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What has Instrumental Variable method to offer for system identification?
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This paper gathers several experiences of using instrumental variable method in different contexts: closed-loop system identification, LPV model, frequency domain framework.

INTRODUCTION

Mathematical models of dynamic systems are required in most area of scientific enquiry and take various forms, such as differential equations, difference equations, state-space equations and transfer functions. The most widely used approach to mathematical modeling involves the construction of mathematical equations based on physical laws that are known to govern the behaviour of the system. While the advantage of these methods relies on the deep physical insight of the resulting model, their main drawback is the complexity of the model that makes them difficult to be used in applications such as control system design, prediction or decision making. An alternative to physically-based mathematical modeling is the so-called data-based system identification, which can be applied to any system where experimental data are available. A large scope of system identification approaches has been developed over the past decades. Amongst these, we can cite the prediction error and maximum-likelihood frameworks (see e.g. [START_REF] Ljung | System Identification : Theory for the User -Second Edition[END_REF]; [START_REF] Söderström | System identification[END_REF]; [START_REF] Young | Recursive Estimation and Time-Series Analysis[END_REF]), the subspace-based identification (see e.g. [START_REF] Van Overschee | Subspace identification for linear systems[END_REF]; [START_REF] Katayama | Subspace methods for system identification[END_REF]), the frequencydomain identification (see e.g. [START_REF] Pintelon | System identification : a frequency domain approach[END_REF]; [START_REF] Mckelvey | Frequency domain identification methods[END_REF]), the closed-loop identification case (see e.g. [START_REF] Van Den Hof | Closed-loop issues in system identification[END_REF]; [START_REF] Forssell | Closed-loop identification revisited[END_REF]; [START_REF] Ninness | On the frequency domain accuracy of closed-loop estimates[END_REF]; [START_REF] Gilson | Instrumental variable methods for closed-loop system identification[END_REF]). Most physical systems are continuous-time (CT) whereas, mainly due to the advent of digital computers, research on system identification has concentrated on discrete-time (DT) models from underlying CT systems input/output samples. Recently, interest in identification of CT systems from DT data has arisen (see e.g. [START_REF] Sinha | Identification of continuoustime systems. Methodology and computer implementation[END_REF]; [START_REF] Unbehauen | Identification of continuous systems[END_REF]; Garnier and Wang (2008) and references herein) and offer a clever solution in many cases such as irregularly sampled data. Moreover, systems encountered in practice are often nonlinear or present a time-varying nature. Unlike linearity, non-linearity is a non-property and therefore, non-linearity cannot be defined in a general way. A common framework for the identification of nonlinear models has nevertheless been presented in [START_REF] Sjöberg | Nonlinear black-box modeling in system identification: a unified overview[END_REF] and [START_REF] Juditsky | Nonlinear black-box modeling in system identification: mathematical foundations[END_REF]. Usually, nonlinear models are classified into two classes: non-parametric models and parametric models. However, another type of models has more recently arose the attention of the system identification community and form an intermediate step between Linear Time-Invariant (LTI) systems and nonlinear/time-varying plants: the model class of Linear Parameter-Varying (LPV) systems [START_REF] Bamieh | Identification of linear parameter-varying models[END_REF]; Tóth (2010)). When considering methods that can be used to identify (linear or non linear, CT or DT) models of systems operating in openor closed-loop, instrumental variable (IV) techniques are rather attractive since they are normally simple or iterative modifications of the linear regression algorithm. For instance, when dealing with complex processes, it can be attractive to rely on methods, such as these, that do not require non-convex optimization algorithms. In addition to this computationally attractive property, IV methods also have the potential advantage that they can yield consistent and asymptotically unbiased estimates of the plant model parameters if the noise does not have rational spectral density or if the noise model is mis-specified; or even if the control system is non-linear and/or time-varying, in the closed-loop framework [START_REF] Gilson | Instrumental variable methods for closed-loop system identification[END_REF]; [START_REF] Gilson | Optimal instrumental variable method for closedloop identification[END_REF]). Even if several works arise these last ten years (e.g. [START_REF] Young | Recursive Estimation and Time-Series Analysis[END_REF]; [START_REF] Dankers | Errors-in-variables identification in dynamic networks[END_REF][START_REF] Van Herpen | Optimally conditioned instrumental variable approach for frequency-domain system identification[END_REF]; [START_REF] Laurain | Refined instrumental variable methods for identification of LPV Box-Jenkins models[END_REF]; [START_REF] Douma | From data to performance -System identification uncertainty and robust control design[END_REF]), IV methods have not yet really received the attention that it deserves. This paper is dedicated to the use of IV methods in several cases of system identification. After an introduction of the IV principles in Section 2, the focus is made on closed-loop system in Section 3, on LPV models with an application on rainfall-flow modeling in Section 4 and on frequency domain framework in Section 5.

