ1, T µ0 and T 2µ0, all evaluated in (t3,x3), then from1100

equation (107) so do u1,n3
.1101

1102

To conclude, we compute the trace of u1,n3 on ∂Ω2 and we use it as a source term in the transport1103

equation determining ν1,n4
. Repeating exactly the same arguments we show that the Pn4

2 u1,n4
depends on1104

µ1, T µ0 and T 2µ0, all evaluated in (t4,x4). This implies that Pn4
2 u1,n4|x1=0

depends on µ1, T µ0 and T 2µ0,1105

all evaluated in (t4,x4).1106

1107

Consequently the right hand side of (85) (because it only involves Pn4
2 u1,n4|x1=0

and (I − Pn4
2 u1,n4|x1=0

)1108

has been expressed in terms of µ1, T µ0 and T 2µ0, all evaluated in (t,x) (recall the notation (t,x) = (t4,x4)),1109

more precisely (85) reads:1110

(127) (T µ0)(t, x2)− (Tµ0)(t, x2) =
i

κ
S n4eµ1(t,x),1111

where T is up to multiplications by some (possibly complicated functions) the sum of T µ0 and T 2µ0 followed1112
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by the evalutation in (t,x) more precisely it reads: where the operator T reads7:1113

(128) (Tu)(t, x2) := c1u(t(t, x2),x(x2)) + c2(t, x2)(T u)(t(t, x2),x(x2)).1114

This reformulation is the keystone of our construction because its permits to factorize the transport phe-
nomenon along the boundary in the left hand side to rewrite (85) under the form :

[(I − T)(T µ0)] (t, x2) = µ1(t,x),

where we set µ̃1 := i
κS n4eµ1 and then drop the tilde and where we did the same operation (up to the sign)1115

for g̃8.1116

1117

In the following paragraph, we explain how this particular structure for equation (85) permits us to1118

determine the unknown µ0.1119

7.1.4. Resolution of equation (85), preliminary study. The resolution of equation (85) is based1120

upon the study of the influence of the change of variables (t,x) on the profile spaces. We recall that these1121

spaces are not defined in the same way depending on the value of the dilatation parameter β. That is why1122

the resolution of equation (85) needs to be discussed in two distinct frameworks.1123

The case β ≤ 1, the information gets closer of the corner or admits a periodic pattern. Before to solve1124

equation (85) we give a useful property of the behaviour spaces of profiles PM−n
b,≤ compared with the change1125

of variables (t,x). More precisely this property states that if a function µ is one of the PM−n
b,≤ , which1126

essentially means that it starts to be non-zero only after a certain time (corresponding to n complete circuits1127

around the loop), then µ(t,x) will be non-zero only after the time corresponding to n+ 1 complete circuits.1128

If we use formally this result in (127) this means that the one order unknown trace can only affect the one1129

order unknown trace after one complete circuit. This formally meets the intuition given in Section 4 which1130

claims that the zero order amplitude in the WKB expansion has been turned on by the one order amplitude1131

after it has made one complete circuit around the loop.1132

Proposition 31. If µ ∈PM−n
b,≤ then µ(t,x) ∈PM−n+1

b,≤ .1133

Proof. We assume that M − n > 0, the other possible values of M − n > 0 are treated similarly and will1134

not be demonstrated here.1135

In a first time we show that µ(t,x) is zero for t ∈
]
−∞, TM−n+1

[
.1136

Firstly if t < TM−n then so do t < TM−n and the result is automatic. So we assume that TM−n < t <1137

TM−n+1 and t < TM−n+1. By definition of PM−n
b , µ(t, x) is zero if x2 < βM−ny

0
. Thus we restrict our1138

attention to the case x2 ≥ βM−ny0
. We thus have that:1139

t < TM−n+1 − αβM−ny0
= TM−n,1140

from which it follows that µ(t, ·) is zero.1141

Now, let k be such that M − n + 1 ≤ k ≤ M and fix t ∈
[
T k,min(T k+1, T )

[
, we will distinguish three1142

cases depending on the value of t:1143

i) If t < T k−1 then it follows that:1144

(130) T k < t < αβ−1x2 + T k−1,1145

from which we deduce that x2 > βky
0
. Consequently it is, in fact, not useful to study this case to show that1146

µ(t,x) is zero for x2 < βky
0
.1147

ii) If T k−1 < t < T k then by definition of PM−n
b,≤ , µ(t, x) is zero for x2 < βk−1y

0
and as a consequence1148

µ(t,x) is zero for x2 < βky
0
.1149

iii) If T k < t then we can repeat the argument applied in equation (130) to show that, this time,1150

necessarily we have y
0
βk+1 > x2 for which we deduce that µ(t,x) is zero.1151

�1152

7Notice that the precise values of the constant c1 and of the function c2 can be exactly expressed from equations (108) and
explicit computations in the resolution of the transport equations mentioned in paragraph 7.1.3. However, it is useless for our
purpose.

8Let us stress that the operator T of this paper has nothing in common with the operator T of [4]. Indeed, the operator T
of [4] is of order zero and necessitates to be well-defined the uniform Kreiss-Lopatinskii condition.
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We also give a useful proposition concerning the influence of the change of variables (t,x) on the source1153

term g. This proposition shows that even if g is not in some Pk
b the change of variable (t,x) has good1154

properties on the support of g. More precisely this proposition states that the change of variable (t,x) has1155

essentially the same influence on g that if was a function in some Pk
b .1156

Proposition 32. Let g be a smooth function which is zero for negative times and satisfying

∀t > 0, g(t, x) = 0 if x < y
0
.

Then for all l ∈ N∗, g(tl,xl) ∈P l
b,≤.1157

Proof. The proof picks up some ideas from the proof of Proposition 31. However, we give it for the sake1158

of completness.1159

First let us show that g(tl,xl) ∈P l
b,≤ is zero for t < T l. If tl < 0, it is trivial so we assume that tl ≥ 0

and that xl ≥ y
0
, then for t < T l we have the following bound :

tl < αy
0

 l−1∑
j=0

βj − βl
l∑

j=1

β−j

 < 0,

which is a contradiction.1160

Now let fix k such that l ≤ k ≤ M and a time t ∈
[
T k,min(T, T k+1)

