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        The object of the article is the estimation of Common 
Cause Failures (CCF) in digital systems, e.g. protection 
system of nuclear plants. The system under study is 
composed of four divisions, with identical hardware. 
Colored Petri Nets are used because of their capability to 
model complex digital systems and assess their 
dependability. The Atwood model is also implemented into 
the CPN model. It represents the CCF impact on the system 
dependability. Assumptions related to hardware reliability 
and system logic, maintenance and repairs are taken into 
account in the model that is thus dynamic. The simulation, 
based on a CPN model and the assumptions of the Atwood 
model, permits to compare estimators of CCF parameters. 
An example of comparison is presented in this article, 
based on the Impact Vectors approach. Finally, some 
conclusions are presented. 

 
I.  COMMON CAUSE FAILURES IN LARGE 

DIGITAL SYSTEMS 
 

I.A. Specific Issues 
 
Digital Instrumentation and Control systems (I&C) 

have a key role for regulation and safety of nuclear power 
plants. Their characteristics are a large size, a high level of 
redundancy and a complex logic of vote. Although digital 
systems have failure detection capabilities, and although 
their components are more reliable than the analog systems 
they replace, some characteristics raise specific issues on 
the modeling and assessment of Common Cause Failures 
(CCF). 

A CCF can occur in operational or on demand modes 
and affect groups of identical or similar redundant 
components having the same function and operating under 
comparable conditions. The so-called Alpha Factor and 
Beta Factor  models are the most widely used for taking 
into account CCF within various types of nuclear plants 

systems [1] and, more generally, in power systems [2]. The 
Beta Factor model implies the failure of the whole set of 
components when a common cause event occurs. This 
definition is used when the system is composed of only a 
few components. However when the system is composed 
of dozens of identical or similar components, the 
assumption of failure of the whole set of components, when 
a CCF occurs, is very conservative. Thus, the concepts of 
partial and lethal shocks of Binomial Failure Rate model, 
defined by Atwood, are very well adapted to represent the 
potential effects of stress factors on electronic hardware. 
 
I.B. Atwood model 
 
In this section, we introduce the Atwood model [3] of CCF 
that takes into account independent failures of components 
and CCF failures due to shocks that affect all or only some 
components. It considers that the system components are 
subject to two types of failures: independent failures and 
shock failures. Two kinds of shock failures are defined: 
lethal shocks and partial (or non-lethal) shocks. In a large 
redundant systems with N components, a shock is assumed 
to be non-lethal when it affects k components among N 
with 1< k < N. Each component has then a conditional 
probability of failure ρ. A shock is lethal when it affects all 
components. In the case of a non-lethal shock, only the 
failure of some components is considered. Individual 
failures, non-lethal and lethal shocks are assumed to follow 
independent processes. The occurrence frequencies of 
shocks (noted µ for non-lethal shocks and ω for lethal 
shocks) are assumed to be constant. The failure rate of a 
specific component in a group of N elements, due to an 
independent failure or to a non-lethal shock is: 

λ�
(�) = λ���+ µρ(1− ρ)���          (1) 

The failure rate of a group of k components from N with 
1< k < N due to a non-lethal shock is: 



λ�
(�) = µρ�(1 − ρ)���					 (2) 

The failure rate of N components due to a nonlethal and 
lethal shock is: 

λ�
(�) = µρ� + 	ω					 (3) 

For a specific component in a group of N components, the 
total failure rate is given by: 

λ��� = λ���+ω + 	µ.� �� − 1
� − 1� ρ

�(1 − ρ)����

���
 (4) 

The capability to represent CCF affecting only a part of the 
all components of the system implies the use of three 
parameters (µ, ρ, ω), whatever the size of the CCF group 
is. The default values are: 
α = µ

λ���
= 0,405	(rate of non-lethal shocks), 

ρ  = 0.2 or 0.33 or 0.5 (conditional probability of 
component failure in a non-lethal shock), 
β��� �  = 

ω

λ���
=  5!10�" 	 (rate of lethal shocks). 

