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1. INTRODUCTION

Mathematical models of dynamic systems are required in most
area of scientific enquiry and take various forms, such as dif-
ferential equations, difference equations, state-space equations
and transfer functions. The most widely used approach to math-
ematical modeling involves the construction of mathematical
equations based on physical laws that are known to govern the
behaviour of the system. While the advantage of these methods
relies on the deep physical insight of the resulting model, their
main drawback is the complexity of the model that makes them
difficult to be used in applications such as control system de-
sign, prediction or decision making.
An alternative to physically-based mathematical modeling is
the so-called data-based system identification, which can be
applied to any system where experimental data are avail-
able. A large scope of system identification approaches has
been developed over the past decades. Amongst these, we can
cite the prediction error and maximum-likelihood frameworks
(see e.g. Ljung (1999); Söderström and Stoica (1989); Young
(2011)), the subspace-based identification (see e.g. Van Over-
schee and De Moor (1996); Katayama (2005)), the frequency-
domain identification (see e.g. Pintelon and Schoukens (2001);
McKelvey (2002)), the closed-loop identification case (see e.g.
Van den Hof (1998); Forssell and Ljung (1999); Ninness and
Hjalmarsson (2005); Gilson and Van den Hof (2005)).
Most physical systems are continuous-time (CT) whereas,
mainly due to the advent of digital computers, research on
system identification has concentrated on discrete-time (DT)
models from underlying CT systems input/output samples. Re-
cently, interest in identification of CT systems from DT data
has arisen (see e.g. Sinha and Rao (1991); Unbehauen and
Rao (1987); Garnier and Wang (2008) and references herein)
and offer a clever solution in many cases such as irregularly
sampled data.
Moreover, systems encountered in practice are often nonlinear
or present a time-varying nature. Unlike linearity, non-linearity
is a non-property and therefore, non-linearity cannot be defined
in a general way. A common framework for the identification
of nonlinear models has nevertheless been presented in Sjöberg
et al. (1995) and Juditsky et al. (1995). Usually, nonlinear
models are classified into two classes: non-parametric mod-
els and parametric models. However, another type of models

has more recently arose the attention of the system identifica-
tion community and form an intermediate step between Lin-
ear Time-Invariant (LTI) systems and nonlinear/time-varying
plants: the model class of Linear Parameter-Varying (LPV)
systems (Bamieh and Giarré (2002); Tóth (2010)).
When considering methods that can be used to identify (linear
or non linear, CT or DT) models of systems operating in open-
or closed-loop, instrumental variable (IV) techniques are rather
attractive since they are normally simple or iterative modifi-
cations of the linear regression algorithm. For instance, when
dealing with complex processes, it can be attractive to rely on
methods, such as these, that do not require non-convex opti-
mization algorithms. In addition to this computationally attrac-
tive property, IV methods also have the potential advantage that
they can yield consistent and asymptotically unbiased estimates
of the plant model parameters if the noise does not have rational
spectral density or if the noise model is mis-specified; or even
if the control system is non-linear and/or time-varying, in the
closed-loop framework (Gilson and Van den Hof (2005); Gilson
et al. (2011)). Even if several works arise these last ten years
(e.g. Young (2011); Dankers et al. (2014); Van Herpen et al.
(2014); Laurain et al. (2010); Douma (2006)), IV methods have
not yet really received the attention that it deserves.
This paper is dedicated to the use of IV methods in several cases
of system identification. After an introduction of the IV princi-
ples in Section 2, the focus is made on closed-loop system in
Section 3, on LPV models with an application on rainfall-flow
modeling in Section 4 and on frequency domain framework in
Section 5.

