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Introduction

Investigating the compactness properties of linearized operators arising in kinetic theory is a crucial step to establish fluid dynamical approximations to solutions of the corresponding kinetic equations.

The starting point of this research line was given by Hilbert, in the same paper in which he introduced what we now call the Hilbert expansion [START_REF] Hilbert | Begründung der kinetischen Gastheorie[END_REF]. Since then, a significant number of results allowed to clarify the main aspects of these compactness properties, both for the archetypal of all kinetic models, the classical Boltzmann equation, and, more recently, for the variant of the system of Boltzmann equations describing the behaviour of non-reactive mixtures constituted with monatomic gases.

In the mixture case, the interaction between the different species induces some peculiarities in the structure of the linearized kinetic operators, which can reflect Laurent Boudin Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, UMR 7598, Laboratoire Jacques-Louis Lions, REO project-team, 4, place Jussieu 75005, Paris, France, e-mail: laurent.boudin@upmc.fr Francesco Salvarani Université Paris-Dauphine, Ceremade, UMR CNRS 7534, F-75775 Paris Cedex 16, France & Università degli Studi di Pavia, Dipartimento di Matematica, I-27100 Pavia, Italy, e-mail: francesco.salvarani@unipv.it some specific physical phenomena (such as uphill diffusion in the purely diffusive case, see [START_REF] Maxwell | On the dynamical theory of gases[END_REF][START_REF] Stefan | Ueber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen[END_REF][START_REF] Duncan | An experimental study of three component gas diffusion[END_REF][START_REF] Bothe | On the Maxwell-Stefan approach to multicomponent diffusion[END_REF][START_REF] Boudin | A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations[END_REF][START_REF] Hutridurga | On the Maxwell-Stefan diffusion limit for a mixture of monatomic gases[END_REF]). Consequently, it is not surprising that compactness properties in the mixture case cannot be deduced through a straightforward adaptation of the standard methods of proof from the mono-species case. In [START_REF] Boudin | Diffusion asymptotics of a kinetic model for gaseous mixtures[END_REF], the authors indeed observed that, when there are different involved molecular masses, the standard approach, which is mostly due to Grad [START_REF] Grad | Asymptotic theory of the Boltzmann equation. II[END_REF], degenerates. A new method of proof is needed to recover the linearized operator compactness. Let us point out that this new argument does not hold either when the molecular masses become equal. Hence, both aforementioned strategies must be seen as complementary when dealing with mixtures.

The study of compactness properties for mixtures is only at its beginning, and there are still many unexplored situations. We quote for example the study of linearized kinetic operators for mixtures of polyatomic gases: the non-reactive case, for instance as defined in [START_REF] Bourgat | Microreversible collisions for polyatomic gases and Boltzmann's theorem[END_REF][START_REF] Desvillettes | Sur un modèle de type Borgnakke-Larsen conduisant à des lois d'énergie non linéaires en température pour les gaz parfaits polyatomiques[END_REF], and the chemical reacting one as in [START_REF] Desvillettes | A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions[END_REF]. Those models require a supplementary internal variables, such as the internal energy of the molecules. The presence of such a variable induces significant difficulties for the analysis of the compactness properties.

The article is divided into two parts. The next section is dedicated to the study of the compactness properties of the linearized standard Boltzmann operator for a monatomic perfect gas, including discussions related to Grad's angular cut-off assumption. Then, in Section 3, we consider the extension to a non-reactive mixture of ideal monatomic gases.

The classical Boltzmann equation case

This section deals with the compactness properties of the classical linearized Boltzmann kernel. The subject has a long history, since the first study comes back to Hilbert [START_REF] Hilbert | Begründung der kinetischen Gastheorie[END_REF], who applied his new theory of integral operators to this specific problem.

Boltzmann's equation

As a starting point, we briefly introduce the classical Boltzmann equation. This equation is the first and most studied kinetic model since the nineteenth century, after the pioneering works of Boltzmann himself [START_REF] Boltzmann | Weitere studien über das wärmegleichgewicht unter gasmolekülen[END_REF][START_REF] Boltzmann | Lectures on gas theory[END_REF] and Maxwell [START_REF] Maxwell | On the dynamical theory of gases[END_REF]. Since this equation has been widely studied, we only introduce its basic aspects and refer to the many reference texts on the the Boltzmann equation, for instance [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF][START_REF] Cercignani | The mathematical theory of dilute gases[END_REF][START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF], where the arguments below are more accurately discussed. The Boltzmann equation describes the time evolution of a system composed by a large number of particles, described by a distribution function f defined on the phase space of the system. The particles are supposed to be identical and monatomic. They follow the classical mechanics laws, with only translational degrees of freedom. If the particles are contained in a domain Ω x ⊆ R 3 , the quantity f (t, x, v) can be defined for any (t, x, v) ∈ R + × Ω x × R 3 , and, for all t, the integral X×V f (t, x, v) dv dx can be interpreted as the number of particles in the space volume X ⊆ Ω x with velocity in V ⊆ R 3 . A reasonable assumption on f is

f (t, •, •) ∈ L 1 loc (Ω x ; L 1 (R 3 )), ∀ t ∈ R + ,
which ensures that there is always a finite number of particles in a bounded domain of the space. For the sake of simplicity, we also assume that the system is isolated, so that there is no external effect on the particles. If, moreover, the particles do not interact with each other, the time evolution of f is driven by the so-called free transport equation

∂ f ∂t + v • ∇ x f = 0. ( 1 
)
When the interaction between particles cannot be neglected, Equation [START_REF] Boltzmann | Weitere studien über das wärmegleichgewicht unter gasmolekülen[END_REF] does not hold any more, and one has to add in (1) a right-hand-side term. When only binary and local collisions are allowed, the effect of the interactions is described by a quadratic (with respect to f ) collision operator Q( f , f ).