[
. Once again let us assume that1161

tl > 0, so g(tl,xl) is zero if xl < y
0
, from the support property of g. In other words g(tl,xl) is zero for1162

x < βly0. But using the fact that β ≤ 1 and that l ≤ k it follows, in particular, that g(tl,xl) is zero for1163

x < βky0.1164

�1165

With Propositions 31 and 32 in hand we now turn to the study of equation (85). At the end of the1166

previous paragraph we explained why (85) could be rewritten as:1167

(131) [(I − T)(T µ0)] (t, x2) = µ1(t,x),1168

where we recall that T is an operator reading under the form (128).1169

1170

The idea of the resolution is to remark that the operator T is expressed in the variables (t,x) and thus1171

the composition by T ”costs” in terms of time of travel the time needed to make one complete circuit around1172

the loop. Thus as we arrange the things in such a way that we can only make M turns around the loop,1173

one can always invert I − T by taking the Neumann serie expansion. Indeed, the terms associated with Tj1174

with j large enough ”cost too much time” to appear and consequently are zero. Then we show that we can1175

repeat exactly the same reasoning to show that we can express µ0 in terms of µ2 (the scalar component of1176

the unknown trace u2,n1) and so on to express µ0 in terms of some µk (the scalar component of the unknown1177

trace uk,n1) for k arbitrarily large and in terms of the source term g. However, the trace µ0 in fact does1178

not depend on µk for k arbitrarily large, because this should say that we have made an arbitrary number of1179

complete circuits around the loop. We thus determine µ0 in terms of g only.1180

1181

Formally, we can always invert the operator (I −T) appearing in equation (131) by taking its Neumann1182

serie expansion. This gives the following formal value of T µ0:1183

(132) (T µ0)(t, x2) =
∑
j≥0

Tjµ1(t,x).1184

Let us remark that the second sum in the right hand side of (132) reads :1185

(133)
∑
j≥1

(Fj(µ1))(tj ,xj),1186

where the operators Fj(µ1) are some explicitly computable operators and where tj and xj denote that we
made the change of variables (t, x)→ (t(t, x2),x(x2)) j times that is:

tj = tj(t, x2) := t− α
j∑
l=0

β−jx and xj = xj(x) := β−jx2.
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Now remember that by definition of the profiles spaces (see Definition 27) we are looking for µ1 to be1187

in PM−1
b,≤ , so using the fact that the operators Fj are sums of derivatives (up to some multiplication by1188

known functions), it follows that the Fj(µ1) are in PM−1
b,≤ . Proposition 31 shows that Fj(µ1)(tj ,xj) is in1189

µ1 ∈PM−1+j
b,≤ .1190

As a consequence, equation (132) in fact reads:1191

(134) (T µ0)(t, x) = µ1(t,x),1192

which gives a rigorous, because the Neumann expansion for (I − T) is finite, value of (T µ0) in terms of the1193

(still) unknown function µ1 ∈PM−1
b,≤ . In terms of wave packets propagation (134) tells us that µ0, compared1194

to the others terms in the WKB expansion, only depends on µ1 which has made a complete circuit around1195

the loop. This fact agrees whith the intuition given in paragraph 4 that the amplitude u0,n1
does not depend1196

on the amplitudes un,n1
for n ≥ 2. Indeed these amplitudes do not have achieved enough complete circuits1197

around the loop to suffer enough amplifications and consequently they remain of higher order in terms of ε.1198

Let us also stress that the term depending on g̃ in the right hand side of (134) starts to be evaluated in (t, x)1199

while the term depending on µ1 is evaluated in (t,x). This will be a crucial point in the following.1200

1201

If we assume that µ1 is a known function in PM−1
b,≤ , then is it easy to compute µ0: indeed by definition1202

of the transport operator T , µ0 satisfies the transport equation:1203

(135)


(T µ)(t, x2) =

(
∂tµ0 − τ

ξ2
∂2µ0

)
(t, x2) = µ1(t,x), for (t, x2) ∈ ]−∞, T ]× R+,

µ0|x2=0
= 0, on t ∈ ]−∞, T ] ,

µ0|t≤0
= 0, on x2 ∈ R+,

1204

which can be integrated along the characteristics to obtain the value of µ0. Let us denote by K the application1205

that to a given source term in the interior for the transport equation (135) associates the solution of the1206

transport equation (135). We can thus write:1207

(136) µ0(t, x2) = K (µ1(t,x)).1208

We recall that we made the hypothesis that τ

ξ2
< 0 (see Hypothesis 4.3), the transport operator T1209

”pushes” the information away from the set {x2 = 0}. As a consequence, integrating (135) along the1210

characteristics show that applying the operator K does not destroy the property to be zero on the strip1211

{t ∈ ]−∞, T ] , 0 < x2 < Y }, for some Y > 0. This remark justify the following proposition:1212

Proposition 33. Let K be the inverse of the transport operator T defined previously. Then the profile1213

spaces are invariant sets under the action of K . More precisely if µ ∈ Pk
b,≤, for some k ∈ N, then1214

(K µ) ∈Pk
b,≤.1215

Consequently if µ1 ∈PM−1
b,≤ then equation (136) gives, as expected, a trace µ0 in PM

b,≤.1216

1217

However (136) is not sufficient to determine µ0 because the trace µ1 is not a known function. That is1218

why in the following paragraph, we will study the unknown trace µ1. We will show that it can be expressed1219

in terms of the unknown trace µ2 and µ0.1220

But before that let us give some comments about the resolution of equation (85) in the case β > 1.1221

The case β > 1, the information does not approach the corner.. As for the case β ≤ 1 we start by a1222

study of the influence of the change of variables (t,x) on the profile sets PM−n
b,> . The following proposition1223

is equivalent to Proposition 31 in the framework β ≤ 1.1224

Proposition 34. If µ ∈PM−n
b,> , then µ(t,x) ∈PM−n+1

b,> . In particular, µ(tj ,xj) is zero for l ≥ n+ 1.1225

The proof of this proposition is based on the same ideas than the proof of Proposition 31 but is simpler.1226

That is why we will not give a proof here.1227

1228

Let us also note that thanks to the conditions imposed on the source term g, Proposition 32 is trivial in1229

the framework β > 1.1230

1231

With Proposition 34 in hand it is then easy to show that the Neumann serie expansion associated with1232

equation (131) contains a finite number of non-zero terms. One can thus reiterate the arguments described1233
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in the framework β ≤ 1, to show that (136) also holds for β > 1. Indeed in the framework β ≤ 1 to establish1234

(136) we only use Proposition 31 and 32 but we do not use explicitly the fact that β ≤ 1. Also remark that1235

Proposition 33 only uses the fact that τ

ξ2
< 0 so this Proposition still holds for β > 1.1236

7.1.5. The equation on µn, n > 0. In this paragraph we give an equation determining the unknown1237

scalar part of the trace un,n1|x1=0
for all n > 0. As the reader may notice, this equation looks like equation1238

(85) determining the unknown trace of order zero µ0. However for n > 0, the equation involves some extra1239

terms. The appearance of these terms is due to the fact that, as already noticed in paragraph 7.1.1, the1240

amplitudes un,n1
are not polarized for n > 0.1241

As it as been done at the beginning of Paragraph 7.1 for µ0, to obtain this new equation we study the1242

boundary condition (55) written for j = n1:1243

B1

 ∑
j∈Φ(n1)

un,j


|x1=0

= δn,M+1g.1244

And we decompose the amplitudes ∈ Φ(n1)\{n4} and isolate the only outgoing-incoming phase n4 to obtain:1245

1246

(138) B1

 ∑
j∈Φ(n1)\{n4}

P j1un,j


|x1=0

+B1

 ∑
j∈Φ(n1)\{n4}

(I − P j1 )un,j


|x1=0

= δn,M+1g −B1un,n4|x1=0
.1247

According to Proposition 17, the first term in the left hand side of (138) is in B1E
s
1(iτ , ξ2). So take the1248

inner product of (138) by the vector b introduced in Definition 12 makes this term vanish. This gives:1249