 
II.  SYSTEM UNDER STUDY – DESCRIPTION AND 

ASSUMPTIONS 
 
The system under study is a protection system, 

composed of four divisions with identical hardware. It is a 
part of the defense in depth of a nuclear power plant.  

 
II.A. System architecture 

 
This protection I&C system contains four divisions, 

which are identical, see figure 1. 
 

 
 
 

Figure 1: Architecture of the case study I&C system  
 
These divisions are physically separated. Each 

division is composed of five processing units (APU). The 
APU 0, 1 and 2 compose the subsystem A (SSA). The APU 
3 and 4 compose the subsystem B (SSB). A control 
function, is implemented twice, in an APU of SSA and in 
an APU of SSB, with different inputs and treatment. Their 
outputs must be identical in the normal operating mode 
(functional diversity). 

For I&C signals of interest for PSA, two kinds of 
electronic modules, C1 and C2, are used by each APU. 
Each APU contains one C1 module. The APU 0 and 1 

contain four C2 modules, and the APU 2,3 and 4 contain 
three C2 modules. These electronic modules are used for 
reception, processing and emission of signals. Groups of 
APU (GAPU) are defined: one group contains all APUi (i 
#[0,4]) of the four divisions. 

 
II.B. Assumptions for the electronic modules 

 
A constant failure rate is considered for modules. The 

modules of an APU are considered as a series system. 
When a failure is detected by a self-test (SA), the detection 
time is considered null. When a failure is not detected by a 
self-test (NSA), then it is detected offline during a periodic 
test. For a given division, periodic tests take place every 
period of 18 months. So every 6 weeks, one division among 
four is tested during the periodic tests. After the periodic 
tests, the failed modules are repaired. According to the 
supplier of electronic modules, the coverage rate of self-
tests is 100%. To be more conservative; we added to the 
model the non-self-detected failures (NSA failures) in 
order to take also into account the errors due to operation; 
e.g. parameters setup or installations of modules different 
than the specified conditions. Thus the coverage rate (a) 
drops to 85%. The total failure rate of the modules remains 
identical (λ���= λ$% +	λ�$% ). The rates of detected 
failures (λ$%) and non-detected failures (λ�$%) are adjusted 
by the equations:  

 
λ$% = 	&. λ��� and λ�$% = (1− &). λ���		(5) 
 
II.C. Assumptions for system states and logic 
 
The hazardous event is the unavailability of a given 

I&C signal. The occurrence of this hazardous event is 
based on the voting logic of the APU: 
- An APU fails when a module C1 or C2 fails 
- A group of APU (GAPU) fails when 3 out of 4 

APU fail (2oo4). 
- A subsystem (SSA or SSB) fails when one of its 

GAPU fails.  
- I&C system fails when two subsystems fail (1oo2).  

We assume that the mission time of the protection 
system is ten years, and it becomes as good as new after 
being retrofitted during the decennial maintenance 
operations of the nuclear plant. System unavailability can 
occur anytime during the ten years. During this time 
interval, the system may recover without being as good as 
new, with some electronic modules still in fail state. 
 
  



 
III.  SYSTEM MODELING USING COLORED 

PETRI NETS 
 

III.A. Benefits of Petri Nets for this modeling 
 
The model should be able to represent the dynamic 

sequences of states of large digital systems and estimate 
dependability measures. Markov chains or Petri Nets have 
this capability. The Beta-factor model has already been 
integrated in Markov chains [4] and in the basic Petri Nets 
[5]. The main drawback of these models is the 
combinatorial explosion of their size when the modeled 
system is large and complex. 

To remediate this drawback, we used Colored Petri 
Nets (CPN) [6], [7]. It is a discrete-event modeling 
language combining the capabilities of Petri Nets with the 
capabilities of a high level programming language. The 
main difference is that the CPN tokens can have different 
colors representing data types (e.g. Boolean, integer or 
more complex data structure).  

