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Abstract

The Noether theorem connecting symmetries and conservation laws

can be applied directly in a Hamiltonian framework without using any

intermediate Lagrangian formulation. This requires a careful discus-

sion about the invariance of the boundary conditions under a canonical

transformation and this paper proposes to address this issue. Then,

the unified treatment of Hamiltonian systems offered by Noether’s ap-

proach is illustrated on several examples, including classical field theory

and quantum dynamics.
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1 Introduction

After its original publication in German in 1918, and even though it was
first motivated by theoretical physics issues in General Relativity, it took
a surprisingly long time for the physicists of the twentieth century to be-
come aware of the profoundness of Noether’s seminal article (see Kosmann-
Schwarzbach (2011b) for an English translation and a historical analysis of
its impact, see also (Kastrup, 1983, § 7) and Byers (1994)). Since then,
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about the 1950’s say, as far as theoretical physics is concerned, Noether’s
work spread widely from research articles in more general textbooks and,
nowadays, it even reaches some online pages like Wikipedia’s (Collective,
2015) intended to a (relatively) large audience including undergraduate stu-
dents (see also Neuenschwander (2011) and (Kosmann-Schwarzbach, 2011a,
§ 5.2)). However, the vast majority of these later presentations, unfortu-
nately following the steps of Hill (1951) (see Kosmann-Schwarzbach (2011b,
§ 4.7)), reduces drastically the scope of Noether’s article1; (i) because they
commonly refer to the first main theorem (“The Noether theorem”) without
even mentioning that Noether’s 1918 paper contains more physically rele-
vant material2 and also (ii) because the connection between the existence of
a conservation law and some invariance under a continuous group of transfor-
mations in a variational problem is predominantly illustrated in a Lagrangian
framework, for instance (Weinberg, 1995, §7.3), (not to speak that the order
of the derivatives involved in the Lagrangian do not generally exceed one,
albeit Noether explicitly works with integrands of arbitrary orders). As a
consequence, an enormous literature flourished that claimed to generalise
Noether’s results whereas it only generalised the secondary poor man’s ver-
sions of it without acknowledging that these so-called generalisations were
already present in Noether’s original work (Kosmann-Schwarzbach, 2011b,
§ 5.5) or in Bessel-Hagen’s paper Bessel-Hagen (1921/2006) — directly owed
to a “an oral communication from Emmy Noether” (see also (Noether, 1918/2011,
§ 4, footnote 20)) — where invariance of the integrand defining the functional
is considered “up to a divergence”.

Nevertheless, fortunately, the success of gauge models in quantum field
theory motivated several works where Noether’s contribution was employed
in (almost) all its powerful generality (for articles not concerned by (i) see
for instance Barbashov and Nesterenko (1983); Lusanna (1991) and the more
epistemological approach proposed in Brading and Brown (2003)). To coun-
terbalance (ii), the present paper is an attempt to provide a unified treatment
of Noether’s conservation laws in the Hamiltonian framework, i.e. where the

1Obviously, the common fact that research articles are more quoted than read is all
the more manifest for rich fundamental papers.

2 There is a second main theorem establishing a one-to-one correspondence between
Gauge invariance and some identities between the Euler-Lagrange equations and their
derivatives (see § 4.3 below). These Noether identities render that a gauge-invariant
model is necessarily a constrained Hamiltonian/Lagrangian system in Dirac’s sense Dirac
(1964/2001). Furthermore, a by-product result also proven by Noether (Noether,
1918/2011, § 5) is that the constants of motion associated, through the first theorem,
with an invariance under a Lie group are themselves invariant under the transformations
representing this group.
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canonical formalism is used. In this context, the advantages of the latter
have already been emphasized by a certain number of works among which
we can cite Henneaux and Teitelboim (1992); Li (1993); Deriglazov and Ev-
dokimov (2000) where the main focus was naturally put on the Noether’s
second theorem (see footnote 2) but not necessarily, since classical mechanics
was also considered — Sarlet and Cantrijn (1981), regrettably suffering of
flaw (i) — even with pedagogical purposes Leubner and Marte (1985), (De-
riglazov, 2010, § 7.11). The main advantage of the Hamiltonian approach
over the standard Lagrangian one is that it incorporates more naturally a
larger class of transformations, namely the canonical transformations (in
phase-space), than the point transformations (in configuration space). To
recover the constants of motion associated with the canonical transforma-
tions that cannot be reduced to some point transformations, one has to con-
sider some symmetry transformations of the Lagrangian action that depend
on the time derivative of the degrees of freedom. Anyway, these so called
“dynamical”, “accidental” or “hidden” symmetries (the best known example
being the Laplace-Runge-Lenz vector for the two-body Coulombian model
(Lévy-Leblond, 1971, § 5A)) are completely covered by Noether’s original
treatment, even if we stick to a Lagrangian framework.

As a starting point I will explain, in § 2, how the price to pay when work-
ing within the Hamiltonian framework is that special care is required con-
cerning the boundary conditions imposed when formulating the variational
principle: unlike what occurs in the configuration space, in phase-space not
all the initial and final dynamical variables can be fixed arbitrarily but rather
half of them; the choice of which ones should be fixed is an essential part
of the model and therefore should be included in any discussion about its
invariance under a group of transformations. As far as I know, in the lit-
erature where Noether’s work is considered, including Noether (1918/2011)
itself or even when a Hamiltonian perspective is privileged, the invariance of
the boundary conditions is not genuinely considered and only the invariance
of the functional upon which the variational principle relies is examined.
This may be understood because as far as we keep in mind a Lagrangian
formulation, the boundary conditions are not generically constrained; on the
other hand, in a Hamiltonian formulation, there are some constraints that fix
half of the canonical variables and the invariance of the action under a canon-
ical transformation does not guarantee that the constraints are themselves
invariant under this transformation. Since the present paper intends to show
how Noether’s conservation laws can be directly applied in a Hamiltonian
context, I will have to clarify this issue and for this purpose I propose to
introduce (§ 2.3) a boundary function, defined on phase space, whose role is
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to encapsulate the boundary conditions and offers some latitude for changing
them. In § 3, for a classical Hamiltonian system I will present a derivation of
the conservation laws from the invariance under the most general canonical
transformations. Then, before I show in § 5.1 that the same results can be
obtained with Noether’s approach, I will paraphrase Noether’s original pa-
per in § 4 for the sake of self-containedness and for defining the notations.
Before I briefly conclude, I will show explicitly how Noether’s method can
be applied for models involving classical fields (§ 5.2) and in quantum theory
(§ 6). For completeness the connection with the Lagrangian framework will
be presented in § 5.3.

2 Hamiltonian variational principle and the bound-

ary conditions

2.1 Formulation of the variational principle in a Hamiltonian

context

We shall work with a Hamiltonian system described by the independent
canonical variables (p, q) referring to a point in phase space. Whenever re-
quired, we will explicitly label the degrees of freedom by α that may be a
set of discrete indices, a subset of continuous numbers or a mixture of both.
For instance, for L degrees of freedom, we have (p, q) = (pα, qα)α∈{1,...,L}
whereas for a scalar field in a D-dimensional space we will take α = x =
(x1, . . . , xD) = (xi)i∈{1,...,D} and then (p, q) will stand for the fields
{
π(x), ϕ(x)

}

x∈Rd
. The dynamics of the system is based on a variational prin-

ciple i.e. it corresponds to an evolution where the dynamical variables are
functions of time3 that extremalise some functional S called the action. In
the standard presentation of the Hamilton principle in phase space, see Ray
(1973) and its references, the action is defined as the functional

∫ tf
ti

(
p dq/dt−

H(p, q, t)
)
dt of the smooth functions of time t 7→

(
p(t), q(t)

)
(the summa-

tion/integral on the degrees of freedom labelled by α is left implicit). When
the Hamiltonian H(p, q, t) depends explicitly on time t, it is often convenient
to work in an extended phase space where (−H, t) can be seen as an addi-
tional pair of canonical dynamical variables; we shall not use this possibility
but still, we shall keep some trace of the similarity between q and t on one