If the pairwise interactions between particles of the system are elastic, then momentum and kinetic energy are conserved during the interaction process. Hence, if we denote by v and v * the pre-collisional velocities, and by v and v * the postcollisional ones, the following microscopic conservation laws hold:

v + v * = v + v * , v 2 + v * 2 = v 2 + v * 2 .
These conservation laws allow to fix four of the six degrees of freedom of the interaction. The remaining degrees of freedom of the binary interaction can be described in several ways. For our purposes, we only consider two possible descriptions. The first one, the so-called σ -representation, is the representation of the pre-post velocities in the centre of mass of two particles: we introduce σ ∈ S 2 , and write

v = 1 2 (v + v * + |v -v * |σ ), v * = 1 2 (v + v * -|v -v * |σ ). (2) 
The second one is the ω-representation, defined as

v = v -(ω • (v -v * )) ω, v * = v * + (ω • (v -v * )) ω, (3) 
where ω ∈ S 2 . Hence, the time evolution of f is governed by the Boltzmann equation

∂ f ∂t + v • ∇ x f = Q( f , f ), (4) 
where the collision operator Q can be defined either in the σ -representation (2) by

Q( f , g) = R 3 S 2 B(σ , v, v * ) f (t, x, v )g(t, x, v * ) -f (t, x, v)g(t, x, v * ) dσ dv * (5)
or in the ω-representation

Q( f , g) = R 3 S 2 B(ω, v, v * ) f (t, x, v )g(t, x, v * ) -f (t, x, v)g(t, x, v * ) dω dv * . ( 6 
)
Either way, in the study of the Boltzmann equation, particular care has to be given to the properties of the collision cross-section B : S 2 × R 3 × R 3 → R + of the system, which describes the details of the interactions between the particles. In general, by symmetry arguments and thanks to the Galilean invariance, it is possible to prove that B, which is nonnegative, in fact depends on |vv * | and cos θ :

= σ • (v -v * )/|v -v * |, where | • | denote the Euclidean norm in R 3 .
For the sake of simplicity from now, on, we write B as a function of σ and V := vv * . If we assume the collisions to be microreversible, we can state that

B(σ , v -v * ) = B(σ , v -v * ), ∀σ ∈ S 2 , ∀v, v * ∈ R 3 . (7) 
The choice of collision kernel B has a deep influence on the properties of the Boltzmann equation. By limiting ourselves to the classical elastic case, it is possible to prove that

B(σ , v -v * ) = K |v -v * |, K > 0, (8) 
for a gas of three-dimensional hard spheres. In the case of inverse s-power forces, B can be factorized as

B(σ , v -v * ) = Φ(|v -v * |)b(cos θ ), (9) 
where, in three space dimensions,

Φ(|V |) = |V | γ , γ = (s -5)/(s -1),
and b is a locally smooth function with a non integrable singularity when θ tends to 0, i.e. b(cos θ ) sin θ ∼ Kθ -(1+ν) , ν = 2/(s -1).

Factorized collision kernels like [START_REF] Caflisch | The Boltzmann equation with a soft potential. II. Nonlinear, spatially-periodic[END_REF] are very popular in the study of the classical Boltzmann equation. By convention, Φ is named the kinetic collision kernel, and b the angular one. The class of kinetic collision kernels of the form Φ(|V |) = |V | γ is usually split in three sub-classes, depending on the value of γ. When γ > 0, the kernel is said to derive from hard potentials, when γ < 0, the kernel is said to derive from soft potentials and, when γ = 0, the kinetic collision kernel does not play any role. In this latter situation, the corresponding Boltzmann equation describes the behaviour a gas of Maxwell molecules. Even if it is only a mathematical model, it is very popular in the literature, since it considerably simplifies the study of the Boltzmann equation. Let us point out that Maxwell and Boltzmann themselves used this model, because it allows to carry out many explicit computations.

In order to handle more easily the angular cross section, Grad [START_REF] Grad | Principles of the kinetic theory of gases[END_REF] (see also [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF]) suggested a working hypothesis, nowadays known as the Grad angular cutoff assumption. It consists in postulating that the collision kernel is integrable with respect to the angular variable. Note that the great majority of mathematical works about the Boltzmann equation is based on this Grad cut-off assumption, which could be considered, from the physical point of view, as a short-range assumption [START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF].

To conclude these considerations about the cross-section, let us emphasize that, whenever we use B in this article, the precise dependence of B on the independent variables will be clear in the local context: general dependence with respect to ω or σ along with V , or the more precise form involving |V | and cos θ .

Now define the normalized centred Maxwellian

M(v) = 1 2π 3/2 e -v 2 /2 , v ∈ R 3 ,
and a perturbation g to M as

f = M + M 1/2 g.
The linearized collision operator L is studied for instance in [START_REF] Glassey | The Cauchy problem in kinetic theory[END_REF] and can be defined by

L g = 1 √ M Q( √ Mg, M) + Q(M, √ Mg) . (10) 
More precisely, L can be written as

L = K -ν Id,
where K is given by

K g(v) = 1 2π 3/2 R 3 ×S 2 B(σ , v -v * ) e -v 2 /4 e -v 2 * /2 e v 2 * /4 g(v * ) -e v 2 * /4 g(v * ) + e v 2 /4 g(v ) dσ dv * , (11) 
and the collision frequency ν by

ν(v) = 1 2π 3/2 R 3 ×S 2 B(σ , v -v * )e -v 2 * /2 dσ dv * . (12) 

Earlier compactness results

The first result of compactness for K is given by Hilbert in [START_REF] Hilbert | Begründung der kinetischen Gastheorie[END_REF] for the threedimensional hard sphere case: Hilbert uses the now so-called Hilbert's theory of integral operators to write K as a kernel operator, and then obtains a compactness property. Then, in [START_REF] Hecke | Über die Integralgleichung der kinetischen Gastheorie[END_REF], and in the same cross-section setting, Hecke presents a variant of the previous result: he proves that the linearized Boltzmann kernel is roughly of Hilbert-Schmidt type.

