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This paper deals with the design of anti-windup compensator for discrete-time switched systems subject to
input saturation. The cases of static and dynamic anti-windup controllers are addressed aiming at maximizing
the estimate of the basin of attraction of the origin for the closed-loop system. Two aspects of the switching
law are taken into account during the design: either it is arbitrary or it is a part of the complete control
law. Theoretical conditions allowing to synthesize the anti-windup compensator are mainly described through
linear matrix inequalities. Computational oriented conditions are then provided to solve convex optimization
problems able to give a constructive solution.

Keywords: Switched systems; anti-windup; Lyapunov functions; saturation; deadzone; Lyapunov-(Metzler)
inequalities.

1 Introduction

The stability and the stabilization of systems including saturations is an important field of
research in control theory. It has been motivated by the fact that most real applications present
limitations on the actuators and/or sensors for physical or safety reasons. The presence of a
saturation may be a source of instability, or at least of only local stability, and implies frequently
a reduction of the performances (Hu and Lin 2001, Kapila and Grigoriadis 2002, Tarbouriech
et al. 2007): for instance, the presence of a saturation may reduce the size of the basin of attraction
of the origin.

Among the different techniques to cope with control of systems including saturations, the anti-
windup strategy is one of the most popular. It consists of the introduction of control modifications
in order to recover, as much as possible, the performance induced by a previous control design,
which did not take into account the presence of the saturation. The literature about anti-windup
strategy is rich as it can be seen in (Turner and Zaccarian 2006, Galeani et al. 2009, Tarbouriech
et al. 2011, Zaccarian and Teel 2011) and references therein. It has been more particularly focused
on continuous-time systems, even if some contributions on anti-windup control design for discrete-
time systems could be underlined, as for example (Gomes da Silva Jr. et al. 2001, Herrmann et al.
2003, Turner et al. 2003, Gomes da Silva Jr. and Tarbouriech 2006, Grimm et al. 2008).

On the other hand, a large range of complex systems, as for instance embedded ones, can be
modeled as a hybrid dynamical system, exhibiting characteristics of both continuous-time and
discrete-time dynamical systems (Lunze and Lamnabhi-Lagarrigue 2009). They can be modeled
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as a state, which can flow on a flow set by verifying a differential inclusion and can jump on a jump
set by verifying a difference inclusion (Goebel et al. 2012). An important class of hybrid systems
consists of switched systems, that is a finite set of dynamics, associated with a switching rule
indicating at each time the mode that is active (Liberzon 2003, van der Schaft and Schumacher
2000, Lunze and Lamnabhi-Lagarrigue 2009). Indeed, the state of a switched system satisfies a
differential (or difference) equation, which is parametrized by the switching rule that can jump
between the different indices of the modes (see, for instance, (Goebel et al. 2012, Section 1.4.4)).
The switched systems can be distinguished by the nature of the switching rule, which can be — in
function of the application — considered as a perturbation (properties should thus be ensured for
all the admissible switching rules), or as a part of the control inputs. The issue of the stability
and the stabilization of switched systems has induced a great number of contributions, because
it is not intuitive (Liberzon and Morse 1999). For instance, a switched system, switching between
stable modes, may be unstable. Several tools have been already proposed to investigate the
stability of switched systems: multiple Lyapunov functions (Branicky 1998), Lie algebra condi-
tions (Liberzon et al. 1999, Agrachev and Liberzon 2001, Shorten et al. 2007), common Lyapunov
functions (Hante and Sigalotti 2011), switching Lyapunov functions (Daafouz, Riedinger et al.
2002), variational approach (Monovich and Margaliot 2011), joint spectral radius (Tsitsiklis and
Blondel 1997) (see also (Ye et al. 1998, Sun and Ge 2005)). The difficulty of this issue increases
when the switched system is subjected to constraints (Daafouz et al. 2013).

Recently both aspects (saturation and switching nature) inherent to realistic complex systems
have been considered together. First of all, a link may be established naturally by formulating the
saturation as a switch between piecewise linear models (Johansson 2002) or between the input
and the associated deadzone (Yuan and Wu 2014). Without a reformulation of the saturation, the
stability and stabilization of discrete-time switched systems with input saturation has been inves-
tigated in (Liu and Duan 2005) with a common Lyapunov function and afterward in (Ma et al.
2009) with a saturation-dependent Lyapunov function, by extending the contribution in (Cao
and Lin 2003). The continuous-time case has been studied in (Ni and Cheng 2010) by using a
minimum dwell time. Several contributions are focused on the uncertainties (Zhang et al. 2010)
or the Lo-gain performances (Zhang et al. 2011, Zhao and Zhao 2014). The early work on optimal
control for linear hybrid systems subject to saturation (Schutter 2000) is also noteworthy. One
can also mention (Benzaouia 2012), where the switched systems subject to input saturation are
considered by using in particular Linear Differential Inclusions issued from (Hu and Lin 2001) to
deal with such a limitation. In the case of discrete-time switching systems with a nonlinear mode
satisfying a modal cone bounded sector condition, a new Lyapunov function depending on the
modal nonlinearity has been provided in (Gonzaga et al. 2011, 2012a) when the switching law
is arbitrary and in (Jungers et al. 2012, 2013) when the switching law is a part of the control.
These results are valid for generic nonlinearity (not necessarily a saturation or a deadzone) and
are based on the introduction of this kind of Lyapunov functions for the standard discrete-time
Lur’e problem (Gonzaga et al. 2012b).

The anti-windup techniques and the switched formalism have been also gathered in the litera-
ture. For instance, it is emphasized in (Bruckner et al. 2010) (see also (Bruckner et al. 2013)) that
even if the plant does not switch, a switching anti-windup compensator may improve the perfor-
mances. Pionner contributions applying (switching) anti-windup techniques on switched systems
have been provided in the literature. In the continuous-time framework several other tools have
been considered: multiple Lyapunov functions (Lu and Lin 2009, 2010), piecewise quadratic
Lyapunov functions (Mulder and Kothare 2000, Tiwari et al. 2007) or being focused on uncer-
tainties. We may mention the following work on a particular class of switched systems (Shorten
et al. 2009).

The results (Zhang et al. 2012, Zhang and Zhao 2012, Chen et al. 2012) considering the discrete-
time case, are more particularly focused on the presence of a model uncertainty or of an exogenous
perturbative input, when the switching law is arbitrary. The class of static anti-windup controllers
considered in these contributions, affects the state evolution equation of the compensator, de-
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signed with the linear system and not directly the output of the compensator. When the switching
law can be chosen, the anti-windup compensators can be used to improve the performances of
the closed-loop system, such as the size of the domain of attraction (Duan and Wu 2012, 2014,
Li and Lin 2013).

Due to the fact that a few works about anti-windup strategy for switched systems including
saturation in discrete-time have been published as mentioned above, the aim of the present paper
is to bridge the gap left by the literature and then to provide a panel of results in this framework
by proposing static and dynamic anti-windup controllers when the switched rule is arbitrary or
a part of the control inputs.

