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Abstract

Modern multi-core embedded processors allow to implement increasingly com-

plex processing applications, as any processing of large amount of data. Many

of these are submitted to timing constraints, and can be implemented as paral-

lel tasks by taking advantage of a multi-core architecture. However a careless

implementation can waste precious energy, especially when processing elements

are powered by batteries. Thus, It is necessary to calibrate the operational fre-

quency and voltage of the processors so that the consumed energy is reduced

while still meeting the timing requirements.

In this paper, we explore the design choices in implementing parallel real-

time applications on multi-core systems. We propose a realistic parallel real-

time task model, NLP formulation and some heuristics for allocating threads

to processors and selecting in offline their operational frequency. Experimental

results with synthetic tasks sets show that it is time consuming to use NLP-

solvers and that our heuristics are effective in reducing the power consumption.

Keywords: Power , Real-Time, Parallel , Frequency , Periodic tasks,

Partitionned, Decomposition.

1. Introduction

Power consumption is an increasing concern in cyber-physical real-time sys-

tems, especially when processing elements operate on battery power. Embedded
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real-time distributed systems must support increasingly complex applications

such as distributed video surveillance, collection and analysis of a large amount

of sensor data, etc.

To reduce the network traffic, instead of collecting and sending all data to

a remote central server, a part of the processing is done on-site with medium-

size embedded computing boards, so that only a small part of preprocessed

data needs to be sent. For example, instead of sending the full video frames, a

surveillance system analyses them on-site by extracting the important features,

and sends only the features for further processing in the central site. This model

of computation is now known as “Fog-computing” [1].

The embedded platforms used for supporting fog computing are often mul-

ticore systems and many of these applications can be easily parallelised by dis-

tributing data across the parallel computing elements. Reducing power con-

sumption in these systems is a very serious problem when they are operated

by batteries. Even when they are connected to the electric grid, we need to

keep the consumption as low as it is possible. Multicore technology can help

us in achieving timeliness and low power consumption: in fact, even when the

computational load is not very high, multicore processors are more energy ef-

ficient than an equivalent single-core platform [2]. The idea is to operate the

system at a lower frequency and at the same time reduce the response time by

decomposing the tasks into parallel threads to be partitioned across the cores.

Task decomposition is a well-known problem in the parallel programming

community. For example, OpenMP [3] is an API specification for parallel pro-

gramming. The section of code that is meant to run in parallel is marked with

a pre-compiler directive. One example of such directive is the pragma parallel

for. In the OpenMP parallel model, a parallel for loop preceded by the STATIC

schedule clause is implemented by distributing the N iteration on p threads

into approximately N
p iterations per each thread (if no further specification is

implied). After the execution of the parallelized code, the threads join back into

the master thread, which continues onward to the end of the program. How-

ever, this task decomposition does not take into account the task scheduling,
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the respect of the real-time and energy constraints and the processor frequency

definition. In this work we adress these problems.

Goossens et al. in [4] classified parallel real-time task models according to the

way the level of parallelism is specified and to the moment of this specification.

We can distinguish three types of models:

• rigid : the number of processors assigned to the task is specified indepen-

dently before the scheduling analysis and does never change;

• moldable: the number of processors assigned to the task is specified off-line

using an off-line analysis algorithm, for example during pre-processing or

compilation and does not change after;

• malleable: the number of processors assigned to the task may dynamically

change during execution.

According to [5, 6], most parallel applications in the real world are moldable.

Hence we decided to focus our work on moldable real-time tasks.

Contributions of this paper.. This work focuses on intra-task parallelism to re-

duce energy consumption while respecting timing constraints. We select in

off-line the frequencies of the core-groups of a multi-core platforms, by means

of schedulability analysis. We propose a parallel task model that accounts for

decomposition overhead and different discrete operating frequencies. The prob-

lem of finding an optimal solution is very complex, so we propose heuristic

algorithms to achieve a good compromise between precision of the solution and

running-time of the analysis.

Paper structuring.. The rest of the paper is structured as follows. In Section 2,

we discuss the related works. Section 3 is dedicated to describing the model of

the system and the problem formulation. We present allocation and frequency

definition algorithms in Section 5. The experimental results are discussed in

Section 6. Finally, in Section 7 we present our conclusions.
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2. Related work

In the real-time systems literature, a lot of works [7, 8, 9, 10, 11] focused

on static and dynamic Voltage and Frequency scaling for uni-processor archi-

tectures, and recently some researchers proposed similar techniques for homo-

geneous multiprocessors architectures.

Bini et al. [7] proposed a semi-linear model for the variation of the execu-

tion of a task τi, which we use in our own task model (see Section 3). They

also proposed an algorithm to set the minimum processor frequency on single

processor architectures, so that all the deadlines are respected.

Concerning real-time parallel task scheduling on multi-processors, many pa-

pers (e.g. [12, 13, 14, 15, 16, 17, 18]) focused on the intra-task parallelism,

without considering energy-aware scheduling.