2. INSTRUMENTAL VARIABLE METHOD

System identification is based on three main ingredients: data
(experiment design), model set selection, identification crite-
rion, which are used to estimate a model of a given system. In
this paper, we will mainly focus on the identification criterion
named Instrumental Variable (IV).
IV is a criterion aiming at minimizing the prediction error.
Consider a stable, linear, Single Input Single Output (SISO)
data-generating system assumed to be described as

S : y(tk) = G0(q)u(tk) +H0(q)e(tk) (1)
The plant is denoted by G0(q) = B0(q−1)/A0(q−1) with the
numerator and denominator degree equals to n0, q−1 is the



delay operator with q−ix(tk) = x(tk−i). u describes the plant
input signal, y the plant output signal. A colored disturbance
ξ0(tk) = H0(q)e0(tk) is assumed to affect the system, where
e0 is a white noise, with zero mean and variance σ2

e0 .

The following general model structure and parameter plant
model are chosen to model the system

M : y(tk) = G(q, θ)u(tk) +H(q, θ)e(tk) (2)

G : G(q, θ) =
B(q−1, θ)
A(q−1, θ)

(3)

In the prediction error method (PEM), the parameters are com-
puted by minimizing the criterion function (see Ljung (1999))

V (q, θ) =
1
N

N∑
k=1

[ε(tk,θ)]2 (4)

where ε(tk,θ) = y(tk) − ŷ(tk, θ) is the prediction error.
Therefore, the parameters are given as

θ̂ = arg min
θ

1
N

N∑
k=1

(y(tk)− ŷ(tk, θ))
2 (5)

It has to be noted that the estimation of θ̂ might be a non
convex optimization problem for a general nonlinear one-step-
ahead predictor. However, the problem (5) can be simplified,
for e.g., by choosing an adequate model structure. As a result,
for a linear regression, θ̂ is provided by solving the LS solution
where

θ̂ls = arg min
θ

N∑
k=1

(
y(tk)− ϕT (tk)θ

)2
(6)

with ϕ(tk) denotes the regressor.
The other solution is to use the IV criterion where its basic ver-
sion aims at computing the estimate θ̂ by solving (Söderström
and Stoica (1983))

θ̂biv = sol

{
1
N

N∑
k=1

ζ(tk)
(
y(tk)− ϕT (tk)θ

)
= 0

}
(7)

where ζ(tk) is the so-called instrument. There is a large amount
of freedom in the choice of the instrument. It should be corre-
lated with the data but uncorrelated with the noise.This idea has
been generalized to the extended IV framework where

θ̂xiv = arg min
θ

∥∥∥∥∥
[

1
N

N∑
k=1

L(q)ζ(tk)L(q)ϕT (tk)

]
θ

−

[
1
N

N∑
k=1

L(q)ζ(tk)L(q)y(tk)

]∥∥∥∥∥
2

W

, (8)

where ζ(t) ∈ Rnζ with nζ ≥ 2n, ‖x‖2W = xTWx, with W a
positive definite weighting matrix and L(q) a stable prefilter.

By definition, when G0 ∈ G, the extended-IV estimate is
consistent under the following two conditions 1

• ĒL(q)ζ(tk)L(q)ϕT (tk) is full column rank,
• ĒL(q)ζ(tk)L(q)v0(tk) = 0.

The interesting property of the IV methods is that they provide
asymptotically unbiased estimates even if the noise is miss-
specified. However, the choice of ζ(tk), nζ , W and the prefilter
L(q) may have a considerable effect on the covariance matrix.

1 The notation Ē[.] = limN→∞
1
N

∑N

k=1
E[.] is adopted from the predic-

tion error framework of Ljung (1999).

The optimal IV algorithm providing the minimum value of the
covariance matrix is known to be obtained for (see Söderström
and Stoica (1983); Young (2011, 2014))

ϕ̊f (tk) = Lopt(q)ϕ̊(tk), (9)

Lopt(q) =
1

A0(q−1)H0(q)
, and ζ(tk) = ϕ̊(tk). (10)

where ϕ̊(tk) is the noise-free part of ϕ(tk). Using equations (8)
and (9)-(10), the following IV estimate is optimal

θ̂optiv (N) =

(
N∑
t=1

ζf (tk)ϕTf (tk)

)−1( N∑
t=1

ζf (t)yf (t)

)
(11)

and where the regressor ϕf (tk) = Lopt(q)ϕ(tk), the output
yf (tk) = Lopt(q)y(tk) and the instrument vector ζf (tk) =
Lopt(q)ζ(tk) are filtered by Lopt(q) (10).
It has to be noted that in this IV estimator, the optimal choice
of instruments and prefilter is dependent on unknown system
properties which has to be taken care of with an iterative
procedure.