INSTRUMENTAL VARIABLE METHOD

System identification is based on three main ingredients: data (experiment design), model set selection, identification criterion, which are used to estimate a model of a given system. In this paper, we will mainly focus on the identification criterion named Instrumental Variable (IV). IV is a criterion aiming at minimizing the prediction error. Consider a stable, linear, Single Input Single Output (SISO) data-generating system assumed to be described as

S : y(t k ) = G 0 (q)u(t k ) + H 0 (q)e(t k ) (1)
The plant is denoted by G 0 (q) = B 0 (q -1 )/A 0 (q -1 ) with the numerator and denominator degree equals to n 0 , q -1 is the delay operator with q -i x(t k ) = x(t k-i ). u describes the plant input signal, y the plant output signal. A colored disturbance ξ 0 (t k ) = H 0 (q)e 0 (t k ) is assumed to affect the system, where e 0 is a white noise, with zero mean and variance σ 2 e0 . The following general model structure and parameter plant model are chosen to model the system M : y(t k ) = G(q, θ)u(t k ) + H(q, θ)e(t k )

(2)

G : G(q, θ) = B(q -1 , θ) A(q -1 , θ) (3) 
In the prediction error method (PEM), the parameters are computed by minimizing the criterion function (see [START_REF] Ljung | System Identification : Theory for the User -Second Edition[END_REF])

V (q, θ) = 1 N N k=1 [ε(t k,θ )] 2 (4) 
where

ε(t k,θ ) = y(t k ) -ŷ(t k , θ) is the prediction error.
Therefore, the parameters are given as

θ = arg min θ 1 N N k=1 (y(t k ) -ŷ(t k , θ)) 2 (5) 
It has to be noted that the estimation of θ might be a non convex optimization problem for a general nonlinear one-stepahead predictor. However, the problem (5) can be simplified, for e.g., by choosing an adequate model structure. As a result, for a linear regression, θ is provided by solving the LS solution where

θls = arg min θ N k=1 y(t k ) -ϕ T (t k )θ 2 (6) 
with ϕ(t k ) denotes the regressor. The other solution is to use the IV criterion where its basic version aims at computing the estimate θ by solving [START_REF] Söderström | Instrumental Variable Methods for System Identification[END_REF])

θbiv = sol 1 N N k=1 ζ(t k ) y(t k ) -ϕ T (t k )θ = 0 (7)
where ζ(t k ) is the so-called instrument. There is a large amount of freedom in the choice of the instrument. It should be correlated with the data but uncorrelated with the noise.This idea has been generalized to the extended IV framework where

θxiv = arg min θ 1 N N k=1 L(q)ζ(t k )L(q)ϕ T (t k ) θ - 1 N N k=1 L(q)ζ(t k )L(q)y(t k ) 2 W , (8) 
where

ζ(t) ∈ R n ζ with n ζ ≥ 2n, x 2 W = x T W x,
with W a positive definite weighting matrix and L(q) a stable prefilter.

By definition, when G 0 ∈ G, the extended-IV estimate is consistent under the following two conditions 1

• ĒL(q)ζ(t k )L(q)ϕ T (t k ) is full column rank, • ĒL(q)ζ(t k )L(q)v 0 (t k ) = 0.
The interesting property of the IV methods is that they provide asymptotically unbiased estimates even if the noise is missspecified. However, the choice of ζ(t k ), n ζ , W and the prefilter L(q) may have a considerable effect on the covariance matrix.