Carleman [START_REF] Carleman | Problèmes mathématiques dans la théorie cinétique des gaz[END_REF] provides an improvement to the latter result and significantly simplifies the proof. We must emphasize that those various compactness results are established in different L 2 settings, which may involve ν in the weights.

Grad's procedure

In [START_REF] Grad | Asymptotic theory of the Boltzmann equation. II[END_REF], Grad presents an extension of Hilbert's result in both Maxwell and hard potential cases, by supposing γ ∈ [0, 1], and by using his angular cut-off assumption [START_REF] Grad | Principles of the kinetic theory of gases[END_REF]. He requires that the form of the cross-section B is either ( 8) or ( 9), with a uniformly bounded angular cross-section b. More precisely, Grad imposes the following general condition on B:

B(ω,V ) ≤ a | sin θ | | cos θ | |V | + 1 |V | 1-δ , ∀ ω ∈ S 2 , ∀V ∈ R 3 , (13) 
where a > 0, 0 < δ < 1. This allows to adapt Hecke's argument and prove that the kernel of K is Hilbert-Schmidt in L 2 (Mdv).

Let us provide more details about Grad's procedure. In order to prove its compactness in L 2 , the operator K is written as the sum of two operators, K 1 and K 2 , where, for any v ∈ R 3 ,

K 1 g(v) = - 1 2π 3/2 R 3 ×S 2 B(ω, v -v * ) e -1 4 v 2 e -1 4 v * 2 g(v * ) dω dv * , K 2 g(v) = 1 2π 3/2 R 3 ×S 2 B(ω, v -v * ) e -1 4 v 2 e -1 2 v * 2 × e 1 4 v * 2 g(v * ) + e 1 4 v 2 g(v ) dω dv * .
Both operators K 1 and K 2 have a kernel form. This is straightforward for

K 1 : indeed, if we set k 1 (v, v * ) = - 1 2π 3/2 S 2 B(ω, v -v * ) e -1 4 v 2 e -1 4 v 2 * dω ∀ v, v * ∈ R 3 ,
we clearly have

K 1 g(v) = R 3 k 1 (v, v * ) g(v * ) dv * , ∀ v ∈ R 3 .
The analogous result for K 2 is more intricate and is detailed in the next lines.

We begin by using the microscopic collision rules (3) to write K 2 g in terms of v, v * and v only (hence, any dependence on v * disappears). The following lemma holds: Lemma 1. There exists a nonnegative function B satisfying [START_REF] Daus | Hypocoercivity for a linearized multispecies Boltzmann system[END_REF], such that, for all v ∈ R 3 ,

K 2 g(v) = R 3 ×S 2 B(ω, v -v * ) e -1 4 v 2 -1 2 v 2 * + 1 4 v 2 g(v ) dω dv * . ( 14 
)
Proof. The key point of the proof lies in some geometrical properties of symmetry in the microscopic collision process. By involving the relative velocity V = vv * , it is possible to choose a unit vector ω ⊥ ∈ Span(V, ω), orthogonal to ω. Then we clearly have

V = ω(ω •V ) + ω ⊥ (ω ⊥ •V ). It allows to write that v -(ω •V )ω = v * + (ω ⊥ •V )ω ⊥ , v * + (ω •V )ω = v -(ω ⊥ •V )ω ⊥ . ( 15 
)
Note that the post-collision relative velocity for the same pre-collisional V , but with respect to ω ⊥ , are obtained by a simple exchange between v and v * . This means that the transformation ω → ω ⊥ induces v → v * and v * → v . Hence, by replacing ω by ω ⊥ , we get

R 3 ×S 2 B(ω,V )e -1 2 v 2 * e 1 4 (v * +(ω•V )ω) 2 g(v * + (ω •V )ω) dω dv * = R 3 ×S 2 B(ω ⊥ ,V )e -1 2 v 2 * e 1 4 (v * +(ω ⊥ •V )ω ⊥ ) 2 g(v * + (ω ⊥ •V )ω ⊥ ) dω ⊥ dv * .
The change of variables from ω to ω ⊥ is a rotation, so that its Jacobian equals 1. By [START_REF] Desvillettes | A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions[END_REF], the previous integral becomes

R 3 ×S 2 B(ω ⊥ ,V )e -1 2 v 2 * e 1 4 v 2 g(v ) dω ⊥ dv * = R 3 ×S 2 B(ω ⊥ ,V )e -1 2 v 2 * e 1 4 v 2 g(v ) dω dv * . Let us set B(ω,V ) = 1 2π 3/2 B(ω,V ) + B(ω ⊥ ,V ) .
The estimate (13) on B guarantees that

B(ω,V ) ≤ 2 a 1 2π 3/2 | sin θ | | cos θ | |V | + |V | δ -1 . ( 16 
)
The thesis of the lemma is hence proved.

The previous lemma allows to prove the following result.