3. CLOSED-LOOP SYSTEM IDENTIFICATION

Cc(q) G0(q)

H0(q)

d
+−

d+
+ d+

+- ?-
6

- - - -?

?

r1(tk)

r2(tk) u(tk)
ξ0(tk)
y(tk)

e0(tk)

Fig. 1. Closed-loop system configuration

The basic difference between open-loop and closed-loop (CL)
system identification is due to the correlation between the
input u(tk) and the noise which conduces the usual open-loop
system identification procedure to bias results in the closed-
loop context. Therefore several closed-loop methods have been
dealt with in the literature and this paper focuses on the IV
solution.
Consider a stable, linear, SISO, closed-loop system of the form
shown in Figure 1. The data generating system is assumed to be
given by the following relations

S :
{
y(tk) = G0(q)u(tk) +H0(q)e0(tk)
u(tk) = r(tk)− Cc(q)y(tk),

(12)

where r(tk) = r1(tk) + Cc(q)r2(tk). (13)

The plant is denoted by G0(q) = B0(q−1)/A0(q−1) with the
numerator and denominator degree equals to n0, the controller
is denoted by Cc(q). The general model structure and parama-
trized plant model are chosen respectively as

M : y(tk) = G(q, θ)u(t) +H(q, θ)ε(tk, θ), (14)

G : G(q, ρ) =
B(q−1, θ)
A(q−1, θ)

(15)

where n denotes the plant model order and with the pair (B,A)
assumed to be coprime.
As for the open-loop situation, the choice of the design vari-
ables as the instrument ζ(t) and the prefilter L(q) have a con-
siderable effect on the covariance matrix produced by the IV
estimation algorithm. The covariance properties of the closed-
loop IV methods have been investigated in Gilson and Van den
Hof (2005) and further insights about the choice of these design



variables are dealt with in Gilson et al. (2011). It has been
shown that the optimal solution is given by (11), however, since
not only the output but also the input are corrupted by the noise,
the computation of the noise-free regressor (9) has to take into
account the noise-free part of y and u.
As a result, the closed-loop optimal IV estimator is dependent
on unknown system properties, i.e. the plant as well as the noise
dynamics. Whereas dependency of plant dynamics could be
taken care of by an iterative procedure where the instrument and
prefilter are constructed on the basis of a previous plant model
estimate θ̂i−1, knowledge of the noise dynamics is generally
missing in an extended IV estimator as it is not particularly
estimated.
Therefore the next step to an optimal IV method is to extend
the estimator (8) with a procedure to estimate an appropriate
noise model, to be used as a basis for constructing the optimal
prefilter Lopt(q) given in (10).
Then several solutions have been proposed in a unified way,
depending on the structure of the process and noise models
(see Gilson et al. (2011)): ARX, ARARX, OE, BJ models are
analyzed to develop the refined IV method dedicated to the
closed-loop framework.

Simulation examples

The simulation model is based on the relations (12), where

G0(q) =
0.0997q−1 − 0.0902q−2

1− 1.8858q−1 + 0.9048q−2
, n = 2

Cc(q) =
10.75− 9.25q−1

1− q−1
,

The excitation signal r(t) is a pseudo random binary signal of
maximal length, with the number of stages for the shift register
set to 9 and the clock period set to 8; e0(t) is a white noise
uncorrelated with r(t). The case of colored noise acting on the
loop is illustrated on this example, with

H0(q) =
1 + 0.5q−1

1− 0.85q−1
.