3We will never bother about the regularity of all the functions we will meet, assuming
they are smooth enough for their derivative to be defined when necessary.
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hand and between p and −H on the other hand by considering the action

S0[p(·), q(·), t(·)]
def
=

∫ sf

si

(

p(s)
dq

ds
(s)−H

(
p(s), q(s), t(s)

) dt

ds
(s)

)

ds (1)

as a functional of s 7→ p(s), s 7→ q(s) and s 7→ t(s) where s is a one-
dimensional real parametrisation. An infinitesimal variation p(s) + δp(s),
q(s) + δq(s), t(s) + δt(s) induces the variation S0 + δS0 of the value of the
action where, to first order in (δp, δq, δt), we have, with the customary use
of integration by parts,

δS0 = p(sf )δq(sf )− p(si)δq(si)

−H
(
p(sf ), q(sf ), t(sf )

)
δt(sf ) +H

(
p(si), q(si), t(si)

)
δt(si)

+

∫ sf

si

{[
dq

ds
(s)− ∂pH

(
p(s), q(s), t(s)

) dt

ds
(s)

]

δp(s)

+

[

−
dp

ds
(s)− ∂qH

(
p(s), q(s), t(s)

) dt

ds
(s)

]

δq(s)

+

[
d

ds
H
(
p(s), q(s), t(s)

)
− ∂tH

(
p(s), q(s), t(s)

) dt

ds
(s)

]

δt(s)

}

ds

(2)

and, then, the Hamilton variational principle can be formulated as follows:
in the set of all phase-space paths connecting the initial position q(si) = qi
at t(si) = ti to the final position q(sf ) = qf at t(sf ) = tf the dynamics
of the system follows one for which S0 is stationary4; in other words, the
variation δS0 vanishes in first order provided we restrict the variations to
those such that

δq(sf ) = δq(si) = 0 ; (3a)

δt(sf ) = δt(si) = 0 (3b)

whereas the other variations δt(s), δp(s) and δq(s) remain arbitrary (but
small), hence independent one from the other. Hamilton’s equations

dp

dt
= −∂qH(p, q, t) ; (4a)

dq

dt
= ∂pH(p, q, t) ; (4b)

come from the cancellation of the two first brackets in the integrand of (2),
then the cancellation of the third one follows. The restrictions (3) on the oth-
erwise arbitrary variations δp(s), δq(s), δt(s) provides sufficient conditions

4This classical path is not necessarily unique and may be even a degenerate critical
path for S0, see however the next footnote.
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to cancel the boundary terms given by the two first lines of the right-hand
side of (2) but they are not necessary, one could impose δq to be transversal
to p both at ti and tf , or impose some periodic conditions (see footnote 12).

2.2 The differences concerning the boundary conditions be-

tween Lagrangian and Hamiltonian models

In the usual Lagrangian approach, the q’s constitute all the dynamical vari-
ables and a generic choice of (qi, qf , ti, tf ) leads to a well-defined variational
problem having one isolated solution5: no constraint on (qi, qf , ti, tf ) is re-
quired and it is commonly assumed that the variations of all the dynamical
variables vanish at the boundary; any point transformation q 7→ qT(q) pre-
serves this condition since then δqT = (∂qq

T)δq and we have δq = 0 ⇔ δqT =
0.

In a Hamiltonian framework, obviously, because the dynamical vari-
ables q and p are not treated on the same footing in the definition (1) of S0,
there is an imbalance in the boundary conditions and in their variations
between δq and δp. More physically, this comes from the fact that the clas-
sical orbits, defined to be the solutions of (4), are generically determined by
half of the set (pi, qi, pf , qf ); in general, there will be no classical solution
for a given a priori set (pi, qi, pf , qf ) and a well-defined variational principle
— that is, neither overdetermined nor underdetermined — requires some
constraints that make half of these dynamical variables to be functions of
half the independent other ones. Any canonical transformation, which usu-
ally shuffles the (p, q)’s, will not only affect the functional S0 but also the
boundary conditions required by the statement of variational principle. For
a canonical transformation the transformed dynamical variables qT and pT

are expected to be functions of both q and p and, then, as noted in Quade
(1979), the conditions (3a) alone do not imply that δqTi = δqTf = 0 since
neither δpT

i nor δpT
f vanish in general.

In any case, the behaviour of the initial conditions under a transformation
should be included when studying the invariance of a variational model but
this issue is made more imperative in a Hamiltonian than in a Lagrangian
viewpoint, at least when the Lagrangian does not depend on time derivative
of order higher than one6.

5In the space of initial conditions, the singularities corresponding to bifurcation points,
caustics, etc. are submanifolds of strictly lower dimension (higher co-dimension) and
therefore outside the scope, by definition, of what is meant by “generic”. In other words
we consider as generic any property that is structurally stable, that is, unchanged under
a small enough arbitrary transformation.

6Aside from the crucial question of instabilities (Ostrogradsky’s, ghosts etc), even for
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2.3 The boundary function

To restore some sort of equal treatment between the q’s and the p’s in the
Hamiltonian framework, one can tentatively add to S0 a function A of the dy-
namical variables at the end points (qf , pf , tf ; qi, pi, ti) whose variations δA
depend a priori on the variations of all the dynamical variables at the bound-
aries. Nevertheless we will restrict the choice of A(qf , pf , tf ; qi, pi, ti) to
functions of the form B(qf , pf , tf ) − B(qi, pi, ti) in order to preserve the
concatenation property according to which the value of the action of two
concatenated paths is the sum of the actions of each of the two paths. This
strategy is equivalent to add to the integrand of S0 the total derivative of the
boundary function B (see (Courant and Hilbert, 1953, § IV.5.1, footnote 1
p. 211)):

SB [p(·), q(·), t(·)]
def
=

∫ sf

si

(

p
dq

ds
+
(

−H(p, q, t) +
d

dt
B(p, q, t)

)dt

ds

)

ds .

(5)
This modification does not alter Hamilton’s equations (4)7 but allows to re-
formulate the variational problem within the set of phase-space paths defined
by the boundary conditions such that

[

pδq −Hδt+ δB
]sf

si
= 0 . (6)

For instance by choosing B(p, q, t) = −pq, the roles of the p’s and the q’s
are exchanged and (3a) is replaced by δp(sf ) = δp(si) = 0 whereas if we
take B(p, q, t) = −pq/2 the symmetry between p and q is (almost) obtained.

higher orders, the correspondence between Lagrangian and Hamiltonian formalism can
actually be formalised (Gitman and Tyuti, 1990, § 7.1, for instance) but in that cases
the boundary conditions are not so simple, even in the Lagrangian framework, as one can
be easily convinced by considering L(q, q̇, q̈). The attempts of building a path-integral
formulation compatible with General Relativity require a special care of boundary con-
ditions even at the Lagrangian level: this is of course the core of holography and of the
AdS/CFT correspondence; it has also been noted by York (1972), Gibbons and Hawking
(1977) that a boundary term should be added to the Einstein-Hilbert action, in particular
if one wants to keep the concatenation property (more on this in the next section). Sec-
tion 5.3 suggests that, even in the simplest models, the relationship between the boundary
term in the Hamiltonian formalism and the Lagrangian formalism is not straightforward.

7The fact that a total derivative can be added to a Lagrangian without changing the
evolution equations is well-known for a long-time. As already noticed above it is mentioned
by Noether (Noether, 1918/2011, § 4, footnote 20) and this flexibility has been used for
many purposes ; in particular in Bessel-Hagen’s paper (Bessel-Hagen, 1921/2006, § 1), see
also the discussion in (Brading and Brown, 2003, § 3).
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We see that the boundary function is defined up to a function of time
only since the substitution

B′(p, q, t)
def
= B(p, q, t) + b(t) ; H ′(p, q, t)

def
= H(p, q, t) +

db

dt
(t) (7)

leaves unchanged both the action (5) and the boundary conditions (6). A
dependence of b on the other dynamical variables is unacceptable since it
would introduce time derivatives of p and q in the Hamiltonian.

