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Asymptotic analysis of parabolic equations with stiff transport

terms by a multi-scale approach

Thomas BLANC ∗, Mihäı BOSTAN †, Franck BOYER ‡

(October 26, 2016)

Abstract

We perform the asymptotic analysis of parabolic equations with stiff transport terms.
This kind of problem occurs, for example, in collisional gyrokinetic theory for tokamak
plasmas, where the velocity diffusion of the collision mechanism is dominated by the
velocity advection along the Laplace force corresponding to a strong magnetic field. This
work appeal to the filtering techniques. Removing the fast oscillations associated to the
singular transport operator, leads to a stable family of profiles. The limit profile comes
by averaging with respect to the fast time variable, and still satisfies a parabolic model,
whose diffusion matrix is completely characterized in terms of the original diffusion matrix
and the stiff transport operator. Introducing first order correctors allows us to obtain
strong convergence results, for general initial conditions (not necessarily well prepared).

Keywords: Average operators, Ergodic means, Unitary groups, Multiple scales, Homoge-
nization.

AMS classification: 35Q75, 78A35

1 Introduction

General framework. In many applications we deal with partial differential equations with
disparate scales. The solutions of the problems in hand fluctuate at very different scales
and for the moment, solving numerically for both slow and fast scales seems out of reach.
Depending on the particular regimes we are interested in, it could be worth to solve an
averaged problem with respect to the slow variable, after smoothing out the fast oscillations.
In this work we focus on parabolic models perturbed by stiff transport operators{

∂tu
ε − divy(D(y)∇yuε) +

1

ε
b(y) · ∇yuε = 0, (t, y) ∈ R+ × Rm

uε(0, y) = uin(y), y ∈ Rm.
(1)

Here b : Rm → Rm and D : Rm →Mm(R) are given fields of vectors and symmetric positive
definite matrices, and ε > 0 is a small parameter destinated to converge to 0. If the vector
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field b is divergence free, the energy balance writes

1

2

d

dt

∫
Rm

(uε(t, y))2 dy +

∫
Rm
D(y)∇yuε · ∇yuε dy = 0.

Therefore, since the matrices D(y) are positive definite, the L2 norms of the solutions (uε)ε>0

decrease in time, and we expect that the limit model still behaves like a parabolic one, whose
diffusion matrix field needs to be determined.

Motivating example. This work is motivated by the study of collisional models for the
gyrokinetic theory in tokamak plasmas. The fluctuations of the presence density of charged
particles are due to the transport in space and velocity (under the action of electro-magnetic
fields), but also to the collision mechanisms. In the framework of the magnetic confinement
fusion, the external magnetic fields are very large, leading to a stiff velocity advection, due
to the magnetic force qv ∧ Bε = qv ∧ B

ε . Here q stands for the particle charge and Bε = B
ε

represents a strong magnetic field, when ε goes to 0. Using a Fokker-Planck operator for
taking into account the collisions between particles, we are led to the Fokker-Planck equation

∂tf
ε+v ·∇xf ε+

q

m

(
E + v ∧ B

ε

)
·∇vf ε = ν divv(Θ∇vf ε+vf ε), (t, x, v) ∈ R+×R3×R3 (2)

where E is the electric field, m is the particle mass, ν is the collision frequency and Θ is
the temperature. Notice that in the Fokker-Planck equation, the diffusion occurs only in
the velocity space, and therefore (2) is different from (1). Nevertheless, we expect that the
main arguments used for the treatment of (1) still apply when investigating the asymptotic
behavior of (2), see Section 3.2. The asymptotic analysis of (2), when neglecting the collisions
is now well understood [8, 25, 26, 28]. It can be handled by averaging the perturbed model
along the characteristic flow associated to the dominant transport operator. Recently, models
including collisions have been analyzed formally by using the averaging method [9, 10]. In
particular, it was emphasized that, averaging with respect to the fast cyclotronic motion leads
to diffusion not only in velocity, but also with respect to the perpendicular space directions,
see (32). At least at the formal level, the theoretical study presented in this work allows to
perform the asymptotic analysis of the Fokker-Planck equation, under strong magnetic fields,
see Section 3.2. The study of the averaged diffusion matrix field is crucial when determining
the equilibria of the limit Fokker-Planck equation (2), when ε goes to zero. Numerical results
concerning strongly anisotropic elliptic and parabolic problems were obtained in [21, 24, 18].

The advection-diffusion problems with large drift in periodic setting have been extensively
studied by many authors [23, 22, 32, 5, 33]. For the homogenization of the associated eigen-
value problems, we refer to [6, 29]. The aim of this paper is to obtain an homogenization
result for the problem (1) without periodicity assumptions on the advection field and for
initial data not necessarely well prepared. The effective limit problem will be provided by
appealing to an ergodic theory result.

Our paper is organized as follows. The main results are introduced in Section 2. We
indicate the main lines of our arguments by performing formal computations. In Section 3
we present a brief overview on the construction of the average operators for matrix fields
through the ergodic theory. Section 4 is devoted to obtaining uniform estimates for solutions
of (1), in view of convergence results. In Section 5 we establish two-scale convergence results,
in the ergodic setting, which allows us to handle situations with non periodic fast variables.
Up to our knowledge, these results have not been reported yet. The proofs of the main
theorems are detailed in Section 6. Some technical arguments are presented in Appendix A.
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2 Presentation of the main results and formal approach

The subject matter of this paper concentrates on the asymptotic analysis of (1), when ε

becomes small. Obviously, the fast time oscillations come from the large advection field b(y)
ε .

Indeed, when neglecting the diffusion operator, the problem (1) reduces to a transport model,
whose solution writes

uε(t, y) = uin(Y (−t/ε; y)), (t, y) ∈ R+ × Rm. (3)

Here (s, y) ∈ R× Rm → Y (s; y) ∈ Rm stands for the characteristic flow of b · ∇y

dY

ds
= b(Y (s; y)), (s, y) ∈ R× Rm, Y (0; y) = y, y ∈ Rm.

This flow is well defined under standard smoothness assumptions{
b ∈W 1,∞

loc (Rm),

∃C > 0 such that |b(y)| ≤ C(1 + |y|), y ∈ Rm.
(4)

Under the above hypotheses the flow Y is global and smooth, Y ∈W 1,∞
loc (R×Rm). Moreover,

we assume that
b is divergence free, (5)

which guarantees that the transformation y ∈ Rm → Y (s; y) ∈ Rm is measure preserving for
any s ∈ R. Motivated by (3), we introduce the new unknowns

vε(t, z) = uε(t, Y (t/ε; z)), (t, z) ∈ R+ × Rm, ε > 0 (6)

and we expect to get stability for the family (vε)ε>0, when ε goes to 0. In that case we will
deduce that, for small ε > 0, uε behaves like v(t, Y (−t/ε; y)), for some profile v = limε↘0 v

ε,
that is, uε appears as the composition product between a stable profile and the fast oscillating
flow Y (−t/ε; y). We prove mainly two strong convergence results for general initial conditions
(not necessarily well prepared), whose simplified versions are stated below. For detailed
assertions see Theorems 2.2, 2.3.

Theorem We denote by (uε)ε>0 the variational solutions of (1) and by (vε)ε>0 the functions

vε(t, z) = uε(t, Y (t/ε; z)), (t, z) ∈ R+ × Rm, ε > 0.

1. Under suitable hypotheses on the vector field b, the matrix field D and the initial con-
dition uin, the family (vε)ε>0 converges strongly in L∞loc(R+;L2(Rm)) to the unique
variational solution v ∈ L∞(R+;L2(Rm)) of (26), whose diffusion matrix field 〈D〉
comes by averaging the matrix field D along the flow of the vector field b (cf. Theorem
2.1), that is

〈D〉 = lim
S→+∞

1

S

∫ S

0
∂Y (−s;Y (s; ·))D(Y (s; ·)) t∂Y (−s;Y (s; ·)) ds.

2. Under additional regularity hypotheses, we have the error estimate

sup
t∈[0,T ]

‖uε(t, ·)− v(t, Y (−t/ε; ·))‖L2(Rm) ≤ CT ε.
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The problem satisfied by vε is obtained by performing the change of variable y = Y (t/ε; z)
in (1). A straightforward computation based on the chain rule leads to

∂tv
ε(t, z) = ∂tu

ε(t, Y (t/ε; z)) +
1

ε
b(Y (t/ε; z)) · (∇yuε)(t, Y (t/ε; z)).

To deal with the diffusion term, we need to compute the action of the operator divy(D∇y·)
when applied to a function of the form v ◦ Y (−s, ·) for some s ∈ R. A tedious but straight-
forward computation shows that we can write, for any integrable function z 7→ w(z), any
matrix field y 7→ C(y), and any s ∈ R,

divy{C∇y(w ◦ Y (−s, ·))} = (divz(G(s)C∇zw)) ◦ Y (−s, ·) in D ′(Rm), (7)

where the family of matrix fields (G(s)C)s is defined by

(G(s)C)(z) :=∂Y −1(s; z)C(Y (s; z)) t∂Y −1(s; z)

=∂Y (−s;Y (s; z))C(Y (s; z)) t∂Y (−s;Y (s; z)) , (s, z) ∈ R× Rm,
(8)

Using those notations, the change of variable y = Y (t/ε; z) in (1) leads to{
∂tv

ε − divz ((G(t/ε)D)∇zvε) = 0, (t, z) ∈ R+ × Rm
vε(0, z) = uε(0, z) = uin(z), z ∈ Rm, ε > 0

(9)

The new diffusion problem (9) seems simpler than the original problem (1), because the
singular term 1

ε b · ∇y has disappeared. Nevertheless, the new model depends on a fast time
variable s = t/ε, through the diffusion matrix field G(t/ε)D, and a slow time variable t.
We deal with a two-scale problem in time. As often in asymptotic analysis of multiple scale
problems, a way to understand the behavior of the solutions (vε)ε>0 when ε goes to 0 and to
identify the limit problem is to use a formal development whose terms depend both on the
slow and fast time variables

vε(t, z) = v(t, t/ε, z) + εv1(t, t/ε, z) + .... (10)

This method is used in many frameworks such as periodic homogenization for elliptic and
parabolic systems [1, 31], transport equations [13, 19] or kinetic equations [11]. Plugging the
Ansatz (10) in (9) and identifying the terms of the same order with respect to ε, lead to the
hierarchy of equations

∂sv = 0 (11)

∂tv − divz(G(s)D∇zv) + ∂sv
1 = 0 (12)

...

Equation (11) says that the first profile v does not depend on the fast time variable s, that
is v = v(t, z). We expect that v is the limit of the family (vε)ε>0, when ε goes to 0. The
slow time evolution of v is given by (12), but we need to eliminate the second profile v1.
Actually v1 appears as a Lagrange multiplier which guarantees that at any time t, the profile
v satisfies the constraint ∂sv = 0. In the periodic case, we eliminate v1 by taking the average
over one period. However, without periodicity assumptions, we need to use ergodic averaging
techniques, that is to write ∂tv − divz

{(
lim

S→+∞

1

S

∫ S

0
G(s)D ds

)
∇zv

}
= 0, (t, z) ∈ R+ × Rm

v(0, z) = uin(z), z ∈ Rm.
(13)
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The key point is that (G(s))s∈R is a C0-group of unitary operators (on some Hilbert space to
be determined), and thanks to von Neumann’s ergodic mean theorem [34], the limit 〈D〉 =

limS→+∞
1
S

∫ S
0 G(s)D ds makes sense. The Hilbert space which realizes (G(s))s∈R as a C0-

group of unitary operators appears as a L2 weighted space, with respect to some field of
symmetric positive definite matrices. We assume that there is a matrix field P such that

tP = P, P (y)ξ · ξ > 0, ξ ∈ Rm \ {0}, y ∈ Rm, P−1, P ∈ L2
loc(Rm) (14)

[b, P ] = 0, in D ′(Rm), (15)

where the bracket between a vector field c and a matrix field A is a matrix field formally
defined by

[c, A] := (c · ∇y)A− ∂ycA−At∂yc. (16)

The condition (15) naturally appears in our problem because of the following proposition.

Proposition 2.1 Consider a vector field c ∈ W 1,∞
loc (Rm) (not necessarily divergence free)

with at most linear growth at infinity and A(y) ∈ L1
loc(Rm) a matrix field.

1. We can express the commutator between the advection operator c · ∇y and the diffusion
operator divy(A(y)∇y) as follows[

c · ∇y, divy(A(y)∇y)
]

= divy([c, A]∇y) +
(
tA(y)∇ydivyc

)
· ∇y. (17)

In particular, if divyc = 0, this commutator is also a diffusion operator with respect to
the matrix field [c, A].

2. The following assertions are equivalent

(a) We have [c, A] = 0 in D ′(Rm)

(b) For any s ∈ R, y ∈ Rm, we have

A(Y (s; y)) = ∂Y (s; y)A(y) t∂Y (s; y).

where Y stands for the flow associated with the vector field c.

(c) For any s ∈ R, we have
G(s)A = A,

where G is defined in (8).

Proof.

1. A straightforward computation first shows that the commutator between c · ∇y and
divy is given by

[c · ∇y, divy]ξ = ξ · ∇ydivyc− divy(∂yc ξ), ξ ∈ (C2(Rm))m.

Using the above formula with ξ = A(y)∇yu, for a smooth u, one gets

c · ∇y(divy(A(y)∇yu))− divy(c · ∇y(A(y)∇yu))

= A(y)∇yu · ∇ydivyc− divy(∂ycA(y)∇yu). (18)

Taking into account that

c · ∇y(A(y)∇yu) = (c · ∇yA)∇yu+A(y)(∂2u)c(y)

= (c · ∇yA)∇yu+A(y)∇y(c · ∇yu)−A(y) t∂yc∇yu

5



we deduce by (18)

c · ∇y(divy(A(y)∇yu))− divy(A(y)∇y(c · ∇yu)) = A(y)∇yu · ∇ydivyc

+ divy((c · ∇yA− ∂ycA(y)−A(y) t∂yc)∇yu),

which is the claimed formula.

2. This characterization is proved in [12, Prop. 3.8].

Let us now introduce some useful function spaces. We recall that for any two matrices in
Mm(R), the notation A : B stands for tr(tAB).

Definition 2.1 For any matrix field M : Rm →Mm(R) ∈ L2
loc(Rm) made of positive definite

symmetric matrices, we introduce the weighted L2 space

HM =
{
A : Rm →Mm(R) measurable : M1/2AM1/2 ∈ L2

}
,

which is a Hilbert space for the natural scalar product

(A, B)M :=

∫
Rm

(M1/2AM1/2) : (M1/2BM1/2) dy =

∫
Rm
MA : BM dy, ∀A,B ∈ HM .

The associated norm is denoted by |A|M .
Similarly we introduce the Banach space

H∞M =
{
A : Rm →Mm(R) measurable : M1/2AM1/2 ∈ L∞

}
,

equipped with the norm
|A|H∞M := |M1/2AM1/2|L∞ .

Assume that there is a continuous function ψ, which is left invariant by the flow of b, and
goes to infinity when |y| goes to infinity

ψ ∈ C(Rm), ψ ◦ Y (s; ·) = ψ for any s ∈ R, lim
|y|→+∞

ψ(y) = +∞. (19)

Since the sets {ψ ≤ k}, for k ∈ N are compact sets invariant by the flow of b, we will be able
to perform our analysis in the local spaces

HM,loc =
{
A : Rm →Mm(R) measurable : 1{ψ≤k}A ∈ HM for any k ∈ N

}
.

We say that a family (Ai)i ⊂ HM loc converges in HM,loc toward some A ∈ HM loc iff for any
k ∈ N, the family (1{ψ≤k}Ai)i converges in HM toward 1{ψ≤k}A.

We define similar spaces for vector fields.

Definition 2.2 With the same assumption as in the previous definition, we define

XM := {c : Rm → Rm measurable : M1/2c ∈ L2}

which is a Hilbert space for the scalar product

(c, d)M :=

∫
Rm
M(y) : c(y)⊗ d(y) dy, ∀c, d ∈ XM ,

and the Banach space

X∞M = {c : Rm → Rm measurable : M1/2c ∈ L∞(Rm)},

equipped with the norm |c|X∞m := |M1/2c|L∞.
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The following properties are straightforward.

Proposition 2.2 We consider the same assumptions as in the Definitions above.

• We have the continuous embedding C0
c (Rm,Mm(R)) ⊂ HM

• If M−1 ∈ L2
loc(Rm) then HM ⊂ L1

loc(Rm;Mm(R)).

Moreover the space HM−1 can be identified to the dual of HM through the L2 pairing
that can be writing as

〈A,B〉M,M−1 :=

∫
Rm
A(y) : B(y) dy =

∫
Rm
M1/2AM1/2 : M−1/2BM−1/2 dy

≤|A|M |B|M−1 , ∀A ∈ HM , ∀B ∈ HM−1 .

Finally, the maps A ∈ HM → MAM ∈ HM−1 and B ∈ HM−1 → M−1BM−1 ∈ HM

are linear isometries that are reciprocal one from each other.

We can now come back to the problem of giving a sense to the average process in (13).
Given a matrix field P satisfying (14), (15), we set Q = P−1 and we shall prove that the

family of applications G(s) : HQ → HQ, s ∈ R, is a C0-group of unitary operators on HQ (see
Proposition 3.1). Thanks to the von Neumann’s ergodic theorem (see Theorem 3.1 and [34]

for more details), we find that the average of a matrix field 〈A〉 := limS→+∞
1
S

∫ S
0 G(s)A ds

is well defined and coincides with the orthogonal projection on the invariant subspace {B ∈
HQ : G(s)B = B for any s ∈ R} see also [12, 13]. Under the assumption (19), the group
(G(s))s∈R also acts on HQ,loc. In particular, any matrix field of H∞Q ⊂ HQ,loc possesses an
average in HQ,loc, still denoted by 〈·〉, as for matrix fields in HQ.

Theorem 2.1 Assume that (4), (5), (14), (15), (19) hold true. We denote by L the in-
finitesimal generator of the group (G(s))s∈R.

1. For any matrix field A ∈ HQ we have the strong convergence in HQ

〈A〉 := lim
S→+∞

1

S

∫ r+S

r
∂Y (−s;Y (s; ·))A(Y (s; ·)) t∂Y (−s;Y (s; ·))︸ ︷︷ ︸

=(G(s)A)(y)

ds = ProjkerLA

uniformly with respect to r ∈ R.

2. If A ∈ HQ is a field of symmetric positive semi-definite matrices, then so is 〈A〉.

3. Let S ⊂ Rm be an invariant set of the flow of b, that is Y (s;S) = S for any s ∈ R. If
A ∈ HQ is such that

Q1/2(y)A(y)Q1/2(y) ≥ αIm, y ∈ S,

for some α > 0, then we have

Q1/2(y) 〈A〉 (y)Q1/2(y) ≥ αIm, y ∈ S

and in particular, 〈A〉 (y) is positive definite for y ∈ S.