Kato et al. [14] proposed the gang task model. A task is defined by the

number of processors used simultaneously, its execution time and the deadline

that must be lower than the period (constrainned deadline). All threads of a

parallel section in a gang model have to be run in parallel (they must start and

stop the execution on their processors simultaneously). However, this model

is more difficult to implement, because the scheduler needs to synchronize the

execution of the threads among different processors. A different model, easier

to implement, is the multi-thread model, where parallel threads are scheduled

independently, and in this work we will adopt this model. Lakshmanan et

al. [12] proposed a fork-join model for representing parallel tasks: each task is

a sequence of alternating parallel and sequential segments. Saifullah et al. [18]

proposed a parallel task model where a task is composed of segments, and each

segments consists of a set parallel threads with the same real time characteristics

(e.g. release time, execution time, deadline). At the end of each segment,

parallel threads must synchronize. They also proposed a method to adapt other

task models to their model.

Courbin and Goossens [13] proposed a less restrictive model where parallel
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sub-tasks of each phase1 have independent real time characteristics. They state

that the model proposed in [18] is a specific case of their model. They also

proposed an algorithm to assign real time parameters to a fork-join model in

order to adapt it to their model called Multi-phase Multi-Thread. These pa-

pers [13, 18, 12] only address the scheduling problem of parallel task, without

considering the energy consumption problem.

Fisher et al. in [19] defined the optimal frequency for minimizing energy

consumption on homogeneous platforms with malleable tasks (see Section 3).

They target homogeneous processor platforms with the ability of turning off

some processors. They considered sporadic implicit deadline tasks and use a

canonical parallel scheduler proposed in [17], which is an optimal scheduling

algorithm for sporadic tasks on homogeneous multiprocessor platforms. We

propose a similar approach, but we apply it on uniform multiprocessors and a

different task model.

3. System Model

3.1. Task Model

Let T = {τ1, τ2, . . . , τn} be a set of periodic moldable independent tasks.

Every task τi is characterised by the tuple τi = (Oi,Di,Ti,Γi), where:

• Oi is the offset. It represents the release time of the first instance of the

task τi. If ∀i, Oi = 0, then the task set is synchronous.

• Di is the task’s relative deadline, we consider tasks with Di less than Ti.

• Ti: is the task’s period, that means the time between the releases of two

consecutive instances of task τi.

• Γi is the task’s set of k cut-points, Γi = {γi,1, . . . , γi,Ki
}. Each cut-point

γi,k = {Thi,k,1,Thi,k,2, . . .} is itself a list of parallel threads, and it rep-

1A phase is equivalent to a segment

5



resents one possible parallel decomposition of the task τi into parallel

threads. We denote as |γi,k| the number of threads in the cut-point.

Each thread Thi,k,z has the same period and the same relative deadline of the

task to which it belongs. In this work, we assume that the worst case execution

time (C) of every thread depends on the operating frequency of the processor on

which it has been allocated: Ci,k,z(fp) = cti,k,z(fp) + mti,k,z, where cti,k,z(fp)

is the part of the computation time that depends on the processor frequency

and mti,k,z is the part that does not depend on the processor frequency (e.g.

due to central memory accesses), So each thread is defined Th(ct,mt). This

model is similar to the one proposed by Bini et al in [7]. In particular, we use

a semi-linear model:

Ci,k,z(fp) =
cti,k,z
sp

+ mti,k,z (1)

where sp = fp/fmax is the core speed (or relative frequency) of the core where the

task is executing. We denote by Ci,k =
∑
z Ci,k,z(fp) the sum of the execution

times of the threads in the cut-point γi,k. For every possible combination of

operating frequencies, we assume that Ci,k is monotonic non decreasing with the

number of threads in the cut-point. In other words, using more threads implies

a larger overhead, due to several factors: synchronisation, caches, conflicts in

accessing the memory bus. Under this assumption, it does not make sense to

have |γi,k| > m.

For example, consider task τ1 = (O1 = 0,Di = 11,Ti = 15,Γ1), Γ1 consists

of 3 cut-points (see Fig. 1):

• γ1,1 = {Th1,1,1(11, 6)},

• γ1,2{Th1,2,1(6, 3);Th1,2,2(6, 4)},

• γ1,3 = {Th1,3,1(2, 4);Th1,3,2(6, 2);Th1,3,3(3, 3)}

Assuming sp = 1 for all processors, this task can be allocated on three

different forms: one thread with the execution time C1,1 = 11 + 6 = 17 using

the first cut-points γ1,1; two parallel threads with the execution time C1,2,1 = 9,

6



Oi

Di

Ti

ctimti

Oi

Di

Ti Oi

Di

Ti

τ1

1st decomposition k=1 2nd decomposition k=2

Z=1

Z=2

Z=1

Z=2

Z=3

Figure 1: Task decomposition

C1,2,2 = 12 using the second cut-point γ1,2; 3 parallel threads with the execution

time C1,3,1 = 6, C1,3,2 = 8, C1,3,3 = 6 using the third cut-point γ1,3.

Notice that we allow different values of ct and mt among parallel threads

belonging to the same cut-point; and we allow many cut points with the same

number of threads. Thus, this model is quite general and can be used to repre-

sent alternative decompositions for the same level of parallelism.