3 Transformation, invariance and conservation laws

3.1 Canonical transformation of the action, the Hamiltonian

and the boundary function

In the present paper we refrain to use the whole concepts and formalism
of symplectic geometry that has been developed for dynamical systems and
prefer to keep a “physicist touch” without referring to fiber bundles, jets,
etc. even though the latter allow to work with a completely coordinate-free
formulation. With this line of thought, we follow a path closer to Noether’s
original formulation. However, keeping a geometrical interpretation in mind,
if we consider the action (5) as a scalar functional of a geometrical path in
phase space, any canonical transformation (q, p, t) 7→ (qT, pT, tT) can be seen
as a change of coordinate patch (the so-called passive transformation on
which the geometrical concept of manifold relies) that does not affect the
value of the action for the considered path, so we should have

ST
BT [pT(·), qT(·), tT(·)]

def
= SB [p(·), q(·), t(·)] ; (8)

in this point of view, the latter relation is a definition of the transformed
functional, not an expression of the invariance of the model. The canonical
character of the transformation guarantees that ST

BT takes the same form
as (5), namely

ST
BT [pT(·), qT(·), tT(·)] =

∫ sf

si

(

pT(s)
dqT

ds
(s)−HT

(
pT(s), qT(s), tT(s)

) dtT

ds
(s)

+
d

ds

[

BT
(
pT(s), qT(s), tT(s)

)]
)

ds , (9)

which leads to a definition of HT and BT up to a function of time only
(see (7)). Since the equality (8) holds for any phase-space path (whether
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classical or not), a necessary (and sufficient) condition is that

pT dqT −HT(pT, qT, tT) dtT + d
(
BT(pT, qT, tT)

)

= p dq −H(p, q, t) dt+ d
(
B(p, q, t)

)
, (10)

which provides an explicit expression for HT(pT, qT, tT) and BT(pT, qT, tT)
according to the choice of the independent coordinates in phase-space. For
instance, if we pick up pT, q and t and assume that the transformation of
time is given by a general function tT(pT, q, t)8, the expression (10) in terms
of the corresponding differential forms is

qT dpT + p dq +HT(pT, qT, tT) dtT −H(p, q, t) dt

= d
(
pTqT +BT(pT, qT, tT)−B(p, q, t)

)
= dF , (11)

which is the differential of a generating function F (pT, q, t) of the canonical
transformation implicitly defined (up to a function of time only) by

p =
∂F

∂q
−HT(pT, qT, tT)

∂tT

∂q
; (12a)

qT =
∂F

∂pT
−HT(pT, qT, tT)

∂tT

∂pT
. (12b)

Then, we get

HT(pT, qT, tT)
∂tT

∂t
(pT, q, t) = H(p, q, t) +

∂F

∂t
(pT, q, t) (13)

and
BT(pT, qT, tT) = B(p, q, t)− pTqT + F (pT, q, t) . (14)

The substitution (7) corresponds to the alternative choice F ′ def
= F − b.

From the latter relation, we understand why a boundary function B has to
be introduced in the definition of the action when discussing the effects of a
general canonical transformation. Even if we start with a B that vanishes
identically, a canonical transformation turns B ≡ 0 into −F̆

(
qT, q

)
where F̆

is the generating function given by the following Legendre transform of F

F̆ (qT, q)
def
= pTqT − F (pT, q) , (15)

and therefore BT 6≡ 0 in general (this special case is the point raised in
Quade (1979)). In the particular case of point transformations qT = f(q, t),
the boundary function can remain unchanged since we can always choose
F (pT, q, t) = pTf(q, t) for which F̆ ≡ 0.

8A notable case where tT depends on q is provided by the Lorentz transformations.
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3.2 What is meant by invariance

When talking about the invariance of a Hamiltonian model under a trans-
formation, one may imply (at least) three non-equivalent conditions: the
invariance of the form of the action (5), the invariance of the form of Hamil-
ton’s equations (4) or the invariance of the form of Newton equations derived
from the latter9. As far as only classical dynamics is concerned, the invari-
ance of the action appears to be a too strong condition: if only the critical
points of a function(nal) are relevant, there is no need to impose the invari-
ance of the function(nal) itself outside some neighbourhood of its critical
points and, provided no bifurcation occurs, one may substantially transform
the function(nal) without impacting the location and the properties of its
critical points. For instance the transformation S 7→ ST = S+ ǫ sinhS, with
ǫ being a real parameter, would actually lead to the same critical points10.
However, by considering that quantum theory is a more fundamental the-
ory than the classical one, from its formulation in terms of path integrals
due to Feynman11 we learn that the value of the action is relevant beyond
its stationary points all the more than we leave the (semi-)classical domain
and reach a regime where the typical value of the action of the system is of
order ~. Therefore we will retain the invariance of the form of the action as
a fundamental expression of the invariance of a model:

ST
BT [pT(·), qT(·), tT(·)] = SB[p

T(·), qT(·), tT(·)] . (16)

This means the invariance of the boundary function up to a function of time
only

BT(pT, qT, tT) = B(pT, qT, tT) + b(tT) (17)

and the invariance of the Hamiltonian function up to ḃ

HT(pT, qT, tT) = H(pT, qT, tT) +
db

dtT
(tT) (18)

that both assure the invariance of the boundary conditions (6). When, on
the one hand, we put (18) into (13) and, on the other hand, when we put (17)

9Reference Havas (1973) provides illuminating examples of the differences between this
three types of invariances.

10It is also easy to construct an example for which not only the critical points are
preserved but also their stability as well as the higher orders of the functional derivatives
of S evaluated on the classical solutions.

11The original Feynman’s formulation has a Lagrangian flavour and introduces integrals
over paths in the configuration space Feynman and Hibbs (1965). An extension to integrals
over phase-space paths has been done in (Feynman, 1951, Appendix B) (see also Tobocman
(1956); Davies (1963); Garrod (1966)).
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into (14), the invariance of the model under the canonical transformation T
is equivalent to

H(pT, qT, tT)
∂tT

∂t
(pT, q, t) = H(p, q, t) +

∂F

∂t
(pT, q, t) (19)

for the Hamiltonian and

B(pT, qT, tT) = B(p, q, t)− pTqT + F (pT, q, t) (20)

for the boundary function, once we have absorbed the irrelevant term b in
an alternative definition of F .

3.3 Conservation of the generators

From the Hamilton’s equations, the classical evolution of any function O(p, q, t)
is given by

dO

dt
= {H,O}+

∂O

∂t
. (21)

where the Poisson bracket between two phase-space functions is defined by

{O1, O2}
def
= ∂pO1∂qO2 − ∂pO2∂qO1 (22)

(recall that the summation/integral on the degrees of freedom is left implicit).
Consider a continuous set of canonical transformations parametrised by

a set of essential real parameters ǫ = (ǫa)a where ǫ = 0 corresponds to the
identity. The generators G = (Ga)a of this transformation are, by definition,
given by the terms of first order in ǫ in the Taylor expansion of the generating
function F (pT, q, t; ǫ)

F (pT, q, t; ǫ) = pTq + ǫG(pT, q, t) + O(ǫ2) (23)

(in addition to the implicit summation/integral on the degrees of freedom α,
there is also an implicit sum on the labels a of the essential parameters of the
Lie group, those being continuous for a gauge symmetry). We shall consider
the general canonical transformations where tT is a function of (pT, q, t) whose
infinitesimal form is

tT(pT, q, t) = t+ ǫτ(pT, q, t) + O(ǫ2). (24)

Now with HT(p, q, t) = H(p, q, t), using the form (23) in equations (12) one
obtains the canonical transformation explicitly to first order

pT = p− ǫ∂qG(p, q, t) + ǫH(p, q, t)
∂τ

∂q
p,q,t

+O(ǫ2) ; (25a)

qT = q + ǫ∂pG(p, q, t)− ǫH(p, q, t)
∂τ

∂p
p,q,t

+O(ǫ2) . (25b)
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Reporting (23) and (25) in (19), the identification of the first order terms
in ǫ leads, with help of (21), to

d

dt

(

G(p, q, t)− τ(p, q, t)H(p, q, t)
)

= 0. (26)