The paper is organized as follows. Section 2 presents the problem statements and states the
main tools which will be used in the sequel. Sections 3 and 4 provide respectively a static anti-
windup controller and a dynamic output one design in the case of arbitrary switching law, which
maximizes the size of the estimate of the basin of attraction. Sections 5 and 6 extend the results
to the case where the switching law is a part of the control. Also refinements are given allowing
a switching law design based only on the knowledge of the system output. Illustrations are
presented in Section 7, whereas Section 8 ends the paper with concluding remarks.

Notation. N, R, RT are respectively the set of the natural integers, of the real numbers and
of the nonnegative real numbers. For any vector x € R™, x > 0 states that, V£ =1,...,n, its
components z sy are nonnegative. Also, for two vectors x, y of R", z > y states that z» —y) > 0,
Ve=1,...,n. Ay and A; ) denote the (-th row of matrices A and A;, respectively. For two
symmetric matrices, A and B, A > B means that A — B is positive definite. A’ and A+ denote
respectively the transpose and a basis of the null space of matrix A. He(A) = A+ A’. I, (Opxn) is
the m-order identity matrix (m X n-order null matrix). x means the symmetric blocks in matrices.
diag(A; B) denotes the diagonal matrix whose diagonal blocks are formed by square matrices A
and B. For a symmetric positive-definite matrix M € R™*" the ellipsoidal set £(M, ) associated
with M = M’ > 0 and v > 0 is given by {z € R"; 2’Mz <~} and the shortcut £E(M) = £(M, 1)
is used.

2 Problem statement
Consider the switched discrete-time linear system consisting of N modes

r(t+1) = Agpyz(t) + Boyu(t), z(0) = zo, (1)
y(t) = Ca(t)x(t)a (2)

where z(t) € R, u(t) € R™ and y(t) € RP are respectively the state, the input and the measured
output of the system, at any time ¢ € N. The mapping 0 : N — Z = {1,--- , N} is called the
switching rule and indicates at each time ¢ € N the unique active mode among {(A;, B;, C;) }iez-
It is assumed that a switching n.-order dynamic output controller is given as follows

xc(t + 1) = Ac,o(t)xc(t) + Bc,a(t)uc(t)v (3)
ve(t) = Co o) Te(t) + Degrytie(t), (4)

where x.(t) € R™, u.(t) = y(t) € RP and v.(t) € R™ are respectively the state, the input and
the output of the controller.

The properties of the controller given by (3)-(4) depend on two distinct and conflicting frame-
works related to the switching law o. They are gathered in the two following conflicting Assump-
tions 2.1 and 2.2.

Assumption 2.1: The switching law is arbitrary and not a priori known, but its current value
is assumed available. The controller (3)-(4) is then assumed to stabilize the closed-loop system (1)
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for any possible switching rule in the absence of control saturation, that is when u(t) = v.(t).

Assumption 2.2: The switching law is a part of the control inputs of the system. It is then
assumed that there exists a particular switching law o which stabilizes the closed-loop system
consisting of the system (1) and of the controller (3)-(4) in the absence of control saturation,
that is when u(t) = vc(t).

It should be underlined that, in the last case (Assumption 2.2), the stability of the closed-loop
system is not assumed for any switching law, but only for a few of them. The synthesis of the
controller (3)-(4) may also take into account performance requirements in addition to stability
aspects, as for instance in (Daafouz, Millérioux et al. 2002, Daafouz and Bernussou 2002, Daafouz
et al. 2003, Melin et al. 2011).

Suppose now that the input u(t) of the system is subject to magnitude limitations defined by

sat(u(t)) (g = sat(uy(t)) = sign(u) () min(py), [ue)(@)]), V€€ {1,---,m}, (5)

where p € R™ is fixed and verifies py) > 0, V€ € {1,--+,m}. The decentralized deadzone
nonlinearity, dually associated with the saturation, is defined as

U(v) =sat(v) —v, YoveR™ (6)

To reduce the degradation of performance requirements due to the saturation of the input u(t),
anti-windup terms, denoted yaw.(t) € R™ and yaw,»(t) € R™ may be added to the controller
(Tarbouriech et al. 2011), (Zaccarian and Teel 2011). In such a case, the whole system could be
rewritten as

z(t+ 1) = Aya(t) + Boysat(ve(t)),
y(t) = a(t)w( )s

zo(t+1) = Ac a(t)ivc(t) + Be o (t)Co(t)2(t) + Yaw,2 (1),
Ve(t) = Ceo(t)Te(t) + Deo(t) Co(ty () + Yaw,o(t)- (10

For a sake of clarity, we define the extended state
_ [ =) n
e = (1) ex (1)

with n = np + ne, the extended anti-windup term

o) = (220} € ot (12)

Yaw,v (t)

and the extended matrices, Vi € Z,

A; 4+ BiD.;C; BiCy B;

A — ) iPeii Divei | o Rnxn; B = ) e Rnxm; 13
! |: Bc,ici Ac,i :| ! |:Onc><m:| ( )
o Onpxnc B; nx(ne+m)., - (. . mxmn,

R, = eR . K; = [D;Ci Ce;] € R™, (14)

Inc Oncxm ' ’

F = [Omxn, L] € RM*(netm), (15)
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The system can be reformulated into the compact form
Et+1) = Ag(t)f(t) + Bo(t)‘l’(vc(t)) + Rg(t)yaw(t), (16)
Uc(t) = Ka(t)ﬁ(t) + Fyaw(t). (17)

Notice that matrix F', defined by (15) allows an extraction of the vector yaw(t) and is thus
independent of the switching rule o.
The following definitions will be common for the sequel of the paper.

Definition 2.3: The basin of attraction of the system (7)-(10), denoted B, is defined as the
set of all £y € R™, such that the corresponding trajectories starting from any £(0) = &y converge
asymptotically to the origin.

The notion of basin of attraction being delicate to cope with for non-linear systems, we intro-
duce the following definition of region of asymptotic stability, allowing more conveniently to deal
with basin of attraction estimates.

Definition 2.4: A set R C B,, containing the origin in its interior, is said to be a region of
asymptotic stability for the system (16) if the trajectories associated with any {, € R converge
asymptotically to the origin.

The notion of trajectories appearing in Definitions 2.3 and 2.4 should be understood with
respect to the choice of Assumption 2.1 or 2.2.
Among all the possible switched anti-windup compensators, we will study the static ones

yaw,z(t) = an,x,a(t)ql(vc(t))v (18)
y&W,U(t) = an,v,a(t)\p(vc(t))? (19)

and dynamic ones, with the anti-windup compensator state xay(t) € R™,

H?aw(t + 1) - Aaw,a(t)xaw(t) + Baw,a(t)\I/<’UC(t))7 (20)
yaw,x(t) = Caw,:c,a(t)xaw(t) + Daw,x,a(t)\lj(vc(t»v (21)
Yaw,v (t) = Caw,v,a(t)$aw (t) + Daw,v,a(t)q/(’uc (t)) (22)

an,$,i :| c R(m+n°) Xm.