 
III.B. Definition of a hierarchical timed Colored Petri 
Net 
A Colored Petri Net is a 9-uplet (', (,), Σ,+,,,-, ., /) 
where: 
P is a finite set of places 
T is a finite set of transitions, ' ∩ ( = ∅ 
) ⊆ (' × 	() ∪ (( × 	')	is a set of directed arcs 
Σ is a finite set of non-empty colour sets 
V is a finite set of typed variables: ∀6 ∈ V,			(9:;<6= ∈ Σ 
,:' → 	Σ	is a colour set function that assigns a color set 
to each place. 
-:( →	.@'AB 	is a guard function. It assigns a condition 
to each transition: 
Type[G(t)] = Bool (Boolean data type) 
.:) →	 .@'AB 	is an arc expression function. It assigns 
an arc expression to each arc: Type[E(a)] = Type[C(p)], 
where p is the place connected to the arc a. 
/: ' →	 .@'A∅ 	is an initialisation function. It assigns an 
initialisation expression to each place p: Type[I(p)] = 
Type[C(p)]. 
 

Hierarchical CPN 
Furthermore, individual CPN models can be 

hierarchically related to each other in a formal way, i.e. 
with a well-defined semantics. CPN model hierarchy is 
realized through substitution transitions. The idea is to 
associate a transition to a more complex CPN (a module), 
which gives a more precise and detailed description of the 
activity represented by the substitution transition 
(represented by a double rectangle, e.g. in figure 2). The 
places connected to a substitution transition transmit a 
given marking from a high level (level of substitution 
transition) to a low level (level of module) and vice versa. 
CPN concept of hierarchy allows us to propose a modular 

modeling approach for a complex system, based on generic 
modules that can be instantiated as often as needed. 

Timed CPN 
Also, the probabilistic dependability assessment 

requires to take account of the time dependence of the 
system. In a timed CPN [6], [7], the time is given by a 
global clock. In addition to their color, the tokens contain 
a time value, also called a time stamp. When a transition is 
enabled, it is fired and changes the time stamps of tokens 
which are deposited in its output places. In these places, the 
tokens remain frozen and cannot be used to enable other 
transitions until a time given by the global clock. As soon 
as the time stamp of the tokens is greater than or equal to 
the current time model, these tokens can enable other 
transitions which are instantly fired. In other words, the 
time stamp describes the earliest model time from which a 
token can be used. This permits to represent periodic tests, 
failures and repairs events. 

 
III.C. Drawbacks 

 
Low readability of Petri Nets. It is highly reduced by 

using the concepts of colors and hierarchy of the CPN. 
  
Difficulty of verification. 
A first verification of CPN can be realized by the step-

by-step simulation. This step-by-step simulation allows 
verifying the behavior of each CPN sub-module or of the 
entire model for some functional or dysfunctional 
scenarios of behavior. But this type of verification cannot 
guarantee the exhaustiveness of all possible system 
behaviors. To overcome this, more complete verification 
methods are proposed: a quantitative one and a qualitative 
one. 

A Monte-Carlo simulation (quantitative method) can 
be done for a partial verification of the model. To do that, 
we compare two approaches for parameters estimation of 
Atwood model: an analytical and a Monte-Carlo 
simulation from the CPN [8]. 

A more exhaustive verification can be done by a state 
space method (qualitative method). The idea is to compute 
all reachable states and state changes of the CPN model and 
to represent them as a directed graph, where nodes 
represent states and arcs represent events. From a 
constructed state space, it is possible to check a large set of 
questions concerning the behavior of the system, such as 
absence of deadlocks, a possibility to reach a given state. 
This formal verification of a CPN has been done for some 
specific safety properties of I&C systems [9].  
 