The following algorithms are used to estimate this model
Gilson et al. (2011):

• clivr method (with G0 ∈ G, S 6∈ M), the 1st closed-loop
IV method, where ζ(tk) = delayed version of the reference
signal r(tk), method initially developed by Söderström
et al. (1987).
• clivarx method (with G0 ∈ G, S 6∈ M), optimal IV, using

ARX structure, controller known or not.
• clivbj method (with S ∈ M), optimal IV, using BJ

structure, controller known or not.
• pem algorithm (with S ∈ M), applied to the closed-loop

data (u(tk) and y(tk)) known to be theoretically efficient
in the S ∈ M case (see Forssell and Ljung (1999)).

The plant parameters are estimated on the basis of closed-loop
data of length N = 4088. A Monte-Carlo simulation of 100
runs is performed for a signal to noise ratio SNR = 25dB (with
new noise at each run).

It can be seen from figure 2, that even with a wrong assumption
on the noise, the two IV methods clivr and clrivarx provide
unbiased results with a lower variance thanks to the use of
clrivarx. In the case where S ∈ M, optimal estimates (no
bias, minimum variance) are provided by the clrivbj method
whereas some initialization problems may occur with pem.
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Fig. 2. True (yellow) and estimated (red) Bode diagrams (gain and phase
(degree)) of the plant model G(q, θ) over the 100 MCS, colored noise

4. LPV MODEL IDENTIFICATION, APPLICATION TO
RAINFALL/FLOW MODELING

When dealing with NL model, the first question to address
is which kind of non linearity is to be used. In this paper,
a focus is made on the use of NL model for environmental
data: rainfall and flow in a rural catchment. The most common
modeling for rainfall/flow relationship is the parametric block
representation named Hammerstein structure (see Figure 3).
In this case, the system behavior can be described in the
following way : the catchment reacts as a sponge which retains
the water until it reaches its full retaining capacity and the
runoff starts following a linear tank model. Consequently in
the Hammerstein case, the static non-linearity represents the
loss of rain which does not reach the outlet of the catchment.
Nonetheless, the sponge effect can be translated into a dynamic

Identification of NL rainfall/flow models 3

set coming from a 42 ha vineyard catchment located in Alsace, France (Grégoire et
al., 2010).

2. Issues in environmental data-based modelling

When considering data-based modelling of dynamic systems, most of the opti-
mization methods are based on stochastic optimization methods. Nonetheless, a sui-
ted optimization method has to be developed with respect to the field of application
considered. In the present context, the following features have to be taken into consi-
deration. Most environmental models derive from the first principle of physics. These
models are therefore naturally expressed in terms of differential equations which are
equivalent to continuous-time transfer functions in the Control community. Therefore,
the first issue is the ability to identify a model under its transfer function form which
offers the ability to interpret a posteriori the data-based model in physical or ecologi-
cal terms : data-based mechanistic modelling (Young et al., 1994).
The second concern when dealing with environmental data is the inability to control
the input and to only be able to measure it. This leads to a so-called Error-In-Variables
(EIV) identification problem. However, the methods developed so far concerning
EIV problems need strong hypothesis and knowledge about the noise model (Thil
et al., 2009). In a more general way, speaking about stochastic optimization implies
a stochastic representation of the measurement noise. However, the usual gaussian
noise assumption is not verified in these rural catchments. When measuring flow, the
measurement noise presents complicated characteristics such as non stationarity. For
example, the noise variance increases with the flow whereas the variance becomes null
when no flow is measured. During strong rainfall events, some transported particules
remain in the channel of the flowmeter, luring him into measuring inexistent flow.
The final challenge concerning rainfall/runoff relationship is to determine the non-
linearity of the studied system. The common approximation of conceptual models for
rainfall/flow relationship is the Hammerstein structure as presented in Fig 1. In order
to estimate such models, the SDP models introduced in (Young et al., 1994) are com-
bined to a fixed interval smoothing filter in order to determine the non-linearity form.
This method is very powerful as it proposes a non-parametric estimation method of the
nonlinearity which does not requires the knowledge about the dynamic of the system
to be performed.

Total

rainfall

Efficient

rainfall

Outlet

flow

Static
nonlinearity

Dynamic
linear
system

Figure 1. Hammerstein model for rainfall/flow relationship

The state dependant parameter models are similar from a general point of view to
LPV models which are widely used in the control theory. These models rely on mo-
dels in which the parameters depend on a state of the system or a external variable.