For a sake of clarity, the following notation are introduced: E,y ; = [ ;

Clawi = gaw,mﬂ: € R(netm)xnaw 5114 finally D,y ; = [gaw,rﬂ:] e R(etm)xm.
aw,v,i aw,v,i

We can list here the problems investigated in this paper:

aw,v,t

Problem 2.5: Given the system (7)-(10), determine the anti-windup gain matrices FE,y ;,
i € T of the static anti-windup controller (18)-(19) leading to the largest estimate of the basin
of attraction for the closed-loop system, under Assumption 2.1.

Problem 2.6: Given the system (7)-(10), determine the anti-windup gain matrices Aaw.,
Baw,i, Caw,i and Doy 4, (i € 7) of the dynamic full order (naw = n) anti-windup controller (20)-
(22) leading to the largest estimate of the basin of attraction for the closed-loop system, under
Assumption 2.1.

Problem 2.7: Given the system (7)-(10), determine the anti-windup gain matrices Eqy i, 1 € Z
of the static anti-windup controller (18)-(19) and conjointly the switching law o(t) leading to the
largest estimate of the basin of attraction for the closed-loop system, under Assumption 2.2.

Problem 2.8: Given the system (7)-(10), determine the anti-windup gain matrices Aaw.i, Baw,i,
Caw,i and D,y ;, (i € Z) of the dynamic full order (n.w = n) anti-windup controller (20)-(22)
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and conjointly the switching law o(t) leading to the largest estimate of the basin of attraction
for the closed-loop system, under Assumption 2.2.

Remark 1: It is noteworthy that these problems are not completely independent. For instance,
a solution to Problem 2.5, that is matrices F,y ;, induces a particular solution to Problem 2.6 by
imposing Aayi = On,,, Baw,i = On,,xm and Caw;i = Oy 4m)xn,, and Daw; = Eay ;. The same
relation occurs between Problems 2.7 and 2.8.

Each following section is related to solution to one of the problems described above, exploiting
Lyapunov arguments and generalized sector conditions adapted to the switched systems.

3 Static anti-windup controller for arbitrary switching law

This section is devoted to solving Problem 2.5. The selected anti-windup controller is given
by (18)-(19). This implies that the closed-loop system reads

E(t+1) = Ag)é(t) + (Bow) + Roty Baw,o(t) ¥ (ve(t)), (23)
ve(t) = Ko1)§(t) + F Eqy o1V (ve(t)). (24)

Remark 2: Under Assumption 2.1, the controller (3)-(4) is such that all the trajectories starting
from any initial condition £(0) € R™ and which are solution to the difference inclusion £(t 4 1) €
{A;&(t), Vi € I} converge to the origin. This difference inclusion is then called asymptotically
stable (see (Molchanov and Pyatnitskiy 1989, Gurvits 1995, Daimond and Opoitsev 2001, Sun
and Ge 2011)).

Remark 3: A particular attention should be paid to the well posedness of the implicit re-
lation (24). Roughly speaking, for each £(t), we can compute one and only one value wv¢(t)
satisfying the implicit relation (24). Due to the piecewise affine definition of the deadzone
U(v.(t)) and the mode dependency, the implicit relation (24) can be rewritten as affine equations
Ljve(t) +pi(t) =0,75€{1,--- ,N x3™}, with I'; € R™*™ and p; € R™. We will verify a poste-
riort that the matrices I'; are nonsingular, for any j € {1,--- , N x 3™}, in order to ensure the
well posedness of relation (24) (see for instance (Zaccarian and Teel 2011, Chapter 2, page 38)
for more details). Notice that among this set of matrices, there are the matrices (I, + F Eayi),
Viel.

Let us define the following set, which is necessary to associate the deadzone with a generalized
sector condition. For a given set of matrices H; € R™*", 4 € Z, one defines

S({Hi}’iel’p) = {5 €eR": —pP < ng < P Vi € I} . (25)

Lemma 3.1: Consider matrices G; € R™ " 4§ € T. If the vector & is an element of
S({Gi}iez, p), then, the control law that is given by (24) satisfies the following sector condition

U (v.)U; [sat(ve) + Gi€] <0, (26)

for any diagonal positive definite matriz U; € R™*™ Vi e 1.
Proof The proof is straightforward from Lemma 1 in (Tarbouriech et al. 2006). O

Remark 4: Because v, depends on ¥(v.) by the definition (24), it is more suitable to consider
the equivalent sector condition to (26), (see for instance (Hu et al. 2005, 2008) and (Tarbouriech
et al. 2011, Chapter 7))

\IJI(UC)Ui [\I/(UC) + Ve + sz] <0. (27)
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Let us consider a switched quadratic function defined by
V(&) =& Pg, V(i) eR" XTI, (28)

with {P;};c7 a set of symmetric and positive definite n x n-matrices and the following candidate
Lyapunov function:

Vimax(§) = meazx V(¢ i), VEeR™ (29)

Let us define, also, the unitary level set of the Lyapunov function (29), which will be used, in
the sequel, to estimate the basin of attraction of system (23). Consider the set

LVmax - {E e R™: Vmax(g) < 1} . (30)

The level set Ly, could be reformulated as indicated in the following lemma, (Hu 2007).
Lemma 3.2: The level set Ly, defined by (30) verifies

LV .. = [ E(P). (31)
1€T
Proof € € Ly, is equivalent to V(§,4) < 1,Vi € Z, that is £ € £(F;), Vi € Z, which is equivalent
to & e ) E(H). O
1€T

The following theorem offers a local stability condition for Problem 2.5.

Theorem 3.3: If there exists a set of symmetric positive definite matrices W; € R™*" matrices
Y; € R™" matrices Z; € RU"Tn)xm - and diagonal positive definite matrices S; € R™™ i e T
satisfying the LMIs

Wj * *
Wi Aj W; * >0, V(i,j) €T (32)
(SiB.+ Z!R]) (K;W;+Y;) (25, + FZ; + ZF’)

Wi « .
|:Y;7(£) p%g):| > 0’ \V/(Z, ) € X { ) am}a (33)

then for the anti-windup gain E.,; = ZiSfl, the level set Ly is a region of erponential

stability for system (23), with P; = W;l.

mazx

Proof First of all, the coefficients p(), (£ € {1,--- ,m}) being positive constants, a Schur com-
plement (Boyd et al. 1994) could be applied to the inequality (33) and implies
1 !
Wi 2 =Y, (o Yi0)- (34)
Pl

By pre- and post-multiplying this inequality by VVZ-_I and by using the changes of variables
P=W; G, =Y,W, ! (i €I), we have

1

Pley
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This implies that Ly .. C S({Gi}iez,p). Then from Lemma 3.1, it follows that the sector
condition (26) is verified in the set Ly, .