III.D. CPN modeling of the system under study 
 
We used a modular approach. The high level CPN model 
(figure 2) is composed by the following modules: 
-CCF generation (left box) 
-System representation (center box) 



-State system description (right box) 
 

 
 
Figure 2: High level colored Petri net of the I&C system 

 
In this article, we focus on the modeling of CCF with 

CPN.  
 

III.E Lethal CCF modeling 
 
Lethal CCF are modeled by the CPN sub-net shown in 
figure 3. It corresponds to the substitution transition 
DCC_letale of the figure 2 (left box). The firing of the 
transition gene_dcc l determines the occurrence time of the 
lethal shock using an exponential function 
floor(exponential(!omega)+0.5). A lethal CCF affects all 
the N components of the system and is always detected 
online. Thus, N temporized tokens are issued with a color 
(DCC-L,1) (1 for detection). The next occurrence time of a 
lethal CCF is also calculated. 
 

 
 

Figure 3: CPN sub-net modeling the lethal CCF 
 

 
III.F. Non-lethal CCF modeling 
 
Non-lethal CCF are modeled by the CPN sub-net shown in 
figure 4. It corresponds to the substitution transition 
DCC_non_letale of the figure 2. The place Nb-carte 
contains the number of electronic modules N in the system. 
The firing of transition Save set the number of electronic 
modules N of the system in the place SNb carte and set N 
tokens in the place nb carteu. The transition proba is fired 
N times. The function defdcc() draws a random value using 
an uniform distribution in the interval [0,1]. If the value is 
lower than conditional probability ρ, the considered 
module is shock sensitive. The returned value is 1, 
otherwise 0. 

The firing of init_temps transition determines the 
occurrence time of the non-lethal shock using an 
exponential function. At the same time, it specifies if it is 
detected or not by a self-test. This is done using the 
function detect(). This function draws a random value 
using an uniform distribution in the interval [0,1]. If the 
value is lower than the coverage rate of self-tests, the 
failure is detected. In this case the function returns the 
value 1, otherwise 0.  

 
 

Figure 4: CPN sub-net modeling the non-lethal CCF 
 
The firing of the transition dcc assigns the occurrence time 
of CCF and the variable characteristic of failure detection 
to each token of the system that is shock sensitive. The 
transition no_def_dcc removes the tokens representing 
modules that are not shock sensitive. The transition 
new_dcc generates the next occurrence time of a non-lethal 
shock and redefines the number of modules, which are 
shock sensitive. 
 
 
III.G Applications of the CPN model 
 
The timed hierarchical CPN based on Atwood model may 
compute safety measures of interest for PSA, like the 
probability of failure on demand (Pfd), the spurious failure 
rate and the probabilistic parameters representing CCF 
(Beta Factors , Alpha Factors…), MTFF (Mean Time To 
First Failure). We do not consider here the Probability of 
Failure per hour (Pfh), defined in IEC 61508 [10]. It is not 
relevant for the type of protective actions modeled in PSA. 
Also, we do not associate a SIL level for the system under 
study. According to IEC 61513 [11]: ” there is not an 
equivalent scheme to the reliability/risk reduction SIL 
levels proposed in IEC 61508 in common use in the nuclear 
sector”. 



This simulator may be used for various purposes. In [8], we 
explain how it can be used to assess the difference between 
the observed Pfd, taking into account undetected failures, 
and the real Pfd that could be estimated with a perfect 
knowledge of the failure conditions. 
Also, the Atwood model can be modified to "direct" non-
lethal CCF on certain parts of the system and take into 
account different possible origins of CCF. This extension 
permits to avoid the assumption of uniform distribution of 
non-lethal shock on the components and to represent the 
effect of diversity and separation between divisions [8]. 
We present here another possible application. We compare 
the CCF parameters Alpha factors obtained by the empiric 
method of Impact Vectors and the Alpha Factors that could 
be obtained if we had a perfect knowledge of the failures 
conditions.  
 