(139) b ·B1

 ∑
j∈Φ(n1)\{n4}

(I − P j1 )un,j


|x1=0

= δn,M+1b · g − b ·B1un,n4|x1=0
.1250

But let us recall that from the cascade of equations (52) we know that the unpolarized part of the amplitudes
of order n are given by the polarized parts of the amplitudes of order n − 1. More precisely for all j ∈ Ios

we have:

(I − P j1 )un,j = iRj1L(∂)un−1,j = iRj1L(∂)
(
P j1un−1,j + (I − P j1 )un−1,j

)
,

and using this relation in equation (139) leads us to:1251

ib ·B1

 ∑
j∈Φ(n1)\{n4}

Rj1L(∂)P j1un−1,j


|x1=0

= b · δn,M+1g − b ·B1un,n4|x1=0
1252

− ib ·B1

 ∑
j∈Φ(n1)\{n4}

Rj1L(∂)(I − P j1 )un−1,j


|x1=0

.(140)1253

We thus apply Proposition 29 to rewrite the left hand side in terms of the transport operator along the1254

boundary:1255

T µn−1 = δn,M+1b · g − b ·B1un,n4|x1=0
− ib ·B1

 ∑
j∈Φ(n1)\{n4}

Rj1L(∂)(I − P j1 )un−1,j


|x1=0

,(141)1256

which tells us that the scalar unknown part of the amplitude un−1,n1
, namely µn−1, satisfies the same1257

transport equation as µ0 up to the extra term −ib ·B1

[∑
j∈Φ(n1)\{n4}R

j
1L(∂)(I − P j1 )un−1,j

]
|x1=0

.1258

However, we can reiterate the computations made in Paragraphs 7.1.1 and 7.1.3 to make the terms1259

b · B1un,n4|x1=0
explicit in terms of µn−1 and µn. This shows that b · B1un,n4|x1=0

involves µn evaluated in1260
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(t,x) and also T(T µn−1). We thus have:1261

[(I − T)(T µn−1)] (t, x2) = δn,M+1b · g(t, x2) + µn(t,x)(142)1262

− ib ·B1

 ∑
j∈Φ(n1)\{n4}

Rj1L(∂)(I − P j1 )un−1,j


|x1=0

(t, x2),1263

and we recover (85) up to the extra term −ib ·B1

[∑
j∈Φ(n1)\{n4}R

j
1L(∂)(I − P j1 )un−1,j

]
|x1=0

which involves1264

the un−1,j for j ∈ Φ(n1)\{n4} (and consequently µn−1) that is why we have to make this term more explicit1265

in terms of µn−1.1266

1267

To do this we reiterate the computations of paragraph 7.1.1 to treat the last term in the right hand side
of (142). First we remark that the terms (I − P j1 )un−1,j for j 6= n1, n4 are given by equation (109) when

n = 2. However the result is totally similar when n > 2. So after having applied the operator Rj1L(∂) and
taking the trace on {x1 = 0} one can show that the sum on j ∈ Φ∗(n1) \ n4 appearing in the right hand side
of (142) depends on µn−2(t,x) (and possibly of the source term g). That is why we write: ∑

j∈Φ∗(n1)\{n4}

Rj1L(∂)(I − P j1 )un−1,j


|x1=0

= (Λ1µn−2)(t,x),

where Λ1 is some explicitly computable operator which is a sum of derivatives and multiplications by scalar1268

functions. The exact expression of Λ1 is not relevant for our discussion.1269

1270

The same argument holds for (I−Pn1
1 )un−1,n1 . It is given by (89) in the case n = 2, but the computations

are totally analogous when n > 2. We thus can write:

[Rn1
1 L(∂)(I − Pn1

1 )un−1,n1
]|x1=0 = (Λ0µn−2)(t, x2),

where Λ0 is an operator which acts like Λ1.1271

1272

So (142) in its final form reads:1273

[(I − T)T µn−1] (t, x2) = δn,M+1g̃(t, x2) + µn(t,x) + (Λµn−2)(t, x2),(143)1274

where we set g̃ := b · g and Λu := (Λ0u)(t, x) + (Λ1u)(t,x). The only point to keep in mind about Λ is that1275

the profile sets Pk
b,≤ and Pk

b,> are invariant sets for the operator Λ because this operator is a sum (up to1276

some multiplications) of derivatives and thus does not modify supports properties.1277

7.1.6. End of the resolution of equation (85). In this paragraph we describe the end of the resolution1278

of equation (85) when β ≤ 1. As we will see this resolution does not take into account the precise value of β1279

but only needs Proposition 31. Proposition 31 has its equivalent when β > 1 (that is to say Proposition 34).1280

So the proof given here will extend to the case β > 1.1281

To save some notations, as β is not relevant in this discussion, we will denote PM−n
b in place of PM−n

b,≤ .1282

1283

The end of paragraph 7.1.4 shows that (85) in fact reads:1284

(144) µ0 = K (µ1(t,x)) ,1285

from which we deduced that if µ1 ∈ PM−1
b then µ0 ∈ PM

b . Because of the definition of the profile spaces1286

(see Definition 27) we assume that for all 1 ≤ n ≤ M + 1, µn ∈ PM−n
b . Our aim is here to show that1287

equation (144) defines a unique µ0 ∈PM
b and to express this solution µ0 as a function of the source term g.1288

1289

Using the analysis described in the previous paragraph we are now able to give more informations about1290

the unknown µ1. Indeed, (143) written for n = 2 reads:1291

[(I − T)T µ1] (t, x2) = δM,1g̃(t, x2) + µ2(t,x) + (Λµ0)(t, x2).(145)1292
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Using the fact that µ0 ∈ PM
b and the fact that Λ keeps PM

b invariant we obtain that the term (Λµ0)(t, x)
appearing in (145) is in PM

b . As in paragraph 7.1.4, we write the Neumann serie expansion associated to
(145):

(T µ1)(t, x2) := δM,1

∑
j≥0

Tj(g̃(t, x2)) +
∑
j≥0

Tj(µ2(t,x)) +
∑
j≥0

Tj(Λµ0(t, x2)).

Recall that each iteration of T induces the evaluation in (t,x). So from Proposition 31, Tj(µ2(t,x)) is zero1293

for all j ≥ 2 and Tj(Λµ0(t, x2)) as soon as j ≥ 1 (beacause µ2 ∈PM−2
b and Λµ0 ∈PM

b ). From Proposition1294

32, Tj(g̃(t, x2)) is zero for all j ≥ 2. So the Neumann serie expansion only contains a finite number of terms1295

and reads:1296

(146) (T µ1)(t, x2) := δM,1

(
g̃(t, x2) + Tg̃(t,x)

)
+ µ2(t,x) + Tµ2(t2,x2) + (Λµ0)(t, x2).1297

Up to the source term in the interior, µ0 and µ1 solve the same transport equation so we can write:1298

(147) µ1(t, x2) = K
(
δM,1

(
g̃(t, x2) + Tg̃(t,x)

)
+ µ2(t,x) + Tµ2(t2,x2) + Λµ0(t, x2)

)
.1299

where we recall that K is the operator that to a source term f associates the solution of the transport1300

equation T u = f . When we evaluate (147) in (t,x) we obtain, using Propositions 31 and 32, that:1301

(148) µ1(t,x) = K
(
δM,1g̃(t,x) + µ2(t2,x2)