Proposition 1. There exists C > 0 such that

K 2 g(v) ≤ C R 3 g(η) k 2 (η, v) dη, ∀ v ∈ R 3 ,
where

k 2 (η, v) = e -1 8 (η-v) 2 -1 8 (η 2 -v 2 ) 2 (η-v) 2 |η -v| -1 , ∀ η, v ∈ R 3 . Proof. Using the change of variables v * → V * = v * -v, of Jacobian equal to 1, in (14) 
, we can write

K 2 g(v) = R 3 ×S 2 e -1 4 v 2 e -1 2 (V * +v) 2 e 1 4 v 2 g(v ) B(ω,V * ) dω dV * . (17) 
Then, let us denote V * = p + q, with p = ω(ω •V * ) and q = V *ω(ω •V * ). Note that the component q belongs to the plane Π = {ω} ⊥ = {p} ⊥ . Consider now the change of variables

(V * , ω) → (p, q), R 3 × S 2 → R 3 × Π . (18) 
We have to be very careful with the integration order in the change of variables, because q strongly depends on p. More precisely, we first integrate with respect to q since Π = {p} ⊥ , then we combine the one-dimensional integration in the direction ω with the integral on ω ∈ S 2 to obtain a three-dimensional integration over all rectangular components of |p|ω. Moreover, the Jacobian of ( 18) is given by dV * dω = 2 p 2 sin(p, p + q) dp dq.

Since it is clear that v = v + p, (17) becomes, by the abuse of notation B(p, p + q) = B(ω,V * ),

K 2 g(v) = 2 R 3 Π B(p, p + q)e -1 4 v 2 -1 2 (p+q+v) 2 + 1 4 (v+p) 2 g(v + p) |p| -2 | sin(p, p + q)| -1 dq dp. ( 19 
)
Using the fact that p • q = 0, we deduce

- 1 4 v 2 + 1 4 (v + p) 2 - 1 2 (p + q + v) 2 = - 1 8 p 2 - 1 2 q + 1 2 (2v + p) 2 ,
which allows to write

K 2 g(v) = 2 R 3 Π B(p, p + q)e -1 8 p 2 -1 2 [q+ 1 2 (2v+p)] 2 g(v + p) |p| -2 | sin(p, p + q)| -1 dq dp.
Let z = v + p/2, and consider z 1 its component parallel to ω, and denote z 2 = z-z 1 ∈ Π . Then, using the straightforward equality (q+v+ p/2)

2 = z 1 2 +(q+z 2 ) 2 , K 2 g becomes K 2 g(v) = 2 R 3 e -1 8 p 2 -1 2 z 1 2 g(v + p) |p| -2 Π B(p, p + q)e -1 2 (q+z 2 ) 2 | sin(p, p + q)| -1 dq dp. ( 20 
)
We are led to prove that the integral

∆ := 1 |p| Π B(p, p + q)e -1 2 (q+z 2 ) 2 | sin(p, p + q)| -1 dq
is upper-bounded, uniformly with respect to p ∈ R 3 and z 2 ∈ Π . From ( 16), we obtain, for some constant C > 0,

B(p, p + q) | sin(p, p + q)| ≤ C | cos(p, p + q)| |p + q| + |p + q| δ -1 .
Using | tan(p, p + q)| = |q|/|p|, we can write

B(p, p + q) | sin(p, p + q)| ≤ C 1 + q 2 p 2 -1 2 (p 2 + q 2 ) 1 2 + (p 2 + q 2 ) δ -1 2 
.

This implies that

B(p, p + q) |p| | sin(p, p + q)| ≤ C 1 + p 2 + q 2 δ 2 -1 ≤ C 1 + |q| δ -2 ,
using the fact that δ < 1. It is now convenient to split the range of integration, in the expression of ∆ , into |q| ≤ 1 and |q| ≥ 1, and get

∆ ≤ C |q|≤1 (1 + |q| δ -2 )dq + |q|≥1 e -1 2 (q+z 2 ) 2
dq .

The right-hand-side of the estimate is clearly upper-bounded by a universal constant.

To conclude the proof, we perform the change of variable p → η = p + v in (20) after using the uniform upper bound of ∆ . Then the thesis of the proposition is a consequence of the following equalities:

z 1 2 = z • η -v |η -v| 2 = 1 2 (η + v) • (η -v) |η -v| 2 = 1 4 (η 2 -v 2 ) 2 |η -v| 2 .
The compactness of K then appears as a consequence of the following properties:

• uniform decay at infinity:

K g L 2 (B(0,R) c ) ≤ ζ (R) g L 2 (R 3 ) , ∀R > 0,
where B(0, R) is the open ball of R 3 v centred at 0 and of radius R, and ζ (R) goes to 0 when R goes to +∞;

• equicontinuity: for any ε > 0, there exists ρ > 0 such that, for all w ∈ B(0, ρ),

(τ w -Id)K g L 2 (R 3 ) ≤ ε g L 2 (R 3 ) ,
where Id is the identity and τ w the translation operator

τ w K g (v) = K g (v + w), ∀v, w ∈ R 3 .
In [START_REF] Grad | Asymptotic theory of the Boltzmann equation. II[END_REF], Grad provided the required estimates on the kernels k 1 and k 2 , which allows to prove the compactness of K .

Extensions in the cut-off case

Caflisch [START_REF] Caflisch | The Boltzmann equation with a soft potential. I. Linear, spatiallyhomogeneous[END_REF][START_REF] Caflisch | The Boltzmann equation with a soft potential. II. Nonlinear, spatially-periodic[END_REF] extended Grad's result to the soft potential case by treating Grad cutoff kernels with γ ∈ (-1, 1] in three space dimensions.