IV. CCF PARAMATERS ESTIMATIONS WITH 
SIMULATIONS 

 
IV.A The Impact Vectors approach for Alpha Factors 
estimation  
 
The very low number of failures observed in digital I&C 
Operating Experience (OE) and the presence of failures 
discovered lately makes difficult to estimate the measures 
of interest. 
Various approaches have been developed to cope with this 
general difficulty of OE. One of them is the Impact 
Vectors. It is used in NRC studies to analyze and aggregate 
OE related to various systems from NPRDS (Nuclear Plant 
Reliability Data System), LER (Licensee Event Report), 
for the 1980-1993 time interval, on the basis of studies like 
[12], [13], [14]. Impact Vector approach is still today used 
to assess CCF parameters on various systems, like diesel 
generators, pumps, control rods.... 
The Impact Vector assesses the impact an event 
(observation of one failure or more at a given time) would 
have on a common cause group. The impact is usually 
measured as the number of failed components out of a set 
of similar components in the common cause group [15]. 
The Alpha Factor can be directly obtained from this 
approach with the following estimator, where:  
 

α��C = DE
� DF

G
FHI

    (6) 

 
N: size of the CCF group 
J�: number of events where  k elements of the CCF group 
failed. 
If  k>1, it is a CCF event. 
If  k = 1, it may be an independent failure or a partial CCF 
event. 
The expression of J�  in function of averaged Impact 
Vectors K�, B�L  is: 

J� =M K�, B�LN
L��  (7) 

 
where r is the total number of events. 
 
IV.B Application to OE of digital I&C  
 
Although Impact Vector method was not originally 
experienced on digital I&C, it may be used to analyze 
operating experience of such systems. However we do not 
have an accurate assessment of the uncertainty due to this 
application.  
The purpose of the application is to compare Alpha Factors 
estimates and validate the Impact Vectors approach. 
Observed Alpha Factors are obtained on a simulated set of 
data using Impact Vectors with limited information. Real 
Alpha Factors are obtained on a simulated set of data using 
Impact Vectors with full information. A simulation with 
colored Petri nets generating a large number of chronicles, 
including a significant quantity of CCF, is fruitful to do this 
comparison. 
The description of the Impact Vectors approach may be 
found in [15], [16]. We present here only the assumptions 
done specifically for this application. Three factors are 
used to “blur” the data, and in some way, to explicit 
uncertainty in the observation. 
 
Definition of failure sets. 
First, failure events have to be merged in sets. In the case 
of Real Alpha Factors, the information is exhaustive; there 
is no difficulty to merge CCF in such sets. In the case of 
Observed Alpha Factors, some CCF may cause failures 
spread within a time interval. Thus, many different sets of 
CCF can be built. A rule for merging has to be defined: the 
set that corresponds to the CCF of the largest size is chosen. 
 
Degradation Factor (Fd). 
For each element of a CCF group involved in a CCF event, 
a degradation factor is associated. For the hardware part of 
a digital system, at the level of electronic modules, we 
consider that there is no wearout. Preventive maintenance 
policies permit to identify and avoid the presence of 
electronic parts sensitive to wearout. Thus, we consider 
only two levels of degradation: 
Fd = 1, if  the module is in functional failure state. 
Fd = 0, in other cases. 
 
Simultaneity Factor (Fs).  
It is a subjective probability, which estimates the belief in 
the simultaneity of failures affecting the CCF group. This 
factor is associated to events. 
 