4. If A ∈ HQ ∩H∞Q , then 〈A〉 ∈ HQ ∩H∞Q and

| 〈A〉 |Q ≤ |A|Q, | 〈A〉 |H∞Q ≤ |A|H∞Q .
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5. For any matrix field A ∈ HQ,loc, the family(
1

S

∫ S

0
∂Y (−s;Y (s; ·))A(Y (s; ·)) t∂Y (−s;Y (s; ·)) ds

)
S>0

converges in HQ,loc, when S goes to infinity. Its limit, denoted by 〈A〉, satisfies

1{ψ≤k} 〈A〉 =
〈
1{ψ≤k}A

〉
, for any k ∈ N

where the symbol 〈·〉 in the right hand side stands for the average operator on HQ. In
particular, any matrix field A ∈ H∞Q has an average in HQ,loc and | 〈A〉 |H∞Q ≤ |A|H∞Q .
If A ∈ HQ,loc is such that

Q1/2(y)A(y)Q1/2(y) ≥ αIm, y ∈ Rm,

for some α > 0, then we have

Q1/2(y) 〈A〉 (y)Q1/2(y) ≥ αIm, y ∈ Rm.

The construction presented above of the average matrix field relies on the hypotheses
(4), (14), (15). However, the asymptotic analysis of the family (uε)ε>0 requires to estimate
the derivatives of (uε)ε>0, up to the order three, see Propositions 4.3, 4.4. To obtain those
estimates, it is very convenient to use derivatives along vector fields which commute with the
derivatives along b, such vector fields are said to be in involution with respect to b. In this
case, the uniform regularity of (uε)ε>0 comes easily by taking the derivatives of (1) along
these vector fields in involution with respect to b. More precisely, we shall assume that there
is a matrix field R(y) such that{

detR(y) 6= 0, y ∈ Rm, R ∈ L1
loc(Rm)

(b · ∇y)R+R∂yb = 0 in D ′(Rm).
(20)

The equation satisfied by R in (20) is equivalent to R(Y (s; y))∂Y (s; y) = R(y), (s, y) ∈
R× Rm, which also writes

∂Y (s; y)R−1(y) = R−1(Y (s; y)), (s, y) ∈ R× Rm, (21)

and is finally equivalent to (b · ∇y)R−1 = ∂ybR
−1, saying that the columns of R−1 are vector

fields in involution with b, see [12] Proposition 3.4. for more details. The vector fields in the
columns of R−1 are denoted bi, 1 ≤ i ≤ m. At any point y ∈ Rm they form a basis for Rm cf.
(20) and are supposed smooth and sublinear{

bi ∈W 1,∞
loc (Rm), divybi ∈ L∞(Rm), 1 ≤ i ≤ m,

∀i ∈ {1, ...,m}, ∃Ci > 0 such that |bi(y)| ≤ Ci(1 + |y|), y ∈ Rm,
(22)

which guarantees the existence of the global flows Yi(s; y) ∈ W 1,∞
loc (R × Rm), i ∈ {1, ...,m}.

We claim that the hypotheses (20) imply (14), (15). Clearly R−1 ∈ L∞loc(Rm), since bi, which
are the columns of R−1, are supposed to be locally bounded on Rm. Since y → R−1(y) is
continuous, the function y → detR−1(y) remains away from 0 on any compact set of Rm,
implying that R = (R−1)−1 ∈ L∞loc(Rm). In particular tRR, (tRR)−1 are locally bounded,
and therefore locally square integrable on Rm. We define Q = tRR,P = Q−1 = R−1 tR−1

8



and observe that (14), (15) are satisfied. Indeed, P (y) is symmetric, positive definite, locally
square integrable, together with its inverse Q = P−1 and, thanks to (21), we have

P (Y (s; y)) = R−1(Y (s; y)) tR
−1

(Y (s; y))

= ∂Y (s; y)R−1(y) tR
−1

(y) t∂Y (s; y)

= ∂Y (s; y)P (y) t∂Y (s; y)

saying that [b, P ] = 0 in D ′(Rm) cf. Proposition 2.1. Under the hypotheses (22), the spaces
HQ, H

∞
Q satisfy

HQ =
{
A : Rm →Mm(R) measurable : R A tR ∈ L2(Rm)

}
,

H∞Q = {A : Rm →Mm(R) measurable : R A tR ∈ L∞(Rm)}.

Given the family (bi)1≤i≤m of vector fields in involution with respect to b, we construct the
following Sobolev-type space on Rm

H1
R :=

m⋂
i=1

dom(bi · ∇y)

={u ∈ L2(Rm) : bi · ∇yu ∈ L2(Rm),∀i ∈ {1, ...,m}}
(23)

which is a Hilbert space with the scalar product

(u, v)R =

∫
Rm
u(y)v(y) dy +

m∑
i=1

∫
Rm

(bi · ∇yu)(bi · ∇yv) dy, u, v ∈ H1
R.

The associated norm is denoted by | · |R. The operators bi ·∇y are the infinitesimal generators
of the C0-groups of linear transformations on L2(Rm) given by

τi(s)u := u ◦ Yi(s; ·), u ∈ L2(Rm), s ∈ R, i ∈ {1, ...,m}.

The hypothesis divybi ∈ L∞(Rm) plays a crucial role when looking for a bound for the
Jacobian determinant of ∂Yi.

Remark 2.1 Notice that every element of H1
R has a gradient in the distribution sense that

belongs to L2
loc(Rm). More precisely, for any u ∈ H1

R, we have

∇yu = tR t
(
b1 · ∇yu, ..., bm · ∇yu

)
,

and
|u|2R = ‖u‖2L2(Rm) + |∇u|2P . (24)

It will be convenient in the sequel to make use of the following differential operators

∇Ry := tR−1∇y = t(b1 · ∇y, ..., bm · ∇y),

as well as its higher order versions

(∇Ry ⊗∇Ry )ij := bi · ∇y(bj · ∇y), i, j ∈ {1, ...,m},

(∇Ry ⊗∇Ry ⊗∇Ry )ijk := bi · ∇y(bj · ∇y(bk · ∇y)), i, j, k ∈ {1, ...,m}.

The results in Section 3 hold true under the hypotheses (4), (14), (15) but in Sections 4,
6 and Appendix A we shall need the stronger hypotheses (20) instead of (14), (15).
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Moreover we assume that{
tD = D, D ∈ H∞Q , b ∈ X∞Q
∃ α > 0 such that Q1/2(y)D(y)Q1/2(y) ≥ αIm, y ∈ Rm

(25)

where Q = tRR and the columns of R−1 are given by the vector fields b1, ..., bm.
In view of Theorem 2.1, the formal limit problem (13) of the family of systems (9) becomes{

∂tv − divz(〈D〉∇zv) = 0, (t, z) ∈ R+ × Rm
v(0, z) = uin(z), z ∈ Rm. (26)

Under some regularity assumptions (see Section 6), we will obtain a strong convergence result
for the family (vε)ε>0 in L∞loc(R+;L2(Rm)), toward the solution v of the problem (26). Coming
back to the family (uε)ε>0, through the change of variable in (6), and thanks to the fact that
for any s ∈ R, Y (s; ·) is measure preserving, we justify that at any time t ∈ R+, ε > 0, uε(t, ·)
behaves (in L2(Rm)) like the composition product between v(t, ·) and Y (−t/ε; ·), that is

lim
ε↘0
‖uε(t, .)− v(t, Y (−t/ε; ·))‖L2 = lim

ε↘0
‖vε(t, .)− v(t, .)‖L2 = 0,

uniformly with respect to t ∈ [0, T ], for any T ∈ R+.
Passing to the limit in (9), when ε↘ 0, requires a two-scale analysis. This can be achieved

by standard homogenization arguments, in the setting of periodic fast variables. The aim of
this paper is to obtain results without periodicity assumptions, a framework where not so
much results are available. The key point is to appeal to ergodic means along C0-groups of
unitary operators. More precisely, the main difficulty is passing to the limit in the integral
term ∫ +∞

0

∫
Rm
G(t/ε)D∇zvε · ∇zΦ dzdt

that appears in the variational formulation of (9), for any smooth test function Φ. The
argument combines the weak convergence of (∇zvε)ε>0 as ε ↘ 0 in L2([0, T ];XP ), T ∈ R+,

and the strong convergence of
(

1
S

∫ S
0 G(s)D ds

)
S>0

, as S → +∞, in HQ,loc. More exactly,

we prove that for any family of functions (wβ)β>0, admiting the same modulus of continuity
in C([0, T ];XP ) and converging weakly in L2([0, T ];XP ), as β ↘ 0, toward some w0, we have

lim
(β,ε)→(0,0)

∫ T

0

∫
Rm
θ(t, y)⊗ wβ(t, y) : G(t/ε)D dydt =

∫ T

0

∫
Rm
θ(t, y)⊗ w0(t, y) : 〈D〉 dydt

for any θ ∈ L2([0, T ];XP ), see Propositions 5.1, 5.2. The strong convergences of (∇zvε)ε>0

in L2([0, T ];XP ) and (vε)ε>0 in L∞([0, T ];L2(Rm)) come by energy balances. This is a
consequence of a general result, see Proposition 5.3. Under the coercivity condition in (25),
we prove that the weak convergence of (wβ)β>0 in L2([0, T ];XP ) toward w0 together with
the inequality

lim sup
(β,ε)→(0,0)

∫ T

0

∫
Rm
wβ(t, y)⊗ wβ(t, y) : G(t/ε)D dydt ≤

∫ T

0

∫
Rm
w0(t, y)⊗ w0(t, y) : 〈D〉 dydt

imply the strong convergence of (wβ)β>0 in L2([0, T ];XP ) toward w0.

Theorem 2.2 Assume that the hypotheses (4), (5) (19), (22), (25), (35) hold true together
with all the regularity conditions in Proposition 4.4. We suppose that uin ∈ H2

R and we denote
by (uε)ε>0 the variational solutions of (1) and by (vε)ε>0 the functions

vε(t, z) = uε(t, Y (t/ε; z)), (t, z) ∈ R+ × Rm, ε > 0.

10



Then the family (vε)ε>0 converges strongly in L∞loc(R+;L2(Rm)) to the unique variational
solution v ∈ L∞(R+;L2(Rm)) of (26). The function v has the regularity

∂tv, ∇Rz v, ∇Rz ⊗∇Rz v ∈ L∞loc(R+;L2(Rm)), ∂t∇Rz v ∈ L2
loc(R+;L2(Rm))

and (∇zvε)ε>0 converges toward ∇zv in L2
loc(R+;XP ) when ε goes to 0. Moreover, the strong

convergence of (vε)ε>0 in L∞loc(R+;L2(Rm)), when ε goes to 0, holds true for any initial
condition uin ∈ L2(Rm).

It is easily seen that (uε)ε>0 converges weakly in L∞(R+;L2(Rm)), as ε↘ 0, toward 〈v〉, see
also [12]. We deduce that (uε)ε>0 converges strongly in L∞loc(R+;L2(Rm)), as ε↘ 0, toward
v iff v = 〈v〉, or equivalently, iff the initial condition is well prepared, i.e., uin ∈ ker T .
Under additional hypotheses we can justify that vε = v + O(ε) in L∞loc(R+;L2(Rm)), as
suggested by the formal Ansatz (10).

Theorem 2.3 Assume that the hypotheses (4), (5), (19), (22), (25) hold true. Moreover, we
assume that the solution v of the limit model (26) is smooth enough, that is

∇Rz v ∈ L∞loc(R+;L2(Rm)), ∇Rz ⊗∇Rz v ∈ L∞loc(R+;L2(Rm))

∇Rz ∂tv ∈ L1
loc(R+;L2(Rm)), ∇Rz ⊗∇Rz ∂tv ∈ L1

loc(R+;L2(Rm))

∇Rz ⊗∇Rz ⊗∇Rz v ∈ L2
loc(R+;L2(Rm)), ∇Rz ⊗∇Rz ⊗∇Rz ⊗∇Rz v ∈ L1

loc(R+;L2(Rm))

and that there is a smooth matrix field C ∈ H∞Q , that is

divy(RC), bk · ∇ydivy(RC), bl · ∇y(bk · ∇ydivy(RC)) ∈ L∞(Rm), k, l ∈ {1, ...,m}

RC tR, bk · ∇y(RC tR), bl · ∇y(bk · ∇y(RC tR)) ∈ L∞(Rm), k, l ∈ {1, ...,m}

such that the following decomposition holds true

D = 〈D〉+ L(C), 〈C〉 = 0.

We denote by (uε)ε>0 the variational solutions of (1). Then for any T ∈ R+, there is a
constant CT such that

sup
t∈[0,T ]

‖uε(t, ·)− v(t, Y (−t/ε; ·))‖L2(Rm) ≤ CT ε

(∫ T

0
|∇yuε(t, ·)−∇yv(t, Y (−t/ε; ·))|2P dt

)1/2

≤ CT ε.

3 The average of a matrix field

3.1 Definition and properties

Motivated by the computations leading to (8), we consider the family of linear transformations
(G(s))s∈R, acting on matrix fields. It happens that (G(s))s∈R is a C0-group of unitary
operators on HQ. For any function f = f(y), y ∈ Rm, the notation fs = fs(z) stands for the
composition product fs = f ◦ Y (s; ·).

Proposition 3.1 Assume that the hypotheses (4), (5), (14), (15), (19) hold true.
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1. The family of applications

A→ G(s)A := ∂Y −1(s; ·)As t∂Y
−1

(s; ·) = ∂Y (−s;Y (s; ·))As t∂Y (−s;Y (s; ·))

is a C0-group of unitary operators on HQ.

2. If A is a field of symmetric matrices, then so is G(s)A, for any s ∈ R.

3. If A is a field of positive semi-definite matrices, then so is G(s)A, for any s ∈ R.

4. Let S ⊂ Rm be an invariant set of the flow of b, that is Y (s;S) = S, for any s ∈ R. If
there is α > 0 such that Q1/2(y)A(y)Q1/2(y) ≥ αIm, y ∈ S, then for any s ∈ R we have
Q1/2(y)(G(s)A)(y)Q1/2(y) ≥ αIm, y ∈ S.

5. The family of applications (G(s))s∈R acts on HQ,loc, that is, if A ∈ HQ,loc, then G(s)A ∈
HQ,loc for any s ∈ R. Moreover, we have

1{ψ≤k}G(s)A = G(s)(1{ψ≤k}A), A ∈ HQ,loc, s ∈ R, k ∈ N.

Proof.
1. Thanks to the characterization in Proposition 2.1 we know that

Ps = ∂Y (s; ·)P t∂Y (s; ·), s ∈ R. (27)

For any s ∈ R we consider the matrix field O(s; ·) = Q
1/2
s ∂Y (s; ·)Q−1/2. Observe that O(s; ·)

is a field of orthogonal matrices, for any s ∈ R. Indeed we have, thanks to (27)

tO(s; ·)O(s; ·) = Q−1/2 t∂Y (s; ·)Q1/2
s Q1/2

s ∂Y (s; ·)Q−1/2

= Q−1/2
(
∂Y −1(s; ·)Ps t∂Y −1(s; ·)

)−1
Q−1/2

= Q−1/2P−1Q−1/2

= Im

implying that for any matrix field A we have

Q1/2G(s)AQ1/2 = Q1/2∂Y −1(s; ·)As t∂Y −1(s; ·)Q1/2 = tO(s; ·)Q1/2
s AsQ

1/2
s O(s; ·). (28)

It is easily seen that if A ∈ HQ, then for any s ∈ R

|G(s)A|2Q =

∫
Rm
Q1/2G(s)AQ1/2 : Q1/2G(s)AQ1/2 dy

=

∫
Rm

tO(s; ·)Q1/2
s AsQ

1/2
s O(s; ·) : tO(s; ·)Q1/2

s AsQ
1/2
s O(s; ·) dy

=

∫
Rm
Q1/2
s AsQ

1/2
s : Q1/2

s AsQ
1/2
s dy

=

∫
Rm
Q1/2AQ1/2 : Q1/2AQ1/2 dy = |A|2Q

proving that G(s) is a unitary transformation for any s ∈ R. The group property of the
family (G(s))s∈R follows easily from the group property of the flow (Y (s; ·))s∈R

G(s)G(t)A = ∂Y −1(s; ·)(G(t)A)s
t∂Y −1(s; ·)

= ∂Y −1(s; ·)∂Y −1(t;Y (s; ·))(At)s t∂Y −1(t;Y (s; ·)) t∂Y −1(s; ·)
= ∂Y −1(t+ s; ·)At+s t∂Y −1(t+ s; ·) = G(t+ s)A, A ∈ HQ.

12



The continuity of the group, i.e., lims→0G(s)A = A strongly in HQ, is left to the reader.
2. Notice that G(s) commutes with transposition

t(G(s)A) = t
(
∂Y −1(s; ·)As t∂Y −1(s; ·)

)
= ∂Y −1(s; ·) tAs t∂Y −1(s; ·)
= G(s) tA.

In particular, if tA = A, then t(G(s)A) = G(s)A.
3. We use the formula (28). For any ξ, η ∈ Rm, the notation ξ ⊗ η stands for the matrix
whose (i, j) entry is ξiηj . For any ξ ∈ Rm we have

G(s)A : Q1/2ξ ⊗Q1/2ξ = Q1/2G(s)AQ1/2 : ξ ⊗ ξ
= tO(s; ·)Q1/2

s AsQ
1/2
s O(s; ·) : ξ ⊗ ξ

= Q1/2
s AsQ

1/2
s : O(s; ·)(ξ ⊗ ξ) tO(s; ·)

= Q1/2
s AsQ

1/2
s : (O(s; ·)ξ)⊗ (O(s; ·)ξ)

= As : (Q1/2
s O(s; ·)ξ)⊗ (Q1/2

s O(s; ·)ξ).

As A is a field of positive semi-definite matrices, therefore G(s)A is a field of positive semi-
definite matrices as well.
4. Assume that there is α > 0 such that Q1/2AQ1/2 ≥ αIm on S. As before we write for any
ξ ∈ Rm, y ∈ S

Q1/2G(s)AQ1/2 : ξ ⊗ ξ = (Q1/2AQ1/2)s : (O(s; ·)ξ)⊗ (O(s; ·)ξ) ≥ α|O(s; ·)ξ|2 = α|ξ|2

saying that Q1/2G(s)AQ1/2 ≥ αIm on S.
5. Here G(s) stands for the application A → ∂Y (−s;Y (s; ·))A(Y (s; ·)) t∂Y (−s;Y (s; ·))
independently of A being in HQ or in HQ,loc. As ψ is left invariant by the flow of b, so is
1{ψ≤k}, for any k ∈ N. If A belongs to HQ,loc, we have

1{ψ≤k}G(s)A = G(s)(1{ψ≤k}A) ∈ HQ, k ∈ N, s ∈ R

saying that G(s)A ∈ HQ,loc, s ∈ R. Moreover, the applications (G(s))s∈R preserve locally the
norm of HQ∣∣1{ψ≤k}G(s)A

∣∣
Q

=
∣∣G(s)(1{ψ≤k}A)

∣∣
Q

=
∣∣1{ψ≤k}A∣∣Q , k ∈ N, s ∈ R.

We denote by L the infinitesimal generator of the group G in HQ

L : dom(L) ⊂ HQ → HQ, domL =

{
A ∈ HQ : ∃ lim

s→0

G(s)A−A
s

in HQ

}
and we set L(A) = lims→0

G(s)A−A
s for any A ∈ dom(L). Notice that C1

c (Rm) ⊂ dom(L)
and L(A) = (b · ∇y)A − ∂ybA − A t∂yb, as soon as A ∈ C1

c (Rm) (use the hypothesis Q ∈
L2
loc(Rm) and the dominated convergence theorem). The main properties of the operator L

are summarized below (see [12, Prop. 3.13] for details)

Proposition 3.2 Assume that the hypotheses (4), (14), (15) hold true.