3.2. Uniform architectures and Power Model

In this paper we address uniform multi-core architectures. In this kind of

architectures, cores have the same instruction set, and they may differ on their

operating frequencies. We assume that the architecture supports voltage and

frequency scaling technology, which allows tasks to run at different frequen-

cies/speeds, and that each core has a discrete set of operating frequencies.

The execution time of a task does not depend only on the core speed. Seth

et al. [20] noticed that not all the task execution times scale on the core speed

(i.e. frequency) because some part of the code deals with the memory and I/O

devices.

In order to validate these assumptions, we implemented a simple benchmark

consisting of the multiplication of two matrices of 300× 300. We implemented

the task and run it on a Linux OS running on a i3-3217U processor from Intel.

The system has 3Mb of cache memory, two physical cores, each one hosting 2

logical cores by using hyper-threading. The frequency of each physical core can

be set independently from 800 MHz to 1800 MHz. The task is implemented in
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C with using directly the Pthread library and it is decomposed into a set of n

threads, with n varying between [1, 2, 4, 6, 8]. Each thread process one portion

of the matrix, and the decomposition is fair: all threads process approximately

300/n lines. The task is periodic with a period of T = 200 msec. Finally, other

tasks in the system run with non-real-time priority trying to load the cache and

the sytem.

Figure (2) shows the average execution time of each thread when all cores

operate at a frequency of 1, 800MHz. Each point represent the average execution

time of a decomposition from 1 to 8 threads.
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Figure 2: Task decomposition

Figure (3) shows the average execution time of the same task decomposed

into 1, 2, 4 threads at different operating frequencies. We use this experiment to

estimate the values of ct and mt for the different threads in the decomposition.

N. Threads Parameters

1 (mt = 60ms, ct = 490ms)

2 (mt = 33ms, ct = 258ms)

4 (mt = 13ms, ct = 185ms)

We also plotted the results of the execution time obtained by Equation (1) for the

case of one thread (blue line). Our model is pretty close to the real execution

time (red line), whereas a simple linear model (green line) may produce an

underestimation. Similar results are obtained with a different decomposition2.

2Not shown here, to avoid cluttering the figure with too many lines.
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Figure 3: Task decomposition

We model the hardware architecture as a list of L groups of cores. Cores

from the same group (ld, d ∈ {0 . . . L}) operate at the same frequency. For

example, for the Intel architecture described above, we have 2 physical cores,

each one supporting two logical cores. Therefore, we set m = 4, and L = 2.

Logical cores in the same group reside on the same physical core, so they must

have the same frequency. If m = L then each core can change the its frequency

independently. A processor can be put in a deep low-power mode state, so

it is turned off from the point of view of executing tasks, even if it can still

consume some small amount of energy. This model allows us to address many

different uniform architectures like the ix Intel family and the ARM big.LITTLE

architecture [21].

3.3. Energy Consumption

In CMOS circuits, we distinguish between dynamic power consumption, that

is the power dissipation due to switching, and static power consumption, mostly

due to leakage current dissipated in electronic components like capacitance and

transistors.

Jing Mie et al. [22] defined the dynamic power dissipated by a CMOS circuit

as the product of a constant coefficient that depends on the technology used ξ,

by the square of the voltage, and by the frequency.

E = ξ × V 2 × f (2)

They also defined the frequency as the ratio of the difference between the actual
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voltage V and VTh raised to the power of a, where Vth is the threshold voltage

by the product of a constant K and the logic depth Ld. a and K are constants

that depend on the technology.

f =
(V − VTh)a

K × Ld
(3)

By combining the two equations, the consumed energy E can be expressed

as the product of a constant Const by the frequency f power λ (4). We will use

this equation to compute the dissipated energy in Section 4.

E(f) = Const× fλ (4)

3.4. Scheduling

In this paper we assume a partitioned Earliest Deadline First (EDF) schedul-

ing. Each core has its own single-processor EDF scheduler and a separate

ready-queue. Therefore the scheduling analysis can be performed with well-

know techniques for single-processor scheduling. We assume that all tasks are

independent of each other, whereas threads belonging to the same tasks and

running on different cores need to synchronize their activation times and dead-

lines.

The scheduling analysis is based on the well know demand-based analysis.

Let Tp denote a task set of n periodic tasks allocated on the same core, T =

{τ1, τ2, . . . , τn}, and let t be a non-negative integer. The Demand bound function

dbf(T , t) denotes the maximum cumulative execution requirement that could be

generated by jobs of Tp that have both ready times and deadlines within any time

interval of duration [0 − t]. Equation (5) describes the formula for computing

the dbf:

dbf(Tp, t) =
∑

Thi∈Tp

⌊
t+ Ti −Di

Ti

⌋
Ci (5)

Notice that Ci denotes generically the computation time of the thread, and of

course it depends on the frequency at which the core is operated, as described

in Equation (1).
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To be schedulable under EDF, the dbf value of a task set Tp at each moment

of time t0, must be equal or less than t0 (Equation 6).

∀t0 ≤ t∗, dbf(Tp, t0) ≤ t0 (6)

where t∗ is a constant that depends on the utilisation of the task set (see [23]

for more details on the analysis algorithm).