1 The notation Ē[.] = lim N →∞ 1 N N k=1 E[.]
is adopted from the prediction error framework of [START_REF] Ljung | System Identification : Theory for the User -Second Edition[END_REF].

The optimal IV algorithm providing the minimum value of the covariance matrix is known to be obtained for (see [START_REF] Söderström | Instrumental Variable Methods for System Identification[END_REF]; [START_REF] Young | Recursive Estimation and Time-Series Analysis[END_REF][START_REF] Young | Refined instrumental variable estimation: Maximum likelihood optimization of a unified box-jenkins model[END_REF])

φf (t k ) = L opt (q)φ(t k ), (9) 
L opt (q) = 1 A 0 (q -1 )H 0 (q)

, and

ζ(t k ) = φ(t k ). (10) 
where φ(t k ) is the noise-free part of ϕ(t k ). Using equations ( 8) and ( 9)-( 10), the following IV estimate is optimal

θopt iv (N ) = N t=1 ζ f (t k )ϕ T f (t k ) -1 N t=1 ζ f (t)y f (t) (11) 
and where the regressor

ϕ f (t k ) = L opt (q)ϕ(t k ), the output y f (t k ) = L opt (q)y(t k ) and the instrument vector ζ f (t k ) = L opt (q)ζ(t k ) are filtered by L opt (q) (10).
It has to be noted that in this IV estimator, the optimal choice of instruments and prefilter is dependent on unknown system properties which has to be taken care of with an iterative procedure.

CLOSED-LOOP SYSTEM IDENTIFICATION

Cc(q) G0(q) H0(q) d + - d + + d + + - ? - 6 -- -- ? ? r1(t k ) r2(t k ) u(t k ) ξ0(t k ) y(t k ) e0(t k ) Fig. 1. Closed-loop system configuration
The basic difference between open-loop and closed-loop (CL) system identification is due to the correlation between the input u(t k ) and the noise which conduces the usual open-loop system identification procedure to bias results in the closedloop context. Therefore several closed-loop methods have been dealt with in the literature and this paper focuses on the IV solution.

Consider a stable, linear, SISO, closed-loop system of the form shown in Figure 1. The data generating system is assumed to be given by the following relations

S : y(t k ) = G 0 (q)u(t k ) + H 0 (q)e 0 (t k ) u(t k ) = r(t k ) -C c (q)y(t k ), (12) 
where

r(t k ) = r 1 (t k ) + C c (q)r 2 (t k ). ( 13 
)
The plant is denoted by G 0 (q) = B 0 (q -1 )/A 0 (q -1 ) with the numerator and denominator degree equals to n 0 , the controller is denoted by C c (q). The general model structure and paramatrized plant model are chosen respectively as

M : y(t k ) = G(q, θ)u(t) + H(q, θ)ε(t k , θ), (14) 
G : G(q, ρ) = B(q -1 , θ) A(q -1 , θ) (15) 
where n denotes the plant model order and with the pair (B, A) assumed to be coprime.

As for the open-loop situation, the choice of the design variables as the instrument ζ(t) and the prefilter L(q) have a considerable effect on the covariance matrix produced by the IV estimation algorithm. The covariance properties of the closedloop IV methods have been investigated in [START_REF] Gilson | Instrumental variable methods for closed-loop system identification[END_REF] and further insights about the choice of these design variables are dealt with in [START_REF] Gilson | Optimal instrumental variable method for closedloop identification[END_REF]. It has been shown that the optimal solution is given by ( 11), however, since not only the output but also the input are corrupted by the noise, the computation of the noise-free regressor (9) has to take into account the noise-free part of y and u.

As a result, the closed-loop optimal IV estimator is dependent on unknown system properties, i.e. the plant as well as the noise dynamics. Whereas dependency of plant dynamics could be taken care of by an iterative procedure where the instrument and prefilter are constructed on the basis of a previous plant model estimate θi-1 , knowledge of the noise dynamics is generally missing in an extended IV estimator as it is not particularly estimated.