In [START_REF] Golse | Stationary solutions of the linearized Boltzmann equation in a halfspace[END_REF], Golse and Poupaud are interested in studying the stationary solutions of the three-dimensional linearized Boltzmann equation in a half-space. An important step in their proof strategy consists in obtaining the compactness of the linearized Boltzmann operator in L 2 (Mdv) for Grad cutoff kernels with γ ∈ (-2, 1]. By defining

f * := M 1/2 f and L * ( f * ) = M -1/2 L ( f ),
they introduce the operator

K * ( f * ) := f * -L * ( f * ).
Subsequently, to prove the compactness of K * , they use some growth estimates for the operator and an iteration technique, which allows to deduce that (K * ) 4 is a Hilbert-Schmidt operator on L 2 (dv). Since K * is self-adjoint on L 2 (dv), the linearized Boltzmann operator itself is compact in L 2 (Mdv).

More recently, Guo [START_REF] Guo | Classical solutions to the Boltzmann equation for molecules with an angular cutoff[END_REF] extended Caflisch's result for Grad cutoff kernels to the range γ ∈ (-3, 1] in three space dimensions.

The last result that we quote in this subsection is due to Levermore and Sun [START_REF] Levermore | Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels[END_REF]. They prove a L p compactness result for the gain parts of the linearized Boltzmann collision operator (in any dimension D) associated with weakly cutoff collision kernels that derive from a power-law intermolecular potential. In their proof, they assume that the cross-section has the form

B(|v -v * |, cos θ ) = |v -v * | γ b(cos θ ), γ ∈ (-D, +∞)
where b ∈ L 1 (S D-1 ) is an even function. We really need these assumptions on b in order for B to be locally integrable in all its variables, which allows to give sense to both the gain and loss parts of the collision operator. In fact, the linearized Boltzmann operator L is split in the following way:

L = ν × (Id +K 1 -K 2 -K 3 ) f ,
where the loss operator K 1 and the gain operators K 2 and K 3 are respectively given by

K 1 f (v) = 1 ν(v) R D ×S D-1 B(σ , v -v * ) f (v * )M(v * )dσ dv * , K 2 f (v) = 1 ν(v) R D ×S D-1 B(σ , v -v * ) f (v )M(v * )dσ dv * , K 3 f (v) = 1 ν(v) R D ×S D-1 B(σ , v -v * ) f (v * )M(v * )dσ dv * ,
and the collision frequency ν is the D-dimensional analogous of [START_REF] Cercignani | The mathematical theory of dilute gases[END_REF]. They first prove that, under the assumptions written above, the operators K j : L p (νMdv) → L p (νMdv) are compact, 1 ≤ j ≤ 3. Once proved the compactness result for L p with p = 2, the result for every p ∈ (1, ∞) is deduced thanks to a straightforward interpolation argument and the following compactness criterion, which generalizes the classical Hilbert-Schmidt property. Lemma 2. Let K be an integral operator given by

K f (v) = R D k(v, v ) f (v ) dµ(v ),
where dµ is a σ -finite, positive measure over R D . Let the kernel k(v, v ) be symmetric in v and v and, for some r ∈ [1, 2], satisfy the bound

k L s (L r ) := R D R D |k(v, v )| r dµ(v ) s/r dµ(v) 1/s < +∞,
where s ∈ [2, +∞] is defined by 1/r + 1/s = 1. Let p, q ∈ [r, s] such that 1/p + 1/q = 1. Then, for any f ∈ L p (dµ) and g ∈ L q (dµ), the following estimate holds:

R D |g(v)K f (v)|dµ(v) ≤ R D ×R D |k(v, v ) f (v )g(v)|dµ(v)dµ(v ) ≤ k L s (L r ) f L p g L q .
Consequently, K : L p (dµ) → L p (dµ) is bounded and satisfies K L p ≤ k L s (L r ) . Moreover, if r ∈ (1, 2] then K : L p (dµ) → L p (dµ) is compact.

Extensions to kernels without cut-off

In [START_REF] Mouhot | Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff[END_REF], among other topics, Mouhot and Strain investigate compactness properties of both linearized Boltzmann and Landau operators to obtain explicit spectral gap and coercivity estimates. In this section, we only discuss the Boltzmann case, since the study of the Landau operator is not the purpose of this review article. They improve an earlier result of Pao [START_REF] Pao | Boltzmann collision operator with inverse-power intermolecular potentials[END_REF], by using a completely different approach, and establish the Fredholm alternative for a broad class of collision kernels without any small deflection cut-off assumption. First note that it is well-known that L is an unbounded symmetric operator on L 2 , see, for example, [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF].

The cross-sections considered in their article have the form

B(|v -v * |, cos θ ) = |v -v * | γ b(cos θ ), γ ∈ (-3, +∞), (21) 
where b behaves as follows:

b(cos θ ) ∼ θ →0 b * (θ ) (sin θ /2) -2-α , α ∈ [0, 2), ( 22 
)
where b * is a nonnegative function, bounded and non-zero near θ vanishes. When α ≥ 0, the angular singularity is not integrable: hence, we indeed deal with the non cut-off case. By using the change of variable σ → -σ , the angular cross-section b can be replaced by its symmetric form b(cos θ ) =

1 [0,π/2] (θ ) 2 [b(cos θ ) + b(cos(π -θ ))] .
In what follows, we are mostly interested in establishing the compactness of the collisional operator, and we do not take into account the (of course interesting) consequences on the spectral gap estimate.