4. Problem formulation

In order to compare our scheduling and frequency heuristics to optimal ones,

we formulate our problem as a non linear optimisation problem, We use the the

follow acronyms in problem definition:

• L : it the number of core groups;

• h: is the hyper period of tasks, and it is computed as least common

multiple of all periods of tasks;

• fl: is the operating frequency of a core in group l;

• sl: is the speed of a core in group l;

• dbfi,k,z(sp, t): is the value of the demand bound function of thread Thi,k,z

when allocated on a core p with speed sp at time t.

Let T = {τ1, τ2, . . . , τn} a task set of n periodic tasks on a uniform architec-

ture of m cores. We define the binary variable xi,k,z,p as: 1 if thread Thi,k,z is allocated on core p

0 otherwise

We assume that the cores of each group are indexed alternatively with the

next groups. For example, in an architecture of m = 12 cores with three groups,

the cores of group l0 are indexed as 0, 3, 6, 9, those of l1 are indexed as 1, 4, 7, 10,

and those of l2 are indexed 2, 5, 8, 11. Thus, the group of core p is lp = p%L.
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Given these definitions, we now present one formulation of the problem as a

Non-Linear Programming problem:

min E = ξ

n∑
i=1

m∑
p=1

K∑
k=1

zk∑
z=1

f3lp × (
ctikz
slp

+ mtikz)× xi,k,z,p (7)

subject to the following constraints:

m∑
j=1

K∑
k=1

m∑
z=1

xi,k,z,p = m ∀i (8)

n∑
i=1

dbfi,k,z(sp, t)xi,k,z,p ≤ t ∀p, t ∈ [0− h] (9)

xi,k,z,p + xi,k′,z′,p′ ≤ 1, ∀i, k, z, p, k′ > k, z′, p′ (10)

m∑
j=1

xi,k,z,p ≤ 1, ∀i, k, z (11)

To grant the respect of the schedulability of each task set Tp on core p at

each time t, the dbf must verify Condition (9). Constraint (8) expresses that

all threads of the same cut point must be scheduled. A correct solution of the

problem must verify that all the threads of the same task belong to the same

cut-point. We express this as a conflict constraint which mean that whenever

a cut-point is choosen, all the other cut-points are ignored. (Constraint (10)).

Finally, we must verify that each thread is allocated on only one core (Constraint

(11)).

There are many NLP solvers, both freely available as open source software,

and commercial ones. We used CPLEX [24] and Knitro [25] solvers with aca-

demic licences. Unfortunately the problem at hand is a very complicated com-

binatorial problem, and a small example with 3 task with 5 cut-points per each

task, to be executed on 4 cores with 10 frequency levels, takes several hours.

We believe that it is impractical to use a NLP solver for this kind of problems.

Thus, in this paper we propose heuristics to obtain quasi-optimal solutions in a

reasonable time. In the next section we present our heuristic algorithms.
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5. Partitioning

In this section we propose some heuristics for solving the problem approxi-

mately in a reasonable time. Our algorithm:

• selects the level of decomposition for each task by selecting the cut-points;

• selects the frequency for each core group;

• assigns threads to cores;

so to minimise energy consumption while guaranteeing that all deadlines are

respected.

Let T = {τ1, τ1, . . . , τn} be a set of n tasks. We start by defining the baseline

utilisation for each task as Ui = Ci
Ti

, where Ci is the WCET of the single-thread

cut-point, considering a processor of speed 1. Then U =
∑
i Ui is the baseline

utilisation of the system.

We also define S the cumulative strength of the our architecture, that is the

sum of all processors speed: S =
∑m
j=1 sj). To be schedulable, the following

necessary condition must hold:

U ≤
m∑
p=1

slp (12)

We will use a classical “greedy” approach. We start by analysing frequency

configuration having the minimal strength that verifies Equation (12), then we

do partitioning and we check the schedulability. If no feasible solution can be

found, we keep increasing the strength until we find a feasible partitioning.

Before explaining our algorithm in more details, we need to introduce some

more definitions.

• ml is the number of cores in group l;

• actl is the number of active cores in group l

• sll is the lower bound speed of the cores in group l

• shl is the upper bound speed of the cores in group l
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• sol is the operating speed of group l

• Sl is the cumulative strength of group l, Sl = mlsl

Algorithm 1 Full algorithm

Input: T : TaskSet, L : Int, U : Float,m, sl, sh : Array[Int];

Smax =
∑L
l=0 shl ∗ml

U =
∑n
i=1

cti+mti
Ti

Stemp = U

while Stemp ≤ Smax do . main loop

arch = selectFrequencies(L, Stemp, m, sl, sh)

if isCPSchedulable(Arch, T ) then

return true;

else

Stemp = Stemp + Step

end if

end while

return false;

Algorithm (1) increases the cumulative strength Stemp at each iteration by

Step, then it selects the frequencies of all groups by invoking Algorithm 2,

and finally it and allocates the threads and checks schedulability by invoking

Algorithm 5. It returns true as soon as it finds a feasible solution. In the

next subsection we will explain the algorithm for assigning the frequencies and

allocating the tasks.