1. The domain of L is dense in HQ and L is closed.
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2. The matrix field A ∈ HQ belongs to dom(L) iff there is a constant C > 0 such that

|G(s)A−A|Q ≤ C|s|, s ∈ R.

3. The operator L is skew-adjoint in HQ and we have the orthogonal decomposition HQ =

kerL
⊥
⊕ Range L.

Remark 3.1 When working on HQ,loc, the generator of (G(s))s∈R, which is still denoted by
L, is defined by

A ∈ dom(L) iff ∃ lim
s→0

G(s)(1{ψ≤k}A)− 1{ψ≤k}A

s
∈ HQ, k ∈ N

and

1{ψ≤k}L(A) = lim
s→0

G(s)(1{ψ≤k}A)− 1{ψ≤k}A

s
, k ∈ N.

The transformations (G(s))s∈R also behave nicely in weighted L∞ spaces. More precisely,
for any s ∈ R, and any A ∈ H∞Q , we have G(s)A ∈ H∞Q and |G(s)A|H∞Q = |A|H∞Q . Indeed,

thanks to (28) and to the orthogonality of O(s; ·), we can write

Q1/2G(s)AQ1/2 : Q1/2G(s)AQ1/2 = tO(s; ·)Q1/2
s AsQ

1/2
s O(s; ·) : tO(s; ·)Q1/2

s AsQ
1/2
s O(s; ·)

= (Q1/2AQ1/2 : Q1/2AQ1/2)s.

We are now in position to apply the von Neumann’s ergodic mean theorem.

Theorem 3.1 (von Neumann’s ergodic mean theorem, see [34]) Let (G(s))s∈R be a
C0-group of unitary operators on an Hilbert space (H, (·, ·)) and L be its infinitesimal gener-
ator. Then for any x ∈ H, we have the strong convergence in H

lim
S→+∞

1

S

∫ r+S

r
G(s)x ds = ProjKerLx, uniformly with respect to r ∈ R.

The proof of Theorem 2.1 comes immediately, by applying Theorem 3.1 to the group in
Proposition 3.1.

Proof of Theorem 2.1. The first and second statements are obvious.
3. For any ξ ∈ Rm, ψ ∈ C0

c (S), ψ ≥ 0 we have ψ(·)P 1/2ξ ⊗ P 1/2ξ ∈ HQ and we can write,
thanks to (28)

(G(s)A,ψ(·)P 1/2ξ ⊗ P 1/2ξ)Q =

∫
Rm
ψ(y)Q1/2G(s)AQ1/2 : ξ ⊗ ξ dy

=

∫
Rm
ψ(y) tO(s; y)Q1/2

s AsQ
1/2
s O(s; y)ξ · ξ dy

=

∫
Rm
ψ(y)Q1/2

s AsQ
1/2
s : O(s; y)ξ ⊗O(s; y)ξ dy

≥ α
∫
Rm
|O(s; y)ξ|2ψ(y) dy

= α|ξ|2
∫
Rm
ψ(y) dy.

Taking the average over [0, S] and letting S → +∞ yield∫
Rm
ψ(y)Q1/2 〈A〉Q1/2 : ξ ⊗ ξ dy = (〈A〉 , ψP 1/2ξ ⊗ P 1/2ξ)Q ≥

∫
Rm
α|ξ|2ψ(y) dy

14



implying that
Q1/2(y) 〈A〉 (y)Q1/2(y) ≥ αIm, y ∈ S.

4. Obviously, for any A ∈ HQ, we have by the properties of the orthogonal projection on
kerL that | 〈A〉 |Q = |ProjkerLA|Q ≤ |A|Q. For the last inequality, consider M ∈ Mm(R) a
fixed matrix, ψ ∈ C0

c (Rm), ψ ≥ 0 and, as before, observe that ψP 1/2MP 1/2 ∈ HQ, which
allows us to write

(G(s)A,ψP 1/2MP 1/2)Q =

∫
Rm
Q1/2G(s)AQ1/2 : ψM dy

=

∫
Rm

tO(s; y)Q1/2
s AsQ

1/2
s O(s; y) : ψM dy

=

∫
Rm
Q1/2
s AsQ

1/2
s : O(s; y)M tO(s; y) dy

≤
∫
Rm

√
Q

1/2
s AsQ

1/2
s : Q

1/2
s AsQ

1/2
s

√
O(s; y)M tO(s; y) : O(s; y)M tO(s; y)ψ dy

≤ |A|H∞Q (M : M)1/2
∫
Rm
ψ(y) dy.

Taking the average over [0, S] and letting S → +∞, lead to∫
Rm
Q1/2 〈A〉Q1/2 : Mψ(y) dy = (〈A〉 , ψP 1/2MP 1/2)Q ≤ |A|H∞Q (M : M)1/2

∫
Rm
ψ(y) dy.

We deduce that

Q1/2(y) 〈A〉 (y)Q1/2(y) : M ≤ |A|H∞Q (M : M)1/2, y ∈ Rm, M ∈Mm(R)

saying that

| 〈A〉 |H∞Q = ess supy∈Rm

√
Q1/2(y) 〈A〉 (y)Q1/2(y) : Q1/2(y) 〈A〉 (y)Q1/2(y) ≤ |A|H∞Q .

5. Let A be a matrix field in HQ,loc. For any k ∈ N, 1{ψ≤k}A belongs to HQ, and by the first
statement we know that

lim
S→+∞

1

S

∫ S

0
G(s)(1{ψ≤k}A) ds =

〈
1{ψ≤k}A

〉
∈ HQ, k ∈ N.

It is easily seen that for any k, l ∈ N we have

lim
S→+∞

1

S

∫ S

0
G(s)(1{ψ≤k}A) ds = lim

S→+∞

1

S

∫ S

0
G(s)(1{ψ≤l}A) ds

almost everywhere on {ψ ≤ min(k, l)}, and thus, there is a matrix field denoted by 〈A〉,
whose restriction on {ψ ≤ k} coincides with

〈
1{ψ≤k}A

〉
for any k ∈ N. Notice also that for

any k ∈ N we have
〈
1{ψ≤k}A

〉
= 0 almost everywhere on {ψ > k} and thus we obtain

1{ψ≤k} 〈A〉 =
〈
1{ψ≤k}A

〉
, k ∈ N.

Observe that for any k ∈ N, we have the convergence in HQ

lim
S→+∞

1{ψ≤k}
1

S

∫ S

0
G(s)(A) ds = lim

S→+∞

1

S

∫ S

0
G(s)(1{ψ≤k}A) ds =

〈
1{ψ≤k}A

〉
= 1{ψ≤k} 〈A〉
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saying that limS→+∞
1
S

∫ S
0 G(s)Ads = 〈A〉 in HQ,loc. The inclusion H∞Q ⊂ HQ,loc follows by

the compactness of {ψ ≤ k}, k ∈ N. By the fourth statement we have

| 〈A〉 |H∞Q = sup
k∈N
|1{ψ≤k} 〈A〉 |H∞Q = sup

k∈N
|
〈
1{ψ≤k}A

〉
|H∞Q ≤ sup

k∈N
|1{ψ≤k}A|H∞Q = |A|H∞Q .

Let A be a matrix field of HQ,loc, such that Q1/2(y)A(y)Q1/2(y) ≥ αIm, y ∈ Rm, for some
α > 0. For any k ∈ N we have 1{ψ≤k}A ∈ HQ and

Q1/2(y)1{ψ≤k}A(y)Q1/2(y) ≥ αIm, y ∈ {ψ ≤ k}.

By the third statement we deduce that for any k ∈ N

Q1/2(y)1{ψ≤k} 〈A〉 (y)Q1/2(y) = Q1/2(y)
〈
1{ψ≤k}A

〉
(y)Q1/2(y) ≥ αIm, y ∈ {ψ ≤ k}

saying that Q1/2(y) 〈A〉 (y)Q1/2(y) ≥ αIm, y ∈ Rm.

3.2 Examples

In this section we explicitly compute the average matrix field in three cases. We deal with
periodic and almost-periodic flows.

3.2.1 Periodic flow

Consider the vector field b(y) = (γy2,−βy1), for any y = (y1, y2) ∈ R2, with β, γ ∈ R?+. The
function ψ(y) = βy21 +γy22, y ∈ R2, is a coercive invariant associated to the field b. We denote
by Y (s; y) the flow of the vector field b. We intend to determine the average along the flow
Y of the matrix field

D(y) =

(
λ1(y) 0

0 λ2(y)

)
, y ∈ R2

where λ1, λ2 are two given functions. It is easily seen that the flow is 2π/
√
βγ-periodic and

writes Y (s; y) = R(−s;β, γ)y, (s, y) ∈ R× R2, with

R(s;β, γ) =

 cos(
√
βγ s) −

√
γ
β sin(

√
βγ s)√

β
γ sin(

√
βγ s) cos(

√
βγ s)

 .

By Theorem 2.1 we deduce that

〈D〉 =

√
βγ

2π

∫ 2π/
√
βγ

0
∂Y (−s;Y (s; ·))D(Y (s; ·)) t∂Y (−s;Y (s; ·)) ds

=

√
βγ

2π

∫ 2π/
√
βγ

0
R(s;β, γ)D(Y (s; ·))R(−s; γ, β) ds

=

(
〈D〉11 〈D〉12
〈D〉21 〈D〉22

)
where

〈D〉11 =
1

2

〈
λ1[1 + cos(2

√
βγ ·)]

〉
+

γ

2β

〈
λ2[1− cos(2

√
βγ ·)]

〉
〈D〉12 = 〈D〉21 =

√
β

2
√
γ

〈
λ1 sin(2

√
βγ ·)

〉
−
√
γ

2
√
β

〈
λ2 sin(2

√
βγ ·)

〉
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〈D〉22 =
β

2γ

〈
λ1[1− cos(2

√
βγ ·)]

〉
+

1

2

〈
λ2[1− cos(2

√
βγ ·)]

〉
and for any function h the notation 〈λih(·)〉 stands for

√
βγ
2π

∫ 2π/
√
βγ

0 λi(Y (s; y))h(s) ds, i ∈
{1, 2}. Notice that when λ1, λ2 are constant functions along the flow Y (s; ·) (that is, when
λ1, λ2 depend only on β(y1)

2 + γ(y2)
2), the expression for 〈D〉 reduces to

〈D〉 =

(
1
2λ1 + γ

2βλ2 0

0 β
2γλ1 + 1

2λ2

)
.

Observe that even if λ2 = 0 everywhere (in which case D(y) is nowhere definite positive),
then the averaged diffusion matrix 〈D〉 can still be definite positive everywhere.

3.2.2 Almost-periodic flow

Consider the vector field b(y) = (y2,−ω2
1 y1, y4,−ω2

2 y3), y = (y1, y2, y3, y4) ∈ R4, with ω1, ω2 ∈
R? incommensurable, i.e ω1/ω2 /∈ Q. The function ψ(y) = ω2

1y
2
1 +y22 +ω2

2y
2
3 +y24, with y ∈ R4,

is a coercive invariant associated to the field b. We denote by Y (s; y) the flow of the vector
field b. We consider the matrix field

D(y) =


λ1(y) 0 0 0

0 λ2(y) 0 0
0 0 λ3(y) 0
0 0 0 λ4(y)

 , y ∈ R4

where λ1, λ2, λ3, λ4 are four given functions, which are constant along the flow Y (s; ·). The
flow writes Y (s; y) = R(−s;ω1, ω2)y, (s, y) ∈ R× R4, with

R(s;ω1, ω2) =


cos(sω1) − 1

ω1
sin(sω1) 0 0

ω1 sin(sω1) cos(sω1) 0 0
0 0 cos(sω2) − 1

ω2
sin(sω2)

0 0 ω2 sin(sω2) cos(sω2)

 .

The incommensurability condition ensures that the flow is not periodic with respect to the
variable s. Nevertheless it is almost periodic with respect to s. By Theorem 2.1 we deduce
that

〈D〉 = lim
S→+∞

1

S

∫ S

0
∂Y (−s;Y (s; ·))D(Y (s; ·)) t∂Y (−s;Y (s; ·)) ds

= lim
S→+∞

1

S

∫ S

0
R(s;ω1, ω2)D(Y (s; ·)) tR(s;ω1, ω2) ds

=


1
2λ1(y) + 1

2ω2
1
λ2(y) 0 0 0

0
ω2
1
2 λ1(y) + 1

2λ2(y) 0 0
0 0 1

2λ3(y) + 1
2ω2

2
λ4(y) 0

0 0 0
ω2
2
2 λ3(y) + 1

2λ4(y)

 .

3.3 The Fokker-Planck equation

We inquire now about the Fokker-Planck equation. For simplicity, we assume that the mag-
netic field is uniform Bε = (0, 0, B/ε), x ∈ R3. In the finite Larmor radius regime (i.e., the
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typical length in the orthogonal directions is much smaller then the typical length in the
parallel direction), the presence density of charged particles f ε satisfies

∂tf
ε+

1

ε
(v1∂x1+v2∂x2)f ε+v3∂x3f

ε+
q

m
E ·∇vf ε+

qB

mε
(v2∂v1−v1∂v2)f ε = νdivv{Θ∇vf ε+vf ε}.

(29)
In this case, the flow

(x, v) ∈ R3 × R3 7→ Y (s;x, v) = (X(s;x, v), V (s;x, v)) ∈ R3 × R3,

to be considered corresponds to the vector field

b(x, v) · ∇x,v = v1∂x1 + v2∂x2 + ωc(v2∂v1 − v1∂v2), ωc =
qB

m
, (x, v) ∈ R6.

We introduce the notation c(x, v) · ∇x,v = v3∂x3 + q
mE · ∇v. It is easily seen that

X(s;x, v) = x+
⊥v

ωc
− R(−ωcs)

ωc
⊥v, X3(s;x3) = x3, V (s; v) = R(−ωcs)v, V3(s; v3) = v3

where we have used the notations x = (x1, x2), v = (v1, v2),
⊥v = (v2,−v1) and R(θ) stands

for the rotation in R2 of angle θ ∈ R. The Jacobian matrix of the flow writes

∂x,vY (s;x, v) =


I2 02×1

I2−R(−ωcs)
ωc

E 02×1
01×2 1 01×2 0
02×2 02×1 R(−ωcs) 02×1
01×2 0 01×2 1


where 0m×n stands for the null matrix with m lines and n columns, and E = R(−π/2). We
indicate the main lines for the asymptotic analysis of the Fokker-Planck equation (29). We ap-
peal to the weak formulation of (29), written for the test function (t, y)→ ϕ(t, Y (−t/ε; y)), y =
(x, v), Y = (X,V ), ϕ ∈ C1

c (R+ × R6). Denoting by fin the initial density, we obtain

−
∫
R6

fin(y)ϕ(0, y) dy −
∫ +∞

0

∫
R6

f ε(t, y){∂tϕ(t)− 1

ε
b · (∇zϕ)(t)}(Y (−t/ε; y)) dydt

−
∫ +∞

0

∫
R6

f ε(t, y)c(t, y) · t∂yY (−t/ε; y) (∇zϕ)(t, Y (−t/ε; y)) dydt

−
∫ +∞

0

∫
R6

f ε(t, y)
b(y)

ε
· t∂yY (−t/ε; y) (∇zϕ)(t, Y (−t/ε; y)) dydt

= −ν
∫ +∞

0

∫
R6

(Θ∇vf ε + vfε) · t∂vY (−t/ε; y) (∇zϕ)(t, Y (−t/ε; y)) dydt.

We introduce the new densities (gε)ε given by

f ε(t, y) = gε(t, Y (−t/ε; y)), (t, y) ∈ R+ × R6

and we use the identity

b(Y (−t/ε; y))− ∂yY (−t/ε; y) b(y) = 0.
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After performing the change of variables z = Y (−t/ε; y), the above formulation reduces to

−
∫
R6

fin(z)ϕ(0, z) dz −
∫ +∞

0

∫
R6

gε(t, z)∂tϕ(t, z) dzdt

−
∫ +∞

0

∫
Rm
gε∂yY (−t/ε;Y (t/ε; z))c(t, Y (t/ε; z)) · ∇zϕ(t, z) dzdt

= −ν
∫ +∞

0

∫
R6

Θ∂vY (−t/ε;Y (t/ε; z)) t∂vY (−t/ε;Y (t/ε; z))∇zgε · ∇zϕ dzdt

− ν
∫ +∞

0

∫
R6

gε(t, z)∂vY (−t/ε;Y (t/ε; z))V (t/ε; z)gε(t, z) · ∇zϕ dzdt.

Motivated by Theorems 2.2, 2.3, we expect that (gε)ε converges in L∞loc(R+;L2(R6)) to the
solution of the problem{

∂tg + C(t, z) · ∇zg = νdivz{ΘD(z)∇zg + V(z)g}, (t, z) ∈ R+ × R6

g(0, z) = fin(z), z ∈ R6

where the matrix field D and the vector fields C,V are given by ergodic averages

D(z) = lim
S→+∞

1

S

∫ S

0
∂vY (−s;Y (s; z)) t∂vY (−s;Y (s; z)) ds

C(t, z) = lim
S→+∞

1

S

∫ S

0
∂yY (−s;Y (s; z))c(t, Y (s; z)) ds (30)

V(z) = lim
S→+∞

1

S

∫ S

0
∂vY (−s;Y (s; z))V (s; z) ds (31)

= lim
S→+∞

1

S

∫ S

0
∂yY (−s;Y (s; z)) t(0, V (s; z)) ds.

Observe that D is the average of the diffusion matrix D entering the Fokker-Planck equation
(29) cf. Theorem 2.1

D =
3∑
i=1

evi ⊗ evi =

(
03×3 03×3
03×3 I3

)
.

After direct computations we obtain (thanks to the periodicity of the flow)

D(z) = lim
S→+∞

1

S

∫ S

0
∂yY (−s;Y (s; z))D t∂yY (−s;Y (s; z)) ds

=
ωc
2π

∫ 2π/ωc

0
∂yY (−s;Y (s; z))

(
03×3 03×3
03×3 I3

)
t∂yY (−s;Y (s; z)) ds

=


2I2
ω2
c

02×1 − Eωc 02×1

01×2 0 01×2 0
E
ωc

02×1 I2 02×1
01×2 0 01×2 1

 . (32)

Notice that the averaged Fokker-Planck kernel D contains diffusion terms not only in velocity
variables (as in initial the Fokker-Planck kernel D) but also in space variables (orthogonal
to the magnetic lines). This was actually observed in gyrokinetic theory and numerical
simulations [15, 16, 17, 27, 35].
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It remains to clarify the existence of the ergodic average for vector fields. This comes
from the fact that the family of maps

c ∈ XQ → ∂yY (−s;Y (s; ·))c(Y (s; ·)) ∈ XQ, s ∈ R

forms a C0-group of unitary operators in XQ, see also Proposition 3.1. Consequently, thanks
to the von Neumann’s theorem, we deduce that the vector fields C and V introduced in (30),
(31) are well defined (see Theorem 2.1).

4 Well posedness for the perturbed problem and uniform es-
timates

For solving (1), we appeal to variational methods. We use the continuous embedding H1
R ↪→

L2(Rm), with dense image (since C1
c (Rm) ⊂ H1

R).

Proposition 4.1 Assume that b satisfies (4), (5), (19), that R and R−1 satisfy (20) and
(22), and that D satisfies (25).