Therefore the next step to an optimal IV method is to extend the estimator (8) with a procedure to estimate an appropriate noise model, to be used as a basis for constructing the optimal prefilter L opt (q) given in (10). Then several solutions have been proposed in a unified way, depending on the structure of the process and noise models (see [START_REF] Gilson | Optimal instrumental variable method for closedloop identification[END_REF]): ARX, ARARX, OE, BJ models are analyzed to develop the refined IV method dedicated to the closed-loop framework.

Simulation examples

The simulation model is based on the relations ( 12), where

G 0 (q) = 0.0997q -1 -0.0902q -2 1 -1.8858q -1 + 0.9048q -2 , n = 2 C c (q) = 10.75 -9.25q -1 1 -q -1 ,
The excitation signal r(t) is a pseudo random binary signal of maximal length, with the number of stages for the shift register set to 9 and the clock period set to 8; e 0 (t) is a white noise uncorrelated with r(t). The case of colored noise acting on the loop is illustrated on this example, with

H 0 (q) = 1 + 0.5q -1 1 -0.85q -1 .
The following algorithms are used to estimate this model [START_REF] Gilson | Optimal instrumental variable method for closedloop identification[END_REF]:

• clivr method (with G 0 ∈ G, S ∈ M), the 1st closed-loop IV method, where ζ(t k ) = delayed version of the reference signal r(t k ), method initially developed by [START_REF] Söderström | Instrumental variable methods for closed-loop systems[END_REF]. • cliv arx method (with G 0 ∈ G, S ∈ M), optimal IV, using ARX structure, controller known or not. • cliv bj method (with S ∈ M), optimal IV, using BJ structure, controller known or not. • pem algorithm (with S ∈ M), applied to the closed-loop data (u(t k ) and y(t k )) known to be theoretically efficient in the S ∈ M case (see [START_REF] Forssell | Closed-loop identification revisited[END_REF]). The plant parameters are estimated on the basis of closed-loop data of length N = 4088. A Monte-Carlo simulation of 100 runs is performed for a signal to noise ratio SNR = 25dB (with new noise at each run).

It can be seen from figure 2, that even with a wrong assumption on the noise, the two IV methods clivr and clriv arx provide unbiased results with a lower variance thanks to the use of clriv arx . In the case where S ∈ M, optimal estimates (no bias, minimum variance) are provided by the clriv bj method whereas some initialization problems may occur with pem. When dealing with NL model, the first question to address is which kind of non linearity is to be used. In this paper, a focus is made on the use of NL model for environmental data: rainfall and flow in a rural catchment. The most common modeling for rainfall/flow relationship is the parametric block representation named Hammerstein structure (see Figure 3). In this case, the system behavior can be described in the following way : the catchment reacts as a sponge which retains the water until it reaches its full retaining capacity and the runoff starts following a linear tank model. Consequently in the Hammerstein case, the static non-linearity represents the loss of rain which does not reach the outlet of the catchment. Nonetheless, the sponge effect can be translated into a dynamic

Identification of NL rainfall/flow models 3 set coming from a 42 ha vineyard catchment located in Alsace, France (Grégoire et al., 2010).

Issues in environmental data-based modelling

When considering data-based modelling of dynamic systems, most of the optimization methods are based on stochastic optimization methods. Nonetheless, a suited optimization method has to be developed with respect to the field of application considered. In the present context, the following features have to be taken into consideration. Most environmental models derive from the first principle of physics. These models are therefore naturally expressed in terms of differential equations which are equivalent to continuous-time transfer functions in the Control community. Therefore, the first issue is the ability to identify a model under its transfer function form which offers the ability to interpret a posteriori the data-based model in physical or ecological terms : data-based mechanistic modelling (Young et al., 1994). The second concern when dealing with environmental data is the inability to control the input and to only be able to measure it. This leads to a so-called Error-In-Variables (EIV) identification problem. However, the methods developed so far concerning EIV problems need strong hypothesis and knowledge about the noise model (Thil et al., 2009). In a more general way, speaking about stochastic optimization implies a stochastic representation of the measurement noise. However, the usual gaussian noise assumption is not verified in these rural catchments. When measuring flow, the measurement noise presents complicated characteristics such as non stationarity. For example, the noise variance increases with the flow whereas the variance becomes null when no flow is measured. During strong rainfall events, some transported particules remain in the channel of the flowmeter, luring him into measuring inexistent flow. The final challenge concerning rainfall/runoff relationship is to determine the nonlinearity of the studied system. The common approximation of conceptual models for rainfall/flow relationship is the Hammerstein structure as presented in Fig 1 . In order to estimate such models, the SDP models introduced in (Young et al., 1994) are combined to a fixed interval smoothing filter in order to determine the non-linearity form. This method is very powerful as it proposes a non-parametric estimation method of the nonlinearity which does not requires the knowledge about the dynamic of the system to be performed. The state dependant parameter models are similar from a general point of view to LPV models which are widely used in the control theory. These models rely on models in which the parameters depend on a state of the system or a external variable.