By assuming the feasibility of inequality (32), the matrix W; is invertible and allows to apply
a Schur complement and leads to

Wi * Wi A [ AW (B.S + R 7,
(K:iW; +Y;) (28i+ FZ; + ZfF/)] - [(Bisi + Rz‘Zi)l] Wi LW (BiSi+ Riz)] >

(36)

By using the changes of variables U; = Sl-_l7 P, =W ! and E.w;= ZiSl-_l7 (i € 7), in addition

)
%

of pre- and post-multiplying the inequality (36) by [ 0 U
2

] , one obtains

P; *
(UiKZ‘ + Usz) <2Ui + UiFEaW7i + FE’ F/UZ):|

aw,i

A’
B |:(Bz+Rzanz)/:| Pj [AZ (Bi+Rian,i)] > 0. (37)

By pre- and post-multiplying the inequality (37) respectively by (&' () ¥/(vc(t))) # 0 and its
transpose, we have, by noting i = o(t) and j = o(t + 1),

V(EE+1),0(t+1)) = V(E®), 0(t) < 20" (ve(t))Usr)[¥(ve(t)) + ve(t) + Goé(®)].  (38)

By applying Lemma 3.1, we have for each £(t) € Ly, __, the stability condition

max ?

V(E(t+1),0(t+1)) = V(£(t),0(t) <0. (39)

The inequality (37) being strict, for £(¢) # 0, the stability condition (39) is thus strict, ensuring
the stability of the origin in Ly___. The closed-loop system being an autonomous linear switched
system, the origin in Ly is exponentially stable (Daafouz, Riedinger et al. 2002). O

ma;

Theorem 3.3 provides sufficient conditions for the exponential stability in Ly . . In order to
give a complete answer to Problem 2.5, one can build the following optimization problem, which
is a way to maximize Ly the estimate of the basin of attraction.

Optimization problem 3.4
s 5"
subject to (32)-(33) and

[ﬁlin éﬂ > 0gn, VieT. (40)

By using a Schur complement, the inequality (40) becomes
BL, > W' =P, (41)

which induces the inclusion £(81,) C Ly, , that is the ball of radius B~ is included into the

estimate Ly

nax )

of the basin of attraction B,.

1ax

Remark 5: It is noteworthy that only one scalar § is considered in Optimization Problem 3.4
and in the LMI (40), because the aim is to increase the size of the intersection of the ellipsoids
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E(P;), Vi € Z. Of course the choice of the cost function to minimize is not unique. Other con-
ventions may be possible, for instance, ;.7 Tr(F;). A discussion about how to define the size
of ellipsoids may be found in (Durieu et al. 1996) and (Tarbouriech et al. 2011).

4 Dynamic anti-windup controller for arbitrary switching law

This section copes with Problem 2.6, that is with a dynamic anti-windup controller described
by (20)-(22). The state xaw(t) should be added to the extended state vector £(t), in order to
obtain the closed-loop compact form:

n(t+1) = (Asw) + TowdowC) 1(t) + (Bo) + TowLow)) Y(ve(t)), (42)
ve(t) = (Ko@) + FloyC) n(t) + FLgy ¥ (vc(t)) (43)
with
_( €@ Ao
n(t) = <xaw(t) ERY, A =n+naw (44)
and
Ai On Naw
A; = |:Onaw><n Ozaw :| ; C= [Onawxn Inaw]; F= [Omxnaw F] ; (45)
Opxn R; BZ
T; = " ; Bi = ; Ki = | Ki O, Naw 46
|: Inaw Onawx(nc+m):| |:0naw><m:| [ 8 ] ( )
and the variables
o Baw,i (Paw+nc+m)xm, L Aaw,i (Maw+nc+mM) X Naw
L; = |:Daw,i:| cR I = s cR ) (47)

Let us define the following set necessary to associate the deadzone with a generalized sector
condition. For a given set of matrices H; € R™*" ¢ € Z, one defines

S{H;}iez, p) = {77 ER™ —p<Hm<pVie I} : (48)

Lemma 4.1: Consider matrices G; € R™ " i ¢ T. If the vector n is an element of
S{Gi}iez, p), then, the control law given by (43) satisfies the following sector condition

V' (ve)Ui [sat(ve) + Gin] < 0, (49)
for any diagonal positive definite matriz U; € R™*™ Vi € T, or equivalently
U (vo)U; [¥(ve) +ve + Gin) <0. (50)
The switched quadratic function associated with the closed-loop system (42) is denoted

V(n,i) =P, Y(n,i) € R" x I, (51)
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and induces the Lyapunov function

Vmax(n) - mal.XV(nv i)a V77 S Rﬁ' (52)
1€

The following theorem establishes sufficient conditions for the local exponential stability related
to the closed-loop system (42).

Theorem 4.2: If there exists a set of symmetric positive definite matrices P; € RM¥™,
matrices Q; € R™" X; € R™™, Y; € RMewtnetm)na 7. ¢ RMawtnctm)xm N ¢
R(awtnetm)x (avtnetm) gng N; e ROewtnetm)X(natnetm) = giggonal positive definite matrices
U; € R™*™ (i € T) such that, ¥(i,j) € I?,

/

A’ A T L]’ 0 K}
B, B, 0 0 I I,
T | P; [T, —|0|P|0]| —He| |0 |U|F
T T/ 0 0 0 F’
0 0 0 0 0 I
00 0 0 0
00 0 0 0
+He| |[Y;,C0-M; 0 0 <0, (53)
0 Z, 0 —-N; 0
Q 0 0 0 -X;
and
P; * *
Oixa Py * | >0, V(i,0) €T x{l,---,m}, (54)

then for the dynamic anti-windup compensator defined by LL; = N;lzi and J; = M;lYi, (ieT),
the level set Ly, . is a region of exponential stability for the system (42).

Proof The matrix P; being symmetric positive definite, the two last diagonal blocks of the in-
equality (53) imply that the matrices M; and N; are invertible. Due to the last diagonal blocks
of LMIs (54), X; are also invertible. By assuming the change of variables J; = M ly; and
L; = N;lzi, G; = X;l(@i, the inequality (53) can be rewritten as

/ /

A A I In 0 K/
B/ B! 0 0 Inm I
T |P, |T,| —|0|P|0| —He| |0 |U|F
T’ T 0 0 0 F'
0 0 0 0 0 Im
000
0 00| [JCO0 —In.inim 0 0
+Hel| [M; 0 0 0 L; 0 —Inimtm O <0. (55)
0N, 0| |G 0 0 0 — I,
00X