With full information, the values used to estimate the Real 
Alpha Factors are: 
Fs= 1 in the case of a CCF, 
Fs = 0 in other case 



With limited, realistic information, the values used to 
estimate the Observed Alpha Factors depend on the 
periodic testing. Indeed, in the case of digital I&C systems, 
there are two modes of failure detection: self-test or 
periodic testing. The idea is to compare the time spread of 
a set of failures, to the time required to detect all latent 
failures (T). When two failures are separated by a time 
lapse higher than T, there is a negligible risk of 
simultaneity; in other cases, there is a possibility of 
simultaneity (see table 1) 
 

Time spread of a set of 
failures 

Simultaneity factor (Fs) 
value 

O:P;&Q≤ (
4 

1 

(
4 < O:P;&Q ≤ (

2 
0.5 

(
2 < O:P;&Q ≤ ( 

0.1 

( < O:P;&Q 0 
 

Table 1. Simultaneity factor (Fs) values 
 
Also, to take account of the different detection and repair 
times between the various failures, two rules are defined 
and will have to be compared: 
Rule A: T is the off-line test periodicity, whatever the 
failure detection type is (SA/NSA) 
Rule B: T is the off-line test periodicity interval for NSA 
detection type, 8 days for SA. 

 
Shared Cause Factor (Fc). 
 It reflects the degree of belief of the analyst in the 
existence of common cause failures in a set of 
simultaneous failures. It is a conditional probability, 
associated to set of failure events.  
With full information, the values used to estimate the Real 
Alpha Factors are: 
Fc= 1 in the case of a CCF,  
Fc = 0 in other case 
 
With limited, realistic information, in the case of digital 
systems, the following values are used for Observed 
Alpha Factors: 
Fc= 0 if there is evidence of no coupling (proven 
independent failures) 
Fc = 1 in other situations. This is a rather conservative 
assumption. 
 
 
IV.C Results 
Three series of simulations are presented. Each one has a 
specific scope. The CCF group is a group of four APU of 
the same kind, distributed in four divisions. Analytical 

expressions from [15], [16], have been implemented in a 
dedicated Excel add-on (ParamDCC). 
 
Influence of the rules for simultaneity factor. 
5 chronicles lasting 10 years have been simulated. They are 
equivalent to 50 reactor.years, under assumption of 
constant failure and event rates. Values of Atwood model 
parameters are default values (see I.B.) 
Tables 2 and 3 compare the influence of rule A and B on 
the difference between real and observed Alpha Factors.  
For CCF of order 2, 3 and 4, Rule B generally 
overestimates the real value (95% of figures), but with 
slightly less conservatism than Rule A. The preliminary 
conclusion is to use Rule B for simultaneity factor. 
 
Comparison between Real and Observed Alpha factors 
on a realistic sampling 
 
20 chronicles of 10 years have been simulated. They are 
equivalent to 200 reactorxyears, under assumption of 
constant failure and event rates. This is representative of 
the size of the samples present in real OE. Values of 
Atwood model parameters are ρ=0.2 or 0.33 or 0.5; 
α=0.405; β=0.005. Rule B for simultaneity factor is used. 
Tables 4, 5 and 6 compare maximum and average deviation 
between Real Alpha Factors and Observed Alpha Factors 
estimated with the Impact Vector approach. The deviation 
is defined by: 
 

U = α�,VWX�NB�Y
� − α�,N� �

�

α�,N� �
�  

 
Average deviation values at high CCF orders (3 and 4) are 
relatively low. It means that the assumptions done in IV.B, 
using Rule B, permit acceptable Alpha Factor estimate 
with the Impact Factors approach. Tables 4 to 6 show that 
for ρ=0.2 or 0.33, at high CCF orders (3 and 4), estimates 
are generally more conservative than optimistic (Tables 4 
and 5). Deviation increases with lethality: for ρ=0.5, 
observed Alpha Factors may be significantly 
underestimated (Table 6). This may be due to the limited 
number of reactorxyears. In these situations, the use of Rule 
A may be an artifact to limit the risk of underestimation of 
Observed Alpha Factors.  