1. For any ε > 0, the bilinear form aε : H1
R ×H1

R → R defined by

aε(u, v) :=

∫
Rm
D(y)∇yu · ∇yv dy +

1

ε

∫
Rm

(b · ∇yu)v(y) dy, u, v ∈ H1
R,

is well defined, continuous and coercive on H1
R with respect to L2(Rm).

2. The bilinear form 〈a〉 : H1
R ×H1

R → R defined by

〈a〉 (u, v) :=

∫
Rm
〈D〉 (y)∇yu · ∇yv dy, u, v ∈ H1

R,

is well defined, continuous and coercive on H1
R with respect to L2(Rm).

Proof.
1. For any u, v ∈ H1

R we have

|D(y)∇yu · ∇yv| = |Q1/2(y)D(y)Q1/2(y) : (P 1/2∇yv)⊗ (P 1/2∇yu)|
≤ |D|H∞Q |P

1/2(y)∇yv| |P 1/2(y)∇yu|, y ∈ Rm

and

|b(y) · ∇yu v(y)| = |Q1/2(y)b(y) · P 1/2(y)∇yu v(y)| ≤ |b|X∞Q |P
1/2(y)∇yu| |v(y)|, y ∈ Rm.

Therefore, it is easily seen, thanks to (24), that

|aε(u, v)| ≤ |D|H∞Q |∇yu|P |∇yv|P +
1

ε
|b|X∞Q |∇yu|P ‖v‖L2(Rm)

≤
(
|D|H∞Q +

1

ε
|b|X∞Q

)
|u|R|v|R

showing that the bilinear application aε(·, ·) is well defined and continuous. We inquire now
about the coercivity of aε on H1

R, with respect to L2(Rm). For any u ∈ H1
R we have, thanks
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to the anti-symmetry of b · ∇y

aε(u, u) + α‖u‖2L2(Rm) =

∫
Rm
D(y)∇yu · ∇yu dy + α‖u‖2L2(Rm)

=

∫
Rm
Q1/2(y)D(y)Q1/2(y) : (P 1/2(y)∇yu)⊗ (P 1/2(y)∇yu) dy + α‖u‖2L2(Rm)

≥ α
∫
Rm
|P 1/2(y)∇yu|2 dy + α‖u‖2L2(Rm)

= α
(
|∇yu|2P + ‖u‖2L2(Rm)

)
= α|u|2R.

We emphasize the following inequality, which will be used several times in the sequel

D(y)∇yu · ∇yu ≥ α|∇Ry u|2, u ∈ H1
R. (33)

2. We follow the same lines as before since Theorem 2.1 gives that

Q1/2(y) 〈D〉 (y)Q1/2(y) ≥ αIm, y ∈ Rm

and | 〈D〉 |H∞Q ≤ |D|H∞Q .

Proposition 4.2 Assume that b satisfies (4), (5), (19), that R and R−1 satisfy (20) and
(22), and that D satisfies (25).

There exists uε (resp. v) a unique variational solution of (1) (resp. (26)). Moreover, we
have

‖uε‖L∞(R+;L2(Rm)) ≤ ‖uin‖L2(Rm), ‖∇yuε‖L2(R+;XP ) ≤
‖uin‖L2(Rm)√

2α
, ε > 0

and

‖v‖L∞(R+;L2(Rm)) ≤ ‖uin‖L2(Rm), ‖∇zv‖L2(R+;XP ) ≤
‖uin‖L2(Rm)√

2α
.

Proof. By [20, Theorems 1 and 2, p. 513] (see also [30]) we deduce that for any uin ∈ L2(Rm),
there is a unique variational solution uε for the problem (1), that is uε ∈ Cb(R+;L2(Rm)) ∩
L2(R+;H1

R), ∂tu
ε ∈ L2(R+; (H1

R)′) and

uε(0) = uin,
d

dt

∫
Rm
uε(t, y)ϕ(y) dy + aε(uε(t), ϕ) = 0, in D′(R+), for any ϕ ∈ H1

R.

Similarly, there is a unique variational solution v for the limit model (26), that is v ∈
Cb(R+;L2(Rm)) ∩ L2(R+;H1

R), ∂tv ∈ L2(R+; (H1
R)′) and

v(0) = uin,
d

dt

∫
Rm
v(t, z)ψ(z) dy + 〈a〉 (v(t), ψ) = 0, in D′(R+), for any ψ ∈ H1

R.

The above estimates come immediately by the energy balance

1

2

d

dt
‖uε(t)‖2L2(Rm) + aε(uε(t), uε(t)) = 0, in D′(R+)

which implies

1

2
‖uε(t)‖2L2(Rm) +

∫ t

0
aε(uε(τ), uε(τ)) dτ =

1

2
‖uin‖2L2(Rm), t ∈ R+.

In particular we deduce ‖uε(t)‖L2(Rm) ≤ ‖uin‖L2(Rm), for any t ∈ R+, ε > 0, and

2α

∫ t

0
|∇yuε(τ)|2P dτ ≤ 2

∫ t

0
aε(uε(τ), uε(τ)) dτ ≤ ‖uin‖2L2(Rm), t ∈ R+, ε > 0

saying that ‖∇yuε‖L2(R+;XP ) ≤
‖uin‖L2(Rm)√

2α
, for any ε > 0. The estimates for v follow similarly.
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Remark 4.1 The family (vε(t, ·))ε>0 = (uε(t, Y (t/ε; ·)))ε>0 satisfies the same estimates as
the family (uε)ε>0.

Indeed, performing the change of variable z 7→ y = Y (t/ε; z), which is measure preserving,
one gets

‖vε(t)‖2L2(Rm) = ‖uε(t)‖2L2(Rm) ≤ ‖u
in‖2L2(Rm), t ∈ R+, ε > 0.

Moreover, thanks to (21), we have

∇Rz vε(t, z) = tR−1(z)∇zvε(t, z) = tR−1(z) t∂Y (t/ε; z)∇yuε(t, Y (t/ε; z))

= t(∂Y (t/ε; z)R−1(z))∇yuε(t, Y (t/ε; z))

= tR−1(z)(Y (t/ε; z))∇yuε(t, Y (t/ε; z)) =
(
∇Ry uε

)
(t, Y (t/ε; z))

and therefore

‖∇zvε‖2L2(R+;XP )
=

∫ +∞

0
|∇zvε(τ)|2P dτ =

∫ +∞

0
‖∇Rz vε(τ)‖2L2(Rm) dτ

=

∫ +∞

0
‖∇Ry uε(τ)‖2L2(Rm) dτ =

∫ +∞

0
|∇yuε(τ)|2P dτ = ‖∇yuε‖2L2(R+;XP )

≤
‖uin‖2L2(Rm)

2α
.

Using twice the formula

bi · ∇zvε(t) = bi · ∇z(uε(t) ◦ Y (t/ε; ·)) = (bi · ∇yuε(t)) ◦ Y (t/ε; ·)

we deduce that

bj · ∇z(bi · ∇zvε(t)) = bj · ∇z [(bi · ∇yuε(t)) ◦ Y (t/ε; ·)] = [bj · ∇y(bi · ∇yuε(t))] ◦ Y (t/ε; ·) .

Therefore ‖bj ·∇z(bi ·∇zvε(t))‖L2(Rm) = ‖bj ·∇y(bi ·∇yuε(t))‖L2(Rm), i, j ∈ {1, ...,m} as soon
as those norms are finite.

Up to now, we have considered solutions with initial condition uin ∈ L2(Rm). In order to
study the stability of the family (vε)ε>0 when ε goes to 0, we need more regularity. This will
be the object of the next propositions, in which we analyze how the regularity of the initial
condition propagates in time. The idea is to take the directional derivative bi · ∇y of (1),
leading to

∂t(bi · ∇yuε)− divy(D(y)∇y(bi · ∇yuε)) +
1

ε
b · ∇y(bi · ∇yuε) = [bi · ∇y, divy(D∇y)]uε. (34)

Notice that the key point was to take advantage of the involution between bi and b, for
any i ∈ {1, ...,m}, which guarantees that there is no commutator between the first order
operators bi · ∇y and b · ∇y. More generally, if we apply the directional derivative c · ∇y in
(1), the right hand side of the corresponding equation in (34) will contain the extra term
1
ε [b ·∇y, c ·∇y]uε, which is clearly unstable, when ε goes to 0, if b and c are not in involution.
The estimate for bi ·∇yuε follows by using the energy balance of (34), observing that, thanks
to the anti-symmetry of b · ∇y, we get rid of the term of order 1/ε. We assume that for
any i, j ∈ {1, ...,m}, the coordinates of the Poisson bracket [bi, bj ] in the basis (bk)1≤k≤m are
bounded

[bi, bj ] =
m∑
k=1

αkijbk, αkij ∈ L∞(Rm), i, j, k ∈ {1, ...,m}. (35)
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Proposition 4.3 Assume that the hypotheses (4), (5), (22), (25), (35) hold true. Moreover
we assume that for any i, j ∈ {1, ...,m}

bi · ∇ydivybj ∈ L∞(Rm), divy(RD) ∈ L∞(Rm)

R[bi, D] tR ∈ L∞(Rm),
m∑
i=1

bi · ∇y(R[bi, D] tR) ∈ L∞(Rm).

If the initial condition belongs to H1
R, then we have for any T ∈ R+

sup
ε>0
‖∇Ry uε‖L∞([0,T ];L2(Rm)) = sup

ε>0
‖∇Rz vε‖L∞([0,T ];L2(Rm)) < +∞

sup
ε>0
‖∇Ry ⊗∇Ry uε‖L2([0,T ];L2(Rm)) = sup

ε>0
‖∇Rz ⊗∇Rz vε‖L2([0,T ];L2(Rm)) < +∞

sup
ε>0
‖∂tvε‖L2([0,T ];L2(Rm)) < +∞.

Proof. We want to estimate the L2 norms of bi · ∇yuε, i ∈ {1, ...,m}, ε > 0. This can
be done by analyzing the translations along the flows Yi and estimating the L2 norms of
(uε(t, Yi(h; y)) − uε(t, y))/h uniformly with respect to h ∈ R? and ε > 0. For simplicity, we
justify the estimates only for smooth solutions and coefficients (and therefore we use classical
derivatives).

We use (17) to express the commutator in the right-hand side of (34), then we multiply
this equation by bi · ∇yuε. Integrating with respect to y over Rm and observing that the
contribution of the singular term 1

εb · ∇y(bi · ∇yu
ε) cancels by the anti-symmetry of the

operator b · ∇y, we obtain

1

2

d

dt

∫
Rm

(bi · ∇yuε(t))2 dy +

∫
Rm
D(y)∇y(bi · ∇yuε(t)) · ∇y(bi · ∇yuε(t)) dy (36)

=−
∫
Rm

[bi, D]∇yuε(t) · ∇y(bi · ∇yuε(t)) dy

+

∫
Rm
D(y)∇yuε(t) · ∇ydivybi (bi · ∇yuε(t)) dy.

By hypothesis (25) we have

D∇y(bi · ∇yuε(t)) · ∇y(bi · ∇yuε(t)) = Q1/2DQ1/2 (37)

: P 1/2∇y(bi · ∇yuε(t))⊗ P 1/2∇y(bi · ∇yuε(t))
≥ α|P 1/2∇y(bi · ∇yuε(t))|2 = α|∇Ry (bi · ∇yuε(t))|2

= α

m∑
j=1

(bj · ∇y(bi · ∇yuε(t)))2.

Combining (36), (37) leads to

1

2

d

dt

∥∥∇Ry uε(t)∥∥2L2(Rm)
+ α

∥∥∇Ry ⊗∇Ry uε(t)∥∥2L2(Rm)
(38)

≤ −
m∑
i=1

∫
Rm

[bi, D]∇yuε(t) · ∇y(bi · ∇yuε(t)) dy︸ ︷︷ ︸
:=I1i

+

m∑
i=1

∫
Rm
D∇yuε(t) · ∇y(divybi) (bi · ∇yuε(t)) dy︸ ︷︷ ︸

:=I2i

.
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In order to bound the term I1i in the right hand side of (38) we write

I1i =

∫
Rm

R [bi, D] tR : tR−1∇yuε(t)⊗ tR−1∇y(bi · ∇yuε(t)) dy (39)

=

∫
Rm

R [bi, D] tR : ∇Ry uε(t)⊗∇Ry (bi · ∇yuε(t)) dy.

Notice that for any j ∈ {1, ...,m} we have

bj · ∇y(bi · ∇yuε(t)) = bi · ∇y(bj · ∇yuε(t))− [bi, bj ] · ∇yuε(t)

= bi · ∇y(bj · ∇yuε(t))−
m∑
k=1

αkijbk · ∇yuε(t)

and therefore we obtain

∇Ry (bi · ∇yuε(t)) = bi · ∇y(∇Ry uε(t))−Ai∇Ry uε(t) (40)

where the matrix Ai is the one whose entry (j, k) is αkij . Combining (39), (40) yields

I1i =

∫
Rm

R [bi, D] tR : ∇Ry uε(t)⊗ bi · ∇y(∇Ry uε(t)) dy

−
∫
Rm

R [bi, D] tR : ∇Ry uε(t)⊗Ai∇Ry uε(t) dy

=:J1
i + J2

i .

To estimate the term J1
i , we use the symmetry of the matrix field D and the formula

bi · ∇y
(
R [bi, D] tR : ∇Ry uε(t)⊗∇Ry uε(t)

)
= bi · ∇y(R [bi, D] tR) : ∇Ry uε(t)⊗∇Ry uε(t)
+ 2R[bi, D] tR : ∇Ry uε(t)⊗ bi · ∇y(∇Ry uε(t)).

Integrating by parts leads to

2

∣∣∣∣∣
m∑
i=1

J1
i

∣∣∣∣∣ =

∣∣∣∣∣−
m∑
i=1

∫
Rm

divybiR [bi, D] tR : ∇Ry uε(t)⊗∇Ry uε(t) dy

−
∫
Rm

m∑
i=1

bi · ∇y(R [bi, D] tR) : ∇Ry uε(t)⊗∇Ry uε(t) dy

∣∣∣∣∣
≤

(
m∑
i=1

‖divybi‖L∞‖R[bi, D] tR‖L∞ +

∥∥∥∥∥
m∑
i=1

bi · ∇y(R[bi, D] tR)

∥∥∥∥∥
L∞

)
× ‖∇Ry uε(t)‖2L2(Rm).

The estimate for the term J2
i follows immediately, thanks to the hypothesis (35)

|J2
i | ≤ ‖R[bi, D] tR‖L∞(Rm)‖Ai‖L∞(Rm)‖∇Ry uε(t)‖2L2(Rm)

and finally there is a constant C1 depending on max1≤i≤m ‖divybi‖L∞ , max1≤i≤m ‖Ai‖L∞ ,
max1≤i≤m ‖R[bi, D] tR‖L∞ , ‖

∑m
i=1 bi · ∇y(R[bi, D] tR)‖L∞ such that∣∣∣∣∣

m∑
i=1

I1i

∣∣∣∣∣ ≤ C1‖∇Ry uε(t)‖2L2(Rm), t ∈ R+, ε > 0. (41)
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For the term I2i we can write, using the inequality (R(y)D(y) tR(y) : R(y)D(y) tR(y))1/2 ≤
|D|H∞Q , y ∈ Rm

|I2i | =
∣∣∣∣∫

Rm
RD tR tR−1∇yuε(t) · tR−1∇y(divybi) (bi · ∇yuε(t)) dy

∣∣∣∣
≤ |D|H∞Q ‖∇

R
y divybi‖L∞(Rm)

∫
Rm
|∇Ry uε(t)| |bi · ∇yuε(t)| dy

≤ |D|H∞Q ‖∇
R
y divybi‖L∞(Rm)‖∇Ry uε(t)‖2L2(Rm)

implying that there is a constant C2 depending on |D|H∞Q ,max1≤i≤m ‖∇Ry divybi‖L∞(Rm) such
that ∣∣∣∣∣

m∑
i=1

I2i

∣∣∣∣∣ ≤ C2‖∇Ry uε(t)‖2L2(Rm), t ∈ R+, ε > 0. (42)

Combining (38), (41), (42) and applying Gronwall’s lemma imply

‖∇Ry uε(t)‖L2(Rm) ≤ e(C1+C2)t‖∇Ry uin‖L2(Rm), t ∈ R+, ε > 0

and

‖∇Ry ⊗∇Ry uε‖L2([0,T ];L2(Rm)) ≤
e(C1+C2)t

√
2α

‖∇Ry uin‖L2(Rm), ε > 0.

The first and second conclusions follow thanks to Remark 4.1. For the last one, notice that

∂tv
ε(t, z) = ∂tu

ε(t, Y (t/ε; z)) +
1

ε
b(Y (t/ε; z)) · ∇yuε(t, Y (t/ε; z)) (43)

= divy(D∇yuε(t))(Y (t/ε; z))

which implies
‖∂tvε(t)‖L2(Rm) = ‖divy(D∇yuε(t))‖L2(Rm).

By direct computation we obtain

divy(D∇yuε) = divy(D
tR∇Ry uε) = divy(RD) · ∇Ry uε +RD tR : ∂y(∇Ry uε)R−1

= divy(RD) · ∇Ry uε +RD tR : ∇Ry ⊗∇Ry uε

and therefore

sup
ε>0
‖∂tvε‖L2([0,T ];L2(Rm)) = sup

ε>0
‖divy(D∇yuε)‖L2([0,T ];L2(Rm))

≤
√
T‖divy(RD)‖L∞(Rm) sup

ε>0
‖∇Ry uε‖L∞([0,T ];L2(Rm))

+ |D|H∞Q sup
ε>0
‖∇Ry ⊗∇Ry uε‖L2([0,T ];L2(Rm)), T ∈ R+.

Performing similar computations, we can propagate more regularity. The goal is to obtain
a uniform bound for (∂t∇Rz vε)ε>0 in L2

loc(R+;L2(Rm)) which will be necessary for applying
Proposition 5.2. This can be achieved for any initial condition uin ∈ H2

R. The proof is
postponed to Appendix A.

Proposition 4.4 Assume that the hypotheses (4), (5), (22), (25), (35) hold true. Moreover
we assume that for any i, j, k ∈ {1, ...,m}

∇Ry αkij ∈ L∞(Rm), ∇Ry divybj ∈ L∞(Rm), ∇Ry ⊗∇Ry divybj ∈ L∞(Rm),
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divy(R[bi, D]) ∈ L∞(Rm), R[bi, D] tR ∈ L∞(Rm),

m∑
i=1

bi · ∇y(R[bi, D] tR) ∈ L∞(Rm)

R[bj , [bi, D]] tR ∈ L∞(Rm), divy(R[bj , [bi, D]]) ∈ L∞(Rm)

∇Ry (RD tR) ∈ L∞(Rm), ∇Ry ⊗∇Ry (RD tR) ∈ L∞(Rm).

If the initial condition uin belongs to H2
R, then for any T ∈ R+ we have

sup
ε>0
‖∇Ry ⊗∇Ry uε‖L∞([0,T ];L2(Rm)) = sup

ε>0
‖∇Rz ⊗∇Rz vε‖L∞([0,T ];L2(Rm)) < +∞

sup
ε>0
‖∇Ry ⊗∇Ry ⊗∇Ry uε‖L2([0,T ];L2(Rm)) = sup

ε>0
‖∇Rz ⊗∇Rz ⊗∇Rz vε‖L2([0,T ];L2(Rm)) < +∞

and
sup
ε>0
‖∂t∇Rz vε‖L2([0,T ];L2(Rm)) < +∞.