The first part of the proof consists in a technical estimate on the linearized collision operator by assuming that the cross-section B is of variable hard spheres type, i.e. it does not depend on the angular variable:

B q (|v -v * |) = |v -v * | q , q ∈ (-3, +∞).
The linearized collision operator L corresponding to B q , is then written in the following form:

L g = ν g -Kg,
where the multiplicative local part ν can be seen as convolution

ν(v) := R 3 ×S 2 M(v) B q (|v -v * |) dv * dσ = S 2 | • | q * M (v),
and the non-local part writes

Kg(v) := R 3 ×S 2 B q (|v -v * |) g(v ) M 1/2 (v * ) + g(v * ) M 1/2 (v ) -g(v * ) M 1/2 (v) M 1/2 (v * ) dv * dσ .
In fact, K itself is composed by a pure convolution part

K c g(v) := S 2 | • | q * (M 1/2 g) (v) M 1/2 (v)
and by the remainder

K + g(v) := R 3 ×S 2 B q (|v -v * |) g(v ) M 1/2 (v * ) + g(v * ) M 1/2 (v ) M 1/2 (v * ) dv * dσ .
Using the change of variable σ → -σ in a part of the integral, the previous expression becomes

K + g(v) := 2 R 3 ×S 2 B q (|v -v * |)g(v ) M 1/2 (v * ) M 1/2 (v * ) dv * dσ .
At the formal level, and rigorously only when B q is locally integrable with respect to the angular variable, we can associate to B q a kernel k q := k q (v, v ) such that

K + g(v) = R 3 g(v ) k B (v, v ) dv , v ∈ R 3 .
Hence, the authors can apply Grad's strategy, as in Subsection 2.3, by first studying again the locally integrable case. In that situation, they prove the following preliminary results. The first one provides an explicit expression to the kernel.

Lemma 1 For q > -1, the explicit formula holds:

k q (v, v ) = 8 |v -v| (2π) 3/2 exp - |v -v| 2 8 - |v -v + 2(v • ω)ω| 2 8 × {ω} ⊥ |v -v + z| q-(3-2) exp - |z + (v -(v • ω)ω) | 2 2 dz .
The second one gives an a priori estimate on the kernel.

Proposition 2

The kernel k q is symmetric with respect to v and v , and, for any q > -1 and s ∈ R, satisfies the estimate

R 3 k q (v, v ) (1 + |v |) s dv ≤ C q,s (1 + |v|) q+s-2 , v ∈ R 3 ,
where C q,s is a constant which only depends on q and s.

The previous results are then extended to the non locally integrable case. More precisely, consider a cross-section B satisfying a condition of the type

B(|v -v * |, cos θ ) ≥ K B γ,α (|v -v * |, cos θ ) 1 [0,θ 0 ] (θ ), v, v * ∈ R 3 , θ ∈ [0, π],
where K > 0 and θ 0 ∈ (0, π] are constants, and B γ,α is given, for any γ ∈ (-3, +∞), α ∈ [0, 2), by

B γ,α (|v -v * |, cos θ ) = |v -v * | γ sin -2-α (θ /2), v, v * ∈ R 3 , θ ∈ [0, π].
In order to use their preliminary results, the authors focus on a fictitious selfadjoint operator on L 2 defined by

Lg(v) = R 3 ×S 2 |v -v * | γ+α+2 1 [0,1] (|v -v |) 1 [0,θ 0 ] (θ ) M 1/2 (v) M(v * ) - g(v ) M(v ) 1/2 - g(v * ) M(v * ) 1/2 + g(v) M(v) 1/2 + g(v * ) M(v * ) 1/2 dv * dσ ,
where both v and θ are considered as functions of v, v * and σ .

This operator is then written as the sum of several operators L = ν Id -K+ + Kc , and the authors prove that the right-hand side is the sum of Hilbert-Schmidt operators, which implies the operator compactness in L 2 .

In fact, this Hilbert-Schmidt property is straightforward for the multiplicative operator ν Id. Indeed, it is clear that there exists a constant C > 0 such that

ν(v) = R 3 ×S 2 |v -v * | γ+α+2 1 [0,1] (|v -v |) 1 [0,θ 0 ] (θ ) M(v * ) dv * dσ ≥ C (1 + |v|) γ+α .
Note that an analogous result is immediate for Kc .

Unfortunately, the situation is more intricate with the operator K+ . In the case when γ + α = 0, K+ can be written as a limit of Hilbert-Schmidt operators. Indeed, the kernel of K+ is, by simple inspection,

k := k 2 (v, v ) 1 [0,1] (|v -v |) 1 [0,θ 0 ] (θ ) = 8 |v -v| (2π) 3/2 exp - |v -v| 2 8 - |v -v + 2(v • ω)ω| 2 8 × ω ⊥ |v -v + z| exp - |z + (v -(v • ω)ω) | 2 2 dz 1 [0,1] (|v -v |) 1 [0,θ 0 ] (θ ).
This kernel is then approximated as follows: it is split into

k = kc ε + kr ε , with kc ε = 1 [ε,1] (|v -v |) × 1 [ε,1] v |v| • (v -v ) |v -v | k,
and, obviously,

kr ε = k -kc ε .

The authors prove that kr

ε is symmetric in v, v and that lim ε→0 sup

v∈R 3 R 3 | kr ε | dv = 0.
Therefore, the sequence of operators K+,c ε associated to kernels kc ε converges to K+ in L 2 when ε goes to 0. Hence, we only have to prove that each K+,c ε is compact. Note, then, that the kernel kc ε satisfies

R 3 ×R 3 kc ε 2 dv dv ≤ C R 3 1 ε (1 + r) 2 (1 + |v| sin θ ) 2 e -r 2 4 π 0 e -(r+2|v| cos θ ) 2 4 sin θ 1 [ε,1] (| cos θ |) dθ dr dv ≤ C R 3 (1 + |v|) 2 e -ε 2 |v| 2 dv,
which clearly is a finite quantity. Consequently, K+,c ε is a Hilbert-Schmidt operator. When γ + α = 0, one considers the following symmetric weighted modification of L:

L = (1 + | • |) -(γ+α)/2 L (1 + | • |) -(γ+α)/2 •
and the corresponding decomposition L = ν -K+ + Kc . Then ν is uniformly strictly positive and upper-bounded.