Fig. 3. Hammerstein model

change more than in a static non- linearity. Consequently,
aside from the block models, another type of models drew
the attention of the system identification community lately: the
model class of Linear Parameter-Varying (LPV) systems (see
Figure 4). In LPV systems the signal relations are considered
to be linear just as in the LTI case, but the parameters are
assumed to be function of a measurable time-varying signal,
the so-called scheduling variable.

The main advantage of the LPV model is to represent a trade-off
between LTI models and NL models. As a result, they present
a wide range of behavior representation capability to be used in
many practical applications. A LPV model is given as

M
{
A(pk, q−1)χ(tk) = B(pk, q−1)u(tk)
y(tk) = χ(tk) +H(q)e(tk)

(16)
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Fig. 4. LPV model

where χ is the noise-free output, u is the input, e is the additive
noise with bounded spectral density, y is the noisy output of
the system. p are the so-called scheduling variables. For LTI
systems, the coefficients of A and B are constant in time
while they are time-varying, depending on p, for LPV models.
A(pk, q−1) and B(pk, q−1) are polynomials in q−1 of degree
na and nb respectively:

A(pk, q−1) = 1 +
na∑
i=1

ai(pk)q−i (17)

B(pk, q−1) =
nb∑
j=0

bj(pk)q−i (18)

with

ai(pk) = ai,0 +
nα∑
l=1

ai,lfl(pk) i = 1, . . . , na (19)

bj(pk) = bj,0 +
nβ∑
l=1

bj,lgl(pk) j = 0, . . . , nb. (20)

In this parametrization, {fl}nαl=1 and {gl}
nβ
l=1 are functions of

p, with static dependence, allowing the identifiability of the
model (pairwise orthogonal functions for example). It can be
noticed that the knowledge of {ai,l}na,nα

i=1,l=1 and {bj,l}
nb,nβ
j=0,l=0

ensures the knowledge of the full model. Therefore, these
model parameters are stacked column-wise in the parameter
vector θ (with nθ = na(nα + 1) + (nb + 1)(nβ + 1)),

θ = [ a1 . . . ana b0 . . . bnb ]> ∈ Rnθ ,
with ai = [ ai,0 ai,1 . . . ai,nα ] ∈ Rnα+1

bj =
[
bj,0 bj,1 . . . bj,nβ

]
∈ Rnβ+1.

4.1 IV estimator for LPV model

A parametrized model may then be chosen as
A(pk, q−1, θ)χ(tk) = B(pk, q−1, θ)u(tk)
A(pk, q−1, θ)y(tk) = B(pk, q−1, θ)u(tk) +A(pk, q−1, θ)v(tk)
Then, if S ∈ M, it can be written in terms of the following
linear regression

y(tk) = ϕ>(tk, pk)θ +A(pk, q−1, θ)v(tk), (21)
ϕ(tk, pk)=[−y(tk−1, pk) . . . − y(tk−na , pk)

u0,0(tk, pk) . . . unb,nβ (tk, pk)
]>

(22)
with v(tk) = H(q−1, θ)e(tk). The estimation by optimal IV
requires to filter the data by the inverse of the noise model
A(pk, q−1, θ)H(q−1, θ). Since the noise model involves an
LPV filter, the solution is not strait-forward and the minimiza-
tion of the prediction error on this model cannot be directly
applied. A solution has therefore been proposed to tackle this
problem by rewriting the LPV SISO model into a LTI MISO
model with unknown outputs χ(tk) as (see Laurain et al.
(2010))

y(tk) = ϕ>(tk, pk)θ + F (q−1, θ)v(tk) with (23)

Fig. 5. Rainfall and flow data for the Hohrain catchment (Alsace) during 2008

ϕ(tk, pk) = [−y(tk−1) . . . − y(tk−na)
−χ1,1(tk, pk) . . .− χna,nα(tk, pk)

u0,0(tk, pk) . . . unb,nβ (tk, pk)
]>

(24)