Fig. 3. Hammerstein model

change more than in a static non-linearity. Consequently, aside from the block models, another type of models drew the attention of the system identification community lately: the model class of Linear Parameter-Varying (LPV) systems (see Figure 4). In LPV systems the signal relations are considered to be linear just as in the LTI case, but the parameters are assumed to be function of a measurable time-varying signal, the so-called scheduling variable.

The main advantage of the LPV model is to represent a trade-off between LTI models and NL models. As a result, they present a wide range of behavior representation capability to be used in many practical applications. A LPV model is given as where χ is the noise-free output, u is the input, e is the additive noise with bounded spectral density, y is the noisy output of the system. p are the so-called scheduling variables. For LTI systems, the coefficients of A and B are constant in time while they are time-varying, depending on p, for LPV models.

M A(p k , q -1 )χ(t k ) = B(p k , q -1 )u(t k ) y(t k ) = χ(t k ) + H(q)e(t k ) (16) 
A(p k , q -1 ) and B(p k , q -1 ) are polynomials in q -1 of degree n a and n b respectively:

A(p k , q -1 ) = 1 + na i=1 a i (p k )q -i (17) B(p k , q -1 ) = n b j=0 b j (p k )q -i (18) with a i (p k ) = a i,0 + nα l=1 a i,l f l (p k ) i = 1, . . . , n a (19) b j (p k ) = b j,0 + n β l=1 b j,l g l (p k ) j = 0, . . . , n b . (20) 
In this parametrization, {f l } nα l=1 and {g l } n β l=1 are functions of p, with static dependence, allowing the identifiability of the model (pairwise orthogonal functions for example). It can be noticed that the knowledge of {a i,l } na,nα i=1,l=1 and {b j,l } n b ,n β j=0,l=0

ensures the knowledge of the full model. Therefore, these model parameters are stacked column-wise in the parameter vector θ (with n θ = n a (n α + 1) + (n b + 1)(n β + 1)),

θ = [ a 1 . . . a na b 0 . . . b n b ] ∈ R n θ , with a i = [ a i,0 a i,1 . . . a i,nα ] ∈ R nα+1 b j = b j,0 b j,1 . . . b j,n β ∈ R n β +1 .

IV estimator for LPV model

A parametrized model may then be chosen as

A(p k , q -1 , θ)χ(t k ) = B(p k , q -1 , θ)u(t k ) A(p k , q -1 , θ)y(t k ) = B(p k , q -1 , θ)u(t k ) + A(p k , q -1 , θ)v(t k )
Then, if S ∈ M, it can be written in terms of the following linear regression

y(t k ) = ϕ (t k , p k )θ + A(p k , q -1 , θ)v(t k ), (21) ϕ 
(t k , p k ) = [-y(t k-1 , p k ) . . . -y(t k-na , p k ) u 0,0 (t k , p k ) . . . u n b ,n β (t k , p k ) (22) with v(t k ) = H(q -1 , θ)e(t k
). The estimation by optimal IV requires to filter the data by the inverse of the noise model A(p k , q -1 , θ)H(q -1 , θ). Since the noise model involves an LPV filter, the solution is not strait-forward and the minimization of the prediction error on this model cannot be directly applied. A solution has therefore been proposed to tackle this problem by rewriting the LPV SISO model into a LTI MISO model with unknown outputs χ(t k ) as (see [START_REF] Laurain | Refined instrumental variable methods for identification of LPV Box-Jenkins models[END_REF]) 

y(t k ) = ϕ (t k , p k )θ + F (q -1 , θ)v(t k ) with (23) 
ϕ(t k , p k ) = [-y(t k-1 ) . . . -y(t k-na ) -χ 1,1 (t k , p k ) . . . -χ na,nα (t k , p k ) u 0,0 (t k , p k ) . . . u n b ,n β (t k , p k ) (24) 
Since the filter F (q -1 , θ) in ( 23) is no longer dependent on the scheduling variable p k , an IV estimator can now be applied to this modified model resulting in