Similarly, from (20), we get

τ
dB

dt
+ {G− τH,B}+ p(∂pG−H∂pτ)−G = 0 (27)

where the arguments of all the functions that appear are (p, q, t).
As a special case, first consider the invariance with respect to time trans-

lations pT = p, qT = q, tT = t + ǫ for any real ǫ, then with F (pT, q, t) =
pTq corresponding to the identity, the relations (19) and (20) read respec-
tively H(p, q, t+ ǫ) = H(p, q, t) and B(p, q, t+ ǫ) = B(p, q, t) that is ∂tH = 0
and ∂tB = 0. The identity (21) considered for O = H and O = B leads
respectively to

dH

dt
= 0 (28)

and
dB

dt
= {H,B} (29)

which of course are also obtained from (26) and (27) with G ≡ 0 and τ ≡ 1.
Now consider a continuous set of canonical transformations such that tT = t,
then from (26) with τ ≡ 0 we get

dG

dt
= 0. (30)

Not only the conservation law follows straightforwardly from (19) but the
constant of motion are precisely the generators of the continuous canoni-
cal transformations Anderson (1972). As remarked in (Sarlet and Cantrijn,
1981, § 7 (iv)), Noether’s result, recalled in footnote 2, concerning the invari-
ance of G under the canonical transformations is automatic from a Hamil-
tonian point of view since it follows immediately from {G,G} = 0.

Similarly, from (27) with τ ≡ 0 we get a relation

{G,B} = G− p ∂pG (31)

that must be fulfilled by B to have the invariance of the boundary conditions.
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4 Noether’s original formulation

4.1 General variational principle

The above result is actually completely embedded in Noether’s original for-
mulation except the discussion on the boundary conditions. Indeed, being
more Lagrangian in flavour, Noether (1918/2011) works systematically with
a variational principle where the variations of all the dynamical variables u
vanish (as well as the derivatives of δu if necessary, see below). To illustrate
this let us first follow Noether’s steps and paraphrase her analysis. The
variational principle applies to any functional whose general form is

S[u(·)]
def
=

∫

D
f
(
x, u(x), ∂xu|x, ∂

2
xxu|x, ∂

3
xxxu|x, . . .

)
ddx (32)

where the functions u(x) =
(
u1(x), . . . , uN (x)

)
=
(
un(x)

)

n
(the depen-

dent variables in Noether’s terminology) are defined on a d-dimensional
domain D in R

d where some coordinates (the independent variables) x =
(x0, . . . , xd−1) = (xµ)µ are used. Physically, one may think the u’s to be
various fields defined on some domain D of space-time and x to be a partic-
ular choice of space-time coordinates. The function f depends on x, on u(x)
and on their higher derivatives in x (the dots in its argument refer to deriva-
tives of u of order four or more).

An infinitesimal variation u(x) + δu(x) implies the first-order variation

δS
def
= S[u(·) + δu(·)] − S[u(·)] =

∫

D
δf ddx (33)

where δf , with the help of integration by parts, takes the form

δf =
N∑

n=1

Enδun +
d−1∑

µ=0

dµδX
µ = E · δu+ dx · δX (34)

where E stands for the N -dimensional vector whose components are

En =
∂f

∂un
− dµ

(
∂f

∂(∂µun)

)

+ d2µν

(
∂f

∂(∂2µνun)

)

− d3µνρ

(
∂f

∂(∂3µνρun)

)

+ · · ·

(35)
(from now on we will work with an implicit summation over the repeated
space-time indices or field indices and the same notation “ · ” will be in-
differently used for a — possibly Minkowskian — scalar product between
d-dimensional space-time vectors or between N -dimensional fields) and δX

13



a d-dimensional infinitesimal vector in first order in δu and its derivatives
which appears through a divergence:

δXµ =

[
∂f

∂(∂µun)
− dν

(
∂f

∂(∂2µνun)

)

+ d2νρ

(
∂f

∂(∂3µνρun)

)

− · · ·

]

δun

+

[
∂f

∂(∂2µνun)
− dρ

(
∂f

∂(∂3µνρun)

)

+ · · ·

]

∂ν(δun)

+

[
∂f

∂(∂3µνρun)
− · · ·

]

∂2νρ(δun)

+ · · · .

(36)

The notation dµ distinguishes the total derivative from the partial deriva-
tive ∂µ:

dµ = ∂µ + ∂µun
∂

∂un
+ ∂2µνun

∂

∂(∂νun)
+ · · · . (37)

The stationarity conditions of S when computed for the functions ucl imply
the Euler-Lagrange equations

E|ucl
= 0 . (38)

Then, remains

δS[ucl(·)] =

∫

D
dx · δX|ucl

ddx =

∫

∂D
δX|ucl

· dd−1σ (39)

(Stokes’ theorem leads to the second integral which represents the outgoing
flux of the vector δX through the boundary ∂D whose surface element is de-
noted by dσ) and S will be indeed stationary if we restrict the variations δu
on the boundaries such that the last integral vanishes12 (and Noether as-
sumes that all the variations δun, ∂ν(δun), ∂2ν,ρ(δun) . . . appearing in the
right-hand side of (36) vanish on ∂D).

Adding the divergence of a d-vector B
(
x, u(x), ∂xu|x, ∂

2
xxu|x, ∂

3
xxxu|x, . . .

)

to the integrand,
fB = f0 + dµB

µ (40)

12Working with δX|ucl
orthogonal to dd−1σ is sufficient and generalises the transversality

condition discussed in (Courant and Hilbert, 1953, §§ IV.5.2 and IV.12.9). A radical way of
getting rid of the discussion on boundary conditions is also to work with a model where D

has no boundaries; however this is more a matter of convenience for theoreticians than a
relevant feature based on physical grounds.
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does not affect the expressions of the Euler-Lagrange vector E

EB = E0 (41)

but adds to S a boundary term

SB[u(·)] = S0[u(·)] +

∫

∂D
B · dd−1σ (42)

from which we have
δXB = δX0 + δB (43)

where the infinitesimal variation δB comes exclusively from those of the
fields u and their derivatives; more explicitly,

δXµ
B = δXµ

0 +
∂Bµ

∂un
δun +

∂Bµ

∂(∂νun)
∂νδun +

∂Bµ

∂(∂2νρun)
∂2νρδun + · · · (44)

where the “ · · · ” stand for derivatives of B with respect to higher derivatives
of u.

4.2 Invariance with respect to infinitesimal transformations

and Noether currents

The most general transformation T comes with both a change of coordi-
nates x 7→ xT and a change of functions u 7→ uT. By definition the trans-
formed action is given by

ST[uT(·)] =

∫

DT

f T
(
xT, uT(xT), ∂xTuT

|xT , ∂
2
xTxTu

T

|xT , . . .
)
ddxT (45)

with ST[uT(·)] = S[u(·)] for any u and for any domain D. After the change
of variables xT 7→ x that pulls back DT to D, we get

f T
(
xT, uT(xT), ∂xTuT

|xT , ∂
2
xTxTu

T

|xT , . . .
)
∣
∣
∣
∣
det

(
∂xT

∂x

)∣
∣
∣
∣

= f
(
x, u(x), ∂xu|x, ∂

2
xxu|x, . . .

)
(46)

which provides a definition of f T. We have an invariance when the same
computation rules are used to evaluate S and ST that is f T = f . Then we
have

f
(
xT, uT(xT), ∂xTuT

|xT , ∂
2
xTxTu

T

|xT , . . .
)
∣
∣
∣
∣
det

(
∂xT

∂x

)∣
∣
∣
∣

− f
(
x, u(x), ∂xu|x, ∂

2
xxu|x, . . .

)
= 0 . (47)
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The Noether conservation theorem comes straightforwardly from the
computation of the left-hand side of (47) when the transformation T is in-
finitesimal13:

xT = x+ δx ; (48a)

uT(x) = u(x) + δu(x) . (48b)

To first order in δx and δu, (47) reads

f ∂x·δx+(∂xf)·δx+
∂f

∂un
Dun+

∂f

∂(∂µun)
D(∂µun)+

∂f

∂(∂2µνun)
D(∂2µνun)+· · ·

· · · +O(δ2) = 0 , (49)

where O(δ2) denotes terms of order at least equal to two. The first term of
the left-hand side comes from the Jacobian

∣
∣
∣
∣
det

(
∂xT

∂x

)∣
∣
∣
∣
= 1 + ∂x · δx+O(δ2) . (50)

The infinitesimal quantity δu denotes the variation of the field u while staying
at the same point x and Du stands for the infinitesimal variation “following
the transformation”14

Du(x)
def
= uT(xT)−u(x) = δu(xT)+u(xT)−u(x) = δu(x)+(∂xu)·δx+O(δ2) .