Since the filter F (q−1, θ) in (23) is no longer dependent on the
scheduling variable pk, an IV estimator can now be applied to
this modified model resulting in

θ̂iv=

[
N∑
k=1

ζf(tk)ϕ>f (tk)

]−1N∑
k=1

ζf(tk)yf(tk), (25)

where the instrument is made up of the noise-free version of the
regressor and the filter as the inverse of the noise model.
It can be pointed out that, as previously, the IV solution depends
on unknown system properties and it is therefore necessary to
estimate the deterministic noise-free terms χi,l in order to get
the IV estimates. This is handled by using an iterative scheme
named the Refined Instrumental Variable (RIV) approach dedi-
cated to the LPV model estimation (see Laurain et al. (2010)).

4.2 Data-based catchment modeling

The identification of rainfall/runoff relationship is a challenging
issue, mainly because of the complexity to find a suitable model
for a whole given catchment (Beven (2000)). The Hohrain
catchment area studied in this paper is located in the Alsatian
vineyard (Eastern part of France). The problem is : given the
total rainfall data u and the outlet flow data y sampled at times
tk, k = 1, . . . , N , the goal is to estimate the rainfall/runoff
relationship. In the given case, the sample time is 6 minutes,
the flow unit is l/s and the rainfall is expressed in mm. The
data are measured during one year and over the 70000 samples
acquired, only 5000 are relevant for the identification process.
Three methods have been used on this data set:

• refined IV method with a linear model,
• proposed IV method in the LPV model context,
• the LS method in the LPV model context.

The results are illustrated on two different rainfall events: an
important and a small one. Fig. 6(a) and 6(b) provide the results
for the IV solutions, whereas Fig. 7(a) and 7(b) illustrate the
results for the LS estimation. It can be noticed in these figures
that, as expected, the linear model cannot cope with the non-
linearities present in the catchment and the resulting model
is not satisfactory neither for a small rainfall event, nor for
an important one. On the contrary, the LPV model solutions
provide more accurate results and the proposed refined IV
method offers a really efficient solution to this rainfall/flow
estimation problem. The scheduling variable used here is an
estimation of the catchment humidity and making the model
dependent on it provides an accurate modeling, whatever the
intensity of the rainfall event.
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Fig. 6. Linear and LPV models, IV methods
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5. FREQUENCY DOMAIN IDENTIFICATION

We consider here a linear time invariant, input output system
given by a rational transfer function

S : G0(s) =
B0(s)
A0(s)

. (26)

where s denotes the Laplace transform variable. The frequency
domain identification problem is to determine an estimate of
this system from a measured frequency response

G(jωk) = G0(jωk) + V (jωk), k = 1, . . . , N
which is available in a particular frequency grid denoted ωk,
k = 1, . . . N and where G(jω) denotes the measurement
of the system frequency function G0(jω), corrupted with the
measurement noise V (jω). We will assume in this paper that
we have access to the system measurements in the frequency
domain.

The system is modeled by its transfer function G(s) and
parametrized by a parameter vector θ, as follows

G : G(s, θ) =
B(s, θ)
A(s, θ)

(27)

where
B(s, θ) = bms

m + bm−1s
m−1 + . . .+ b1s+ b0 (28)

A(s, θ) = sn + an−1s
n−1 + . . .+ a1s+ a0 (29)

with θ = [a0 . . . an−1 b0 . . . bm] ∈ Rn+m+1. (30)

If the plant G0 is included in the chosen model set G (i.e.
G0 ∈ G), the output G(jω) can be written as

G : G(jωk) = Φ∗(jωk)θ0 +A0(jωk)V (jωk) (31)
with the regressor
Φ∗(jωk) =

[
−G(jωk) . . . − (jωk)n−1G(jωk) 1 . . . (jωk)m

]
.