θiv = N k=1 ζ f (t k )ϕ f (t k ) -1 N k=1 ζ f (t k )y f (t k ), (25) 
where the instrument is made up of the noise-free version of the regressor and the filter as the inverse of the noise model. It can be pointed out that, as previously, the IV solution depends on unknown system properties and it is therefore necessary to estimate the deterministic noise-free terms χ i,l in order to get the IV estimates. This is handled by using an iterative scheme named the Refined Instrumental Variable (RIV) approach dedicated to the LPV model estimation (see [START_REF] Laurain | Refined instrumental variable methods for identification of LPV Box-Jenkins models[END_REF]).

Data-based catchment modeling

The identification of rainfall/runoff relationship is a challenging issue, mainly because of the complexity to find a suitable model for a whole given catchment [START_REF] Beven | Rainfall-Runoff Modelling: The Primer[END_REF]). The Hohrain catchment area studied in this paper is located in the Alsatian vineyard (Eastern part of France). The problem is : given the total rainfall data u and the outlet flow data y sampled at times t k , k = 1, . . . , N , the goal is to estimate the rainfall/runoff relationship. In the given case, the sample time is 6 minutes, the flow unit is l/s and the rainfall is expressed in mm. The data are measured during one year and over the 70000 samples acquired, only 5000 are relevant for the identification process.

Three methods have been used on this data set:

• refined IV method with a linear model,

• proposed IV method in the LPV model context,

• the LS method in the LPV model context.

The results are illustrated on two different rainfall events: an important and a small one. Fig. 6(a) and 6(b) provide the results for the IV solutions, whereas Fig. 7(a) and 7(b) illustrate the results for the LS estimation. It can be noticed in these figures that, as expected, the linear model cannot cope with the nonlinearities present in the catchment and the resulting model is not satisfactory neither for a small rainfall event, nor for an important one. On the contrary, the LPV model solutions provide more accurate results and the proposed refined IV method offers a really efficient solution to this rainfall/flow estimation problem. The scheduling variable used here is an estimation of the catchment humidity and making the model dependent on it provides an accurate modeling, whatever the intensity of the rainfall event. 

FREQUENCY DOMAIN IDENTIFICATION

We consider here a linear time invariant, input output system given by a rational transfer function

S : G 0 (s) = B 0 (s) A 0 (s) . ( 26 
)
where s denotes the Laplace transform variable. The frequency domain identification problem is to determine an estimate of this system from a measured frequency response G(jω k ) = G 0 (jω k ) + V (jω k ), k = 1, . . . , N which is available in a particular frequency grid denoted ω k , k = 1, . . . N and where G(jω) denotes the measurement of the system frequency function G 0 (jω), corrupted with the measurement noise V (jω). We will assume in this paper that we have access to the system measurements in the frequency domain.

The system is modeled by its transfer function G(s) and parametrized by a parameter vector θ, as follows

G : G(s, θ) = B(s, θ) A(s, θ) (27) 
where

B(s, θ) = b m s m + b m-1 s m-1 + . . . + b 1 s + b 0 (28) A(s, θ) = s n + a n-1 s n-1 + . . . + a 1 s + a 0 (29) with θ = [a 0 . . . a n-1 b 0 . . . b m ] ∈ R n+m+1 . ( 30 
)
If the plant G 0 is included in the chosen model set G (i.e. G 0 ∈ G), the output G(jω) can be written as

G : G(jω k ) = Φ * (jω k )θ 0 + A 0 (jω k )V (jω k ) (31) with the regressor Φ * (jω k ) = -G(jω k ) . . . -(jω k ) n-1 G(jω k ) 1 . . . (jω k ) m .