)
.1302

Let us stress that (148) written in this form is not true. Indeed in this formulation, we used the fact1303

that K and the evaluation (t,x) commute which is is clearly false. However we are in this purpose only1304

interested in the profile spaces in which the terms in the right hand side of (148) lie and we are not really1305

interested in their precise values. As from Proposition 33, K keeps the spaces PM−n
b invariant, our abuse1306

of notations is not so important (as far as the spaces PM−n
b are concerned). But the reader has to keep in1307

mind that if he really wants to compute the WKB expansion it is necessary to apply K and then make the1308

evaluation (t,x).1309

1310

From equations (144) and (148) we deduce that1311

(149) µ0(t, x) = K µ1(t,x) = K 2
(
δM,1g̃(t,x) + µ2(t2,x2)

)
.1312

As a consequence µ0 can be expressed in terms of µ2 (and µ2 only) evaluated in a time corresponding to two1313

complete circuits around the loop. Once again this observation meets the intuition given in Section 4.1314

1315

More generally, we can repeat exactly the same arguments for all n ≥ 1 to obtain that: for all n > 0 :1316

(150) µn(t, x2) = K

δn,M M∑
j=0

Tj g̃(tj ,xj) +

min(n+1,M)∑
j=1

Tj−1µn+1(tj ,xj) +

min(n−1,M)∑
j=0

TjΛµn−1(tj ,xj)

 .1317

If for all 0 < n ≤M +1, µn ∈PM−n
b , these formulas make sense for 0 < n ≤M (because we can ensure that1318

the Neumann serie expansion contains a finite number of terms). We deduce from (150) that for all l ≤M :1319

(151) µn(tl,xl) = K

δn,M M∑
j=l

Tj g̃(tj ,xj) +

min(n+1,M)∑
j=l+1

Tj−1µn+1(tj ,xj) +

min(n−1,M)∑
j=l

TjΛµn−1(tj ,xj)

 ,1320

from which it follows that for all n < M , each µn(tn,xn) is equal to µn+1(tn+1,xn+1), and that for n = M ,1321

µn(tn,xn) is equal to g(tM ,xM ). A simple iteration in (149) shows that:1322

(152) µ0(t, x2) = K M g̃(tM ,xM ),1323

equation determining in a unique way µ0 ∈ PM
b in terms of the known source term g. This concludes the1324

resolution of equation (85).1325

1326
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Let us point that (152) meets with the intuition described in Section 4 that µ0 depends on the initial1327

information which has made M complete circuits around the loop.1328

1329

Now that the value of the trace µ0 is determine it end up the determination of the zero order amplitudes1330

of the loop indices. Indeed these four amplitudes are given by (66)-(68)-(70) and (71). The initialization of1331

the resolution of the cascades (52)-(55) and (56) is finished and we now have to determine all the others zero1332

order amplitudes in (51).1333

7.2. Determination of the others amplitudes in the WKB expansion. Now that at least one1334

amplitude is determined to determine all the others it is sufficient to find an order of resolution. The main1335

feature in the quarter space geometry is that compared to the half space we do not have any natural order1336

of resolution. In fact we just have a partial order. However this partial order is sufficient to determine all1337

the others amplitudes in the WKB expansion.1338

The construction and, in particular, the partial order of resolution used are exactly the same as in [4] so1339

we will not give all the details of this construction here. We refer to [4] for a complete proof.1340

7.2.1. Determination of the oscillating amplitudes. Thanks to Proposition 23 the set of indices1341

Ios \ {nj} can be expressed as a partition (see (45) and 3 for more details). We will here describe the1342

determination of an arbitrary oscillating amplitude associated to an index i in one of the sets (or trees) let1343

us say Aa1 . The determination of the amplitudes in the others sets composing (45) is similar and will not be1344

discussed here.1345

1346

Let us denote by `i := (`1, `2, ..., `p) the type V sequence linking n1 to i (see Definition 18 and Proposition1347

23). By definition of the tree Aa1 (see again Definition 18), `1 = a1 and as a consequence `1 is associated to1348

an outgoing-incoming group velocity, `2 to an incoming-outgoing group velocity and so one (note that `p is1349

associated to an incoming-outgoing group velocity (resp. outgoing-incoming) if p is even (resp. odd)).1350

Before to determine the amplitude associated to i we will have to determine all the amplitudes in the1351

sequence `i. As it has been done to the loop’s amplitudes (see Paragraph 7.1), thanks to the fact that u0,`11352

is polarized, we apply Lax’s Lemma so u0,`1 satisfies the transport equation:1353

(153) (∂t + v`1 · ∇x)u0,`1 = 0.1354

with homogeneous initial condition. As `1 ∈ Ioi this transport equation needs a boundary condition on ∂Ω2

to be solved. This boundary condition is given by cascade (55) written for n = 0 and k = n1:

B2

 ∑
j∈(Ψ(n1)∩Ios)\{n1}

u0,j + U0,n1,2|X2=0


|x2=0

= −B2u0,n1|x2=0
, if n1 ∈ R2,

or

B2

 ∑
j∈(Ψ(n1)∩Ios)\{n1}

u0,j


|x2=0

= −B2u0,n1|x2=0
, if n1 ∈ R2 \R2.

We reiterate the computations made for u0,n2 (see the beginning of Section 7). We use the uniform Kreiss-

Lopatinskii condition and then we multiply by P `12 to obtain in both cases:

u0,`1|x2=0
= −P `12 φn1

2 B2u0,n1|x2=0
.

So we have to solve the transport equation:1355 
(∂t + v`1 · ∇x)u0,`1 = 0, in ΩT ,

u0,`1|x2=0
= −P `12 φn1

2 B2u0,n1|x2=0
, on ∂Ω2,T ,

u0,`1t≤0
= 0, on Ω,

1356

this equation can be integrate along the characteristics (because u0,n1 and its trace on ∂Ω2,T ) are known) to1357

determine u0,`1 . It is interesting to remark that if t < TM then u0,n1 is zero and so do u0,`1 . As a consequence1358

the amplification of order M + 1 only spreads to the amplitudes away from the loop for t ≥ TM (that is after1359
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M complete circuits). Also note that as u0,n1|x2=0
vanishes in a neighborhood of x1 = 0 so do u0,`1|x2=0

and1360

by resolution of of the transport equation u0,`1|x1=0
is zero near x2 = 0.1361

1362

Then we construct u0,`2 . In view of the definition of the tree A`1 , `2 ∈ Iio so u0,`2 is solution of:1363 
(∂t + v`2 · ∇x)u0,`2 = 0, in ΩT ,

u0,`2|x1=0
= −P `21 φ`11 B1u0,`1|x1=0

, on ∂Ω1,T ,

u0,`2|t≤0
= 0, on Ω.