5.1 IV method in the frequency domain
The determination of the parameter vector θ on the basis
of the measured frequency domain data may be achieved by
minimising

J(θ) =
1
N

N∑
k=1

|ε(jωk, θ)|2, (32)

with ε(jωk, θ) = G(jωk)−G(jωk, θ) (33)
The Least-Square (LS) solution to this problem is known to
give biased results since Φ(jωk) and the noise are correlated,
whereas the IV method

θ̂iv = arg min
θ

∥∥∥∥∥
N∑
k=1

ζ(jωk)
[

1
A0(jωk)

G(jωk)

− 1
A0(jωk)

Φ∗(jωk)θ
∥∥∥∥2
]

(34)

provides unbiased result whatever the noise is, under the fol-
lowing two conditions

• 1
N

∑N
k=1 ζ(jωk) 1

A0(jωk)
Φ∗(jω) is full column rank

• 1
N

∑N
k=1 ζ(jωk)W (jω) = 0,

and with
ζ(jωk) =

[
−G0(jωk) − (jωk)n−1G0(jωk) 1 . . . (jωk)m

]
,

k = 1, . . . , N , therefore ζ(jωk) corresponds to noise-free part
of the regressor (see Gilson et al. (2013)).

As previously, the IV solution is dependent on unknown system
property that has to be taken care of by an iterative procedure
where the instruments and prefilter are constructed from pre-
vious model estimate. A refined IV dedicated to the frequency
domain has been developed in that sense (Gilson et al. (2013)).
Even though the IV algorithm offers a nice solution to remove
the bias of the least squares method in case of noisy mea-
surements, it still relies on the use of the normal matrix. A
poor conditioning of this matrix results in poor or erroneous
estimates of the system parameters. This problem especially
occurs when identifying systems with a large dynamic range,
as it is often the case in the frequency domain.
A solution has then been proposed to improve the IV method
in this case. It relies on the technique developed in Welsh and
Goodwin (2003), based on a particular set of basis functions,
which is aimed specifically at improving the numerical proper-
ties of the normal matrix in a rational function estimation over
a large dynamic range. A key point in this approach is that the
method restricts the dynamic range over which each coefficient
is estimated by the use of frequency localizing basis functions
(FLBF) which span a desired frequency region:

Fk(s) =
k∏
l=1

sk−1pk
s+ pl

, k = 1, . . . , n

These functions allow the normal matrix to take on a near block
diagonal form and hence improve its conditioning. Moreover,
the filters used in these functions are bandpass and hence easy
to implement. In Gilson et al. (2013), a method introducing
basis functions into an IV procedure has been proposed to
consistently handle the frequency domain identification case.
5.2 Data-based resonant beam modeling
This IV method associated with the frequency localizing basis
functions has been used to estimate the real frequency response
data collected from a resonant beam. The experimental data
spans approximately 2 decades and is shown in Figure 8 by the
blue dots. Two methods have been used to estimate this process:

• flbf-ls: least-square estimation technique associated
with the FLBF (see Welsh and Goodwin (2003))



• flbf-iv: refined IV estimation associated with the
FLBF (see Gilson et al. (2013)).

The resulting estimates are shown in figure 8 (flbf-ls in
magenta and flbf-iv in green), both provide reasonably
accurate results with slightly better accuracy obtained from the
IV solution, especially in the high frequencies. Again it would
seem that an excellent fit has been obtained with this easy to
tune method.
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Fig. 8. Resonant Beam Data. Dots - Experimental Data, Solid - Estimated
Model using flbf-ls (magenta) and flbf-iv (green) methods

6. CONCLUSION

In conclusion, this paper has gathered several experiences of
using instrumental variable technique in different contexts.It
has been illustrated that IV method has a lot to offer for system
identification: computationally attractive property, yields con-
sistent estimates even in the case of mis-specified noise model,
may potentially be used in many different practical situations:
linear, non linear model, open-loop, closed-loop. . .

7. ACKNOWLEDGMENT

The results presented in this paper gathered several really
interesting and fruitful working days, coffee break discussions,
running sessions with my friend Hugues Garnier. It also collects
joint work developed with my friends and colleagues Paul Van
den Hof, Peter Young, James Welsh (especially during several
visiting periods in their labs) and Vincent Laurain (my former
PhD student).

REFERENCES
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