5.1. Frequency selection

The goal of this step is to select the frequency of each core group, so that the

cumulative strength of the platform equals to Stemp. We need also to respect

the frequency bounds for each group. We assume that groups are ordered by

increasing maximal frequency, so that less powerful groups are loaded by threads

before higher frequency groups.
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The heuristic returns the operating frequency sol and the number of active

cores actl of each group l. As anticipated before, Equation (12) must be veri-

fied. Let us rewrite this equation by replacing
∑m
p=1 slp by the equivalent value∑L

l=1 Sl:

U − S0 − S1 . . .− SL ≤ 0

Let ex0 = U −S0 be the excess bandwidth for group l = 0. For the following

groups, exl = exl−1 − Sl. By substituting, we get:

∀l ≥ 0, exl − Sl+1,− . . .− SL ≤ 0

For all groups with exl > 0, we just turn on all cores and set them at the

maximum speed: sol = shl and actl = ml.

Suppose that exl ≤ 0 for some group l. It means that the cumulative strength

up to group l can support the current load. Then we set all successive strengths

Sl′ , l′ > l to 0 by turning off all cores in the groups. In addition, we distribute

the current remaining bandwidth equally on all cores of group l:

sol = round− tomode(exl−1
ml

) (13)

If the computed speed sol is greater than the lower bound speed of the current

group l (see Equation (??)), the number of active cores is set equal to the

number of cores in the group:

actl = ml (14)

Otherwise, the frequency is set to the minimal frequency sl and the number of

active cores is set to the ratio between the exl−1 and the operating frequency

at the current group sol.

actl = dexl−1
sol
e (15)

In this case, the assigned speed at this level may be greater than the remain-

ing strength. We compute this overhead as:

ρ = sol ∗ actl − exl−1 (16)
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Figure 4: Decomposition example

and we remove it from cores speed of a lower group:

sol−1 = sol−1 −
ρ

actl−1
(17)

The complexity of the setting frequencies Algorithm 2 is trivially Θ(L).

The method round-to-mode selects the first higher possible frequency, since the

frequencies are discrete.

5.2. CP partitionning

After selecting the frequencies, we proceed to decomposition and allocation.

We consider partitioned-EDF scheduling, and we propose an iterative heuristic

for solving the task decomposition and allocation problem at once. At each

iteration, we check if the task fits entirely in the current core or if it needs to

be split. In the latter case, the heuristic defines the part (threads) that will be

partitioned on the current core, and the part (threads) that will be allocated in

the next iteration.

We preliminary sort all cores in non-increasing order according to their op-

erating speed, then we go trought three steps. First, we select the task τ at

the top of the task list, and the core with the highest index (hence the lower

speed), let it be core p. Then the dbf is computed for the set of threads already

allocated on the core p, together with the new task τ for the speed sp:

dbf(T ∪ {τ}, sp, t) = dbf(T , sp, t) + dbf({τ}, sp, t) (18)

1. if ∀t, t ∈ [0, t∗] Equation (19) is verified

dbf(T ∪ {τ}, sp, t) ≤ t, (19)
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Algorithm 2 selectFrequencies

Input: L:Int, Stemp: Float, m,sl, sh: Array[Int];

Output so: Array[Float], n: Array[Int];

ex: Array[Float](L+1);

ex0 = Stemp

S:Float=0

for (l = 0 to L− 1) do

S+ = ml × shl

end for

if (S < Stemp) then

return false;

end if

for (l = 0 to L− 1) do

exl+1 = exl − shl ×ml

if (exl+1 ≤ 0) then

sol = round-to-mode( exl+1

ml)
)

if (sol < sll) then

sol = sll

actl = d exl+1

soi
e

ρ = sol × actl − exl+1

sol−1 = round-to-mode(sol−1 − ρ
actl−1

))

else

actl = ml

break loop

end if

else

sol = shl

actl = ml

end if

end for

17



the task set Tp ∪ {τ} is schedulable, hence task τ is allocated on the core

p.

2. if, for some t values, Equation (19) is not verified, then the task set T ∪{τ}

is not schedulable. In this case, we seek to split the reduce the execution

time of task τ so that one part will fit between the dbfand t so that

Equation 19 is verified. We call the time to be reduced excess-time. To

evaluate the excess-time, first we evaluate the cumulative excess of all

instances on the task form 0 to t:

δ = dbf(Tp ∪ {τ}, sp, t)− t (20)

so the excess-time by one instance is equal to the ratio of the δ and the

number of instances of the task τ in the interval [0, t]:


δ = dbf(Tj , j, t)− t

#instances =
t

Ti

excess-time(t) = d δ

#instances
e

(21)

For all t , where condition 19 is not verified, excess-time is evaluated and

only the maximal excess-time is maintained. The evaluation of excess-

time is described in Algorithm 3. The complexity of this algorithm is

Θ(h×
∑n
i=1max(| γi,k |)).