1364

This equation uniquely determines u0,`2 because u0,`1|x1=0
is known and we have u0,`1|x2=0

= 0 for x1 small1365

enough. We then proceed recursively to determine all the u0,`k , 3 ≤ k ≤ p.1366

1367

We now turn to the construction of u0,i. We have to distinguish two cases according to the parity of p.1368

Let us assume that p is even. Then by definition of A`1 we have i ∈ Ioi ∪Iii. If i ∈ Ioi the amplitude u0,i1369

solves:1370 
(∂t + vi · ∇x)u0,i = 0, in ΩT ,

u0,i|x2=0
= −P `22 φ

`p
2 B2u0,`p|x2=0

, on ∂Ω2,T ,

u0,i|t≤0
= 0, on Ω,

1371

if i ∈ Ioi and we proceed as for u0,`1 .1372

If i ∈ Iii, then u0,i solves the same transport equation but this time it needs boundary conditions
on both sides of the boundary. The boundary condition on ∂Ω2 is unchanged. Concerning the boundary
condition on ∂Ω1 it reads (recall that incoming-incoming phases do not create new phases):

B1u0,i|x1=0
= 0.

As i ∈ Iii, u0,i|x1=0
∈ Es1(iτ , ξ

i
2), where ξ

i
2 is the ordinate of f i, so thanks to the uniform Kreiss-Lopatinskii1373

we obtain u0,i|x1=0
= 0. Consequently u0,i solves :1374 

(∂t + vi · ∇x)u0,i = 0, in ΩT ,

u0,i|x1=0
= 0, on ∂Ω1,T ,

u0,i|x2=0
= −P `22 φ

`p
2 B2u0,`p|x2=0

, on ∂Ω2,T ,

u0,i|t≤0
= 0, on Ω.

1375

This equation can be solved with a highly regular solution (which is needed to compute the higher order1376

amplitudes un,i as they involve derivatives of u0,i) because u0,`p|x2=0
is zero at x1 = 0. If u0,`p|x2=0

is not1377

zero at x1 = 0 then we only recover u0,i ∈ L2(Ω) (see [4] for more details).1378

7.2.2. Determination of the evanescent amplitudes. In this paragraph we conclude the construc-1379

tion of the leading order of the geometric optics expansion by giving elements of proof to construct an1380

arbitrary evanescent amplitude associated to the index i lying in the tree Aa1 . Without loss of generality we1381

assume that this amplitude is evanescent for the side ∂Ω1. Proposition 24 implies that the type V sequence1382

`i := (`1, `2, ..., `p) linking n1 to i has an odd number of terms. Moreover, from the previous paragraph all the1383

`j has already been constructed. We then recall the following lemma due to [12] which states that evanescent1384

equations in the cascade (52) can be solved in the profile space Pev,1:1385

Lemma 35. For j = 1, 2, and k ∈ Ri, let1386

Pkev,jU(Xj) := eXjAj(τ,ξ
k
3−j)P

k
s,jU(0),(158)1387

Qkev,jF (Xj) :=

∫ Xj

0

e(Xj−s)Aj(τ,ξ
k
3−j)P

k
s,jA

−1
j F (s)ds−

∫ +∞

Xj

e(Xj−s)Aj(τ,ξ
k
3−j)P

k
u,jA

−1
i F (s)ds.(159)1388

Then, for all F ∈ Pev,j the equation:1389

Lk(∂Xj )U = F,1390
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admits a solution in Pev,i. Moreover, this solution reads:1391

U = Pkev,iU + Qkev,iF.1392

This lemma tells us that to construct any evanescent amplitude for the side ∂Ω1 it is in fact sufficient to
know the value of the trace the solution on {X1 = 0}. Following [12], to determine this trace we study the
boundary condition (55) written for k = i and n = 0 from which we deduce the value of the ”double” trace
on {X1 = x1 = 0}. Indeed thanks to the uniform Kreiss-Lopatinskii condition we obtain:

U0,i,k|X1=x1=0
= −P iev,1φ

i
1B1u0,`p|x1=0

,

where we recall that the right hand side has already been determined.1393

Then as in [12], we are free to straighten the ”double” trace into a ”single” one by setting (for example):

U0,i,k|X1=0
= −χ(x1)S

i
ev,1B1u0,`p|x1=0

,

where χ is some function in D(]−1,+∞[) satisfying χ(0) = 1.1394

1395

It is interesting to remark that evanescent amplitudes suffer the same amplification as the oscillating ones1396

and this even if the degeneracy of the uniform Kreiss-Lopatinskii condition is in the hyperbolic region and1397

thus not related to complex phases. Such a behaviour is not observable for the hyperbolic boundary value1398

problem in the half space because the possible evanescent modes are ”turned on” by the source term and can1399

not be ”turned on” by oscillating modes. As for the oscillating amplitudes, one can show that evanescent1400

amplitudes of order zero are zero for t < TM .1401

7.3. Construction of the higher order terms and summary. As for the construction of the leading1402

order of the WKB expansion, we have to distinguish the case β ≤ 1 and the case β > 1. But once again we1403

only need Proposition 31 (resp. Proposition 34) to conclude if β ≤ 1 (resp. β > 1) so the proof is the same1404

in both cases. We will assume that β ≤ 1 and we continue to note PM−n
b for PM−n

b,≤ .1405

7.3.1. The term of order one. Once the amplitudes of order zero, and more precisely the keystone1406

µ0, are determined we can repeat our method of construction to determine the amplitudes of order one. As1407

for the leading order, we start by the determination of the indices of the loop, that is the nj for j = 1, ..., 4.1408

We remark that equations (89)-(106)-(107) and (108) give the unpolarized part of the u1,nj , j = 1, ..., 4 in1409

terms of µ0 (which at this step of the proof is a known function). Similarly the values of the polarized parts1410

are determined in terms of the unknown trace µ1.1411

So it remains to determine the unknown trace µ1 to construct the amplitudes of order one for the loop’s1412

elements. Noticing that the unpolarized part of the amplitudes for the indices outside of the loop are deter-1413

mined (because from (86) they only depend on the associated amplitude of order zero) and reiterating the1414

same computations as in paragraph 7.2 determines their polarized part in terms of µ1. As a consequence we1415

just have to determine µ1 to construct all the oscillating amplitudes of order one.1416

1417

To do this from paragraph 7.1.4, µ1 satisfies equation (147), that is:1418

(162) (T µ1)(t, x2) := δM,1

(
g̃(t, x2) + Tg̃(t,x) + T2g̃(t2,x2)

)
+
(
µ2(t,x) + Tµ2(t2,x2)

)
+ Λµ0(t, x2).1419

where µ2, appearing in the right hand side, is assumed to be PM−2
b and where we used the notations of1420

paragraph 7.1.4. From (162), after integration along the characteristics, we deduce that:1421

µ1(t, x) = K

(
δM,1

1∑
k=0

Tkg̃(tk,xk) + Λµ0(t, x)

)
+ δM≥2K

min(M,2)∑
k=1

Tk−1µ2(tk,xk)

 .(163)1422

In this equation the first term in the right hand side is a known function which only depends on g̃. So1423

to express µ1 in terms of g̃ we just have to express µ2(t,x) and µ2(t2,x2) in terms of g̃. In view to do so, we1424

use equation (143) written for n = 3 to obtain:1425

(164) µ2(t, x) = K

δM,2

2∑
k=0

Tkg̃(tk,xk) +

min(M,3)∑
k=1

Tk−1µ3(tk,xk)

+ K (Λµ1(t, x) + TΛµ1(t,x)),1426
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and a new difficulty appears in (164) compared to (136). Indeed in (164) two terms, while there is only one in1427