February 25, 2016 13:1 IJC_AW _Jungers v3_ July 2015

11
By using the Finsler’s Lemma (Skelton et al. 1997), and noting that
N I +n O
JiC 0 —In,tnetm 0 0 0 In
0 L 0 —Inputnetm 0 = LC 0], (56)
G; 0 0 0 —In 0 L
G, 0
one gets
Lnin 07" [ TA! AT T L 0 K1’ Inoin 0O
0 Iy B, B, 0 0 I, I, 0 Iy
J;C 0 T |P; |T;| —|0|P;|0]| —He 0|U; | F J,C 0
0 L T, T, 0 0 0 F’ 0 L;
G; O | 0 0 0 0 0 I G; 0
_ (@i +Tdi0) ] p [(Ai+TLC) ] [P (Gi + Ki + FLO)Ti] _ (57)
o (Bz + Ti]LZ), J (Bz + Ti]LZ‘), *  2U; + He(UlF]LZ) ’

Pre- and post-multiplying the inequality (57) by (7/(t) ¥’(vc(t))) # 0 and its transpose and
by identifying ¢ = o(t) and j = o(t + 1), it follows

V(n(t+1),0(t+1)) = V(n(t),o(t)) — 29 (ve())U; [T (ve(t)) + ve(t) + Gin(t)] <0.  (58)

The LMI (54) can be rewritten, by applying the change of variables G; = X;lQi, as

P;  Oax1 Oaxm O scm
O1xn fl)%g) Im,(f) + He O1xm [GZ‘ Omx1 —Im} > 0. (59)
Omxﬁ Im,(() On _Xi
Due to the relation
N I; O I.
(G0 )= | 0 1 | =] ] (60
Gi 0m><1 7 Ymx1

the Finsler’s lemma allows to verify the inequality

P;  Oax1 Oaxm

I ' Oree 02 I { I }
et o 2 el

Pi * .
= l:(Gz)(Z) p%e):| > Oﬁ_‘_l, V(’l,e) el x {]., e ,m}. (61)

Applying a Schur complement on the inequality (61), we have:

1
P; > T(Gi)/(f)(Gi)(Z)a (62)
)

which implies that Ly___
sector condition (49) is thus verified. The exponential stability is then ensured in Ly,

is included in S({G;}iez, p). Due to Lemma 4.1, the cone bounded
which

max 7
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ends the proof. O

Theorem 4.2 providing a stabilizing solution inside Ly___, a solution to Problem 2.6 is given
by the following optimization problem, aiming at maximizing the estimate Ly, ___ of the basin of
attraction.

Optimization problem 4.3
min
P;,X;,Q:,Y:,Us,Z; M, ,N;, B
subject to (32)-(33) and

BI;—P; >0, Viel. (63)

Remark 6: It should be pointed out that the result proposed in Theorem 4.2 is based on
Finsler’s Lemma and a convenient linearization by a change of variables. In the case where the
LMIs (53) and (54) are not feasible, an additional degree of freedom may be introduced by
modifying the multiplier appearing in inequality (55). Actually, the multiplier

000

0 00

M; 0 0 (64)

0N 0

00X

may be replaced by other ones, such as

0 0 O

0 0 O
2M; 0 0 (65)
M; N; X

0 0 2X;

In this modification, the only one constraint allowing the change of variables linearizing the
inequalities is to respect that the columns should be factorized at right respectively by M;, N;
and X;. That means that the multiplier can be expressed as the product: Mdiag(M;; N;; X;), M
being any constant matrix of appropriate dimensions.

5 Joint static anti-windup controller and min-switching law designs

This section is devoted to solving Problem 2.7. First of all, some preliminaries related to the
Metzler matrices are given. More details may be found in (Geromel and Colaneri 2006a,b). A
matrix is called Metzler, if its off diagonal coefficients are nonnegative. The particular set My is
defined as

Mq =T eRVN 7 >0,¥(i,j) €% > mi=1Viel,. (66)
JjET

For IT € M4 and a set of positive definite symmetric matrices P;, (i € Z), we use the notation

Ppi = E]ez mji P
By considering the switched quadratic function V' defined by (28), the Lyapunov function can
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be built
R" — RT,
Vinin: 4 €+ Vi = min V(€ ). (67)
1€
Similarly to Section 3, the unitary level set of the Lyapunov function (67) is defined by
Ly, ={€ € R" Vinin(§) < 1}. (68)
The level set Ly, could be reformulated as indicated in the following lemma, (Hu 2007).
Lemma 5.1:  The level set Ly, defined by (68) verifies
Lv...=JEP). (69)

1€T

Proof £ € Ly, is equivalent to the existence of ig € Z such that V(§,i9) < 1, that is £ € E(P;,),

which is equivalent to € € | E(P). O
€L

Let us define the set 7; associated with the mode i € Z. For a given set of matrices H; € R™*"™

Ti(Hi,p) = {£ € R"; —p < Hi¢ < p}. (70)

Lemma 5.2:  Consider matrices G; € R™*". If the vector £ is an element of T;(G;,p), then
the sector condition

U (v.)U; [sat(ve) + Gi€] <0, (71)

is verified for the mode i € Z and for any diagonal positive definite matriz U; € R™>*"™,

Remark 7: It should be emphasized that the relation (71) in Lemma 5.2 is only ensured for the
mode ¢ indexing the set 7; and not necessarily for the other ones. Furthermore, the link between
Lemmas 3.1 and 5.2 may be established by noting that S({H; }iez, p) = NiezTi(Hi, p)-

The following theorem provides sufficient conditions for the local joint controller and switching
law stabilization of the system (23).

Theorem 5.3: Assuming there exist, for any (i,7) € I?, matrices Z; € Rimtne)xm 'y, ¢
R™>7 - J; € R™ ™ symmetric positive definite matrices Y;; € R™™ and W; € R™*™ and diagonal
positive definite matrices S; € R™*™ and a Metzler matrix II € My satisfying the bilinear

mequalities
Ji"—JZ‘/_Zﬂ'jiTij * *
JjET .
WAl W, . >0, Viel, (72)
S;B!+ ZIR,  (K;W;+Y;) (25;+ He(FZ;))

and the linear ones

Tij * .o 2

[ 7, W]} >0, V(i,j) €T, (73)

and finally the LMIs (33), then the joint anti-windup controller consisting of E 4y, = ZZ-Si_1 and
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the switching law

o(t) = argmin V(§(2), 1) (74)

locally exponentially stabilize the system (23) in the set Ly, ., with P; = VVZ-_I.

Proof By applying the Schur complement on the inequality (73), we have Y;; — Ji’Wj_lJi > 0.
This implies, with P; = VV[I, that

-1

Ji + Jz/ — Z FjiTij < Ji + JZ/ — Jz/ Z ﬂjin_l J; < Z?Tjin_l = Pp_’il, (75)
JET JjET JjeT

due to the property J +J' — JMJ -~ Mt = (J - M YM(J - M) >0for M =M > 0.
The inequality (75) combined with the inequalities (72) leads to

* *
W;A! W, % > 0. (76)
(S:B; + Z{R;) (K;W; +Y;) (25; + He(FZ;))

By identifying U; = S, g = YZ-WZ-_l and pre- and post-multiplying the inequality (76) by
diag(P,; P;; U;) and its transpose leads to

P, * *
AP, P, x >0, (77)

Identifying E.; = Z;S; L= Z,U; and using a Schur complement yields

Pi * A;
Ui(K; + Gy) (2U; + He(UiFEW))} - [(B@- 4 Rian,n'] Ppi [ Ai (Bi+ RiBawi) | > 0.