Here the notation ∇R ⊗ ∇R ⊗ ∇Rw stands for the tensor whose entry (i, j, k) is bk · ∇(bj ·
∇(bi · ∇w)).

Similar computations allow us to estimate the solution of the limit model (26). The arguments
are a little bit tedious and we refer also to Appendix A for details.

Proposition 4.5 Assume that all the hypotheses of Proposition 4.3 hold true, together with
(19). Then we have for any T ∈ R+

∇Rz v ∈ L∞([0, T ];L2(Rm)),∇Rz ⊗∇Rz v ∈ L2([0, T ];L2(Rm)), ∂tv ∈ L2([0, T ];L2(Rm)).

Proposition 4.6 Assume that all the hypotheses of Proposition 4.4 hold true, together with
(19). Then for any T ∈ R+, we have

∇Rz ⊗∇Rz v ∈ L∞([0, T ];L2), ∇Rz ⊗∇Rz ⊗∇Rz v ∈ L2([0, T ];L2), ∂t∇Rz v ∈ L2([0, T ];L2).

Proof. Apply exactly the same arguments as in the proof of Proposition 4.4, after observing
that the matrix field 〈D〉 satisfies the same hypotheses as the matrix field D (see the proof
of Proposition 4.5).

5 Two-scale analysis

We intend to investigate the asymptotic behavior of (1), or equivalently (9). For any smooth,
compactly supported function ψ(t, z) we have to pass to the limit, when ε ↘ 0, in the
formulation

−
∫
Rm
uin(z)ψ(0, z) dz −

∫ +∞

0

∫
Rm
vε(t, z)∂tψ dzdt+

∫ +∞

0

∫
Rm
G(t/ε)D∇zvε · ∇zψ dzdt = 0.

Clearly, the main difficulty comes from the last integral, which presents two time scales : a
slow time variable t and also a fast time variable s = t/ε (not necessarily periodic). We detail
here a general two-scale convergence result, based on ergodic averages. We use the notations
introduced in Definition 2.1 and Proposition 2.2.
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Proposition 5.1 Let T be a positive real number. Consider C ∈ L∞(R;HQ), such that the

family of averages
(

1
S

∫ s0+S
s0

C(s) ds
)
S>0

converges strongly in HQ toward some C ∈ HQ,

uniformly with respect to s0 ∈ R, when S → +∞. Let Bω ⊂ C([0, T ];HP ) be a bounded set in
L1([0, T ];HP ), of functions which admit as modulus of continuity in C([0, T ];HP ) the same
function ω : [0, T ]→ R+ i.e.,

|B(t)−B(t′)|P ≤ ω(|t− t′|), t, t′ ∈ [0, T ], B ∈ Bω

with ω non decreasing and limλ↘0 ω(λ) = 0. Then

lim
ε↘0

∫ T

0
〈B(t), C(t/ε)〉P,Q dt =

∫ T

0

〈
B(t), C

〉
P,Q

dt

uniformly with respect to B ∈ Bω.

Proof. For any δ > 0, there is Sδ > 0 such that∣∣∣∣ 1S
∫ s0+S

s0

C(s) ds− C
∣∣∣∣
Q

< δ, for any S ≥ Sδ and s0 ∈ R.

Performing the change of variable s = t
ε in the above integral, leads to∣∣∣∣ 1

T

∫ t0+T

t0

C(t/ε) dt− C
∣∣∣∣
Q

< δ, for any T ≥ εSδ = Tδ,ε and t0 ∈ R. (44)

We split the interval [0, T [ into a finite number of intervals of size greater or equal than Tδ,ε.

For example let kδ,ε be
[
T
Tδ,ε

]
. If T/Tδ,ε is an integer, that is T/Tδ,ε = kδ,ε, we consider the

intervals
[kTδ,ε, (k + 1)Tδ,ε[, 0 ≤ k ≤ kδ,ε − 1

and if T/Tδ,ε is not an integer, we take the intervals

[kTδ,ε, (k + 1)Tδ,ε[, 0 ≤ k ≤ kδ,ε − 2, and [(kδ,ε − 1)Tδ,ε, T [.

Notice that in both cases we have kδ,ε intervals, whose sizes are between Tδ,ε and 2Tδ,ε. We
denote by (tk,δ,ε)0≤k≤kδ,ε , or simply (tk)0≤k≤kδ,ε , the end points of these intervals. The last
point is always tkδ,ε = T . Therefore we can write for any B ∈ Bω∣∣∣∣∫ T

0
〈B(t), C(t/ε)〉P,Q dt −

∫ T

0

〈
B(t), C

〉
P,Q

dt

∣∣∣∣ =

∣∣∣∣∫ T

0

〈
B(t), C(t/ε)− C

〉
P,Q

dt

∣∣∣∣
≤

kδ,ε−1∑
k=0

∣∣∣∣∫ tk+1

tk

〈
B(t), C(t/ε)− C

〉
P,Q

dt

∣∣∣∣
≤

kδ,ε−1∑
k=0

∣∣∣∣∫ tk+1

tk

〈
B(t)−B(tk), C(t/ε)− C

〉
P,Q

dt

∣∣∣∣
+

kδ,ε−1∑
k=0

∣∣∣∣∫ tk+1

tk

〈
B(tk), C(t/ε)− C

〉
P,Q

dt

∣∣∣∣
=: Σ1 + Σ2. (45)
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Since the function t ∈ [0, T ]→ B(t) ∈ HP admits ω as modulus of continuity, we obtain the
following estimate for Σ1

Σ1 ≤
kδ,ε−1∑
k=0

∫ tk+1

tk

ω(|t− tk|) |C(t/ε)− C|Q dt (46)

≤
kδ,ε−1∑
k=0

ω(2Tδ,ε)(tk+1 − tk) 2‖C‖L∞(R;HQ)

= 2‖C‖L∞(R;HQ)ω(2Tδ,ε)T.

The estimate for Σ2 comes by using (44)

Σ2 =

kδ,ε−1∑
k=0

∣∣∣∣∫ tk+1

tk

(PB(tk)P,C(t/ε)− C)Q dt

∣∣∣∣ (47)

=

kδ,ε−1∑
k=0

∣∣∣∣∣
(
PB(tk)P,

∫ tk+1

tk

(C(t/ε)− C) dt

)
Q

∣∣∣∣∣
=

kδ,ε−1∑
k=0

∣∣∣∣∣
〈
B(tk),

∫ tk+1

tk

(C(t/ε)− C) dt

〉
P,Q

∣∣∣∣∣
≤

kδ,ε−1∑
k=0

δ(tk+1 − tk)|B(tk)|P

≤ δ
[
‖B‖L1([0,T ];HP ) + ω(2Tδ,ε)T

]
.

Thanks to (45), (46), (47) we deduce∣∣∣∣∫ T

0
〈B(t), C(t/ε)〉P,Q dt−

∫ T

0

〈
B(t), C

〉
P,Q

dt

∣∣∣∣ ≤ 2‖C‖L∞(R;HQ)ω(2Tδ,ε)T

+ δ
[
‖B‖L1([0,T ];HP ) + ω(2Tδ,ε)T

]
.

Let η be a positive real number and δ > 0 small enough such that δ‖B‖L1([0,T ];HP ) < η/2
uniformly with respect to B ∈ Bω (which is possible since Bω is bounded in L1([0, T ];HP )).
Observing that limε↘0 Tδ,ε = limε↘0 εSδ = 0, and limε↘0 ω(2Tδ,ε) = 0, we deduce that there
is ε = ε(η) such that for any 0 < ε < ε(η)

2‖C‖L∞(R;HQ)ω(2Tδ,ε)T + δω(2Tδ,ε)T <
η

2
.

Finally we obtain∣∣∣∣∫ T

0
〈B(t), C(t/ε)〉P,Q dt−

∫ T

0

〈
B(t), C

〉
P,Q

dt

∣∣∣∣ ≤ δ‖B‖L1([0,T ];HP ) +
η

2
< η

for any 0 < ε < ε(η), uniformly with respect to B ∈ Bω.

Remark 5.1 The conclusion of Proposition 5.1 holds true for any pair (B,C) ∈ L1([0, T ];HP )×
L∞(R;HQ) such that

(
1
S

∫ s0+S
s0

C(s) ds
)
S>0

converges strongly in HQ toward some C ∈ HQ,

uniformly with respect to s0 ∈ R, when S → +∞. Indeed, observe that∣∣∣∣∫ T

0
〈B(t), C(t/ε)〉P,Q dt−

∫ T

0

〈
B(t), C

〉
P,Q

dt

∣∣∣∣ ≤ 2‖B‖L1([0,T ];HP )‖C‖L∞(R;HQ)
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and thus, by using the density of C([0, T ];HP ) in L1([0, T ];HP ), it is enough to consider
B ∈ C([0, T ];HP ). But in this case, the uniform continuity of B allows us to pick a modulus
of continuity ω : [0, T ]→ R+

ω(λ) = sup
t,t′∈[0,T ],|t−t′|≤λ

|B(t)−B(t′)|P , λ ∈ [0, T ]

and all the arguments in the proof of Proposition 5.1 apply.

In the sequel, we present some consequences of Proposition 5.1 which will be used when
justifying the main result in Theorem 2.2. Everytime that y → A(y) : B(y) belongs to
L1(Rm), by the notation 〈A,B〉P,Q we understand

∫
RmA(y) : B(y) dy.

Proposition 5.2 Let T be a positive real number. Consider D ∈ H∞Q a symmetric matrix

field and Wω ⊂ C([0, T ];XP ) a bounded set in L2([0, T ];XP ) of functions which admit as
modulus of continuity in C([0, T ];XP ) the same function ω : [0, T ]→ R+, i.e.,

|w(t)− w(t′)|P ≤ ω(|t− t′|), t, t′ ∈ [0, T ], w ∈ Wω

with ω non decreasing and limλ↘0 ω(λ) = 0. Then for any family (wβ)β>0 ⊂ Wω which
converges weakly in L2([0, T ];XP ) toward w0 when β ↘ 0, we have

lim
(β,ε)→(0,0)

∫ T

0

〈
θ(t)⊗ wβ(t), G(t/ε)D

〉
P,Q

dt =

∫ T

0

〈
θ(t)⊗ w0(t), 〈D〉

〉
P,Q

dt (48)

for any θ ∈ L2([0, T ];XP ).

Proof. Notice that for any θ, w ∈ L2([0, T ];XP ) we have∫ T

0
〈θ(t)⊗ w(t), G(t/ε)D〉P,Q dt =

∫ T

0

∫
Rm
θ(t, y)⊗ w(t, y) : G(t/ε)D dydt

=

∫ T

0

∫
Rm

(P 1/2(y)θ(t, y))⊗ (P 1/2(y)w(t, y)) : Q1/2(y)G(t/ε)DQ1/2(y) dydt

≤
∫ T

0
|G(t/ε)D|H∞Q

∫
Rm
|P 1/2(y)θ(t, y)| |P 1/2(y)w(t, y)| dydt

≤ |D|H∞Q

(∫ T

0

∫
Rm
P (y)θ(t, y) · θ(t, y) dydt

)1/2(∫ T

0

∫
Rm
P (y)w(t, y) · w(t, y) dydt

)1/2

= |D|H∞Q ‖θ‖L2([0,T ];XP )‖w‖L2([0,T ];XP )

and similarly, by using | 〈D〉 |H∞Q ≤ |D|H∞Q∫ T

0
〈θ(t)⊗ w(t), 〈D〉〉P,Q dt ≤ |D|H∞Q ‖θ‖L2([0,T ];XP )‖w‖L2([0,T ];XP ). (49)

As the family (wβ)β>0 is bounded in L2([0, T ];XP ), it is enough to check (48) for any θ in a
dense subset of L2([0, T ];XP ), for example for any θ such that P 1/2θ ∈ C0

c ([0, T ]×Rm). Take
k ∈ N large enough, such that k ≥ ψ(y), y ∈ supp (P 1/2θ). As D ∈ H∞Q belongs to HQ,loc,
the matrix field Dk = 1{ψ≤k}D belongs to HQ ∩ H∞Q . We appeal to Proposition 5.1 with

C(s) = G(s)Dk, C = 〈Dk〉 = 1{ψ≤k} 〈D〉, cf. Theorem 2.1, and B = {θ ⊗ w : w ∈ Wω}. By
Proposition 3.1 we know that (G(s))s∈R is a C0-group of unitary operators on HQ, implying
that C ∈ L∞(R;HQ). By Theorem 2.1 we deduce that

lim
S→+∞

1

S

∫ s0+S

s0

C(s) ds = C, uniformly with respect to s0 ∈ R.
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For any w ∈ Wω we write

‖θ ⊗ w‖L1([0,T ];HP ) =

∫ T

0

(∫
Rm

(P 1/2θ)⊗ (P 1/2w) : (P 1/2θ)⊗ (P 1/2w) dy

)1/2

dt

≤
∫ T

0
|θ(t)|X∞P |w(t)|P dt

≤ ‖P 1/2θ‖L2([0,T ];L∞(Rm))‖w‖L2([0,T ];XP )

and therefore the boundedness of Wω in L2([0, T ];XP ) implies the boundedness of B in
L1([0, T ];HP ) (since P 1/2θ ∈ C0

c ([0, T ] × Rm)). We search now for a continuity modulus of
B. For any w ∈ Wω, t, t′ ∈ [0, T ], we have

|θ(t)⊗ w(t)− θ(t′)⊗ w(t′)|P ≤ |θ(t)− θ(t′)|X∞P |w(t)|P + |θ(t′)|X∞P |w(t)− w(t′)|P
≤ ‖P 1/2θ(t)− P 1/2θ(t′)‖L∞(Rm)|w(t)|P + ‖P 1/2θ(t′)‖L∞(Rm)ω(|t− t′|)

≤ ωθ(|t− t′|)‖w‖C([0,T ];XP ) + ω(|t− t′|)‖P 1/2θ‖C0([0,T ]×Rm)

where ωθ is a continuity modulus for P 1/2θ ∈ C0
c ([0, T ]×Rm). The claim follows if we manage

to show thatWω is also bounded in C([0, T ];XP ). This comes easily by noticing that for any
t, t′ ∈ [0, T ], w ∈ Wω we have

|w(t)|2P ≤ (|w(t′)|P + ω(|t− t′|))2 ≤ 2|w(t′)|2P + 2ω2(T ).

Integrating with respect to t′ ∈ [0, T ] one gets for any t ∈ [0, T ]

|w(t)|2P ≤
2

T
‖w‖2L2([0,T ];XP )

+ 2ω2(T )

saying that Wω is bounded in C([0, T ];XP ). By Proposition 5.1, for any η > 0, there is
ε(η) > 0 such that for any 0 < ε < ε(η), β > 0∣∣∣∣∫ T

0

〈
θ(t)⊗ wβ(t),1{ψ≤k}G(t/ε)D

〉
P,Q

dt−
∫ T

0

〈
θ(t)⊗ wβ(t),1{ψ≤k} 〈D〉

〉
P,Q

dt

∣∣∣∣ < η

2
.

As supp (P 1/2θ) ⊂ {ψ ≤ k}, the above inequality also writes∣∣∣∣∫ T

0

〈
θ(t)⊗ wβ(t), G(t/ε)D

〉
P,Q

dt−
∫ T

0

〈
θ(t)⊗ wβ(t), 〈D〉

〉
P,Q

dt

∣∣∣∣ < η

2
, 0 < ε < ε(η), β > 0.

By (49) we know that w →
∫ T
0 〈θ(t)⊗ w(t), 〈D〉〉P,Q dt is a linear continuous application

on L2([0, T ];XP ), and since (wβ)β>0 converges weakly in L2([0, T ];XP ), toward w0, when
β ↘ 0, there is β(η) > 0 such that for any 0 < β < β(η)∣∣∣∣∫ T

0

〈
θ(t)⊗ wβ(t), 〈D〉

〉
P,Q

dt−
∫ T

0

〈
θ(t)⊗ w0, 〈D〉

〉
P,Q

dt

∣∣∣∣ < η

2

Therefore, for any η > 0, there is β(η) > 0, ε(η) > 0 such that for any 0 < β < β(η), 0 < ε <
ε(η) ∣∣∣∣∫ T

0

〈
θ(t)⊗ wβ(t), G(t/ε)D

〉
P,Q

dt−
∫ T

0

〈
θ(t)⊗ w0, 〈D〉

〉
P,Q

dt

∣∣∣∣ < η.
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Remark 5.2 The previous arguments show that if D ∈ H∞Q , then

lim
ε↘0

∫ T

0
〈w(t)⊗ w(t), G(t/ε)D〉P,Q dt =

∫ T

0
〈w(t)⊗ w(t), 〈D〉〉P,Q dt (50)

for any w ∈ L2([0, T ];XP ). Indeed, taking into account that the bilinear application

(θ, w) ∈ L2([0, T ];XP )× L2([0, T ];XP )→
∫ T

0
〈θ(t)⊗ w(t), 〈D〉〉P,Q dt ∈ R

is continuous, it is enough to establish (50) for w in the set {θ ∈ L2([0, T ];XP ) : P 1/2θ ∈
C0
c ([0, T ]×Rm)}, which is dense in L2([0, T ];XP ). And this is a direct consequence of Remark

5.1 applied with Dk = 1{ψ≤k}D, k ≥ ψ(y), y ∈ supp (P 1/2θ), since for any θ ∈ L2([0, T ];XP )

such that P 1/2θ ∈ C0
c ([0, T ]× Rm), we have

‖θ ⊗ θ‖L1([0,T ];HP ) =

∫ T

0

(∫
Rm
|P 1/2θ|4 dy

)1/2

dt ≤
∫ T

0
‖P 1/2θ(t)‖C0(Rm)‖P 1/2θ(t)‖L2(Rm) dt

≤ ‖θ‖L2([0,T ];X∞P )‖θ‖L2([0,T ];XP ) < +∞.

When the matrix field D is positive definite, the behavior of the upper limit with respect
to (β, ε) for the quadratic term

∫ T
0

〈
wβ(t)⊗ wβ(t), G(t/ε)D

〉
P,Q

dt characterizes the strong

convergence of the family (wβ)β>0 as shown in the following result.

Proposition 5.3 Assume the same hypotheses as in Proposition 5.2.

1. If the matrix field D is positive semi-definite, then we have∫ T

0

〈
w0(t)⊗ w0(t), 〈D〉

〉
P,Q

dt ≤ lim inf
(β,ε)→(0,0)

∫ T

0

〈
wβ(t)⊗ wβ(t), G(t/ε)D

〉
P,Q

dt.

2. If (wβ)β>0 converges strongly in L2([0, T ];XP ) toward w0 when β ↘ 0 (the existence
of a modulus of continuity ω in C([0, T ];XP ) for the family (wβ)β>0 is not necessary
here), then we have∫ T

0

〈
w0(t)⊗ w0(t), 〈D〉

〉
P,Q

dt = lim
(β,ε)→(0,0)

∫ T

0

〈
wβ(t)⊗ wβ(t), G(t/ε)D

〉
P,Q

dt.

3. If there is α > 0 such that Q1/2DQ1/2 ≥ αIm, and

lim sup
(β,ε)→(0,0)

∫ T

0

〈
wβ(t)⊗ wβ(t), G(t/ε)D

〉
P,Q

dt ≤
∫ T

0

〈
w0(t)⊗ w0(t), 〈D〉

〉
P,Q

dt

then the family (wβ)β>0 converges strongly in L2([0, T ];XP ) toward w0 when β ↘ 0.