(136) (in terms of µ0, depend on µ1 each of them lying respectively in PM
b and in PM−1

b . So a priori they1428

are not zero. However in (163) we are not interested in µ2 but we are interested in µ2(t,x) and µ2(t2,x2).1429

A simple change of variables in (164) shows that these quantities are given by:1430

µ2(t,x) = K

δM,2

2∑
k=1

Tk−1g̃(tk,xk) +

min(M,3)∑
k=2

Tk−2µ3(tk,xk)

+ K Λµ1(t,x),(165)1431

µ2(t2,x2) = K
(
δM,2g̃(t2,x2) + δM≥3µ3(t3,x3)

)
,1432

where for I ⊂ R, δI is the characteristic function of I. Now let us make the change of variables (t,x) in1433

(163), it follows that :1434

µ1(t,x) = δM,1K (g̃(t,x)) + δM≥2K µ2(t2,x2).1435

that is to say :1436

(167) K Λµ1(t,x) =

{
K ΛK g̃(t,x), if M = 1,
K ΛK 2

(
δM,2g̃(t2,x2) + δM≥3µ3(t3,x3)

)
, if M > 1 ,

1437

and we are free to reinject (167) in (165) and then to reinject (165) in (163) to obtain that :1438

(168) µ1(t, x) =



K (g̃(t, x) + Tg̃(t,x) + Λµ0(t, x)) + K 2ΛK g̃(t,x), if M = 1,
K Λµ0(t, x)

+K 2
(
δM,2

∑2
k=1 Tk−1g̃(tk,xk) +

∑min(M,3)
k=2 Tk−2µ3(tk,xk)

)
+K 2ΛK 2

(
δM,2g̃(t2,x2) + δM≥3µ3(t3,x3)

)
+K TK

(
δM,2g̃(t2,x2) + δM≥3µ3(t3,x3)

)
,

if M > 1 .1439

Equation (168) ends the discussion in the particular case M = 1. To treat the case M > 1, let us remark1440

that in (168) the unknown part of the right hand side of equation depends on µ3(t2,x2) and possibly on1441

µ3(t3,x3). So we are exactly in the same situation as in equation (163) with µ3(t2,x2), µ3(t3,x3) in place of1442

µ2(t,x), µ2(t2,x2) and we can thus repeat the same computations to express µ1 in terms of µ4(t3,x3) and1443

µ4(t4,x4) and so on.1444

A tedious (but not difficult) reiterative process shows that for all M > 1, µ1 is given by :1445

µ1(t, x2) = K Λµ0(t, x2) + K M
(
g̃(tM−1,xM−1) + Tg̃(tM ,xM )

)
1446

+

M−1∑
k=0

K M+1−kΛK k+1g̃(tM ,xM ) +

M−1∑
k=1

K kTK M−kg̃(tM ,xM ),(169)1447

equation which determines in a unique way µ1 in terms of g̃ and the known operators Λ, T. This completes1448

the construction of µ1 and more generally of the amplitudes of order one in the WKB expansion.1449

Moreover, all the terms composing (169) are in PM
b , except g̃(tM−1,xM−1) which is in PM−1

b . Thus1450

µ1 defined by (169) is an element of PM−1
b , so it is in the good profile space. To conclude this discussion let1451

us remark that before the time TM , µ1 (and consequently the u1,nj ) only depends on the information that1452

was initially present and which has made M − 1 complete circuits around the loop.1453

1454

Once the amplitudes for indices associated to the loop are known, the construction of the amplitudes1455

which do not lie on the loop follows the same kind of arguments as those given in paragraph 7.2. A precise1456

construction will not be given here and we refer to [4] for more details.1457

7.3.2. Summary : the construction of higher order terms. In this paragraph we sketch some1458

elements about the construction of the amplitudes of higher order in view to give a summary of the previous1459

construction. Let us assume that the amplitudes of order less that n − 1 have already been determinated,1460

our aim is to construct the amplitude of order n.1461

1462

i) First of all, from the cascade of equations (52), we know that the unpolarized part of the oscillating1463

amplitudes of order n is known. So we only have to determine the polarized part of the oscillating amplitudes.1464
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Moreover, from Lemma 35 and the definition of the operator Qev1 (resp. Qev2), see (159), concerning the1465

evanescent amplitudes, we will only have to determine Pev1 (resp. Pev2).1466

1467

ii) To determine the polarized part of the oscillating amplitudes of order n, we start, as it has been done1468

in paragraphs 7.1 and 7.3.1 by the determination of the loop’s indices. We thus reiterate the computations1469

of paragraph 7.1 to show that to construct these polarized parts it is necessary and sufficient to construct1470

the scalar component of the trace on ∂Ω1 of the amplitude un,n1 , that is to say, µn.1471

1472

iii) The analysis of paragraphs 7.1.5 and 7.1.6 tells us that this trace has to satisfy equation (150). In1473

other words, µn depends on the unknown µn+1 and the known functions µn−1 (and possibly of g̃). More1474

precisely µn depends on the µn+1(tk,xk), for k = 1, ...,min(n+ 1,M). Then applying again equation (150)1475

but for µn+1 we obtain that µn+1 depends on µn and µn+2. With more details, the µn+1(tk,xk), for1476

k = 1, ...,min(n+ 1,M) admits the following dependencies :1477

(170)

µn(tk,xk) µn+2(tk,xk)
µn+1(t,x) k = 1, ...,min k = 2, ...,min
µn+1(t2,x2) k = 2, ...,min k = 3, ...,min
...

...
...

µn+1(tmin,xmin) k ∈ ∅ k ∈ ∅ or k = M

1478

where we denoted min := min(n,M), min := min(n + 1,M) and min = min(n + 2,M). Let us study the1479

dependency on µn. The worst term is µn(t,x), indeed the other terms will be eliminate before µn(t,x) (by1480

the same arguments) and are harmless. Using equation (151), we obtain that µn(t,x) in fact depends on1481

µn+1(tk,xk), for k = 2, ...,min. But the tabular (170) tells us that these traces depend, in fact, on µn(tk,xk)1482

for k = 2, ...,min. As a consequence, µn+1(t,x) can be expressed in terms of the µn(tk,xk) for k = 2, ...,min.1483

Repeating the same argument we obtain that µn+1(t,x) can be expressed in terms of the µn(tk,xk) for1484

k = 3, ...,min. Then if we repeat min times this argument, we obtain that the µn+1(tk,xk) for k = 1, ...,min1485

(and consequently µn) can be expressed in terms of µn+2(tk,xk) for k > 2 only.1486

1487

We thus repeat exactly the same reasoning for µn+2(tk,xk) to show that it can be expressed in terms of1488

the µn+3(tk,xk) for k > 3 and so on to determine µn in terms of g̃ and µn−1 (up to some compositions by1489

the operators T and Λ) only, as it has already been made in paragraphs 7.1.6 and 7.3.1. This concludes the1490

construction of the trace µn and as a consequence, the construction of the amplitudes linked to the loop’s1491

indices of order n.1492

1493

iv) The construction of the other polarized part of the oscillating (or equivalently of the Pev1U (resp.1494

Pev2U) for the evanescent amplitudes for the side ∂Ω1 (resp. ∂Ω2)) is then easy. Indeed these amplitudes1495

are linked to frequencies for which the uniform Kreiss-Lopatinskii condition holds and we can use the ”tree”1496

structure of the frequency set to conclude (see [4] for a precise construction).1497