(51)
The chain rule for a composite function reads

∂xTuT(xT) = ∂xTx ∂x
(
uT(xT)

)
= ∂xTx ∂x

(
u(x) +Du(x)

)
(52)

where the d× d Jacobian matrix of the transformation is

∂xx
T = (∂xTx)−1 = 1 + ∂xδx+O(δ2) . (53)

13In Noether’s spirit the transformation of all the dependent and independent variables
can be as general as possible and therefore she first considers the case where δx is a
function of both x and u; her two theorems indeed apply in this very general situation.
Physically this corresponds to a transformation where the variations of the space-time
coordinates δx depend not only on x, as this is the case in General Relativity where all
the diffeomorphisms of space-time are considered, but also on the fields u. I do not know
any relevant model in physics where this possibility has been exploited. In the following
we will restrict δx to depend on x only, this simplification is eventually done by Noether
from § 5 in Noether (1918/2011).

14Borrowing the usual notation of fluid dynamics, this variation corre-
sponds to the derivative following the motion often known as the convec-
tive/particle/material/Lagrangian derivative.
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By putting (51) and (53) in (52), we obtain15

D(∂xu)
def
= ∂xTuT

|xT − ∂xu|x = ∂x(δu) + ∂x(∂xu) · δx+O(δ2) . (54)

In the same way,

D(∂2xxu)
def
= ∂2xTxTu

T

|xT − ∂2xxu|x = ∂2xx(δu) + ∂x(∂
2
xxu) · δx+O(δ2) (55)

and so on for the derivatives of u of higher orders. By reporting D(· · · )
in (49) we get

f ∂x · δx+ (∂xf) · δx+
∂f

∂un
(∂xun) · δx

+
∂f

∂(∂µun)
∂x(∂µun) · δx+

∂f

∂(∂2µνun)
∂x(∂

2
µνun) · δx

+
∂f

∂un
δun +

∂f

∂(∂µun)
∂µδun +

∂f

∂(∂2µνun)
∂2µνδun + · · ·+O(δ2) = 0 .

(56)

The first two lines provide the divergence dx·
(
f
(
x, u(x), ∂xu|x, ∂

2
xxu|x, . . .

)
δx
)

and at the last line we recognise the variation δf given by (34). Then

E · δu+ dx · (δX + fδx) = 0 . (57)

With the help of (38), we deduce Noether’s conservation law for the infinites-
imal current: If the functional (32) is invariant under a continuous family of
transformations having, in the neighbourhood of the identity the form (48),
then for any solution ucl such that S is stationary, the (infinitesimal) Noether
current

δJ
def
= δX + fδx (58)

with δX given by (36) is conserved; that is

dx · δJ|ucl
= dµδJ

µ

|ucl
= 0 . (59)

15If one prefers a notation where the indices are made explicit, the equations (54)
and (55) can be respectively re-written as D(∂νun) = ∂ν(δun) + (∂2

νµun)δx
µ +O(δ2) and

D(∂2
µνun) = ∂2

µν(δun) + (∂3
µνρun)δx

ρ +O(δ2) .
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More explicitly we have

δJµ = fδxµ +
∂f

∂(∂µun)
δun − dν

(
∂f

∂(∂2µνun)

)

δun +
∂f

∂(∂2µνun)
∂ν(δun) + · · ·

(60a)

=

[

fδµν −
∂f

∂(∂µun)
∂νun + dρ

(
∂f

∂(∂2µρun)

)

∂νun −
∂f

∂(∂2µρun)
∂2νρun + · · ·

]

δxν

+
∂f

∂(∂µun)
Dun − dν

(
∂f

∂(∂2µνun)

)

Dun +
∂f

∂(∂2µνun)
D(∂νun) + · · · (60b)

where the Kronecker symbol δ is used and “ · · · ” stands for terms involving
the derivatives of f with respect to third order or higher derivatives of u.
Since the invariance of the variational problem depends on the choice of
the boundary function, so will the Noether current as we can see from (40)
and (43):

δJB = δJ0 + (dx ·B)δx+ δB . (61)

In fact, the Noether infinitesimal currents δJ are defined up to a divergence-
free current since adding such a term does not affect (59). For instance

δJ ′µ = δJµ + dν

[(
∂Bµ

∂(∂νun)
−

∂Bν

∂(∂µun)

)

δun

]

(62)

would also be an acceptable Noether current associated with the symmetry
under the scope.

4.3 Aside remarks about the two Noether theorems

The result established in the previous section is neither the first Noether
theorem nor the second one but encapsulates both of them; the conserva-
tion of the infinitesimal current δJ occurs for any global or local symmetry.
Noether’s first theorem follows from the computation of δX for a global sym-
metry i.e. when the number of the essential parameters ǫ = (ǫa)a of the Lie
group of transformations is finite. In that case

δJ = J ǫ+O(ǫ2) (63)

or in terms of coordinates

δJµ = J µ
a ǫ

a +O(ǫ2) (64)
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and the first Noether theorem states the conservation of the non infinitesi-
mal J

dx · Ja = ∂µJ µ
a = 0 (65)

obtained immediately from the infinitesimal conservation law (59) since ǫ is
arbitrary and x-independent.

Noether’s second theorem (see footnote 2) follows from the computation
of δX for a local symmetry i.e. when the essential parameters are func-
tions ǫ(x) and, in that case, the proportionality relation (63) does not hold
anymore ; the right-hand side now includes the derivatives of ǫ:

δJµ = J µǫ+ Fµν∂νǫ+ K µνρ∂2νρǫ+ · · ·+O(ǫ2) . (66)

By expanding the variation of the fields according to

δu =
∂u

∂ǫ
ǫ+

∂u

∂(∂µǫ)
∂µǫ+

∂2u

∂(∂2µνǫ)
∂2µνǫ+ · · ·+O(ǫ2) , (67)

then (57) reads
[

E ·
∂u

∂ǫ
+ dµJ

µ

]

ǫ+

[

E ·
∂u

∂(∂µǫ)
+ J µ + dνF

νµ

]

∂µǫ

+

[

E ·
∂2u

∂(∂2µνǫ)
+

1

2
(F νµ + Fµν) + dρK

ρνµ

]

∂2µνǫ+ · · · = 0 . (68)

Since the functions ǫ are arbitrary, all the brackets vanish separately. When
evaluated on the stationary solutions ucl, we get

dµJ
µ = 0 ; dµF

µν = −J ν , dρK
ρνµ = −

1

2
(F νµ + Fµν) , etc.

(69)
For a constant ǫ we recover the first theorem from the first equality. The
second theorem stipulates that to each a there is one identity connecting
the E’s:

E ·
∂u

∂ǫ
− dµ

(

E ·
∂u

∂(∂µǫ)

)

+ dµdν

(

E ·
∂2u

∂(∂2µνǫ)

)

+ · · · = 0 . (70)

Those can be obtained from the vanishing brackets of (68) or directly from
the following re-writing of (57):

[

E ·
∂u

∂ǫ
−dµ

(

E ·
∂u

∂(∂µǫ)

)

+ dµdν

(

E ·
∂2u

∂(∂2µνǫ)

)

+ · · ·

]

ǫ

+dµ

[

δJµ + E ·
∂u

∂(∂µǫ)
ǫ− dν

(

E ·
∂2u

∂(∂2µνǫ)

)

ǫ+E ·
∂2u

∂(∂2µνǫ)
∂νǫ+ · · ·

]

= 0 .