(78)

Let us prove now that the inequalities (78) ensure that the function Vi, is a Lyapunov
function for the closed-loop system (23)-(24) with the switching law (74). The function Vi,
defined by (67) is a minimum over a finite set of values, it has then the following properties:

o Vmin(g) > 07 v£ € an
o Viin(§) =0=¢&=0,
e Vin(+) is radially unbounded.

In order to prove that Vi, is a Lyapunov function, it suffices to ensure that Vi, (£(t 4+ 1)) —

Vmin(€(t)) < 0, along the closed-loop trajectories. Let us denote z(t) = <q;(£v(t()t)) > By noting

Q c RV the unit simplex of dimension N, we have because each column of a Metzler matrix
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T € My belongs to ©,
Vi €(0-+ 1)) = min €'+ 1) (1 + 1),
= min (1) [(Bi . g;iani),} P;[A; (B; + RiEuy)] (1)
= pin () [(B L RiE...) ]ZAP (Bi+ BiBaws) | 2(0)
gz(t)’[(B+REW ]ZM i (Bi + RiEay )] 2(t). (79)
Due to the inequality (78), it follows by identifying i = o(#),
Va6t + 1) <20 | 11 164 G 24 Bl P By | 20 (80
that is
Vinin (§(t + 1)) = Vinin (§(8)) < 29" (ve (1)) Us [¥ (ve(t)) + ve(t) + Gig(t)] - (81)

In order to prove the decreasing of the function Vi, along the closed-loop trajectories, from
the inequality (81), the sector condition (71) has to be satisfied for the mode defined by (74).
This is done by inequality (33) allowing £(P;) C T;(G;). Applying the switching law (74) implies
the local exponential stability in Ly _. . O

The estimate Ly . of the basin of attraction being an union of ellipsoids, a way to increase
its size is to increase the size of all the ellipsoids. This approach is considered in the following
optimization problem providing a solution to Problem 2.7.

Optimization problem 5.4

Wz B0 x g, 2t Ui
subject to (72)-(73)-(33) and

m’[” éﬂ > 09y, Vi€ (82)

Remark 8: This is noteworthy that Optimization Problem 5.4 is not straightforwardly solvable
due to the bilinear nature of inequalities (72), issued from the product of variables m;; and ;.
When the matrix II € My is fixed, all the constraints of Optimization Problem 5.4 are LMIs.
A suitable way, presented in (Geromel and Colaneri 2006a), consists in considering the Metzler
matrix to belong into a parametrized class of matrices and to apply a line search procedure.

Even if it is more conservative and necessitates more inequalities, another way is proposed
in (Geromel and Colaneri 2006a) by replacing BMIs (72) by sufficient LMIs

Ji+ J) = (7T + (1 = ) Ts) * *
W, A W; * >0, V(i,j)eT? (83)

with a given scalar 7 such that 0 <~ < 1. A solution of inequalities (72) are then obtained by
considering a matrix II € My, with m; = v and Zj#”—ez mj; = (1 — =) and finally weighting
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inequalities (83) by 7 and summing the resulting inequalities over j € Z, j # i.

It should be mentioned that the switching law designed by (74) requires the knowledge of the
extended state £(t) composed of the state x(t) of the system and the state z.(t) of the predefined
controller. It could be more suitable to perform a switching law design based only on the state
xc(t) to avoid the knowledge of the state x(¢), as it has been underlined in (Geromel et al. 2008,
Deaecto et al. 2010). That is important generally to implement the joint control laws in practice.
Such a result can be obtained by imposing a particular structure to the matrices P; as follows.

A * .
P = |:@Ei:|7 1 €T, (84)

with © invertible, which induces a reformulation of the switching law design (74)

o(t) = axg min (1) PAE(t) = arg min ze(t) gz (1) (35)

Theorem 5.3 does not involve the variable F;, but its inverse W, = Pz»_l. The difficulty is
thus to handle the particular structure of P; given by (84). A technique presented in (Geromel
et al. 2008, Deaecto et al. 2010) allows it by elegant manipulations. Nevertheless this is based
on a change of basis proposed in (Scherer et al. 1997) closely related to the joint design of a
dynamic output feedback controller. This is not relevant for our framework, due to the fact that
the dynamic output feedback controller is predefined. The next theorem provides an alternative
of Theorem 5.3 taking as variables the matrices P; and allowing to set the structure (84).

Theorem 5.5: Assuming there exist, for any i € I, matrices Z; € Rimtnadxm G c Rmxn
M; € R™", H; € R™™ symmetric positive definite matrices Q; € R"*™ and P; € R™"™ and
diagonal positive definite matrices S; € R™*™ and a Metzler matriz 11 € My satisfying the
bilinear inequalities

Qi * *
Al P * >0, Viel, (86)
(SZBZ, + ZZ/R;) (I{Z + Gl QSi + H@(FZZ‘))

H;+ H] — Qi *
(In— Hi — M;) M;+ M= 7P| >0, Vi€, (87)
JET

and finally the LMIs (33), then the joint anti-windup controller consisting of E 4y, = ZZ‘S’i_1 and
the switching law (85) exponentially locally stabilize the system (23) in the set Ly

min *

Proof From inequalities (87), matrices M; are invertible. By applying the change of variables
N; = H;M; !, inequalities (87) can be reformulated as

—Qi * ,
I, _Zﬂjipj —|—He<[_]\]4\/}} [N; —In]) >0, Viel. (88)
JET !
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By noting that [Ni —In]J' = []I\?} , Finsler’s Lemma yields
7

71 —Q; * I
[]\7] I, = miP; [z\ﬂ = Qi+ Ni+ N~ N Y wp | Ni>0,  (89)
JjET JET

which implies

Q; < Z mji P = Pp_’il. (90)
JET

Injecting these last inequalities into (86) recovers inequalities (77). The end of the proof is then
the same as the one of Theorem 5.3 by noting that one replaces inequalities (33) with

o

>0, Y@,0€eIx{l,- m} 91
Gio P?e)] 6.0 { J &)

and inequalities (40) with its Schur complement (41). O

6 Joint dynamic output anti-windup controller and min-switching law designs

This section copes with solving Problem 2.8. The closed-loop system is given by equations (42)
and (43), with the notation presented in Section 4. The joint design of a stabilizing switching
law and a dynamic output feedback has been already proposed in the literature, see for in-
stance (Geromel et al. 2008, Deaecto et al. 2010). As mentioned above, the point of view in these
papers is to impose a structure on the switched Lyapunov matrices via their inverse. Here, in
order to follow the choices in Section 5, taking as a variable the switched Lyapunov matrices,
thanks to the use of Finsler’s Lemma, we propose Theorem 6.1 to solve Problem 2.8.