IV method in the frequency domain

The determination of the parameter vector θ on the basis of the measured frequency domain data may be achieved by minimising

J(θ) = 1 N N k=1 |ε(jω k , θ)| 2 , ( 32 
) with ε(jω k , θ) = G(jω k ) -G(jω k , θ) (33 
) The Least-Square (LS) solution to this problem is known to give biased results since Φ(jω k ) and the noise are correlated, whereas the IV method θiv = arg min

θ N k=1 ζ(jω k ) 1 A 0 (jω k ) G(jω k ) - 1 A 0 (jω k ) Φ * (jω k )θ 2 (34)
provides unbiased result whatever the noise is, under the following two conditions As previously, the IV solution is dependent on unknown system property that has to be taken care of by an iterative procedure where the instruments and prefilter are constructed from previous model estimate. A refined IV dedicated to the frequency domain has been developed in that sense [START_REF] Gilson | Frequencydomain instrumental variable based method for wide band system identification[END_REF]). Even though the IV algorithm offers a nice solution to remove the bias of the least squares method in case of noisy measurements, it still relies on the use of the normal matrix. A poor conditioning of this matrix results in poor or erroneous estimates of the system parameters. This problem especially occurs when identifying systems with a large dynamic range, as it is often the case in the frequency domain. A solution has then been proposed to improve the IV method in this case. It relies on the technique developed in [START_REF] Welsh | Frequency localising basis functions for wide-band identification[END_REF], based on a particular set of basis functions, which is aimed specifically at improving the numerical properties of the normal matrix in a rational function estimation over a large dynamic range. A key point in this approach is that the method restricts the dynamic range over which each coefficient is estimated by the use of frequency localizing basis functions (FLBF) which span a desired frequency region:

• 1 N N k=1 ζ(jω k ) 1 A0(jω k ) Φ * (jω) is full column rank • 1 N N k=1 ζ(jω k )W (jω) = 0, and with ζ(jω k ) = -G 0 (jω k ) -(jω k ) n-1 G 0 (jω k ) 1 . . . (jω k ) m , k = 1, . . . ,
F k (s) = k l=1 s k-1 p k s + p l , k = 1, . . . , n
These functions allow the normal matrix to take on a near block diagonal form and hence improve its conditioning. Moreover, the filters used in these functions are bandpass and hence easy to implement. In [START_REF] Gilson | Frequencydomain instrumental variable based method for wide band system identification[END_REF], a method introducing basis functions into an IV procedure has been proposed to consistently handle the frequency domain identification case.

Data-based resonant beam modeling

This IV method associated with the frequency localizing basis functions has been used to estimate the real frequency response data collected from a resonant beam. The experimental data spans approximately 2 decades and is shown in Figure 8 by the blue dots. Two methods have been used to estimate this process:

• flbf-ls: least-square estimation technique associated with the FLBF (see [START_REF] Welsh | Frequency localising basis functions for wide-band identification[END_REF])

• flbf-iv: refined IV estimation associated with the FLBF (see [START_REF] Gilson | Frequencydomain instrumental variable based method for wide band system identification[END_REF]).

The resulting estimates are shown in figure 8 (flbf-ls in magenta and flbf-iv in green), both provide reasonably accurate results with slightly better accuracy obtained from the IV solution, especially in the high frequencies. Again it would seem that an excellent fit has been obtained with this easy to tune method. 

CONCLUSION

In conclusion, this paper has gathered several experiences of using instrumental variable technique in different contexts.It has been illustrated that IV method has a lot to offer for system identification: computationally attractive property, yields consistent estimates even in the case of mis-specified noise model, may potentially be used in many different practical situations: linear, non linear model, open-loop, closed-loop. . .
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  N , therefore ζ(jω k ) corresponds to noise-free part of the regressor (see[START_REF] Gilson | Frequencydomain instrumental variable based method for wide band system identification[END_REF]).
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 8 Fig. 8. Resonant Beam Data. Dots -Experimental Data, Solid -Estimated Model using flbf-ls (magenta) and flbf-iv (green) methods