The authors conclude their argument by proving that Kc is a Hilbert-Schmidt operator. They first focus on the term K+ . Its kernel is

(1 + |v|) -(γ+α)/2 k γ+α+2 (v, v ) (1 + |v |) -(γ+α)/2 1 [0,1] (|v -v |) 1 [0,θ 0 ] (θ )
and similar computations as above allow to prove again that K+ can be written as a limit of Hilbert-Schmidt operators.

3 The compactness properties for the linearized kinetic operators for mixtures

In this section, mainly following [START_REF] Daus | Hypocoercivity for a linearized multispecies Boltzmann system[END_REF] for the definition of the linearized operator, and [START_REF] Boudin | Diffusion asymptotics of a kinetic model for gaseous mixtures[END_REF] for the compactness result, we investigate the case of an ideal gas mixture, with monatomic species.

Building the linearized collision operator for mixtures

Each of the I ≥ 2 species are described through a distribution function f i , 1 ≤ i ≤ I.

As in the mono-species case, this function depends on time t ∈ R + , space position x ∈ R 3 and velocity v ∈ R 3 . In the following, we also use the macroscopic density of species i, defined by

n i (t, x) = R 3 f i (t, x, v) dv.
The interactions between molecules are assumed to remain elastic, so that two colliding molecules of species i and j, 1 ≤ i, j ≤ I, with respective molecular (or molar) masses m i and m j , see their velocities modified through the collision rules

v = m i v + m j v * m i + m j + m j m i + m j T ω (v -v * ), (23) 
v * = m i v + m j v * m i + m j - m i m i + m j T ω (v -v * ), (24) 
where ω ∈ S 2 and T ω denotes the symmetry with respect to the plane {ω} ⊥ , i.e.

T ω z = z -2(ω • z)ω, ∀z ∈ R 3 .
Then the collision operator related to species i and j is given by

Q i j ( f , g)(v) = R 3 ×S 2 f (v )g(v * ) -f (v)g(v * ) B i j (ω, v -v * ) dω dv * . (25) 
The cross-sections B i j , 1 ≤ i, j ≤ I, are chosen as in the mono-species case, i.e. they satisfy [START_REF] Bourgat | Microreversible collisions for polyatomic gases and Boltzmann's theorem[END_REF] and the same condition as in the classical case [START_REF] Daus | Hypocoercivity for a linearized multispecies Boltzmann system[END_REF], namely

B i j (ω,V ) ≤ a | sin θ | | cos θ | |V | + 1 |V | 1-δ , ∀ ω ∈ S 2 , ∀V ∈ R 3 , (26) 
where a > 0 and 0 < δ < 1 are again given constants which do not depend on i, j, and θ denotes the oriented angle between ω and V . The time evolution of each distribution function f i , 1 ≤ i ≤ I, is then given by

∂ f i ∂t + v • ∇ x f i = I ∑ j=1 Q i j ( f i , f j ). (27) 
One can write weak forms of the collision operators using the changes of variables (v, v * ) → (v * , v) and (v, v * ) → (v , v * ) with a fixed ω ∈ S 2 . It is worth noticing that cases i = j and i = j are intrinsically different, see [START_REF] Desvillettes | A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions[END_REF][START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF] for more details. Moreover, we can formally write, for any i and j, and any functions (of v) f and g

R 3 Q i j ( f , g)(v) dv = 0, (28) 
R 3 Q i j ( f , g)(v) m i v m i v 2 /2 dv + R 3 Q ji (g, f )(v) m j v m j v 2 /2 dv = 0. ( 29 
)
One can also write an H-theorem [START_REF] Desvillettes | A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions[END_REF][START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF], which allows to obtain Maxwell functions as equilibrium. From now on, let us denote M i the normalized, centred Maxwell function related to species i

M i (v) = m i 2π 3/2 e -m i 2 v 2 , ∀v ∈ R 3 . (30) 
Now we are ready to write the linearized collision operator L for mixtures. We shall work in a L 2 setting again. More precisely, for any function g ∈ L 2 (R 3 ) I of v, we shall write the L 2 norm of g as

g 2 L 2 = I ∑ j=1 g j 2 L 2 = I ∑ j=1 R 3 g j (v) 2 dv.
Consider now macroscopic densities (n 1 , . . . , n I ) as given and define the standard perturbation g = (g 1 , . . . , g I ) to M = (M 1 , . . . , M I ) by

f i = n i M i + n i M 1/2 i g i , 1 ≤ i ≤ I.
By defining the i-th component of L g as

[L g] i = M i -1/2 I ∑ j=1 n i n j Q i j (M i , M 1/2 j g j ) + Q i j (M 1/2 i g i , M j ) , (31) 
for any function g = (g 1 , . . . , g I ) and 1 ≤ i ≤ I, as well as the i-th component of Q(g, g) by

[Q(g, g)] i = M i -1/2 I ∑ j=1 n i n j Q i j (M 1/2 i g i , M 1/2 j g j ), 1 ≤ i ≤ I, (32) 
the Boltzmann equations on the components of the perturbation g write

∂ t g i + v • ∇ x g i + [L g] i = [Q(g, g)] i , 1 ≤ i ≤ I. (33) 
If we introduce the operator K , whose i-th component of K g is given by

[K g] i (v) = I ∑ j=1 m i m j 4π 2 3/4 n i n j R 3 ×S 2 B i j (ω, v -v * ) e -1 4 m i v 2 e -1 2 m j v 2 * (34) m i 2π 3/4 e 1 4 m j v 2 * g j (v * ) -e 1 4 m j v 2 * g j (v * ) + m j 2π 3/4 e 1 4 m i v 2 g i (v ) dω dv * (35)
and the positive function ν = ν(v), whose i-th component writes

ν i (v) = I ∑ j=1 n i n j m i m j 4π 2 3/2 R 3 ×S 2 e -1 2 m j v 2 * B i j (ω, v -v * ) dω dv * , (36) 
we can immediately state that

L = K -ν Id . (37) 
The following result holds.