8. Proof of the main result. With Theorem 28 in hand, it is now easy to show Theorem 14. We1498

argue by contradiction. We thus assume that the corner problem (1) is weakly (or strongly) well-posed in the1499

sense that there exists a positives integers K,K1 and K2 such that the corner problem (1) admits a solution1500

satisfying the energy estimate:1501

(171)

‖u‖2L2(ΩT ) + ‖u|x1=0‖2L2(∂Ω1,T ) + ‖u|x2=0‖2L2(∂Ω2,T ) ≤ CT
(
‖f‖2HK(ΩT ) + ‖g1‖2HK1 (∂Ω1,T ) + ‖g2‖2HK2 (∂Ω2,T )

)
,1502

for T > 0 if β ≥ 1 and 0 < T < Tmax if β < 1. According to Theorem 28, for any M ∈ N one can always1503

construct a truncated geometric optics expansions for the corner problem (47). Here we only keep the K + 21504

first terms in the truncated expansion. It is given by:1505

uεapp :=

K+1∑
n=0

∑
k∈Ios

εne
i
εϕk(t,x)un,k(t, x)(172)1506

+

K+1∑
n=0

∑
k∈R1

εne
i
εψk,1(t,x2)Un,k,1

(
t, x,

x1

ε

)
+

K+1∑
n=0

∑
k∈R2

εne
i
εψk,2(t,x1)Un,k,2

(
t, x,

x2

ε

)
.1507
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Moreover one can always choose g in such a way that the leading order of uεapp is not identically zero.1508

Let uε be the solution of (47). The error uε − uεapp satisfies the corner problem :1509 
L(∂)(uε − uεapp) = fε, in ΩT ,

B1(uε − uεapp)|x1=0 = 0, on ∂Ω1,T ,

B2(uε − uεapp)|x2=0 = 0, on ∂Ω2,T

(uε − uεapp)|t≤0 = 0, on Ω,

1510

where :1511

fε := εK+1

[ ∑
k∈Ios

ei
ϕk
ε L(∂)uK+1,k1512

+
∑
k∈R1

ei
ψk,1
ε (L(∂)UK+1,k,1)|X1=

x1
ε

+
∑
k∈R2

ei
ψk,2
ε (L(∂)UK+1,k,2)|X2=

x2
ε

]
.1513

From the energy estimate (171) we have:1514

(174) ‖uε − uεapp‖L2(ΩT ) ≤ ‖fε‖HK(ΩT ).1515

It is then easy to see from its expression that fε is O(ε) in HK(ΩT ) (the worst term to handle with is the1516

one for which all the derivatives fall on the terms ei
ϕk
ε , ei

ψk,1
ε or ei

ψk,2
ε ). Consequently the error uε − uεapp1517

is O(ε) in L2(ΩT ). Using the fact that uε is a solution of (47) we obtain that:1518

(175) ‖uε‖L2(ΩT ) ≤ ‖gε‖HK1 (ΩT ),1519

from which we deduce that uε is O(εM−K1) in L2(ΩT ). We choose M > K1, by the triangle inequality and1520

inequalities (174) and (175), it follows that uεapp is at least O(ε) which is a contradiction with the fact that1521

u0,n1
is nonzero.1522

9. Examples, conclusion and conjectures.1523

9.1. Examples. Of course Theorem 14 to the corner problem (2) even if it may seem a bit abusive.1524

Indeed, Theorem 14 needs strict hyperbolicity while the corner problem (2) is clearly not strictly hyperbolic.1525

However, in the proof of Theorem 14, the only points where we used the hyperbolicity hypothesis were to1526

establish the block structure and to use Lax Lemma. It can be shown that these points are still true for geo-1527

metrically regular hyperbolic systems (see [16] for a precise definition) as soon as we are away from crossing1528

points, which is the case for (2) under this choice of the source term.1529

1530

A strictly hyperbolic example for which Theorem 14 applies is due to [19, paragraph 7]. In this example,1531

the authors construct a system whose characteristic variety is composed of two intersecting ellipses choosen1532

in such a configuration that a loop exists. The construction is the following a first ellipse is fixed and three1533

points A,B,D are chossen on this ellipse in such a way that:1534

• D̂AB is a right angle1535

• The group velocity in A is incoming-outgoing while the group velocities in B and D are outgoing-1536

incoming1537

This determines a unique C such that ABCD is a rectangle. Then we choose a second ellipse passing through1538

C such that the group velocity in this point is incoming-outgoing. Without loss of generality the loop can1539

be constructed in the half space {ξ2 < 0}, to make sure that the velocity along the boundary has the good1540

sign. Then one chooses a boundary condition to make sure that the associated corner problem is in the WR1541

class. This point can be easily done because at this stage of the construction the system is composed of two1542

decoupled subsystems.1543

1544

To obtain a strictly hyperbolic system, it is sufficient to make the perturbation described in [19, paragraph1545

9]. The associated perturbed operator is strictly hyperbolic and remains in WR class, because this class is1546

stable by small perturbations (see [5]).1547
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9.2. Conclusion and conjectures. In this article, we constructed the rigorous geometric optics expan-1548

sion for a corner problem for which the uniform Kreiss-Lopatinskii condition breaks down on a selfinteraction1549

frequency. We have shown that it was always possible to choose the source term with support close enough of1550

the corner problem to makes sure that the associated geometric optics expansion suffers M+1 amplifications,1551

before a fixed time T , compared to the source term. M can be arbitrarily big, so this leads to the fact that such1552

a corner problem can not be weakly well-posed because it suffers an arbitrarily big number of losses of deriva-1553

tives and thus present an Hadamard’s instability. In terms of well-posedness it is the worst possible situation.1554

1555

As a consequence we shown that for hyperbolic corner problem a weak instability can be repeated an1556

arbitrarily number of times to cause a violent instability which differs from the degeneracy of the Kreiss-1557

Lopatinskii condition.1558

1559

Nevertheless in the author opinion systems admitting a loop are not so widespread at least for small1560

values of N . Indeed, loops can not appear if N = 2 (see [19]) and at the present time the examples in this1561

article are, in the author knowledge, the only methods to construct a system with a loop (in particular we do1562

not know any physical example). But it also seems reasonable to think that for large values of N loops are1563

much more frequent. Indeed when N becomes large the geometry of the characteristic variety of the system1564

becomes really complicated and we can imagine that more the geometry is more there are possibilities to1565

have loops.1566

However obtain a more rigorous answer about the occurence of loops (or a full characterization of systems1567

with loops) is a important question in the study of hyperbolic initial boundary value problems in the quarter1568

space which is left for future studies.1569

1570

In this article we treated a very particular kind of degeneracy of the uniform Kreiss-Lopatinskii condition1571

and many others are possible. In these cases, one should be more optimistic. Let us formulate the following1572

reasonable conjectures.1573

1574

First of all let us stress that when the failure of the uniform Kreiss-Lopatinskii condition happens away1575

from the loop then the weak instability can not be repeated an arbitrarily number of times and thus the1576

system should be weakly well-posed. More precisely:1577

� If the uniform Kreiss-Lopatinskii condition breaks down in the elliptic area, using the fact that evanes-
cent modes for the side ∂Ω1 are not reflected on the side ∂Ω2, the amplification observed in the high frequency
expansion for the boundary value problem in the half space should not be improved. So we believe that the
leading order in the WKB expansion should be of order ε0 with a source term in the interior of order ε and
a source term on the side ∂Ω1 of order ε0. The associated corner problem should be weakly well-posed with
an energy estimate reading:

‖u‖2L2(ΩT ) + ‖u|x1=0‖2L2(∂Ω1,T ) + ‖u|x2=0‖2L2(∂Ω2,T ) ≤ CT
(
‖f‖2L2(ΩT ) + ‖g1‖2H1(∂Ω1,T ) + ‖g2‖2L2(∂Ω2,T )

)
.