Proof.
1. As the matrix field D is symmetric and positive semi-definite, so is the matrix field
G(t/ε)D for any t ∈ [0, T ] and ε > 0, and thus∫ T

0

〈
w0(t)⊗ wβ(t), G(t/ε)D

〉
P,Q

dt =

∫ T

0

∫
Rm
w0(t, y)⊗ wβ(t, y) : G(t/ε)D dydt

≤
∫ T

0

∫
Rm

(w0(t, y)⊗ w0(t, y) : G(t/ε)D)1/2 (wβ(t, y)⊗ wβ(t, y) : G(t/ε)D)1/2 dydt

≤
(∫ T

0

〈
w0(t)⊗ w0(t), G(t/ε)D

〉
P,Q

dt

)1/2(∫ T

0

〈
wβ(t)⊗ wβ(t), G(t/ε)D

〉
P,Q

dt

)1/2

.
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Passing to the lower limit with respect to (β, ε) yields, thanks to Proposition 5.2∫ T

0

〈
w0(t)⊗ w0(t), 〈D〉

〉
P,Q

dt ≤ lim inf
(β,ε)→(0,0)

{(∫ T

0

〈
w0(t)⊗ w0(t), G(t/ε)D

〉
P,Q

dt

)1/2

×
(∫ T

0

〈
wβ(t)⊗ wβ(t), G(t/ε)D

〉
P,Q

dt

)1/2
}
. (51)

Thanks to Remark 5.2, we know that

lim
ε↘0

∫ T

0

〈
w0(t)⊗ w0(t), G(t/ε)D

〉
P,Q

dt =

∫ T

0

〈
w0(t)⊗ w0(t), 〈D〉

〉
P,Q

dt. (52)

Using the equality (52) in the inequality (51) leads to our claim.
2. Pick η a positive real number. By Remark 5.2, there is ε(η) such that for any 0 < ε < ε(η)∣∣∣∣∫ T

0

〈
w0(t)⊗ w0(t), G(t/ε)D

〉
P,Q

dt−
∫ T

0

〈
w0(t)⊗ w0(t), 〈D〉

〉
P,Q

dt

∣∣∣∣ < η

2
.

It is easily seen, thanks to the strong convergence of (wβ)β>0 in L2([0, T ];XP ) toward w0,
that there is β(η) > 0 such that for any 0 < β < β(η), and any ε > 0∣∣∣∣∫ T

0

〈
wβ(t)⊗ wβ(t), G(t/ε)D

〉
P,Q

dt−
∫ T

0

〈
w0(t)⊗ w0(t), G(t/ε)D

〉
P,Q

dt

∣∣∣∣
≤ |D|H∞Q ‖w

β − w0‖L2([0,T ];XP )

(
‖wβ‖L2([0,T ];XP ) + ‖w0‖L2([0,T ];XP )

)
<
η

2
.

Therefore the second assertion holds true.
3. We know by Proposition 3.1 that Q1/2G(t/ε)DQ1/2 ≥ αIm, for any t ∈ R+, ε > 0 and
therefore

α‖wβ − w0‖2L2([0,T ];XP )
≤
∫ T

0

〈
[wβ(t)− w0(t)]⊗ [wβ(t)− w0(t)], G(t/ε)D

〉
P,Q

dt

=

∫ T

0

〈
wβ(t)⊗ wβ(t), G(t/ε)D

〉
P,Q

dt+

∫ T

0

〈
w0(t)⊗ w0(t), G(t/ε)D

〉
P,Q

dt

−
∫ T

0

〈
wβ(t)⊗ w0(t), G(t/ε)D

〉
P,Q

dt−
∫ T

0

〈
w0(t)⊗ wβ(t), G(t/ε)D

〉
P,Q

dt.

By Proposition 5.2 we know that

lim
(β,ε)→(0,0)

∫ T

0

〈
wβ(t)⊗ w0(t), G(t/ε)D

〉
P,Q

dt = lim
(β,ε)→(0,0)

∫ T

0

〈
w0(t)⊗ wβ(t), G(t/ε)D

〉
P,Q

dt

=

∫ T

0

〈
w0(t)⊗ w0(t), 〈D〉

〉
P,Q

dt

and by Remark 5.2 we have

lim
ε↘0

∫ T

0

〈
w0(t)⊗ w0(t), G(t/ε)D

〉
P,Q

dt =

∫ T

0

〈
w0(t)⊗ w0(t), 〈D〉

〉
P,Q

dt.

Finally we obtain

α lim sup
β↘0

‖wβ − w0‖2L2([0,T ];XP )
≤ lim sup

(β,ε)→(0,0)

∫ T

0

〈
wβ(t)⊗ wβ(t), G(t/ε)D

〉
P,Q

dt

−
∫ T

0

〈
w0(t)⊗ w0(t), 〈D〉

〉
P,Q

dt ≤ 0

which proves that (wβ)β>0 converges strongly in L2([0, T ];XP ) toward w0 when β ↘ 0.
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6 Proofs of the main theorems

We establish two convergence results. In Theorem 2.2 we state strong convergence results for
the families (vε)ε>0 in L∞loc(R+;L2(Rm)) and (∇zvε)ε>0 in L2

loc(R+;XP ). In Theorem 2.3 we
investigate the rate of the above convergences, by introducing a corrector, that is, we justify
the leading term in the developement (10).

Proof of Theorem 2.2. Assume that uin belongs to H2
R, which is the space defined by

H2
R := {u ∈ H1

R : ∇Ry ⊗∇Ry u ∈ L2(Rm)}. (53)

As uε is the variational solution of (1), we have for any Φ ∈ C1
c (R+ × Rm)

−
∫ +∞

0

∫
Rm
uε(t, y)∂tΦ dydt−

∫
Rm
uin(y)Φ(0, y) dy +

∫ +∞

0

∫
Rm
D(y)∇yuε · ∇yΦ dydt

− 1

ε

∫ +∞

0

∫
Rm
uε(t, y)b(y) · ∇yΦ dydt = 0. (54)

Actually the above formulation holds true for any compactly supported function in R+×Rm,
which belongs to W 1,∞(R+×Rm). Pick a test function ψ ∈ C1

c (R+×Rm) and let us introduce
the function Φε(t, y) = ψ(t, Y (−t/ε; y)), (t, y) ∈ R+ × Rm. Thanks to the hypotheses (4),
the function Φε is compactly supported in R+ × Rm, belongs to W 1,∞(R+ × Rm) and thus
satisfies (54). We perform the change of variable z 7→ y = Y (t/ε; z). Taking the time and
space derivatives of the equalities ψ(t, z) = Φε(t, Y (t/ε; z)) and vε(t, z) = uε(t, Y (t/ε; z))
gives

∂tψ(t, z) = ∂tΦ
ε(t, Y (t/ε; z)) +

1

ε
b(Y (t/ε; z)) · ∇yΦε(t, Y (t/ε; z))

∇zψ(t, z) = t∂Y (t/ε; z)∇yΦε(t, Y (t/ε; z)), ∇zvε(t, z) = t∂Y (t/ε; z)∇yuε(t, Y (t/ε; z))

and the weak formulation (54), written with the test function Φε(t, y) becomes

−
∫ +∞

0

∫
Rm
vε(t, z)∂tψ dzdt−

∫
Rm
uin(z)ψ(0, z) dz

+

∫ +∞

0

∫
Rm
∂Y −1(t/ε; z)D(Y (t/ε; z)) t∂Y −1(t/ε; z)∇zvε · ∇zψ dzdt = 0.

Therefore vε is the variational solution of (9). By Propositions 4.3, 4.4 we have, for any
T ∈ R+

sup
ε>0
{‖vε‖L∞(R+;L2(Rm)) + ‖∇Rz vε‖L∞([0,T ];L2(Rm)) + ‖∇Rz ⊗∇Rz vε‖L∞([0,T ];L2(Rm))} < +∞

sup
ε>0
{‖∂tvε‖L2([0,T ];L2(Rm)) + ‖∂t∇Rz vε‖L2([0,T ];L2(Rm))} < +∞.

Let us consider a sequence (εk)k converging to 0 such that

lim
k→+∞

vεk = v0 weakly ? in L∞(R+;L2(Rm)) (55)

lim
k→+∞

∇zvεk = ∇zv0 weakly ? in L∞([0, T ];XP ), T ∈ R+. (56)

We claim that v0 is the variational solution of (26). For any η ∈ C1
c (R+) and Φ ∈ H1

R, the
variational formulation of (9) yields

−
∫ +∞

0

∫
Rm
vεk(t, z)η′(t)Φ(z) dzdt−

∫
Rm
uin(z)η(0)Φ(z) dz

+

∫ +∞

0

∫
Rm
G(t/εk)D∇zvεk · η(t)∇zΦ dzdt = 0.
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As η′Φ belongs to L1(R+;L2(Rm)), the weak ? convergence in L∞(R+;L2(Rm)) of (vεk)k
gives ∫ +∞

0

∫
Rm
vεk(t, z)η′(t)Φ(z) dzdt −→

k→+∞

∫ +∞

0

∫
Rm
v0(t, z)η′(t)Φ(z) dzdt.

We use now Proposition 5.2 with T > 0 such that supp η ⊂ [0, T [, and Wω = {wk =
∇zvεk |[0,T ]×Rm : k ∈ N}. Obviously, Wω is bounded in L2([0, T ];XP ) and for any k ∈ N,
t, t′ ∈ [0, T ], we can write

|∇zvεk(t)−∇zvεk(t′)|P = ‖∇Rz vεk(t)−∇Rz vεk(t′)‖L2 ≤
√
|t− t′| ‖∂t∇Rz vεk‖L2([0,T ];L2(Rm)).

Therefore Wω is contained in C([0, T ];XP ) and admits the continuity modulus

ω(λ) =
√
λ sup
ε>0
‖∂t∇Rz vε‖L2([0,T ];L2(Rm)).

Applying Proposition 5.2 with θ(t, z) = η(t)∇zΦ(z) ∈ L2([0, T ];XP ) we deduce that∫ +∞

0

∫
Rm
G(t/εk)D∇zvεk · η(t)∇zΦ dzdt =

∫ T

0
〈η(t)∇zΦ⊗∇zvεk(t), G(t/εk)D〉P,Q dt

−→
k→+∞

∫ T

0

〈
η(t)∇zΦ⊗∇zv0(t), 〈D〉

〉
P,Q

dt

=

∫ +∞

0

∫
Rm
〈D〉∇zv0 · η(t)∇zΦ dzdt.

Therefore, passing to the limit, when k → +∞, in the variational formulation of vεk , implies

−
∫ +∞

0

∫
Rm
v0(t, z)η′(t)Φ(z) dzdt−

∫
Rm
uin(z)η(0)Φ(z) dz

+

∫ +∞

0

∫
Rm
〈D〉∇zv0 · η(t)∇zΦ dzdt = 0

and thus v0 is the variational solution of (26) (v0 = v). By the uniqueness of the solution
for the limit model (26), we deduce that the convergences in (55), (56) actually hold for the
whole family (vε)ε

lim
ε↘0

vε = v weakly ? in L∞(R+;L2(Rm)), lim
ε↘0
∇zvε = ∇zv weakly ? in L∞loc(R+;XP ).

The regularity of v follows by Propositions 4.5, 4.6, in particular ∂tv ∈ L2
loc(R+;L2(Rm)).

Actually the time derivative ∂tv belongs to L∞loc(R+;L2(Rm)). This comes immediately by the
regularity of 〈D〉. Indeed, by the proofs of Propositions 4.5, 4.6 we know that divz(R 〈D〉) ∈
L∞(Rm), R 〈D〉 tR ∈ L∞(Rm) and we obtain

∂tv = divz(〈D〉∇zv) = divz(〈D〉 tR∇Rz v) = divz(R 〈D〉) · ∇Rz v +R 〈D〉 : ∂∇Rz v
= divz(R 〈D〉) · ∇Rz v +R 〈D〉 tR : ∇Rz ⊗∇Rz v ∈ L∞loc(R+;L2(Rm)).

We concentrate now on the strong convergence of (vε)ε>0 in L∞loc(R+;L2(Rm)) and (∇zvε)ε>0

in L2
loc(R+;XP ). By the energy balance associated with (9) we deduce

‖vε(t)‖2L2(Rm) + 2

∫ t

0
〈∇zvε(τ)⊗∇zvε(τ), G(τ/ε)D〉P,Q dτ = ‖uin‖2L2(Rm), t ∈ R+. (57)

Similarly, the energy balance associated with (26) gives

‖v(t)‖2L2(Rm) + 2

∫ t

0
〈∇zv(τ)⊗∇zv(τ), 〈D〉〉P,Q dτ = ‖uin‖2L2(Rm), t ∈ R+. (58)
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By the first statement in Proposition 5.3 we know that∫ t

0
〈∇zv(τ)⊗∇zv(τ), 〈D〉〉P,Q dτ ≤ lim inf

ε↘0

∫ t

0
〈∇zvε(τ)⊗∇zvε(τ), G(τ/ε)D〉P,Q dτ. (59)

Combining (57), (58), (59) one gets

1

2
lim sup
ε↘0

{‖vε(t)‖2L2(Rm) − ‖v(t)‖2L2(Rm)} = lim sup
ε↘0

{∫ t

0
〈∇zv(τ)⊗∇zv(τ), 〈D〉〉P,Q dτ

−
∫ t

0
〈∇zvε(τ)⊗∇zvε(τ), G(τ/ε)D〉P,Q dτ

}
=

∫ t

0
〈∇zv(τ)⊗∇zv(τ), 〈D〉〉P,Q dτ

− lim inf
ε↘0

∫ t

0
〈∇zvε(τ)⊗∇zvε(τ), G(τ/ε)D〉P,Q dτ ≤ 0

proving that at any time t ∈ R+ we have

lim sup
ε↘0

‖vε(t)‖2L2(Rm) ≤ ‖v(t)‖2L2(Rm). (60)

Applying Fatou lemma to the family of non negative functions t→ ‖uin‖2L2(Rm)−‖v
ε(t)‖2L2(Rm)

we deduce that∫ T

0
lim inf
ε↘0

{‖uin‖2L2(Rm) − ‖v
ε(t)‖2L2(Rm)} dt ≤ lim inf

ε↘0

∫ T

0
{‖uin‖2L2(Rm) − ‖v

ε(t)‖2L2(Rm)} dt

or equivalently

lim sup
ε↘0

∫ T

0
‖vε(t)‖2L2(Rm) dt ≤

∫ T

0
lim sup
ε↘0

‖vε(t)‖2L2(Rm) dt.

Therefore, the above inequality, together with the weak convergence of the family (vε)ε>0 in
L2([0, T ];L2(Rm)) toward v and (60) imply

lim sup
ε↘0

∫ T

0
‖vε(t)‖2L2(Rm) dt ≤

∫ T

0
‖v(t)‖2L2(Rm) dt

saying that (vε)ε>0 converges strongly in L2([0, T ];L2(Rm)) toward v for any T ∈ R+

lim
ε↘0

∫ T

0
‖vε(t)− v(t)‖2L2(Rm) dt = 0.

We deduce that there is a sequence (ε̃k)k converging to 0 such that

lim
k→+∞

‖vε̃k(t)− v(t)‖2L2(Rm) = 0, for a.a. t ∈ [0, T ]. (61)

As ∂tv ∈ L2([0, T ];L2(Rm)) and supε>0 ‖∂tvε‖L2([0,T ];L2(Rm)) < +∞, it is easily seen that (61)
holds true for any t ∈ [0, T ], T ∈ R+, and thus for any t ∈ R+. Actually we have

lim
ε↘0
‖vε(T )− v(T )‖2L2(Rm) = 0, T ∈ R+
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which implies, thanks to (57), (58)

lim sup
ε↘0

∫ T

0
〈∇zvε(t)⊗∇zvε(t), G(t/ε)D〉P,Q dt =

1

2
‖uin‖2L2(Rm) −

1

2
lim
ε↘0
‖vε(T )‖2L2(Rm)

=
1

2
‖uin‖2L2(Rm) −

1

2
‖v(T )‖2L2(Rm)

=

∫ T

0
〈∇zv(t)⊗∇zv(t), 〈D〉〉P,Q dt.

By the third statement of Proposition 5.3 we deduce that (∇zvε)ε>0 converges strongly in
L2([0, T ];XP ) toward ∇zv, for any T ∈ R+. Finally, in order to prove the convergence of
(vε)ε>0 in L∞loc(R+;L2(Rm)) toward v we take the difference between the equations (9) and
(26)

∂t(v
ε − v)− divz{G(t/ε)D∇zvε − 〈D〉∇zv} = 0, (t, z) ∈ R+ × Rm.

Writing the energy balance, we obtain for any t ∈ R+

1

2
‖vε(t)− v(t)‖2L2(Rm) +

∫ t

0
〈[∇zvε(τ)−∇zv(τ)]⊗∇zvε(τ), G(τ/ε)D〉P,Q dτ

−
∫ t

0
〈[∇zvε(τ)−∇zv(τ)]⊗∇zv(τ), 〈D〉〉P,Q dτ = 0.

As in the proof of Proposition 5.2 we have∣∣∣〈[∇zvε(τ)−∇zv(τ)]⊗∇zvε(τ), G(τ/ε)D〉P,Q
∣∣∣ ≤ |D|H∞Q |∇zvε(τ)−∇zv(τ)|P |∇zvε(τ)|P

and ∣∣∣〈[∇zvε(τ)−∇zv(τ)]⊗∇zv(τ), 〈D〉〉P,Q
∣∣∣ ≤ |D|H∞Q |∇zvε(τ)−∇zv(τ)|P |∇zv(τ)|P

and we deduce that for any t ∈ [0, T ] we have

‖(vε − v)(t)‖2L2 ≤ 2|D|H∞Q ‖∇zv
ε −∇zv‖L2([0,T ];XP )(‖∇zv

ε‖L2([0,T ];XP ) + ‖∇zv‖L2([0,T ];XP )).

The strong convergence of (vε)ε>0 in L∞([0, T ];L2(Rm)) toward v comes from the strong
convergence of (∇zvε)ε>0 in L2([0, T ];XP ) toward ∇zv, when ε↘ 0.

It remains to show that our convergence result still holds for any uin ∈ L2(Rm). Indeed,
for any δ > 0, by density we can consider uinδ ∈ H2

R such that ‖uin − uinδ ‖L2(Rm) ≤ δ/2. We
denote by vεδ (resp. vδ) the variational solution of (9) (resp. (26)) with the initial condition
uinδ . Thanks to the energy balance we obtain easily

‖vε − v‖L∞([0,T ];L2(Rm)) ≤ ‖vε − vεδ‖L∞([0,T ];L2(Rm)) + ‖vεδ − vδ‖L∞([0,T ];L2(Rm))

+ ‖vδ − v‖L∞([0,T ];L2(Rm))

≤ 2‖uin − uinδ ‖L2(Rm) + ‖vεδ − vδ‖L∞([0,T ];L2(Rm)).