Theorem 1. The operator K , defined by (34), is compact from L 2 (R 3 ) I to L 2 (R) I .

The detailed proof can be found in [START_REF] Boudin | Diffusion asymptotics of a kinetic model for gaseous mixtures[END_REF]. We discuss below its main features, emphasizing on the major strategy differences with respect to Grad's proof in the monospecies case.

Elements of proof for the compactness

First, we write

K = K 1 + K 2 + K 3 + K 4 ,
where the i-th component of each K g, 1 ≤ ≤ 4, is given by

[K 1 g] i (v) = - I ∑ j=1 n i n j m i m j 4π 2 3/4 × R 3 ×S 2 e -1 4 m i v 2 e -1 4 m j v 2 * g j (v * ) B i j (ω, v -v * ) dω dv * , [K 2 g] i (v) = ∑ j =i n i n j m i m j 4π 2 3/4 × R 3 ×S 2 e -1 4 m i v 2 e -1 2 m j v 2 * e 1 4 m j v 2 * g j (v * ) B i j (ω, v -v * ) dω dv * , [K 3 g] i (v) = n i 2 m i 2π 3/2 × R 3 ×S 2 e -1 4 m i v 2 e -1 2 m i v 2 * e 1 4 m i v 2 * g i (v * ) + e 1 4 m i v 2 g i (v ) B ii (ω, v -v * ) dω dv * , [K 4 g] i (v) = ∑ j =i n i n j m j 2π 3/2 × R 3 ×S 2 e -1 4 m i v 2 e -1 2 m j v 2 * e 1 4 m i v 2 g i (v ) B i j (ω, v -v * ) dω dv * .
The compactness for K is obtained by successively proving the compactness property for each K . It is crucial to dissociate the cases when i = j or not, because the proofs are quite different.

Compactness of K 1

Denote, for any i, j, We immediately have, for any i,

[K 1 g] i (v) = - I ∑ j=1 n i n j m i m j 4π 2 3/4 R 3 g j (v * ) k i j 1 (v, v * ) dv * , ∀ v ∈ R 3 .
The compactness property can then be deduced, because K 1 is somehow a Hilbert-Schmidt operators with associated kernels (k i j 1 ).

Compactness of K 2

The proof strategy here is very different from Grad's [START_REF] Grad | Asymptotic theory of the Boltzmann equation. II[END_REF]. Once again, we aim to recover the Hilbert-Schmidt structure for K 2 . We first write K 2 in another form. Thanks to the microscopic conservation of kinetic energy during a collision, we have

v * = I 3 -A(ω) -1 v + A(ω) -1 v * , (42) 
where we used the equality -2 m i m i + m j A(ω) -1 ω ω = I 3 -A(ω) -1 .

Then we obtain an expression of v with respect to v and v * by putting (42) in (40):

v = m i + m j m i I 3 - m j m i A(ω) -1 v - m j m i I 3 -A(ω) -1 v * .
Consider now the following block matrix in R 6×6

A(ω) =      m i + m j m i I 3 - m j m i A(ω) -1 - m j m i I 3 -A(ω) -1 m j m i I 3 -A(ω) -1 A(ω) -1      . ( 43 
)
The previous matrix is invertible (check that det A(ω) = -1) and we have A(ω) -1 = A(ω). Moreover, it is clear that

√ m i v √ m j v * = A(ω) √ m i v √ m j v * .
The best constant ρ satisfying (39) is obtained by computing Using Proposition 2 and (26) for each B i j , we obtain the existence of a constant C > 0, only depending on all the molecular masses, such that, for any i,

[K 2 g] i (v) ≤ C ∑ j =i n i n j e -ρ 4 m i v 2 × R 3 ×S 2 e -ρ 4 m j v * 2 g j (v * ) |v -v * | + |v -v * | δ -1 dv * dω.
We then perform the change of variable v * → v * , whose Jacobian is 1/ det A(ω). Noticing that

v -v * = A(ω) -1 v -v * and A(ω) 2 -1 ≤ A(ω) -1 (v -v * ) |(v -v * )| ≤ A(ω) -1 2 ,
we can state that

|v -v * | + |v -v * | δ -1 ≤ A(ω) -1 2 v -v * + A(ω) 2 1-δ v -v * δ -1 .
Eventually, we write

[K 2 g] i (v) ≤ C ∑ j =i n i n j R 3 ×S 2 e -ρ 4 m i v 2 e -ρ 4 m j v 2 * g j (v * ) × |v -v * | + |v -v * | δ -1 dω dv * .
We thus recover a kernel form to study, which allows us to conclude on the compactness of K 2 .

Compactness of K 3 and K 4

Since K 3 appears as a mono-species operator, it can be treated following Grad's strategy. The proof of the compactness of K 4 is more intricate and involves both kinds of strategies, Grad's and the one from Subsection 3.2.2.

k i j 1 2 e - 1 4 m i v 2 e - 1 4 m j v 2 *

 121212 (v, v * ) = S B i j (ω, vv * ) dω, ∀ v, v * ∈ R 3 .

inf v,v * ∈R 3 A 2 √ m i v √ m j v * 2 = A(ω) - 1 2- 2 = 2 .= min j =i min ω∈S 2 A(ω) 2 - 2

 322122222 A(ω) 2 -Since ω → A(ω) 2-2 is clearly a continuous positive function of ω on the compact set S 2 , it reaches its minimum. Hence, we are led to set ρ > 0 to satisfy (39).
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