Example. In the example of Figure 4, we try to evaluate the excess-time for the

task τ(O = 0, D = 7, T = 10, {ct = 8,mt = 1}) on a core of speed s = 0.5. We

assume that the task set T is already allocated on this core and the value of the

dbf(T , sp, t), t ∈ [0, 25] is presented on the first graph of Figure 4. The second

graph represents the dbf of the new task set {T ∪τ} and the excess-time points,

which are reported, also, in table below.
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Algorithm 3 excess-timeEvaluation

Input: Taskset:T , core: P, Task :τ

Output: excess-time = 0

Temp-excess:Integer = -1

t = 0

while (t ≤ h ) do

dbf∗ = dbf(T , sp, t) + b t+(Ti−Di)
Ti

c ctisp + mti

if ( dbf∗ > t ) then

δ = dbf∗ − t

n =
⌈
t
T

⌉
Temp-excess = d δne

if ( Temp-excess > excess-time ) then

T excess-times = Temp-excess

end if

end if

t=t+1

end while
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Time Excess Nbr jobs ToCut

7 2 1 2

9 4 1 4

16 3 1 3

17 7 2 3.5

18 8 2 4

The value of the excess-time corresponds to the maximum value among all

excesses (excess-times = 4, third graph of Figure 4).

Now that we have introduced the concept of excess-time, we use a simple

heuristic to decompose the tasks that do not fit in a core. If excess-time ≥
cti
sp

+ mti, (this means that the whole task is in excess), we seek to allocate the

selected task on the next core p+ 1. If all cores are already investigated, the

task set is not schedulable.

If excess-time ≤ cti
sp

+mti, the task τi must be split according to one possible

γi,k ∈ Γi. We use a search function that returns two lists: the first one consists

of the threads that fit on the current core, whereas the second list of threads is

put back into the task list to be allocated in the next iterations.

Let γi,k be a cut-point of Γi of the task τi. The γi,k is as a corret decompo-

sition according to excess-time if and only if Equation 22 is verified:

∃σi,k ⊂ γi,k, σi,k 6= ∅, γi,k 6= σi,k∑
Thi,k,z∈σi,k

Ci,k,z ≥ excess-time (22)

where σi,k is the list of threads to put back to the task list, and γi,k \σi,k is the

list of threads to be allocated to the current core. So, For the same excess-time,

we can have numerous correct cut-points.

For example, let excess-time = 5 and Γ1 = {γ1,1 = {Th1,1,1(mt = 2, ct =

5),Th1,1,2(mt = 2, ct = 5), }, γ1,2 = {Th1,2,1(mt = 1, ct = 2),Th1,2,2(mt =

1, ct = 2),Th1,2,3(mt = 1, ct = 5), }}. This task can be split in several threads

that respect the excess-time as shown in the following table:
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γ1,k return to TS maintained

γ1,1 Th1,1,1 Th1,1,2

γ1,1 Th1,1,2 Th1,1,1

γ1,2 Th1,2,1,Th1,2,2 Th1,2,3

γ1,2 Th1,2,1,Th1,2,3 Th1,2,2

γ1,2 Th1,2,2,Th1,2,3 Th1,2,1

γ1,2 Th1,2,3 Th1,2,1,Th1,2,2

Thus, the cut-point selection (Algorithm (4)) has a significant impact on

scheduling. The algorithm of search for the cut-point is simple. First, it seeks

the thread Thi,k,z that has the exact values of the excess-time. If found, this

cut-point will be returned. Otherwise, it looks for the closest combination of

threads that is greater or equal to the excess-time.

The complexity of lookForCP search (algorithm 4) is Θ(max(| Γi |)×max(|

γi,k |)). However, after splitting, the cut-points list Γi is reduced to one cut-

point (constraint that all threads must be from the same cut point, Equation

(22) (γi,k \ σ) ). Thus, the lookForCP search function complexity is reduced

considerably after the first allocation.

The partitioning heuristic is described in (Algorithm 5). The complexity of

this algorithm is Θ(n×m× h×
∑n
i=1max(| γi,k |)).

The full algorithm (1) combine all the heuristics described in this section.

the complexity of this algorithm is Θ(nbrIt × n ×m × h ×
∑n
i=1max(| γi,k |))

where nbrIt is the number of iterations from the lowest cumulated strength to

the highest cumulated strength.

6. Simulations and Results

In order to evaluate our contributions, we applied our algorithm to several

synthetically generated scenarios. We selected an architecture consisting of m =

4 processors with L = 2 groups of 2 cores each. Each core has several operating

frequency levels ranging from 800MHz to 1800MHz, which corresponds to speed

levels ranging in between [0.44, 1]. This corresponds to a cumulative maximum
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Algorithm 4 lookForCP

Input: excess-time,s: Float,τi: CPTask

Output:(List[ThreadCP], List[ThreadCP])

l: List[ThreadCP] = Nil;

lm: List[ThreadCP] = Nil;

lout: List[ThreadCP] = Nil;

Kept = cti + mti − ex× s

for (∀γi,k ∈ Γi) do

cum:Float = 0

l = Nil

for (∀Thi,k,z ∈ γi,k) do

if (d(cti,k,z/s)e+ mt) ≤ Kept) then

if d(
∑|γi,k|
z=1 ct/s)e +

∑|γi,k|
z=1 mt − Kept > d(cti,k,z/s)e + mti,k,z) −

Kept) | then

lm = lm.add(cp)

lout = γi,k - lm

end if

l = l.add(cp);

cum+ = dcti,k,z/s)e+ mti,k,z

if (cum ≤ Kept) then

lm = l;

lout = γi,k - lm;

end if

end if

end for

end for

return (lm, lout)
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Algorithm 5 cut-point model partitioning