(71)
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By an integration on any arbitrary volume and choosing ǫ and its derivatives
vanishing on its boundary, on can get rid of the integral of the second term
of the left-hand-side. Since ǫ can be chosen otherwise arbitrarily within
this volume, the first bracket vanishes which is exactly the Noether iden-
tity (70)16. If one had to speak of just one theorem connecting symmetries
and conservation laws, one could choose the cancellation of all the brackets
of (68) from which Noether’s theorems I and II are particular cases.

Eventually, let us mention that both Noether’s theorems include also
a reciprocal statement: the invariance in the neighbourhood of ǫ = 0 im-
plies an invariance for any finite ǫ and this comes from the properties of the
underlying Lie structure of the transformation group and its internal com-
position law that allow to naturally map any neighbourhood of ǫ = 0 to a
neighbourhood of any other element of the group.

5 Applications

5.1 Finite number of degrees of freedom

From the general formalism in § 4 it is straightforward to show that the
conservation law we obtained within the Hamiltonian framework in § 3.2 is
encapsulated in Noether’s original approach. For L degrees of freedom q =
(qα)α∈{1,...,L} we have u = (p, q, t) with N = 2L + 1, S is of course SB given
by equation (5), D is [si, sf ], x is identified with s (d = 1) and only the
first derivatives of q, t, and possibly p through dB/ds are involved. We
are considering transformations where s is unchanged: δx = δs = 0, and
then, D = δ. Therefore, with fB(p, q, t,dp/ds,dq/ds,dt/ds) = p dq/ds −
H(p, q, t) dt/ds+ dB/ds,

δJB = δXB =
∂fB

∂(dp/ds)
δp +

∂fB
∂(dq/ds)

δq +
∂fB

∂(dt/ds)
δt ; (73a)

= ∂pB δp + (p+ ∂qB) δq − (H − ∂tB) δt ; (73b)

= pδq −Hδt+ δB , (73c)

16As a consequence, the cancellation of the first bracket in (68) allows to write the first
term of (70) as a total derivative and this leads to the conservation of a current

dµ

[

J µ + E ·
∂u

∂(∂µǫ)
− dν

(

E ·
∂2u

∂(∂2
µνǫ)

)

+ · · ·

]

= 0 (72)

which is qualified as a “strong” (Barbashov and Nesterenko, 1983, § 6 and its references)
because this constraint holds even if the Euler-Lagrange equations are not satisfied (a
primary constraint in Dirac’s terminology Dirac (1964/2001)).
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which is a particular case of (61). Precisely because of the invariance, the
variations coming from the infinitesimal transformation under the scope
naturally satisfy the boundary conditions (6) used to formulate the vari-
ational principle that now can be interpreted as the conservation of δJB be-
tween si and sf . The invariance (20) of B reads δB = −pTqT +F (pT, q, t) =
−pT(qT − q) + ǫG(pT, q, t) + O(ǫ2) = −pδq + ǫG(p, q, t) + O(ǫ2) and

δJB = ǫG(p, q, t) −Hδt . (74)

For an arbitrary pure time translation δt is s-independent and ǫ = 0, then (59),
which reads dδJB/ds = 0, just expresses the constancy of H. For a canon-
ical transformation that does not affect the time, the latter equation shows
that its generator G is an integral of motion. Thus, with a presentation
much closer to Noether’s original spirit we actually recover the results of
section § 3.2. What is remarkable is that, in the latter case, the Noether con-
stants are independent of H and B whereas, a priori, the general expression
of the current (60a) depends on f (see also (61)): only the canonical struc-
ture, intimately bound to the structure of the action (1), leaves its imprint
whereas the explicit forms of the Hamiltonian and the boundary function
have no influence on the expression of the conserved currents (as soon as the
invariance is maintained of course). In other words, it is worth noticed that
the Noether currents keep the same expression for all the (infinite class of)
actions that are invariant under the associated transformations.

5.2 Examples in field theory

The discussion of the previous paragraph still holds at the limit L → ∞
but it is worth to adapt it to the case of field models. A field involves
an infinite number of degrees of freedom that we shall take continuous and
preferably labelled by the D-dimensional space coordinates α = x rather
than the dual wave-vectors k. The additional discrete “internal” quantum
numbers like those that distinguish the spin components are left implicit.
Now the Hamiltonian appears to be a functional of the dynamical variables,
namely the fields {π, ϕ} and their spatial derivatives—restricted to order one
for the sake of simplicity whereas we have seen from the general approach
that this assumption is not mandatory—of the form

H[π(t, ·), ϕ(t, ·), t] =

∫

V
H
(
π(t,x), ϕ(t,x), ∂xπ(t,x), ∂xϕ(t,x), t,x

)
dD

x

(75)
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where V is a D-dimensional spatial domain and H , the Hamiltonian density
that may a priori depend explicitly on x = (t,x). The action

SB[π(·), ϕ(·)] =

∫

V×[ti,tf ]
(π∂tϕ− H + dtB) dD

xdt (76)

involves a boundary density B
(
π(t,x), ϕ(t,x), ∂xπ(t,x), ∂xϕ(t,x), t,x

)
from

which the boundary function(nal) is given by
∫

V BdD
x keeping the same

locality principle as we used for H (we assume that neither H nor B involve
non-local terms like ϕ(x)V (x′−x)ϕ(x)). Whenever working in a relativistic
framework, B can be seen as the 0th-component of a (D + 1)-vector B =
(B0, B1, . . . , BD) = (B, 0, . . . , 0) such that dtB = dµB

µ and the space-
time integral defining SB can be seen as an integral over the d = (D +
1)-dimensional domain D between two appropriate Cauchy surfaces. The
action (76) takes the general expression form (32) with now N = 2 fields u =
(u1, u2) =

(
π, ϕ

)
and f given by

fB
(
π, ϕ, ∂xπ, ∂xϕ, x

)
= π∂0ϕ− H

(
π, ϕ, ∂xπ, ∂xϕ, x

)
+ dµB

µ . (77)

By cancelling the components E1 and E2 computed from (35) we obtain the
evolution equations of the classical fields

∂tϕ =
∂H

∂π
−

d

dxi

(
∂H

∂(∂iπ)

)

; (78a)

∂tπ = −
∂H

∂ϕ
+

d

dxi

(
∂H

∂(∂iϕ)

)

. (78b)

The Noether infinitesimal current is given by (61) with

δJµ
B =(π∂tϕ− H )δxµ +

(

πδµ0 −
∂H

∂(∂µϕ)

)

δϕ− δπ
∂H

∂(∂µπ)

+ (dρB
ρ)δxµ +

∂Bµ

∂ϕ
δϕ+ δπ

∂Bµ

∂π
+

∂Bµ

∂(∂ρϕ)
∂ρδϕ+ ∂ρδπ

∂Bµ

∂(∂ρπ)
.

(79)

As an illustration, let us specify the latter general expression in the spe-
cial case of the space-time translations. We have ϕT(x) = ϕ(x − δx) and
πT(x) = π(x− δx) so the infinitesimal variations of the fields are

δπ = −∂π · δx ; δϕ = −∂ϕ · δx (80)

and then, since we take δx to be independent of x, we get (cf equation (64)
with a being now the space-time label and ǫ = δx)

δJµ
B = T µ

B|νδx
ν (81)
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with the energy-momentum tensor given up to a divergence-free current17

by

T µ

B|ν = T µ

0|ν+(dρB
ρ)δµν −

∂Bµ

∂ϕ
∂νϕ− ∂νπ

∂Bµ

∂π
−

∂Bµ

∂(∂ρϕ)
∂2ρνϕ− ∂2ρνπ

∂Bµ

∂(∂ρπ)
;

(82)

= T µ
0|ν+(dρB

ρ)δµν − dνB
µ + ∂νB

µ , (83)

and

T µ
0|ν = (π∂tϕ− H ) δµν + ∂νπ

∂H

∂(∂µπ)
+
( ∂H

∂(∂µϕ)
− πδµ0

)

∂νϕ . (84)

The invariance of the boundary function under translations requires ∂νBµ =
0 and the corresponding (D + 1)-momentum contained in the volume V is
therefore given by

PB|ν =

∫

V
T 0

B|ν dD
x = Pν +∆Pν (85)

where

Pν =

∫

V

[

(π∂tϕ− H ) δ0ν − π∂νϕ
]

dD
x . (86)

On can check that P 0 = −P0 is given by (75). The boundary function brings
some surface corrections

∆Pν =

∫

V

[

(dρB
ρ)δ0ν − dνB

0
]

dD
x (87)

that is

∆P0 =

∫

V
diB

i dD
x =

∫

∂V
Bi dD−1σi (88)

and

∆Pi =

∫

V
diB

0dD
x =

∫

∂V
B0 dD−1σi (89)

where dD−1σi are the D components of the surface element defined on ∂V.
In any reasonable model these corrections are expected to vanish when ∂V
is extended to infinity.