Theorem 6.1: If there exist a Metzler matriz 11 € My, a set of symmetric positive definite ma-
trices P; € R™™ matrices Q; € R™*" X, € Rm*m Y, € R(ewtnctm)xna, 7. ¢ R(Mawtnetm)xm
M; € Rewtnetm)x(nowtnetm) gnd N; € ROewtnetm)x(newtnetm) = giggonal positive definite ma-
trices U; € R™*™ (i € T) such that, V(i,j) € I?,

!/ !/ r !

A A I I 0 K/
B, B 0 0 Im I,
T (| miP | |Ti| —|O0|P;|0| —He| |0 |U|F
T, | \jez T, 0 0 0 F’
0 0 0 0 0 I,

00 0 0
00 0 0

+He|l |Y;C0-M; 0 0 <0. (92)
Z; 0 —-N; 0
0 0 0 -X
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and inequalities (54) are satisfied, then the anti-windup dynamic output feedback defined by LL; =
N;lzi and J; = Mi_lYi, (i € ) and the switching control law

o(t) = arg min(t) Pin (), (93)

(locally) exponentially stabilize the system (42) in the level set Ly, .

Proof The proof is closely related to the one of Theorem 4.2, where P; has been replaced by
(ZjeI 7rji[P’j> to obtain, with G; = X;l(@i

Vinin(§(t + 1)) = Vinin (§(£)) < 29 (ve(8)) Ui [ (ve(t)) + ve(t) + Gig(2)] - (94)

It is then the same as that one of Theorem 5.3 in what concerns the estimate Ly, , of the basin
of attraction. O

7 Numerical results

This section is devoted to illustrate the results obtained in the paper in order to emphasize their
effectiveness and also their conservatism.

Example 7.1 Let us consider the result of Section 3 related to Problem 2.5. The switched
system, extending the numerical example borrowed from (Gomes da Silva Jr. and Tarbouriech
2006, Example 1), is defined by n, =n. =1, N =2, p=1 and

A1 =12; Ao =15, Bi=By=1; C; =1; Cy =0.5.
The dynamic output stabilizing controller (3)-(4) is given by

ACJ = 1; AC72 = 05, BC71 = —0.05; BCQ = —0.01;

CCJ = 1; CC72 = 0.2; DC71 = —1; ch = —1.

The system is not stable in open loop, but is stabilized by the dynamic output controller.
One has A; = [_%'%5 ” and Ay = [_0.1005 8§ . The set of matrices {Aj, A2} leads to an
asymptotically stable difference inclusion £(t + 1) € {A;&(t), Vi € Z}. In order to emphasize
this fact, let us consider the switching quadratic Lyapunov function defined by the matrices
[ 2.4292 —1.9098] - 0y and [4.7888 1.7021

—1.9098 26.4035 2 1.7021 11.5376
tively.

Optimization Problem 3.4, related to Theorem 3.3 leads to § = 1.3318 and

] > 09, for the first and second modes, respec-

0.2342 —0.1439 0.2764 0.0737

A= [—0.1439 1.3130 ] P = [0.0737 0.5642] ’ (95)
1.1487¢ — 6 4.4380e — 7

an,l— |:—1—|—3.56—6:| y EaW,Q— |:—1+8836—8:| . (96)

The gains defined in (96) are called in the following, strategy a. The well posedness of the
relation (24) is ensured thanks to Remark 3, because here m = 1 and the scalars 1, (I, + F Eqw. 1)



February 25, 2016 13:1 IJC_AW _Jungers v3_ July 2015

19

and (I, + F E,y2) are invertible. The results are depicted in Figure 1. First of all, a comparison
with the analysis of local stability when there is no anti-windup compensator is presented. When

E.wi=0, Viel, (97)

which is called in the following strategy b, the ellipsoids and the ball £(812) are plotted in dashed
line. It is noteworthy that in the case without anti-windup, in addition of the origin, there are

two (unstable) equilibrium points for the second mode: & + ) . By applying Optimization

-2
0.02
Problem 3.4, each mode has two equilibrium points, in plus of the origin: for the first mode with

5

39373 )} for the second mode with computed Eg,, 2, one

the computed Eg, 1, one gets { = & (

gets £ = + <0 50266)' The equilibrium points without and with anti-windup are depicted by

squares and crosses in Figure 1, respectively. Note also that the ellipsoids £(F;) obtained with
anti-windup are bigger (S has been reduced by 18%), as shown in Figure 1.

ot J

-3 -2 -1 0 1 2 3

Figure 1. Example 7.1 - Ellipsoids £(P;) and £(P2) in black solid line associated with strategy a; ellipsoids related to the
basin of attraction without antiwindup controller (F,w ;i = 0 or strategy b) in black dashed line and the associated balls
E(BI2) of the two cases, respectively in red solid and red dashed line. The squares and crosses denote equilibrium points for
strategies a and b.

It is interesting to investigate the fact that the terms (I, + FE.y;), i@ € I are invertible
but numerically close to singularity. In order to avoid such a numerical difficulty, we can im-
pose a structure to the matrices FEay i, or roughly speaking to the matrices Z; in LMI (32) in

Theorem 3.3. When imposing Z; = [OZZ } , with Z; € R™>*™_ we obtain 3 = 1.3319 and
m

; (98)

po_ [ 02342 —0.1439] , _ [0.2764 0.0737
L= 1-0.1439 1.3130 |’ “2 ~ |0.0737 0.5642

0.3277 5.0174
an,l = |: 0 :| 5 an,2 - |: 0 :| . (99)
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The gains defined by (99) are associated with strategy ¢ in the following. The numerical results
in what concerns P; and P» by Equation (98) are the same as the ones given by Equation (95)
for the considered numerical precision. The value of 8 has been modified less than 0.01%. Nev-
ertheless E,y,1 and Eguy 2 have been changed. The equilibrium points have not been modified.

To deepen the illustration, Figure 2 is proposed: the sets S({Kj}iez,p) and S({Gitiez,p)
are plotted in addition to the ellipsoids £(F;), i € Z and the ball £(SI2). In accordance with
the proposed approach, the ellipsoids are not inside the area of linearity (S({K;}iez,p)) but
are included in the modal area where the sector conditions are verified. In addition, due to the
optimization scheme, these ellipsoids reach the bounds of the validity area of the sector conditions.
Two families of trajectories are proposed in Figure 2. Two initial states are considered (plotted
with o) £(0) = & = <0?’)5> and £(0) = & = (iénl%) Starting from &, two trajectories,
associated with the switching rules {1;1;1;1;---} and {2;1;2;1;2;2;1;---} are shown: they are
stable. Nevertheless starting from &;, which is outside of Ly, the trajectory generated by
the switching rule {2;1;2;1;2;2;1;---} is unstable and the one induced by the switching rule
{2;2;2;2;---} is stable.