OrderTasks()

sortCoresBySpeed()

for τi ∈ AllTasks do

for Pj ∈ AllCores do . loop2

excess-time = excess-TimeEvaluation(Tpj , sj , τ);

if ( excessT-time = 0 ) then . dbf(Tj , sj , t) ≤ t

P.Allocate(τ)

break loop2

else

if ( Csji ≤ excess-time ) then

(σ,LM)=lookForCP(excess-time,sj , τi)

τ1= createTask (maintained)

τ2= createTask (σ)

P.Allocate(τ1)

AllTasks.add(τ2)

break loop2

else

SeekOnTheNextCore

end if

end if

end for

end for
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strength of S = 4. These parameters correspond to the Intel i3-3217U used for

the experiments shown in Section 3.2.

We generate utilization-rates between [1 − 4], and the number of tasks be-

tween 2 and 5 by core.

6.1. Task Generation

The UUniFast method [26] can be used to generate a number of utilizations

factors, whose sum is a given number bounded by 1 (i.e. ∀i, ui ≤ 1). The

method has been extended to multi-core systems with the UUniFast-discard

algorithm. The latter allows to set the bound to a number m ≥ 1 and adds the

constraint that each utilisation must not exceed 1.

In our case, we removed the latest constraint, because we allow tasks whose

sequential utilisation is greater than 1.

In order to select the periods, we use the method proposed in [27] to bound

the hyperperiod of the task set and generate task periods.

Therefore, we compute the computation times of the single-thread cut point

for each task as Ci = ui × Ti. Then, we generate

mti = Ci × P cti = Ci −mti

where P is the percentage of central memory access operations among all op-

erations. We consider such percentage as a fixed number to reduce the number

of parameters and simplify the experiments, but in reality such percentage de-

pends on the structure of the task sets, the amount of data, the cache size, the

interference from other tasks in the cache, etc.

Then, for each task we randomly generate the number of cut points iK

(| Γi |) between 2 and 5. For each cut point γi,k, we generate the number

of threads Zik . Finally, we use again UUniFast to generate the utilisation for

each thread. To take into account the overhead of the decomposition (due to

synchronization barriers, scheduling, etc.) we inflate the utilisation of the task

to U ′i = Ui × (1 + costZk), where cost is a constant that represent the overhead

in percentage. We fixed this overhead to cost = 0.05. If the utilisation of a task
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exceeds 1, Ui ≤ 1, we generate the deadline between Ci and Ti. Otherwise, the

deadline is generated in the interval [Pr ×Ti, Ti] where Pr is generated between

[0.75− 1]. The task generation is described in Algorithm 6.

6.2. Power dissipation model

The goal of these experiments is to compute the relative performance of

different algorithms. Therefore, just for the sake of this comparison, we consider

ξ = 1. This is the same approach followed in Fisher et al. [19], and in Han et

al [28]. So we consider the power consumption as E(f) = f3. The dynamic

energy spent by core p from [t1− t2] is simply E = f3p × (t2− t1). This allows to

relatively compare the energy consumption for different scheduling algorithms

but does not give an absolute power value.

6.3. Results and discussions

In this section we present and discuss the results of the experiments. Our

task model is unique in that it allows parallel decomposition of a task in several

different ways. No other algorithm can do the same, so we decided to compare

against traditional allocation algorithms that do not decompose tasks.

In particular, the structure of a competing algorithm is the following:

• We first run Algorithm 2 to set the active cores and their frequencies

• Then we run the allocation algorithm on the single-threaded versions of

the tasks.

The selected allocation algorithms are Best Fit (BF), Worst Fit (WF), First

Fit (FF) and Next Fit (NF). Our algorithm is denoted as Cut-Points (CP).

Notice that, if we consider tasks with only one single-thread cut-point, CP is

equivalent to FF. Otherwise the main difference in CP is the decomposition.

Notice also that decomposition make it easier to allocate threads, but increases

the total utilisation factor because of the added synchronization overhead.

Figure 5 describes the average cumulative strength S of all algorithms by

varying the utilisation factor. Each point represent the average value of S on

500 run of randomly generated task sets.
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Algorithm 6 TaskSetGeneration

Input: m,n, K: Int,Cost:Float, T[n]:Int

Output:: taskSet

taskSet = ∅

U:Array[Float]=generateUtilizationRates()

for (i = 0 to n− 1) do

C = T (i) ∗ U(i);

prob = generateBetween(7, 15)

ct = C ∗ (1− prob);

mt = C ∗ prob;

if (U(i) ≤ 1) then

D = generateBetween(C, T )

else

D = generateBetween(0.75, 1) ∗ T [i]

end if

k=generateBetween(1,K);

for (k = 0 to K − 1) do

Z=generateBetween(2,m);

UZ = generateUtilizations(Z,1+Cost * Z);

for (z = 0 to Z − 1) do

mtz = mt×UZz;

ctz = ct×UZz;

add Thread to CP

end for

add CP to Γi

end for

add Task to tasklist

end for

return toretTS;
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Figure 5: Cumulative strength by different utilisation factors.