17Adding a divergence-free current may be exploited to work with a symmetric ten-
sor known as the Belinfante-Rosenfeld tensor since this was first proposed by Belinfante
(1939); Rosenfeld (1940).
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5.3 Comparison with the Lagrangian approach

For the sake of completeness let us comment on the connection with the
Lagrangian framework of a system with L degrees of freedom. Consider
now (32) with f being L(q, q̇, t)+dB/dt where B is a function of q, q̇ and t,
the integration variable x is just the time t (d = 1) and the number of
dynamical variables u = q is divided by two (N = L) by comparison with
the Hamiltonian framework. The derivative dB/dt depends on q̈ and this
must be taken into account when computing directly δX from (36)

δX =
∂f

∂q̇
δq −

d

dt

(
∂f

∂q̈

)

δq +
∂f

∂q̈

dδq

dt
; (90a)

=

[

∂L

∂q̇
+
∂B

∂q
+
∂2B

∂q̇∂q̇
q̈ +

∂2B

∂q̇∂q
q̇ +

∂2B

∂q̇∂t
−

d

dt

(
∂B

∂q̇

)

︸ ︷︷ ︸

= 0

]

δq +
∂B

∂q̇

dδq

dt
.

(90b)

Hence, since δx = δt, we have rederived a particular case of (61),

δJ =
∂L

∂q̇
δq + Lδt+

∂B

∂q
δq +

∂B

∂q̇

dδq

dt
+

dB

dt
δt . (91)

To reconcile (91) and (73c), one must be aware that δq has a different mean-
ing in the two equations. Indeed, in the general expression (36) δu stands
for a variation of u computed at the same x (see (48b)); within the Hamilto-
nian formalism, δ(ham)q thus denotes a variation of q at the same parameter s
whereas within the Lagrangian formalism, δ(lag)q denotes a variation of q at
the same time t. Precisely when the transformation modifies t, these two
variations differs. To connect them one has to introduce the parametrisa-
tion s in the Lagrangian formalism

δ(lag)q
(
t(s)

)
= qT

(
t(s)

)
− q
(
t(s)

)
(92)

and then
δ(ham)q

(
t(s)

)
= qT

(
tT(s)

)
− q
(
t(s)

)
= D(lag)q , (93)

with tT(s) = t(s) + δt(s) 18. Then,

δ(lag)q = δ(ham)q − q̇δt . (94)

18Because δ(ham)t = tT(s)−t(s) = tT−t = δ(lag)t, we will not use two different notations
for the variations of t.
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Reporting this last expression in (91), we get

δJ =
∂L

∂q̇
δ(ham)q+

(

L−
∂L

∂q̇
q̇

)

δt+
∂B

∂t
δt+

∂B

∂q
δ(ham)q+

∂B

∂q̇

(
dδ(ham)q

dt
− q̇

dδt

dt

)

.

(95)
Turning back to the parametrisation by s, the last parenthesis is

δ(ham)

(
dq

dt

)

= δ(ham)

(
1

dt/ds

dq

ds

)

; (96)

=
1

dt/ds
δ(ham)

(
dq

ds

)

︸ ︷︷ ︸

=
dδ(ham)q

ds

−
1

(dt/ds)2
dq

ds
δ(ham)

(
dt

ds

)

︸ ︷︷ ︸

=
dδt

ds

. (97)

therefore one recovers

δJ =
∂L

∂q̇
δ(ham)q +

(

L−
∂L

∂q̇
q̇

)

δt+ δ(ham)B (98)

which coincides with (73c) using

L

(

q,
dq

dt
, t

)

def
= p

dq

dt
−H(p, q, t) . (99)

We could also have obtained (73c) by working with the Lagrangian functional
where all the functions are systematically computed with s

SB =

∫ sf

si

[

L

(

q(s),
1

dt/ds

dq

ds
, t(s)

)
dt

ds
+

dB

ds

]

ds , (100)

or, conversely, by eliminating all the references to s in the Hamiltonian func-
tional

SB =

∫ tf

ti

[

p
dq

dt
−H +

dB

dt

]

dt . (101)

For a Lagrangian field model we have u = ϕ and (60a) reads

δJµ = L δxµ +
∂L

∂(∂µϕ)
δϕ . (102)

Using the fact that H does not depend on ∂tπ nor ∂tϕ and with the help of

L = π∂tϕ− H (103)
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and

π =
∂L

∂(∂tϕ)
, (104)

the two first terms of the right-hand-side of (79) are identical to those ap-
pearing in (102):

δJµ
0 = (π∂tϕ− H )δxµ +

(

πδµ0 −
∂H

∂(∂µϕ)

)

δϕ− δπ
∂H

∂(∂µπ)
. (105)

The two currents coincide when H does not depend on ∂xπ which is a
standard case.

6 Quantum framework

6.1 Complex canonical formalism

In quantum theory, any state |ψ〉 can be represented by the list z = (zα)α of
its complex components zα

def

= 〈φα|ψ〉 on a given orthonormal basis
(
|φα〉

)

α
labelled by the quantum numbers α. For simplicity we will work with discrete
quantum numbers but this is not a decisive hypothesis here and what follows
can be adapted to relativistic as well as non-relativistic quantum field theory.
The quantum evolution is governed by a self-adjoint Hamiltonian19 Ĥ(t)
according to

i~
d

dt
|ψ〉 = Ĥ(t) |ψ〉 (106)

or equivalently
i~żα(t) =

∑

α′

Hα,α′(t) zα′(t) (107)

with the matrix element

Hα,α′(t)
def
= 〈φα| Ĥ(t) |φα′〉 . (108)

Provided we accept to extend the classical Hamiltonian formalism to complex
dynamical variables, one can see that the quantum dynamics described above
can be derived from the “classical” quadratic Hamiltonian

H(w, z, t)
def
=

1

i~

∑

α,α′

wαHα,α′(t)zα′ (109)

19For a non-isolated system, even in the Schrödinger picture, the Hamiltonian may
depend on time.
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where each couple (wα, zα) is now considered as a pair of complex canonical
variables (pα, qα)20. The equation (107) corresponds to Hamilton’s equations
for q whereas Hamilton’s equations for p are

i~ẇα(t) = −
∑

α′

wα′(t)Hα′,α(t) (110)

which can also be derived by complex conjugation of (107) since the her-
miticity of Ĥ reads H∗

α,α′ = Hα′,α.
The quantum evolution between ti and tf can therefore be rephrased with

a variational principle based on a functional having the classical form (5) with
a boundary function B(w, z, t). Since in this context we will not consider
transformations of time that depend on the dynamical variables, we can
safely use t as the integration variable and work with

SB [w(·), z(·)]
def
=

∫ tf

ti

{
∑

α

wα(t) żα(t)− H(w, z, t) +
dB

dt

}

dt (111)

where the complex functions t 7→ zα(t) and t 7→ wα(t) are considered to
be independent one from the other. Together they constitute u = (w, z)
with x = t (d = 1). Thus, all the classical analysis of § 2 and § 5.1 still holds.
The variations of z and w are constrained by the boundary conditions

[∑

α

wα δzα + δB
]tf

ti
=
[

〈χ|
(
δ |ψ〉

)
+ δB

]tf

ti
= 0 (112)

where 〈χ| is such that wα = 〈χ|φα〉. All the variations δ |ψ〉 of the dynamical
variables given by |ψ〉 cannot generically vanish at ti and tf since there
is in general no solution of the Schrödinger equation (106) for an a priori
given arbitrary choice of one initial and one final state. Due also to the
linear dependence of the Hamiltonian H with respect to z and w, we cannot
express p = w as a function of (q, q̇) = (z, ż) and therefore we cannot switch
to a Lagrangian formulation unless we change completely of strategy and
collect the variables w with the variables z into the same configuration space.