� When the uniform Kreiss-Lopatinskii condition is violated in the mixed area in such a way that
kerB1 ∩ Es1(ζ) = kerB1 ∩ Es,e1 (ζ) = span {e}, where Es,e1 (ζ) denotes the ”elliptic” component of Es1(ζ)
(see [2] and [12]), then the same argument should apply. The conjecture is then that we have the same
amplifications as for the boundary value problem in the half space. The expected energy estimate is:

‖u‖2L2(ΩT ) + ‖u|x1=0‖2L2(∂Ω1,T ) + ‖u|x2=0‖2L2(∂Ω2,T ) ≤ CT
(
‖f‖2

H
1
2 (ΩT )

+ ‖g1‖2H1(∂Ω1,T ) + ‖g2‖2L2(∂Ω2,T )

)
,

or

‖u‖2L2(ΩT ) + ‖u|x1=0‖2L2(∂Ω1,T ) + ‖u|x2=0‖2L2(∂Ω2,T ) ≤ CT
(
‖f‖2L2(ΩT ) + ‖g1‖2H1(∂Ω1,T ) + ‖g2‖2L2(∂Ω2,T )

)
,

depending of a technical assumption already discussed in [2].1578

1579

� Finally when the uniform Kreiss-Lopatinskii condition fails in the hyperbolic region (but away from
the loop) the conjecture is that the leading order in the geometric optics expansion is of order ε0 for source
terms of order εM , where M denotes the number of time that a ray has been amplified. More precisely M is
defined by:

M := max
i∈Ios

#(Υ ∩ Li),
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where Li is the set containing the values of the type V sequence linking i to the first generated index in the1580

phase generation process. Indeed, an amplified ray should be amplified again if it contains in its reflections a1581

phase associated to a frequency of degeneracy of the uniform Kreiss-Lopatinskii condition. The conjectured1582

energy estimate is thus given by:1583
1584

(176) ‖u‖2L2(ΩT ) + ‖u|x1=0‖2L2(∂Ω1,T ) + ‖u|x2=0‖2L2(∂Ω2,T )1585

≤ CT
(
‖f‖2L2

x1
(HM (∂Ω1,T )) + ‖g1‖2HM (∂Ω1,T ) + ‖g2‖2L2(∂Ω2,T )

)
.1586

1587

As a consequence the WR class should remains a class where weak stability is observed as soon as there is1588

no loop or that the frequency of degenerecy is away from the loop. However in the WR class the loss of1589

derivatives should be more marked for the corner geometry than for the half space geometry.1590

1591

All the previous conjectures are made under the assumption that the transport along the boundary1592

spreads the information away from the corner. The energy estimates and the amplifications in the geometric1593

optics expansions when the transport along the boundary sends the information to the corner are left for1594

future studies.1595

1596

Appendix.1597

Details of the computations to establish equations (118)-(119) and (120). Let us develop :1598

Qn3
1 L(∂)(I − Pn3

1 )u1,n3 = −
ξ2
ξ
2

β−1
1 β−1

2

[
Qn3

1 Rn3
1 S n3e

(
∂2ttµ0 −

τ

ξ2
∂2t2µ0

)
1599

+ Qn3
1 A2R

n3
1 S n3e

((
−

1

vn2,2
+

β−1
2

vn1,1

)
∂2ttµ0 + β−1

1 β−1
2 ∂2t2µ01600

−
τ

ξ2

((
−

1

vn2,2
+

β−1
2

vn1,1

)
∂2t2µ0 + β−1

1 β−1
2 ∂222µ0

))]
(t3,x3),1601

where we used the fact that Qn3
1 A1R

n3
1 = 0. We then use the relation between Qn3

1 Rn3
1 S n3e and Qn3

1 A2R
n3
1 S n3e given in1602

(116) to express Qn3
1 L(∂)(I − Pn3

1 )u1,n3 in terms of Qn3
1 Rn3

1 S n3e only :1603

Qn3
1 L(∂)(I − Pn3

1 )u1,n3 = −
ξ2
ξ
2

β−1
1 β−1

2 Qn3
1 Rn3

1 S n3e

[
∂2ttµ0

(
1 +

τ

ξ
2

(
1

vn2,2
−

β−1
2

vn1,1

))
(177)1604

− C3∂
2
t2µ0 + ∂222µ0β

−1
1 β−1

2

τ2

ξ2ξ2

]
(t3,x3),1605

where

C3 :=
τ

ξ2

[
1 +

τ

ξ2

(
1

vn2,2
−

β−1
2

vn1,1

)]
+

τ

ξ
2

β−1
1 β−1

2 .

From Lemma 30, we know that the first term in C3 is
ξ2
ξ
2

β−1
1 β−1

2 . We thus obtain that C3 = 2 τ
ξ
2

β−1
1 β−1

2 , and we can factorize1606

(177) to obtain (119).1607
1608

Using the fact that Qn4
2 A2R

n4
2 = 0 we develop Qn4

2 L(∂)(I − Pn4
2 )u1,n4 to obtain :1609

Qn4
2 L(∂)(I − Pn4

2 )u1,n4 = −
ξ2

ξ1

3∏
j=1

β−1
j

[
Qn4

2 Rn4
2 S n4e

(
∂2ttµ0 −

τ

ξ2
∂2t2µ0

)
1610

+ Qn4
2 A1R

n4
2 S n4e

−A∂2ttµ0 −
3∏
j=1

β−1
j ∂2t2µ01611

−
τ

ξ2

−A∂2t2µ0 −
3∏
j=1

β−1
j ∂222µ0

 (t4,x4),1612

where we recall that A is defined in (74). We then use (117) to express this equation in terms of Qn4
2 Rn4

2 S n4e only :1613

Qn4
2 L(∂)(I − Pn4

2 )u1,n4 = −
ξ2

ξ1

3∏
j=1

β−1
j Qn4

2 Rn4
2 S n4e

∂2ttµ0
(

1 +A
τ

ξ1

)
+ C4∂

2
t2µ0 +

τ2

ξ1ξ2

3∏
j=1

β−1
j ∂222µ0

 (t4,x4),1614

where C4 is defined by :

C4 := −
τ

ξ2

(
1 +A

τ

ξ1

)
+

τ

ξ1

3∏
j=1

β−1
j .

Once again thanks to Lemma 30, we obtain that C4 in fact reads C4 = 2 τ

ξ1

∏3
j=1 β

−1
j . As a consequence we obtain (120).1615
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