Chronicle  (k,N) Real Alpha(k,N) Observed Alpha(k,N) 

1  

 (1,4)  9.21x10-1  8.99x10-1 

 (2,4)  4.8x10-2 6.9x10-2 

 (3,4)  1.6x10-2 1.7x10-2 

 (4,4)  1.6x10-2 1.5x10-2 

2  

 (1,4)  8.80x10-1 8.68x10-1 

 (2,4)  7.2x10-2 8.8x10-2 

 (3,4)  3.6x10-2 3.1x10-2 

 (4,4)  1.2x10-2 1.2x10-2 

3  

 (1,4)  9.01x 10-1 8.71x 10-1 

 (2,4)  2.8x 10-2 4.0x10-2 

 (3,4)  4.2x 10-2 4.5x10-2 

 (4,4)  2.8x 10-2 4.5x10-2 

4  

 (1,4)  8.91x 10-1 8,40x 10-1 

 (2,4)  7.8x10-2  1.19x 10-1 

 (3,4)  3.1x10-2 4.2x10-2  

 (4,4)  0  0  

5  

 (1,4)  9.75x 10-1 9.24x 10-1 

 (2,4)  1.2x10-2 6.3x10-2 

 (3,4)  0  0  

 (4,4)  1.2x 10-2 1.3x 10-2 
 

Table 2. Real and observed Alpha Factors (Rule A) - 
Example of 5 chronicles (Z = 0.2) 

 

 Maximum deviation Average 
deviation 

(Estimate is 
conservative 

when >0) 
 (k,N) 

Observed  
< Real  

(Estimate is optimistic) 

Observed > Real 
(Estimate is conservative) 

 (1,4) -2.2% 1.4% 0.45% 

 (2,4) -90% 102% 30% 
 (3,4) N.S. 1.5% 0.22% 
 (4,4) N.S. N.S. N.S. 

 

Table 4: Comparison of [\] estimates, ̂ = _. `_ 

 
 
 
 
 
 
 

Chronicle  (k,N) Real Alpha(k,N) Observed Alpha(k,N) 

1  

 (1,4)  9.21x 10-1 9.09x 10-1 

 (2,4)  4.8x 10-2 6.1x 10-2 

 (3,4)  1.6x 10-2 1.5x 10-2 

 (4,4)  1.6x 10-2 1.5x 10-2 

2  

 (1,4)  8.80x 10-1 8.72x 10-1 

 (2,4)  7.2x 10-2 8.6x 10-2 

 (3,4)  3.6x 10-2 3.0x 10-2 

 (4,4)  1.2x 10-2 1.2x 10-2 

3  

 (1,4)  9.01x 10-1 8.97x 10-1 

 (2,4)  2.8x 10-2 1.60x 10-2 

 (3,4)  4.2x 10-2 4.35x 10-2 

 (4,4)  2.8x 10-2 4.35x 10-2 

4  

 (1,4)  8.91x 10-1 8.52x 10-1 

 (2,4)  7.8x 10-2 1.15x 10-1 

 (3,4)  3.1x 10-2 3.3x 10-2 

 (4,4)  0 0 

5  

 (1,4)  9.75x 10-1 9.49x 10-1 

 (2,4)  1.2x 10-2 3.8x 10-2 

 (3,4)  0 0 

 (4,4)  1.2x 10-2 1.3x 10-2 
 

Table 3. Real and observed Alpha Factors (Rule B) -
Example of 5 chronicles (Z = 0.2) 

 
 Maximum deviation Average 

deviation 
(Estimate 

is 
conservativ
e when >0) 

 
(k,N) 

Observed  
< Real  

(Estimate is 
optimistic) 

Observed > Real 
(Estimate is 

conservative) 

 (1,4) -1.2% 2.3% 0.5% 
 (2,4) -47% 58% 18% 
 (3,4) -26.4% 2.0% 2.4% 

 (4,4) N.S. 1.2% 0.12% 
 

Table 5. Comparison of [\] estimates, ̂ = _. aa 

  



 
 