According to Wigner’s theorem (see for instance Simon et al. (2008);
Mouchet (2013) and their references), a (possibly time-dependent) continu-
ous transformation is represented by a unitary operator Û implemented as
follows

T〈χ|
def
= 〈χ| Û∗ ; |ψ〉T

def
= Û |ψ〉 (113)

20And it is worth noting that the complex Poisson bracket between two quadratic func-
tions defined like (109) from two operators keeps the same form and is expressed with the
matrix elements of the commutator of the two operators.
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or, with the canonical complex notation,
∑

α′

wT
α′ 〈φα′ | Û |φα〉 = wα ; zT

α =
∑

α′

〈φα| Û |φα′〉 zα′ . (114)

By straightforward identification with the complex version of (12) with van-
ishing derivatives of tT, we have

wα =
∂F

∂zα
; (115a)

zT
α =

∂F

∂wT
α

(115b)

with the generating function

F(wT, z) =
∑

α,α′

wT
α 〈φα| Û |φα′〉 zα′ (116)

or, equivalently,
F = T〈χ| Û |ψ〉 . (117)

For a one-parameter transformation, its generator is a self-adjoint opera-
tor Ĝ, possibly time-dependent, defined by

Û(ǫ) = 1 +
iǫ

~
Ĝ+O(ǫ2). (118)

Then, the Taylor expansion of the generating function F(w, z, t; ǫ) is given
by

F(wT, z, t; ǫ) =
∑

α

wT
αzα +

iǫ

~

∑

α,α′

wT
α 〈φα| Ĝ |φα′〉 zα′ +O(ǫ2) (119)

from which, by identification with the complexification of (23), we read the
“classical” generator

G =
i

~

∑

α,α′

wα 〈φα| Ĝ |φα′〉 zα′ =
i

~
〈χ| Ĝ |ψ〉 (120)

of the transformation.
Now for an invariance we respect the time translations, (28) reads

0 =
dH

dt
=

d

dt
〈χ| Ĥ |ψ〉 = 〈χ|

dĤ

dt
|ψ〉 (121)
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for any 〈χ| and |ψ〉, that is we recover

dĤ

dt
= 0. (122)

For an invariance with respect to a time-independent transformation, (30)
reads

0 =
dG

dt
=

i

~

d

dt
〈χ| Ĝ |ψ〉 =

i

~
〈χ|

(

dĜ

dt
+

i

~
[Ĥ, Ĝ]

)

|ψ〉 (123)

where [ , ] denotes the commutator between two operators. Then we get the
identity

dĜ

dt
+

i

~
[Ĥ, Ĝ] = 0 . (124)

In the Schrödinger picture the time-independence of the transformation is
equivalent to dĜ/dt = 0 and therefore the previous identity reduces to

[Ĥ, Ĝ] = 0 (125)

which is of course the well-known consequence of the invariance of the quan-
tum dynamics under the transformations generated by Ĝ.

6.2 Following Noether’s approach

It is instructive to check directly that the results of the previous section can
be obtained with more Noether flavour by the method of § 5.1. In terms of
bras and kets we rewrite (111) as

SB [χ,ψ]
def
=

∫ tf

ti

{

〈χ|
d

dt
|ψ〉 +

i

~
〈χ| Ĥ |ψ〉 +

dB

dt

}

dt (126)

The general expression (60a) together with (61) provides

δJB = 〈χ|

(
d

dt
+

i

~
Ĥ

)

|ψ〉 δt+ 〈χ|
(
δ |ψ〉

)
+

dB

dt
δt+ δB . (127)

Moreover, in order to preserve the structure of SB , we naturally choose the
boundary function with the same form as the Hamiltonian (109), that is

B
def
= 〈χ| B̂ |ψ〉 (128)

for some operator B̂. Then, the infinitesimal current reads

δJB = δJ0 + δt
d

dt

(

〈χ| B̂ |ψ〉
)

+ 〈χ| B̂
(
δ |ψ〉

)
+
(
δ 〈χ|

)
B̂ |ψ〉 . (129)
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with

δJ0 = δt 〈χ|

(
d

dt
+

i

~
Ĥ

)

|ψ〉+ 〈χ|
(
δ |ψ〉

)
. (130)

The action of (118) on 〈χ| and on |ψ〉 leads to

δ 〈χ| = −
iǫ

~
〈χ| Ĝ ; δ |ψ〉 =

iǫ

~
Ĝ |ψ〉 . (131)

Thus,

δJB = δt 〈χ|

(
d

dt
+

i

~
Ĥ

)

|ψ〉+
iǫ

~
〈χ|
(

Ĝ+ [B̂, Ĝ]
)

|ψ〉 + δt
d

dt

(

〈χ| B̂ |ψ〉
)

.

(132)
The transformed boundary operator is defined to be such that

T〈χ| B̂T(tT) |ψ〉T = 〈χ| B̂(t) |ψ〉 (133)

for any 〈χ| and |ψ〉, that is, by using (113),

B̂T(tT) = Û B̂(t)Û∗ . (134)

This identity can also be recovered from (14) with (117) by using the complex
canonical formalism of the previous section. The traduction of the invari-
ance is simply B̂T(tT) = B̂(tT) and then, for an infinitesimal transformation
characterized by δt = tT − t and ǫ, we get

δt
dB̂

dt
+

iǫ

~
[B̂, Ĝ] = 0 . (135)

If we choose all the operators in the Heisenberg picture, this identity leads
to

δt
dB̂

dt
+ δt

i

~
[Ĥ, B̂] +

iǫ

~
[B̂, Ĝ] = 0 . (136)

where all the operators are now considered in the Schrödinger picture21.
When both |ψ〉 and 〈χ| satisfy the Schrödinger equation let us show how the

21By using a label to distinguish the two pictures, for any operator Ô we have the
connection

Ô
(H)(t) = Û

(S)(t0, t) Ô
(S)(t)Û (S)(t, t0) (137)

where t0 denotes the time where the two pictures coincide and Û (S)(t, t0) is the evolution
operator between t0 and t in the Schrödinger picture. Therefore we have

dÔ(H)(t)

dt
=

i

~
[Ĥ(H)(t), Ô(H)(t)] +

(

dÔ(S)(t)

dt

)(H)

. (138)
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infinitesimal current (132) simplifies. The first term in the right-hand side
vanishes and the last term is given by

δt
d

dt

(

〈χ| B̂ |ψ〉
)

= δt 〈χ|

(

dB̂

dt
+

i

~
[Ĥ, B̂]

)

|ψ〉 = −
iǫ

~
〈χ| [B̂, Ĝ] |ψ〉 (139)

where (136) has been used for the second equality. Eventually we obtain

δJB =
iǫ

~
〈χ| Ĝ |ψ〉 (140)

and the conservation law dδJB/dt = 0 is exactly equivalent to

d

dt

(

〈χ| Ĝ |ψ〉
)

= 0 (141)

from which we already derived (122) for a model invariant under time-trans-
lations and (125) for a model invariant under time-independent transforma-
tions.

In passing we note that the Noether constant associated with the invari-
ance of SB under a global change of phase T〈χ| = 〈χ| e−iθ together with
|ψ〉T = e−iθ |ψ〉 for any constant θ corresponds to Ĝ ∝ 1 and therefore is
given by the scalar product 〈χ|ψ〉 which is indeed conserved by any unitary
evolution.

7 Conclusion

Unlike what occurs generically in the Lagrangian context where one remains
in the configuration space, the Hamiltonian variational principle cannot be
formulated with keeping fixed all the dynamical variables at the boundaries
in phase-space. Nevertheless, with the use of a boundary function that helps
to manage the issues of boundary conditions, we have shown how Noether’s
seminal work Noether (1918/2011) does cover the Hamiltonian variational
principle and how the constant generators of the canonical—classical or
quantum—transformations are indeed the corresponding Noether constants.
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