By the first part of the proof, since uinδ ∈ H2
R, we know that for any δ > 0,

lim
ε↘0
‖vεδ − vδ‖L∞([0,T ];L2(Rm)) = 0

and therefore
lim sup
ε↘0

‖vε − v‖L∞([0,T ];L2(Rm)) ≤ δ, δ > 0,

which gives that limε↘0 ‖vε − v‖L∞([0,T ];L2(Rm)) = 0, for any T ∈ R+.
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Remark 6.1 Under the assumptions of Theorem 2.2, the family (vε)ε>0 converges strongly in
L∞loc(R+;L2(Rm)), which is a much better situation compared with the usual homogenization
results for parabolic equations [14]. The above convergence in L∞loc(R+;L2(Rm)) relies on
energy balances thanks to Proposition 5.3. The uniform estimates of (∂tv

ε)ε>0, (∂t∇Rz vε)ε>0

in L2
loc(R+;L2(Rm)) (which are available for initial conditions uin ∈ H2

R cf. Proposition 4.4)
play a crucial role, in order to apply Propositions 5.2, 5.3.

The above considerations show that vε = v + o(1) in L∞loc(R+;L2(Rm)), when ε ↘ 0. As
suggested by (10), we expect a convergence rate in O(ε). This can be achieved assuming that
the limit solution v is smooth enough and that there is a smooth matrix field C such that

D = 〈D〉+ L(C) (62)

that is, cf. Remark 3.1

1{ψ≤k}D −
〈
1{ψ≤k}D

〉
=

d

ds
|s=0G(s)(1{ψ≤k}C), k ∈ N.

The existence of the matrix field C is essential when constructing the corrector term u1,
see (65).

Proof of Theorem 2.3. We introduce the functions ũε(t, y) = v(t, Y (−t/ε; y)), (t, y) ∈
R+ × Rm, ε > 0. As in the proof of Theorem 2.2 we check that ũε is the variational solution
of the problem{

∂tũ
ε − divy{G(t/ε) 〈D〉∇yũε}+ 1

εb(y) · ∇yũε = 0, (t, y) ∈ R+ × Rm
ũε(0, y) = uin(y), y ∈ Rm.

By construction, the average matrix field 〈D〉 belongs to H∞Q and verifies G(t/ε) 〈D〉 = 〈D〉.
Therefore the functions (ũε)ε>0 solve the problems{

∂tũ
ε − divy{〈D〉∇yũε}+ 1

εb(y) · ∇yũε = 0, (t, y) ∈ R+ × Rm
ũε(0, y) = uin(y), y ∈ Rm. (63)

Recall that the functions (uε)ε>0 satisfy{
∂tu

ε − divy{D∇yuε}+ 1
εb(y) · ∇yuε = 0, (t, y) ∈ R+ × Rm

uε(0, y) = uin(y), y ∈ Rm. (64)

Notice that both families (ũε)ε>0, (u
ε)ε>0 verify the same initial condition. The key point for

obtaining a convergence rate is to introduce a corrector term. We consider the function

u1(t, s, y) = −divz(C∇zv(t))(Y (−s; y)) + divy{C(y)∇yv(t, Y (−s; y))} (65)

= −τ(−s)divz(C∇zv(t)) + divy{C(y)∇y[τ(−s)v(t)]}, (t, s, y) ∈ R+ × R× Rm

where we use the notation τ(s)f = f ◦ Y (s; ·) for any function f . By (7) we have

u1(t, s, Y (s; z)) = divz(G(s)C∇zv(t))− divz(C∇zv(t)) (66)

and taking the derivative with respect to s (here L is the infinitesimal generator of the group
G) leads to

∂su
1(t, s, Y (s; z)) + b(Y (s; z)) · ∇yu1(t, s, Y (s; z)) = divz

{
d

ds
G(s)C∇zv(t)

}
= divz{G(s)L(C)∇zv(t)}
= {divy[L(C)∇yτ(−s)v(t)]}(Y (s; z)).
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Notice that for the last equality we have used again (7). Therefore the corrector u1 verifies

(∂s+ b(y) ·∇y)u1(t, s, y)−divy{L(C)∇yv(t, Y (−s; ·))}(y) = 0, (t, s, y) ∈ R+×R×Rm (67)

and by definition u1(t, 0, y) = 0, (t, y) ∈ R+ ×Rm. The equation (67) is exactly the equality
coming out at the leading order when plugging the Ansatz uε(t, y) = v(t, Y (−t/ε; y)) +
εu1(t, t/ε, y) + ... into (64). Indeed, the above Ansatz also writes

uε(t, Y (t/ε; z)) = v(t, z) + εu1(t, t/ε, Y (t/ε; z)) + ...

and by observing that

d

dt
uε(t, Y (t/ε; z)) = ∂tu

ε(t, Y (t/ε; z)) +
1

ε
b(Y (t/ε; z)) · ∇yuε(t, Y (t/ε; z))

= [divy(D∇yuε(t))](Y (t/ε; z)) = divz[G(t/ε)D∇zuε(t, Y (t/ε; z))]

we obtain

∂tv(t, z) + ε∂tu
1(t, t/ε, Y (t/ε; z)) + ∂su

1(t, t/ε, Y (t/ε; z)) (68)

+ b(Y (t/ε; z)) · ∇yu1(t, t/ε, Y (t/ε; z)) + ... = divz(G(t/ε)D∇zv)

+ divz[G(t/ε)D∇z(εu1(t, t/ε, Y (t/ε; z)))] + ... .

Taking into account that ∂tv = divz(〈D〉∇zv), we deduce from (68), thanks to (7), that

(∂s + b(y) · ∇y)u1(t, s, y) = τ(−s)divz[G(s)D∇zv(t)]− τ(−s)divz[〈D〉∇zv(t)]

= divy[(D − 〈D〉)∇yτ(−s)v(t)]

= divy[L(C)∇yτ(−s)v(t)]

which corresponds to (67). In particular, for s = t/ε, one gets

(∂s + b(y) · ∇y)u1(t, t/ε, y)− divy(L(C)∇yũε(t))(y) = 0, (t, y) ∈ R+ × Rm, ε > 0

and we obtain the following equation for ũ1ε := u1(t, t/ε, y)

∂t(εũ
1
ε)(t, y)− divy(L(C)∇yũε(t)) +

1

ε
b(y) · ∇y(εũ1ε)(t, y) = ε∂tu

1(t, t/ε, y). (69)

Summing (63) and (69) yields

∂t(ũ
ε + εũ1ε)− divy[(〈D〉+ L(C))∇yũε] +

1

ε
b(y) · ∇y(ũε + εũ1ε) = ε∂tu

1(t, t/ε, y) (70)

which also writes, thanks to (62)

∂t(ũ
ε + εũ1ε)− divy[D∇y(ũε + εũ1ε)] +

1

ε
b(y) · ∇y(ũε + εũ1ε) = ε[∂tu

1− divy(D∇yu1)](t, t/ε, y).

Combining (64) and (70), it is easily seen that

∂t(u
ε − ũε − εũ1ε)− divy[D∇y(uε − ũε − εũ1ε)] +

1

ε
b(y) · ∇y(uε − ũε − εũ1ε)

= −ε[∂tu1 − divy(D∇yu1)](t, t/ε, y).

Using the energy balance together with the hypothesis Q1/2DQ1/2 ≥ αIm we obtain

1

2

d

dt
‖uε − ũε − εũ1ε‖2L2(Rm) + α|∇y(uε − ũε − εũ1ε)|2P ≤ ε‖uε − ũε − εũ1ε‖L2(Rm)

× ‖∂tu1(t, t/ε, ·)− divy(D∇yu1(t, t/ε, ·)‖L2(Rm), t ∈ R+.
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Notice that (uε− ũε−εũ1ε)|t=0 = uin−uin−0 = 0 and therefore, after integration with respect
to t ∈ [0, T ], one gets

‖uε − ũε − εũ1ε‖L∞([0,T ];L2(Rm)) ≤ ε
∫ T

0
‖∂tu1(t, t/ε, ·)− divy(D∇yu1(t, t/ε, ·)‖L2(Rm) dt

and

α

∫ T

0
|∇y(uε − ũε − εũ1ε)|2P dt ≤ ε‖uε − ũε − εũ1ε‖L∞([0,T ];L2(Rm))

×
∫ T

0
‖∂tu1(t, t/ε, ·)− divy(D∇yu1(t, t/ε, ·)‖L2(Rm) dt

≤ ε2
(∫ T

0
‖∂tu1(t, t/ε, ·)− divy(D∇yu1(t, t/ε, ·)‖L2(Rm) dt

)2

.

We are done if the corrector u1(t, s, y) satisfies uniform estimates with respect to the fast
variable s

u1 ∈ L∞([0, T ];L∞(Rs;L2(Rm))), ∂tu
1 ∈ L1([0, T ];L∞(Rs;L2(Rm)))

divy(D∇yu1) ∈ L1([0, T ];L∞(Rs;L2(Rm))), ∇yu1 ∈ L2([0, T ];L∞(Rs;XP )).

Let us estimate the L2(Rm) norm of u1, uniformly with respect to (t, s) ∈ [0, T ]×R. Thanks
to (66) we have

‖u1(t, s, ·)‖L2(Rm) ≤ ‖divz(G(s)C∇zv(t))− divz(C∇zv(t))‖L2(Rm)

≤ 2 sup
s∈R
‖divz(G(s)C∇zv(t))‖L2(Rm).

For any s ∈ R we can write, using the formula divz(Xξ) = divz
tX · ξ + tX : ∂zξ, for any

smooth matrix field X and vector field ξ

divz(G(s)C∇zv(t)) = divz(G(s)C tR∇Rz v(t)) (71)

= divz(RG(s)C) · ∇Rz v(t) +RG(s)C tR : ∂z∇Rz v(t)R−1

= divz(RG(s)C) · ∇Rz v(t) +RG(s)C tR : ∇Rz ⊗∇Rz v(t).

We claim that divz(RG(s)C) = τ(s)divy(RC). Indeed, for any smooth compactly supported
vector field Φ = Φ(y) we have, thanks to (21)∫

Rm
divz(RG(s)C) · Φ(Y (s; z)) dz = −

∫
Rm
RG(s)C : ∂z{Φ(Y (s; z))} dz (72)

= −
∫
Rm
RG(s)C tR : (∂yΦ)(Y (s; z))∂Y (s; z)R−1 dz

= −
∫
Rm

(RC tR)(Y (s; z)) : (∂yΦR
−1)(Y (s; z)) dz

= −
∫
Rm
RC tR : ∂yΦR

−1 dy

= −
∫
Rm
RC : ∂yΦ dy

=

∫
Rm

divy(RC) · Φ(y) dy

=

∫
Rm
τ(s)[divy(RC)] · Φ(Y (s; z)) dz.
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Coming back to (71) we obtain

divz(G(s)C∇zv(t)) = τ(s)[divy(RC)] · ∇Rz v(t) + τ(s)(RC tR) : ∇Rz ⊗∇Rz v(t) (73)

and therefore

‖divz(G(s)C∇zv(t))‖L2(Rm) ≤ ‖divy(RC)‖L∞(Rm)‖∇Rz v(t)‖L2(Rm)+|C|H∞Q ‖∇
R
z ⊗∇Rz v(t)‖L2(Rm)

saying that

‖u1‖L∞([0,T ];L∞(Rs;L2(Rm))) ≤ 2‖divy(RC)‖L∞(Rm)‖∇Rz v‖L∞([0,T ];L2(Rm))

+ 2|C|H∞Q ‖∇
R
z ⊗∇Rz v(t)‖L∞([0,T ];L2(Rm)).

Similarly, taking the derivative of (66) with respect to t yields

‖∂tu1‖L1([0,T ];L∞(Rs;L2(Rm))) ≤ 2‖divy(RC)‖L∞(Rm)‖∇Rz ∂tv‖L1([0,T ];L2(Rm))

+ 2|C|H∞Q ‖∇
R
z ⊗∇Rz ∂tv(t)‖L1([0,T ];L2(Rm)).

It remains to estimate the space derivatives of u1. The key point is that ∇R commutes with
τ(s), i.e.

∇Rz (τ(s)f) = ∇Rz {f(Y (s; ·))} = (∇Ry f)(Y (s; ·)) = τ(s)(∇Ry f)

for any smooth function f = f(y). Indeed, for any i ∈ {1, ...,m} we have

bi · ∇z(τ(s)f)(z) = lim
h→0

f(Y (s;Yi(h; z)))− f(Y (s; z))

h

= lim
h→0

f(Yi(h;Y (s; z)))− f(Y (s; z))

h

= bi(Y (s; z)) · (∇yf)(Y (s; z)) = τ(s)(bi · ∇yf)(z).

Applying the operator ∇R in (66) and using (71), (73) lead to

(∇Ry u1(t, s, ·))(Y (s; ·)) = ∇Rz u1(t, s, Y (s; ·)) = ∇Rz [divz(G(s)C∇zv(t))− divz(C∇zv(t))]

= ∇Rz [τ(s)(divy(RC)) · ∇Rz v(t) + τ(s)(RC tR) : ∇Rz ⊗∇Rz v(t)]

−∇Rz [divz(RC) · ∇Rz v(t) + (RC tR) : ∇Rz ⊗∇Rz v(t)]. (74)

Appealing one more time to the commutation between τ(s) and ∇R we deduce that for any
k ∈ {1, ...,m}

bk · ∇z[τ(s)(divy(RC)) · ∇Rz v(t) + τ(s)(RC tR) : ∇Rz ⊗∇Rz v(t)] (75)

= τ(s)(bk · ∇ydivy(RC)) · ∇Rz v(t) + τ(s)divy(RC) · (bk · ∇z∇Rz v(t))

+ τ(s)(bk · ∇y(RC tR)) : ∇Rz ⊗∇Rz v(t) + τ(s)(RC tR) : bk · ∇z(∇Rz ⊗∇Rz v(t)).

Therefore there is a constantK depending on ‖divy(RC)‖L∞(Rm)+‖RC tR‖L∞(Rm)+
∑m

k=1 ‖bk·
∇ydivy(RC)‖L∞(Rm) +

∑m
k=1 ‖bk · ∇y(RC tR)‖L∞(Rm) such that

‖∇Ry u1(t, ·, ·)‖L∞(Rs;L2(Rm)) ≤ K{‖∇Rz v(t)‖L2(Rm) + ‖∇Rz ⊗∇Rz v(t)‖L2(Rm)

+ ‖∇Rz ⊗∇Rz ⊗∇Rz v(t)‖L2(Rm)}.

We deduce that

‖∇yu1‖L2([0,T ];L∞(Rs;XP )) ≤ K{‖∇
R
z v‖L2([0,T ];L2(Rm)) + ‖∇Rz ⊗∇Rz v‖L2([0,T ];L2(Rm))

+ ‖∇Rz ⊗∇Rz ⊗∇Rz v‖L2([0,T ];L2(Rm))}.
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For the second space derivatives of u1, we write as before

divy(D∇yu1) = divy(D
tR∇Ry u1) = divy(RD) · ∇Ry u1 +RD tR : ∇Ry ⊗∇Ry u1.

Notice that divy(RD) · ∇Ry u1 belongs to L1([0, T ];L∞(Rs;L2(Rm))) since by hypotheses
divy(RD) ∈ L∞(Rm) and we already know that ∇yu1 ∈ L2([0, T ];L∞(Rs;XP )). As the
matrix field RD tR belongs to L∞(Rm), it remains to check that ∇Ry ⊗ ∇Ry u1 belongs to

L1([0, T ];L∞(Rs;L2(Rm))). For doing that, we apply one more time the operator ∇Rz in
(74), or equivalently the operator bl · ∇z in (75). Using again the commutation between τ(s)
and bl · ∇z we obtain

bl · ∇z{bk · ∇z[τ(s)(divy(RC)) · ∇Rz v(t) + τ(s)(RC tR) : ∇Rz ⊗∇Rz v(t)]}
= [bl · ∇y(bk · ∇y(divy(RC)))]s · ∇Rz v(t) + [bk · ∇y(divy(RC))]s · [bl · ∇z(∇Rz v(t))]

+ [bl · ∇y(divy(RC))]s · (bk · ∇z(∇Rz v(t))) + (divy(RC))s · {bl · ∇z[bk · ∇z(∇Rz v(t))]}
+ [bl · ∇y(bk · ∇y(RC tR))]s : ∇Rz ⊗∇Rz v(t) + [bk · ∇y(RC tR)]s : bl · ∇z(∇Rz ⊗∇Rz v(t))

+ [bl · ∇y(RC tR)]s : bk · ∇z(∇Rz ⊗∇Rz v(t)) + (RC tR)s : bk · ∇z(bl · ∇z(∇Rz ⊗∇Rz v(t)))

which belongs to L1([0, T ];L∞(Rs;L2(Rm))), thanks to the hypotheses on the matrix field C
and the solution v.

A Proofs of Propositions 4.4, 4.5

Proof of Proposition 4.4. For any i, j, k ∈ {1, ...,m} we introduce the notations uεi = bi ·
∇yuε, vεi = bi·∇zvε, uεij = bj ·∇y(bi·∇yuε), vεij = bj ·∇z(bi·∇zvε), uεijk = bk·∇y(bj ·∇y(bi·∇yuε))
and vεijk = bk · ∇z(bj · ∇z(bi · ∇zvε)). With these notations, the equation (34) becomes

∂tu
ε
i − divy(D(y)∇yuεi ) +

1

ε
b · ∇yuεi = divy([bi, D] tR∇Ry uε) +D tR∇Ry uε · ∇ydivybi.

Taking now the directional derivative bj · ∇y, yields

∂tu
ε
ij − divy(D(y)∇yuεij) +

1

ε
b · ∇yuεij = divy([bj , D] tR∇Ry uεi ) +RD tR∇Ry uεi · ∇Ry divybj

+ bj · ∇ydivy([bi, D]∇yuε) + bj · ∇y(D tR∇Ry uε · ∇ydivybi). (76)

Thanks to the commutation formula (17), we have

bj · ∇ydivy([bi, D]∇yuε) = [bj · ∇y, divy([bi, D]∇y)]uε + divy([bi, D]∇y(bj · ∇yuε))
= divy([bj , [bi, D]]∇yuε) + [bi, D]∇yuε · ∇ydivybj + divy([bi, D]∇y(bj · ∇yuε))
= divy([bj , [bi, D]] tR∇Ry uε) +R[bi, D] tR∇Ry uε · ∇Ry divybj + divy([bi, D] tR∇Ry uεj). (77)

Combining (76), (77) we obtain

∂tu
ε
ij − divy(D(y)∇yuεij) +

1

ε
b · ∇yuεij = divy([bj , D] tR∇Ry uεi ) +RD tR∇Ry uεi · ∇Ry divybj

+ divy([bj , [bi, D]] tR∇Ry uε) +R[bi, D] tR∇Ry uε · ∇Ry divybj

+ divy([bi, D] tR∇Ry uεj) + bj · ∇y(D tR∇Ry uε · ∇ydivybi).
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Multiplying by uεij and integrating on Rm lead to

1

2

d

dt

∫
Rm

(uεij)
2 dy +

∫
Rm
D∇yuεij · ∇yuεij dy = −

∫
Rm
R[bj , D] tR∇Ry uεi · ∇Ry uεij dy

+

∫
Rm
RD tR∇Ry uεi · ∇Ry divybj u

ε
ij dy +

∫
Rm

divy([bj , [bi, D]] tR∇Ry uε)uεij dy

+

∫
Rm
R[bi, D] tR∇Ry uε · ∇Ry (divybj)u

ε
ij dy +

∫
Rm
uεijdivy([bi, D] tR∇Ry uεj) dy

+

∫
Rm
uεijbj · ∇y(D tR∇Ry uε · ∇y(divybi)) dy

=: K1
ij +K2

ij +K3
ij +K4

ij +K5
ij +K6

ij . (78)

By hypothesis (25) we have, cf. (33)

D∇yuεij · ∇yuεij ≥ α|P 1/2∇yuεij |2 = α|∇Ry uεij |2. (79)

Exactly as before we obtain

∇Ry (uεij) = bj · ∇y(∇Ry uεi )−Aj∇Ry uεi

which allows us to replace K1
ij by

K1
ij =

∫
Rm
R[bj , D] tR∇Ry uεi (t) · Aj∇Ry uεi (t) dy

+
1

2

∫
Rm
bj · ∇y(R[bj , D] tR) : ∇Ry uεi (t)⊗∇Ry uεi (t) dy

+
1

2

∫
Rm

(divybj)R[bj , D] tR : ∇Ry uεi (t)⊗∇Ry uεi (t) dy.