We notice that our heuristic dominate globally the BF, WF, FF, NF heuris-

tics. However, we can notice that when the workload is small, BF and FF are

very close to CP, because the non-parallel heuristics (BF, WF, FF, NF) allo-

cates the tasks entirely in one core (no-parallelism) and so they do not run the

overhead brought by parallelizing the task. However, CP is stills better even

when the computation load is not very high. When the load increases, BF, WF,

FF, and NF are too much limited compared to our approach. In particular, our

approach is close to the theoretical limit of full utilisation per each core, so the

cumulative strength is almost equal to the task set utilisation (the yellow line).

Figure 6 describes the average cumulative strength S by varying the per-

centage of memory access (mt/(ct+mt)) for the same utilisation (U = 2). Once

again, every point represents the average value of S obtained over 500 runs

on randomly generated task sets. We notice that a small variation in memory

accesses produces a considerable impact on the cumulative strength. However,

the strength grows slowly after some percentage because the scheduling heuris-

27



2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

cu
m

u
la

ti
v
e
 S

tr
e
n
g
th

Memory percentage

Figure 6: Architecture selected cumulated strength by different Memory rates.

tic behaves in the same manner on all cores and the core speed has less influence

on the decomposition and allocation.

Figure 7 describes the average power consumption by varying the utilization

rate. We plot only BF, FF and CP because the WF and NF show very bad

results. Even if the utilisation produced by CP is higher than the others (due

to the overhead of decomposition), it still consumes less energy for all scenarios

especially when the load is high. Whereas BF and FF raise the cores frequency

to high values, our algorithm keeps the frequency of each core lower. Even when

the computation load is low, our approach saves in average 46% , 36% less than

BF, FF.

Figure 8 describes the the utilization factor per each core while varying the

utilization of the task set. We can notice that when the load is greater then the

minimal speed (0.44), the utilization-rate per core gets closer to 1 (it reaches

97%), which means that the optimal solution is not so far.
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7. Conclusion

In this paper we presented a method for minimizing the energy consumption

for a realistic task model on multicore uniform architectures. We propose a

general model of a multicore, where cores are partitioned in groups, and cores

belonging to the same group must share the same frequency. We also allow

some processor to go in deep low power state. We also proposed a model for

moldable tasks that easily allow to specify parallel decomposition (in the style of

OpenMP) taking into account the synchronization overhead and a sound energy

consumption model.

Then we proposed a heuristic algorithm for energy-aware EDF-partitioned

scheduling, which selects the set of active cores and their frequency, and allocates

tasks so that the resulting schedule is feasible. We have performed experiments

that show the effectiveness of our algorithm.

In the future, we plan to implement our methodology on the ARM big.LITTLE

architecture. Furthermore, we are working on an OpenMP-like API based on

pthread for programming moldable tasks.

References

[1] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in

the internet of things, in: Proceedings of the First Edition of the MCC

Workshop on Mobile Cloud Computing, MCC ’12, ACM, New York, NY,

USA, 2012, pp. 13–16. doi:10.1145/2342509.2342513.

URL http://doi.acm.org/10.1145/2342509.2342513

[2] M. Wolf, Computers as components: principles of embedded computing

system design, Elsevier, 2012.

[3] R. Chandra, Parallel programming in OpenMP, Morgan Kaufmann, 2001.

[4] J. Goossens, V. Berten, Gang ftp scheduling of periodic and parallel rigid

real-time tasks, arXiv preprint arXiv:1006.2617.

30

http://doi.acm.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
http://dx.doi.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513


[5] M. Drozdowski, Scheduling Parallel Tasks Algorithms and Complexity,

chapter 25. Handbook of SCHEDULING Algorithms, Models and Perfor-

mance Analysis, CHAPMAN and HALL/CRC, 2004.

[6] P. D. G. Mounie, D. T. M. Drozdowski, Scheduling Parallel Tasks Approx-

imation Algorithms, chapter 26. Handbook of SCHEDULING Algorithms,

Models and Performance Analysis, CHAPMAN and HALL/CRC, 2004.

[7] E. Bini, G. Buttazzo, G. Lipari, Speed modulation in energy-aware real-

time systems, in: Real-Time Systems, 2005.(ECRTS 2005). Proceedings.

17th Euromicro Conference on, IEEE, 2005, pp. 3–10.

[8] R. Jejurikar, C. Pereira, R. Gupta, Leakage aware dynamic voltage scaling

for real-time embedded systems, in: Proceedings of the 41st annual Design

Automation Conference, ACM, 2004, pp. 275–280.

[9] P. Pillai, K. G. Shin, Real-time dynamic voltage scaling for low-power em-

bedded operating systems, in: ACM SIGOPS Operating Systems Review,

Vol. 35, ACM, 2001, pp. 89–102.

[10] J.-J. Chen, C.-F. Kuo, Energy-efficient scheduling for real-time systems on

dynamic voltage scaling (dvs) platforms., in: RTCSA, 2007, pp. 28–38.
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