L 1z L L L L L
-3 -2 -1 0 1 2 3

Figure 2. Example 7.1 - S({G;}ie1, p) in red solid line. S({K; };ez, p) in black dashed line. Ellipsoids £(F;), ¢ € Z in black
solid lines and the ball £(312) in red solid line. Two families of trajectories are also emphasized.

The control signals for each mode corresponding to the cases with anti-windup and without

—0.16
comparison of the control signal for the three strategies is depicted in Figure 4. One can observe
quite different transient behaviors depending on the chosen strategy.

anti-windup are shown in Figure 3. The initial state considered is £(0) = & = ( 1.926 ) A

Example 7.2 Let consider now the proposed solution to Problem 2.7, via the same data as
in Example 7.1. The system being defined by a set of matrices {A;; A}, which leads to an
asymptotically stable difference inclusion (¢t + 1) € {A;&(t), Vi € T}, all the switching law
stabilize the system without anti-windup controller (for instance the switching law activating
always the same mode stabilizes the system). When E,y,; = 0 is imposed, that is without anti-
windup controller, we obtain the results depicted in Figure 5. In this case, there exist three
equilibrium points. The origin is stable but the equilibria & = <a§> and £ = — (5;) are
unstable and are associated with mode 2. In Figure 5, we can see that these unstable equilibrium
points belong to the conic state-partition activating mode 1. These are no equilibrium points for
the system driven by the switching law. Nevertheless they limit the ellipsoid related to mode 2.
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Figure 3. Example 7.1 - Time-evolution of the control signal, and the saturated control signal for strategies a, b and ¢, on
the left for the switching rule {1;1;1;1;---} and on the right for the switching rule {2;1;2;1;2;2;1;---}.

0.5
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Figure 4. Example 7.1 - Comparison of the saturated control signal for strategies a, b and c, on the top for the switching
rule {1;1;1;1;---} and at the bottom for the switching rule {2;1;2;1;2;2;1;---}.

Several trajectories are plotted to attempt to illustrate the basin of attraction. When the anti-
windup gain F, ; is not null but computed from our approach, we have the results depicted in
Figure 6. There are five equilibrium points. The origin is stable and common to the two modes.

The equilibrium points for mode 2 are & = + . They belong to the activation area of

-2
0.065
mode 1 and are not equilibrium points for the closed-loop system. The equilibrium points for mode

lare & =+

0.0636
for the closed-loop system. Introducing an anti-windup static gain allows only an improvement of

) and are in the activation area of this mode. They are equilibrium points
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the cost function to minimize of 3%. This limited improvement may be explained by the presence
of the equilibrium point of mode 2 restricting the ellipsoid of mode 2.

Figure 5. Example 7.2 - S({G;}iecz, p) in red solid line. S({ K, };e1, p) in black dashed line. Conic state-partition in green
solid line. Ellipsoids £(P;), ¢ € Z in black solid line and the balls £(3;12) in red solid line. Equilibrium points with squares.
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Figure 6. Example 7.2 - S({G;}iez, p) in red solid line. S({K;};ez, p) in black dashed line. Conic state-partition in green
solid line. Ellipsoids £(P;), ¢ € Z in black solid line and the balls £(3;12) in red solid line. Equilibrium points with squares.

The example is thus modified in order to illustrate the behavior of the proposed solution when
the difference inclusion &(t + 1) € {A;&(t), Vi € I} is not stable. Only the dynamic output

controller is modified by considering

ACJ = 1.1; AQQ = —0.5; BC71 == —0.05; BC72 == —0.01;

Cer=1; Cep=05; Dy =—1; Deg = —0.9.
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One has then

02 1 1.05 0.5
Ar= [—0.05 1.1] P Az= [—0.005 —0.5]

which are not Schur. The improvement of the cost function 81 + B2 by considering the controller
with the anti-windup loop is 92% with respect to the case without the anti-windup loop.

Example 7.3 Consider the system (7)-(10) described by the following data borrowed from
(Zhang and Zhao 2012):

1-0.3 0.806 0.2418
AFL 0 };AZZ[O.SOG 0 }5
0.48 0.13
B = [—0.4} B2 = [—1.3] ;

C1=[0.3450.69] ;Co = [0.17 —0.3]

7

Ac,l =

0.1133 —0.016 A — —0.0515 —0.1398
0.0138 —0.1143 | > %% ~ | 0.0043 —0.0309

—0.0209 —0.0525
Be1 = [—0.0904}  Be = [ 0.0286 ] ’

Cep = [2.3191 —0.4768] ; Cep = [ ~2.9468 —1.5688] ;

D1 = —0.5437; D2 = —1.5199;

By applying the Optimization Problem 3.4, related to Theorem 3.3, one obtains

0.14e — 4 0.65¢ — 5
Bowi1=| 016e—4 |;Euao=| 060e—5 |;3=32¢—4.
~1+46.7¢e—5 ~1+99¢—5

We compare also with the static anti-windup given in (Zhang and Zhao 2012):

0.0074 —0.0590
Eaw1 = |0.0056 | ; Egyo = | 0.0654
0 0

by using Theorem 3.3 and the Optimization Problem 3.4 reformulated in an analysis point of
view.

Table 1 shows the results obtained with static and dynamic anti-windup loops, with the static
anti-windup given in (Zhang and Zhao 2012) and without anti-windup.

Then, one can observe in Table 1 that our technique allows to largely improve the size of
the region of stability for the closed-loop system: for example, in the static case, thanks the
anti-windup loop, 8 has been reduced by 99.8%; in the dynamic case, one drastically reduces 3.
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Type of AW | I3 |
no AW (Eq,; = 0) 0.17
static AW given in (Zhang and Zhao 2012) 0.15

static AW obtained from Optimization Problem 3.4 3.2e-4
dynamic AW obtained from Optimization Problem 4.3 | 1.04e-11

Table 1. Example 7.3 - Results of the optimization problem for different cases.

8 Conclusion

The anti-windup strategies for discrete-time switched systems subject to input saturation has
been investigated in this paper. Both static and dynamic anti-windup controllers have been
designed with the objective to maximize the estimate of the basin of attraction. The results have
been considered in two frameworks relative to the assumption about the switching law: on one
hand the switching law is assumed to be arbitrary and on the other hand the switching law is
assumed to be a part of the control law. Optimization problems have been formulated under LMI
conditions to design the (joint) controllers. Illustrations are given to show the efficiency of these
approaches.

The technique proposed paves the way for future research in several directions. Hence, it
could be interesting to perform the design of anti-windup controller by considering the model
recovery anti-windup scheme as in (Galeani et al. 2009, Zaccarian and Teel 2011). Furthermore,
the problem of enlarging the region of stability for the closed-loop system could be completed by
imposing some performance requirement. Finally, one could benefit from the use of more general
Lyapunov functions (for example by adapting those used in (Gonzaga et al. 2012b)) to reduce
the conservatism of estimation of the region of stability.
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