Thanks to our hypotheses, there is a constant C3 (not depending on ε or t) such that

m∑
j=1

m∑
i=1

|K1
ij | ≤ C3‖∇Ry ⊗∇Ry uε(t)‖2L2(Rm), t ∈ R+, ε > 0.

Obviously, there is a constant C4 (not depending on ε or t) such that

m∑
j=1

m∑
i=1

|K2
ij | ≤ C4‖∇Ry ⊗∇Ry uε(t)‖2L2(Rm), t ∈ R+, ε > 0.

We consider now the term K3
ij , which writes

K3
ij =

∫
Rm
uεij(t)divy(R[bj , [bi, D]]) · ∇Ry uε(t) dy

+

∫
Rm
uεij(t)R[bj , [bi, D]] tR : ∇Ry ⊗∇Ry uε(t) dy.

It is easily seen that there is a constant C5 (not depending on ε or t) such that

m∑
j=1

m∑
i=1

(|K3
ij |+ |K4

ij |+ |K6
ij |) ≤ C5

(
‖∇Ry ⊗∇Ry uε(t)‖L2(Rm)‖∇Ry uε(t)‖L2(Rm)

+‖∇Ry ⊗∇Ry uε(t)‖2L2(Rm)

)
, t ∈ R+, ε > 0.
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It remains to estimate the term K5
ij . For any i, j ∈ {1, ...,m} we have

uεij(t) = uεji(t)−
m∑
k=1

αkiju
ε
k(t)

and therefore K5
ij writes

K5
ij = −

m∑
k=1

∫
Rm
αkiju

ε
k(t)divy([bi, D] tR∇Ry uεj(t)) dy

+

∫
Rm
uεji(t)divy([bi, D] tR∇Ry uεj(t)) dy

=
m∑
k=1

∫
Rm
∇Ry (αkiju

ε
k(t)) ·R[bi, D] tR∇Ry uεj(t) dy

−
∫
Rm
∇Ry (bi · ∇yuεj(t)) ·R[bi, D] tR∇Ry uεj(t) dy =: K7

ij +K8
ij .

Clearly, there is a constant C6 (not depending on ε or t) such that

m∑
j=1

m∑
i=1

|K7
ij | ≤ C6

(
‖∇Ry ⊗∇Ry uε(t)‖L2(Rm)‖∇Ry uε(t)‖L2(Rm)

+‖∇Ry ⊗∇Ry uε(t)‖2L2(Rm)

)
, t ∈ R+, ε > 0.

For the last term K8
ij we use (40) and we get as before

K8
ij =

∫
Rm
Ai∇Ry uεj(t) ·R[bi, D] tR∇Ry uεj(t) dy

−
∫
Rm
bi · ∇y(∇Ry uεj(t)) ·R[bi, D] tR∇Ry uεj(t) dy

=

∫
Rm
Ai∇Ry uεj(t) ·R[bi, D] tR∇Ry uεj(t) dy

+
1

2

∫
Rm

(divybi)R[bi, D] tR : ∇Ry uεj(t)⊗∇Ry uεj(t) dy

+
1

2

∫
Rm
bi · ∇y(R[bi, D] tR) : ∇Ry uεj(t)⊗∇Ry uεj(t) dy

implying that there is a constant C7 (not depending on ε or t) such that

m∑
j=1

m∑
i=1

|K8
ij | ≤ C7‖∇Ry ⊗∇Ry uε(t)‖2L2(Rm), t ∈ R+, ε > 0.

Putting together (78), (79) and the estimates for all the terms Kr
ij , i, j ∈ {1, ...,m}, r ∈

{1, ..., 8} we deduce that

1

2

d

dt
‖∇Ry ⊗∇Ry uε‖2L2(Rm) + α‖∇Ry ⊗∇Ry ⊗∇Ry uε‖2L2(Rm) ≤ C‖∇

R
y ⊗∇Ry uε‖L2(Rm)

×
(
‖∇Ry ⊗∇Ry uε‖L2(Rm) + ‖∇Ry uε‖L2(Rm)

)
, C =

7∑
r=3

Cr.
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Applying Gronwall’s lemma yields, for some constant CT depending only on T and the
coefficients αkij , the vector fields bi and the matrix field D

‖∇Ry ⊗∇Ry uε‖L∞([0,T ];L2(Rm)) = ‖∇Rz ⊗∇Rz vε‖L∞([0,T ];L2(Rm))

≤ CT (‖∇Ry uin‖L2(Rm) + ‖∇Ry ⊗∇Ry uin‖L2(Rm)), ε > 0

and

‖∇Ry ⊗∇Ry ⊗∇Ry uε‖L2([0,T ];L2(Rm)) = ‖∇Rz ⊗∇Rz ⊗∇Rz vε‖L2([0,T ];L2(Rm))

≤ CT (‖∇Ry uin‖L2(Rm) + ‖∇Ry ⊗∇Ry uin‖L2(Rm)), ε > 0.

For estimating ∂t∇Rz vε we take the directional derivative bi · ∇z in (43). As the vector fields
bi, b are in involution, that is [bi, b] = 0, the flows Yi, Y are commuting [2, 3], and therefore
the derivative along bi commutes with the translation along the flow of b (take the derivative
with respect to h, at h = 0, of the equality f(Y (s;Yi(h; ·))) = f(Yi(h;Y (s; ·))) ). We deduce
that

∂t(bi · ∇zvε)(t, z) = [bi · ∇ydivy(D∇yuε)](Y (t/ε; z))

which implies

‖∂t∇Rz vε(t)‖L2(Rm) = ‖∇Ry divy(D∇yuε(t))‖L2(Rm)

= ‖∇Ry divy(D
tR∇Ry uε(t))‖L2(Rm)

= ‖∇Ry (divy(RD) · ∇Ry uε(t)) +∇Ry (RD tR : ∇Ry ⊗∇Ry uε(t))‖L2 .

We claim that for any i ∈ {1, ...,m} we have the equality

divy(RD)i =
m∑
j=1

bj · ∇y(RD tR)ij +
m∑
j=1

(RD tR)ijdivybj . (80)

Indeed, for any i ∈ {1, ...,m} we can write (here (ek)1≤k≤m stands for the canonical basis of
Rm)

(divyRD)i = divy(RD
tR tR−1)i =

m∑
k=1

∂yk

m∑
j=1

(RD tR)ijR
−1
kj

=

m∑
j=1

m∑
k=1

∂yk [(RD tR)ij(bj · ek)]

=
m∑
j=1

divy[(RD
tR)ijbj ].

Thanks to our hypotheses and formula (80), it is easily seen that there is a constant depending
only on the coefficients αkij , the vector fields bi and the matrix field D such that

‖∂t∇Rz vε‖L2(Rm) ≤ C(‖∇Ry uε(t)‖L2(Rm) + ‖∇Ry ⊗∇Ry uε(t)‖L2(Rm)

+ ‖∇Ry ⊗∇Ry ⊗∇Ry uε(t)‖L2(Rm)).

Thanks to the uniform estimates satisfied by ∇Ry uε,∇Ry ⊗∇Ry uε in L∞([0, T ];L2(Rm)), and

by ∇Ry ⊗∇Ry ⊗∇Ry uε in L2([0, T ];L2(Rm)), we obtain that, for any T ∈ R+, there is a constant

C̃T (depending only on T and α, αkij , bi, D) such that

‖∂t∇Rz vε‖L2([0,T ];L2(Rm)) ≤ C̃T
(
‖∇Ry uin‖L2(Rm) + ‖∇Ry ⊗∇Ry uin‖L2(Rm)

)
, ε > 0.
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Proof of Proposition 4.5. We perform exactly the same computations as in the proof
of Proposition 4.3 (it does not matter that (26) has no the term 1

εb · ∇zv). Nevertheless,
we have to check that all the hypotheses on the matrix field D in Proposition 4.3 are also
satisfied by the matrix field 〈D〉. By Theorem 2.1 we deduce that t 〈D〉 = 〈D〉, 〈D〉 ∈ H∞Q ,

| 〈D〉 |H∞Q ≤ |D|H∞Q , Q1/2 〈D〉Q1/2 ≥ αIm and therefore the hypotheses (25) corresponding

to the matrix field 〈D〉 hold true. We also need to show that R[bi, 〈D〉] tR ∈ L∞(Rm),
divy(R 〈D〉) ∈ L∞(Rm),

∑m
i=1 bi · ∇y(R[bi, 〈D〉] tR) ∈ L∞(Rm), provided that the same con-

ditions are satisfied by the matrix field D. The key point is that for any i ∈ {1, ...,m}, the
groups (Gi(h))h∈R, (G(s))s∈R are commuting, where Gi(h) is defined by

Gi(h)A = ∂Y −1i (h; ·)A(Yi(h; ·)) t∂Y −1i (h; ·).

It is easily seen that for any s, h ∈ R

(G(s) ◦Gi(h))A = G(s)(Gi(h)A) = ∂Y −1(s; ·)(Gi(h)A)(Y (s; ·)) t∂Y −1(s; ·) (81)

= ∂Y −1(s; ·)∂Y −1i (h;Y (s; ·))A(Yi(h;Y (s; ·))) t∂Y −1i (h;Y (s; ·)) t∂Y −1(s; ·)

and

(Gi(h) ◦G(s))A = Gi(h)(G(s)A) = ∂Y −1i (h; ·)(G(s)A)(Yi(h; ·)) t∂Y −1i (h; ·) (82)

= ∂Y −1i (h; ·)∂Y −1(s;Yi(h; ·))A(Y (s;Yi(h; ·))) t∂Y −1(s;Yi(h; ·)) t∂Y −1i (h; ·).

By the involution between b and bi, we know that

Yi(h;Y (s; ·)) = Y (s;Yi(h; ·)) (83)

and by differentiation one gets

∂Yi(h;Y (s; ·))∂Y (s; ·) = ∂Y (s;Yi(h; ·))∂Yi(h; ·)

which also writes

∂Y −1(s; ·)∂Y −1i (h;Y (s; ·)) = ∂Y −1i (h; ·)∂Y −1(s;Yi(h; ·)). (84)

Combining (81), (82), (83), (84) we obtain the commutation property between the groups
(Gi(h))h∈R, (G(s))s∈R, for any i ∈ {1, ...,m}. Notice that the hypothesis R[bi, D] tR ∈
L∞(Rm), or equivalently [bi, D] ∈ H∞Q , should be understood in D ′(Rm), that is, there

is a matrix field, denoted [bi, D], which belongs to H∞Q , such that for any A ∈ C1
c (Rm) we

have ∫
Rm
D : (−bi · ∇yA− (divybi)A− t∂biA−A∂bi) dy =

∫
Rm

[bi, D] : A dy. (85)

We introduce the operator Li(D) = [bi, D] and its formal adjoint

L?i (A) = −bi · ∇yA− (divybi)A− t∂biA−A∂bi, A ∈ C1
c (Rm).

Using these notations, (85) becomes∫
Rm
D : L?i (A) dy =

∫
Rm
Li(D) : A dy, A ∈ C1

c (Rm).

Notice that H∞Q is the topological dual of the space

H1
P =

{
A : Rm →Mm(R) measurable :

∫
Rm

(P (y)A(y) : A(y)P (y))1/2 dy < +∞
}
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and thus [bi, D] ∈ H∞Q iff there is a constant Ci such that
∫
RmD : L?i (A) dy ≤ Ci|A|H1

P

for any A ∈ C1
c (Rm). A straightforward computation shows that if B ∈ H∞Q is such that

Gi(h)B ∈ H∞Q for any h ∈ R and h ∈ R? → (Gi(h)B − B)/h is bounded in H∞Q , then
(Gi(h)B − B)/h converges toward Li(B) weakly ? in H∞Q , when h → 0. Indeed, for any

A ∈ C1
c (Rm) ⊂ H1

P , we have∫
Rm

Gi(h)B −B
h

: A dy =

∫
Rm

∂Y −1i (h; y)B(Yi(h; y)) t∂Y −1i (h; y)−B(y)

h
: A(y) dy

=

∫
Rm

∂Yi(−h;Yi(h; y))B(Yi(h; y)) t∂Yi(−h;Yi(h; y))−B(y)

h
: A(y) dy

=
1

h

∫
Rm

{
det(∂Yi(−h; z))∂Yi(−h; z)B(z) t∂Yi(−h; z) : A(Yi(−h; z))−B(z) : A(z)

}
dz

=

∫
Rm

det(∂Yi(−h; z))− 1

h
∂Yi(−h; z)B(z) t∂Yi(−h; z) : A(Yi(−h; z)) dz

+

∫
Rm
B(z) :

t∂Yi(−h; z)A(Yi(−h; z))∂Yi(−h; z)−A(z)

h
dz

−→
h→0
−
∫
Rm

divzbi B(z) : A(z) dz −
∫
Rm
B(z) : (bi · ∇zA+ t∂biA+A∂bi) dz

=

∫
Rm
B(z) : L?i (A) dz.

We deduce that any weak ? limit point in H∞Q satisfies∫
Rm

w ? lim
hk→0

Gi(hk)B −B
hk

: A dy =

∫
Rm
B : L?i (A) dy

for any A ∈ C1
c (Rm). Therefore all the family (Gi(h)B − B)/h converges weakly ? in H∞Q ,

as h→ 0, and Li(B) = limh→0
Gi(h)B−B

h , weakly ? in H∞Q .
We claim that for any s ∈ R, we have Li(G(s)D) = G(s)(Li(D)), that is∫

Rm
G(s)D : L?i (A) dy =

∫
Rm
G(s)Li(D) : A dy, A ∈ C1

c (Rm). (86)

By density arguments (notice that Bn ⇀ B weakly ? in H∞Q , implies G(s)Bn ⇀ G(s)B
weakly ? in H∞Q , for any s ∈ R) it is enough to show that Li(G(s)B) = G(s)Li(B) for any
smooth, compactly supported matrix field B. Let us consider a smooth, compactly supported
matrix field B. Obviously, for any h ∈ R? we have Gi(h)B ∈ H∞Q and Gi(h)B−B

h ⇀ Li(B)
weakly ? in H∞Q , when h → 0. We deduce that Gi(h)G(s)B = G(s)Gi(h)B ∈ H∞Q for any
h ∈ R and

Gi(h)G(s)B −G(s)B

h
=
G(s)Gi(h)B −G(s)B

h
= G(s)

Gi(h)B −B
h

⇀
h→0

G(s)Li(B)

weakly ? in H∞Q . By the previous remark, we obtain Li(G(s)B) = G(s)Li(B) for any s ∈ R.
Now it is easily seen that Li(〈D〉) = [bi, 〈D〉] ∈ H∞Q , if Li(D) = [bi, D] ∈ H∞Q . Indeed,
averaging (86) with respect to s one gets∫

Rm

1

S

∫ S

0
G(s)D ds : L?i (A) dy =

∫
Rm

1

S

∫ S

0
G(s)Li(D) ds : A dy, A ∈ C1

c (Rm).

Taking into account that 1
S

∫ S
0 G(s)D ds→ 〈D〉 in HQ,loc, when S → +∞, that PL?i (A)P ∈

HQ and noticing that∣∣∣∣ 1S
∫ S

0
G(s)Li(D) ds

∣∣∣∣
H∞Q

≤ 1

S

∫ S

0
|G(s)Li(D)|H∞Q ds = |Li(D)|H∞Q
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we deduce that any weak ? limit point in H∞Q of
(

1
S

∫ S
0 G(s)Li(D) ds

)
S

satisfies

∫
Rm
〈D〉 : L?i (A) dy =

∫
Rm

w ? lim
S→+∞

1

S

∫ S

0
G(s)Li(D) ds : A dy

for any A ∈ C1
c (Rm) ⊂ H1

P , saying that Li(〈D〉) = limS→+∞
1
S

∫ S
0 G(s)Li(D) ds, weakly ? in

H∞Q . In particular |Li(〈D〉)|H∞Q ≤ |Li(D)|H∞Q .

We concentrate now on the hypothesis
∑m

i=1 bi · ∇y(R[bi, D] tR) ∈ L∞(Rm). For any s ∈ R
we have

RG(s)[bi, D] tR = R∂Y −1(s; ·)[bi, D](Y (s; ·)) t∂Y −1(s; ·) tR = (R[bi, D] tR)(Y (s; ·))

and since [bi, b] = 0, we obtain

bi · ∇z(RG(s)[bi, D] tR) = bi · ∇z((R[bi, D] tR) ◦ Y (s; ·)) =
(
bi · ∇y(R[bi, D] tR)

)
◦ Y (s; ·).

Multiplying by a smooth compactly supported matrix field A ∈ C1
c (Rm) and averaging with

respect to s one gets

−
∫
Rm

divzbi
S

∫ S

0
G(s)Li(D) ds : tRAR dz −

∫
Rm

1

S

∫ S

0
G(s)Li(D) ds : tR(bi · ∇zA)R dz

=

∫
Rm

1

S

∫ S

0
(bi · ∇y(RLi(D) tR))(Y (s; z)) ds : A(z) dz.

We use now the weak ? convergence in H∞Q

lim
S→+∞

1

S

∫ S

0
G(s)Li(D) ds = Li(〈D〉)

and the facts that tRAR ∈ H1
P , divybi ∈ L∞(Rm) implying that

−
∫
Rm

m∑
i=1

divzbiRLi(〈D〉) tR : A dz −
∫
Rm

m∑
i=1

RLi(〈D〉) tR : bi · ∇zA dz (87)

=

∫
Rm

lim
S→+∞

1

S

∫ S

0

m∑
i=1

(bi · ∇y(RLi(D) tR))(Y (s; z)) ds : A(z) dz.

For passing to the limit in the last integral we use the weak ? convergence in L∞(Rm), since
the family

(∑m
i=1(bi · ∇y(RLi(D) tR)) ◦ Y (s; ·)

)
s∈R is bounded in L∞(Rm). We deduce that

m∑
i=1

bi · ∇y(RLi(〈D〉) tR) = w ? lim
S→+∞

1

S

∫ S

0

m∑
i=1

(bi · ∇y(RLi(D) tR)) ◦ Y (s; ·) ds ∈ L∞(Rm).

It remains to observe that for any s ∈ R, divz(RG(s)D) = divy(RD) ◦ Y (s; ·) (see (72) for
details), which implies

divz(R 〈D〉) = w ? lim
S→+∞

1

S

∫ S

0
divy(RD) ◦ Y (s; ·) ds ∈ L∞(Rm)

where, as before, the last limit should be understood in the weak ? L∞(Rm) sense.
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