 Maximum deviation Average 
deviation 
(Estimate 

is 
conservativ
e when >0) 

 
(k,N) 

Observed  
< Real  

(Estimate is 
optimistic) 

Observed > Real 
(Estimate is 

conservative) 

 (1,4) -1.3% 2.3% 1.0% 
 (2,4) -48% 58% 20% 
 (3,4) -75% 16% 13% 

 (4,4) -2.5% 2.2% 0.9% 
 

Table  6.  Comparison of [\] estimates, ̂ = _. b 

 
Comparison between Real and Observed Alpha factors 
on a larger sampling 
 
To assess the uncertainty due to the limited size of real 
samples, cde;P6;Q	)f:ℎ&	K&hijPe  values have been 
estimated from 100 chronicles of 5 years. They are 
equivalent to 500 reactor.years, under assumption of 
constant failure and event rates. Minimal and maximal 
values of Alpha Factors are presented in Table 7. 
 

 
ρ=0.2 ρ=0.33 ρ=0.5 

(k,N) Min Max Min Max Min Max 

(1,4) 9.35x10-1 1 8.83x10-1 1 8.35x10-1 9.79x10-1 

(2,4) 0 5.6x10-2 0 8.51x10-2 9x 10-3 1.0x10-1 

(3,4) 0 3.5x10-2 0 3.61x10-2 0 7.3x10-2 

(4,4) 0 1.3x10-2 0 1.3x10-2 0 4x 10-2 
 

Table 7: Minimal and maximal values of Observed Alpha 
Factors 

 
A complementary analysis can be done by comparing Real 
Alpha Factors and theoretical Alpha Factors (see table 8). 
The theoretical Alpha Factors are estimated from analytical 
expressions of Beta Factors obtained from the Atwood 
model parameter, with a conversion of Beta Factors in 
Alpha Factors. The deviation is defined by: 
 

U = kN� � −k�l�VN��Lm �
k�l�VN��Lm �  

 
 
 
 
 
 
 

 
 
 

 ρ=0.2 ρ=0.33 ρ=0.5 

(k,N) Min Max Min Max Min Max 

(1,4) -5% 2% -8% 5% -9% 6% 

(2,4) -100% 251% -100% 171% -80% 144% 

(3,4) -100% 1212% -100% 250% -100% 158% 

(4,4) -100% 774% -100% 387% -100% 364% 

 
Table 8: Comparison between Real Alpha Factors and 

theoretical Alpha Factors 
 
The deviation may be in the order of 100%, and up to 
1000%, depending of the chronicle simulated. The 
simplifications used for analytical expressions may lead to 
higher deviation than the difference in available 
information between Real and Observed Alpha Factors. 
 
Note: The so-called « Real Alpha Factor » is obtained with 
a complete information, but on a limited duration. The 
comparison between « real » and « theoretical » could be 
more relevant on durations higher than 5 ans, more 
representative of the real age of nuclear plants. Also, the 
standard deviation of the so-called « deviation » could also 
be used to assess the spread between chronicles, in addition 
to average, min and max. 
 
 
V. CONCLUSIONS 

 
In this article, we have presented how to use efficiently 

Colored Petri Nets (CPN) to model digital I&C system. 
This approach has been applied to a representative case of 
protection system of a nuclear power plant. The simulation 
permits to compare estimators of CCF parameters. An 
example has been presented in this article. Various 
estimation approaches like the Impact Vectors can be 
evaluated. The purpose is to assess the effect of 
uncertainties due to the use of simplified analytic 
expressions and limited knowledge from real operating 
experience. However the number of simulations is a key 
factor if the comparison has to be done with theoretical 
values obtained from analytical expressions. 

Also, as the Atwood model may not be a fully 
satisfactory representation of CCF in digital I&C, further 
have to be done. The main ideas are to represent the various 
modes of CCF as described in [17], [18], by orientation and 
combination of CCF in the CPN model [8]. 
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