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Game Theory for Signal Processing in Networks

Giacomo Bacci, Samson Lasaulce, Walid Saad, and Luca Setgui
Abstract

In this tutorial, the basics of game theory are introducezhglwith an overview of its most recent and
emerging applications in signal processing. One of the rfeatures of this contribution is to gather in a single
paper some fundamental game-theoretic notions and todlshwbver the past few years, have become widely
spread over a large number of papers. In particular, bottegfic-form and coalition-form games are described
in details while the key connections and differences betwtbem are outlined. Moreover, a particular attention
is also devoted to clarify the connections between stratigim games and distributed optimization and learning
algorithms. Beyond an introduction to the basic conceptsraain solution approaches, several carefully designed

examples are provided to allow a better understanding of teoapply the described tools.

I. INTRODUCTION

Game theory is a branch of mathematics that enables the mgdmtd analysis of the interactions between
several decision-makers (called players) who can haveictimd or common objectives. Jameis a situation
in which the benefit or cost reaped by each player from andotiae situation does not only depend on its own
decisions but also on those taken by the other players. Fampbe, the time a car driver needs to get back
home generally depends not only on the route he/she choasassb on the decisions taken by the other drivers.
Therefore, in a game, the actions and objectives of the agee tightlycoupled Until very recently, game
theory (GT) has been used only marginally in signal procgssvith notable examples being some applications
in robust detection and estimatian [1] as well as waternmagr @] (in which the watermarking problem is seen as
a game between the data embedder and the attacker). Hottevezal catalyzer of the application of GT to signal
processing (SP) has been the blooming of all issues relatedtivorkingin general, and distributed networks, in
particular. The interactions that take place in a netwonk afien be modeled as a game, in which the network
nodes are the players that compete or form coalitions to@aesadvantage and enhance their quality-of-service.
The main motivation behind formulating a game in a networthé large interdependence between the actions of
the network nodes due to factors such as the use of commoureceso(e.g., computational, storage, or spectral
resources), with interference across wireless networksgten illustrative case study. Paradigmatic examples of
this approach can be found in the broad field of SP for comnatioic networks in which GT is used to address

fundamental networking issues such as: controlling thegoaf radiated signals in wireless networks, with the
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line of research largely originated from the seminal work3h beamforming for smart antennas [4]; precoding in
multi-antenna radio transmission systems [5]; data sgc[@]; spectrum sensing in cognitive radio [7]; spectrum
and interference management [8]; multimedia resource gemnant[[9]; and image segmentation![10],/[11].

Spurred and motivated by the well-established applicatiotie fields above, GT is also pervading many other
branches of SP, and has very recently been used for modelthgralyzing the following “classical” SP problems:
distributed estimation in sensor networksl|[12]; adaptilterfing [13]; waveform design for multiple-input multiple
output (MIMO) radar estimation_[14]; jamming of wirelessnemunications|[15] and MIMO radar applications
[16]; and finding the position of network nodés [17]. In adiitto the examples above, we must eventually
point out the important connection that is building up bedw&T and SP through the fields of machine learning
algorithms [[18] and distributed optimization [19]. As eapled in Sectiom ll, there exists a tight relationship
between game-theoretic concepts daning algorithm aspectdn this respect, one of the key messages of this
contribution is that the solution of a game (often called guikibrium, as discussed later) can often coincide with
the convergence point that results from the interactionrayrseveral automata that implement iterative or learning
algorithms. Therefore, there is an important synergy bemw@T and the broad field of multi-agent learning.

Despite the clear intersection between GT, learning, atiehggation, as corroborated by a significant number
of SP papers which exploit GT, it is worth noting that gamesallg have some features that are not common
in classical optimization problems. In this respect, GT gg8ses its own tools, approaches, and notions. For
example, in contrast to a classical optimization problenwhrich a certain function must be optimized under
some constraints, the very meaning of optimal decisiorequijvalently, strategy, is generally unclear in interati
situations involving several decision makers, since nohthem controls all the variables of the problem and
these players can also have different objectives. To addnash situations, GT is enriched with concepts coming
from different disciplines such as economics and biologyisTleads to notions that one does not encounter
when studying, for instance, convex optimization. Exarepbé these notions are auctions, cooperative plans,
punishments, rationality, risk aversion, trembling haadd unbeatable strategies, to name a few. Remarkably,
such concepts can actually be exploited to design algositiiithough a player can be an automaton, a machine,
a program, a person, an animal, a living cell, a molecule, orengenerally any decision-making entity, it is
essential to have in mind that a game is first and foremost &enadtical tool, which aims at modeling and
analyzing an interactive situation. Before delving inte thpecific details of the various game models, we first
provide a detailed overview on the different game modelsctvlaire available in the GT literature.

There are three dominant mathematical representationa fyame: i) the strategic form;ii) the extensive
form; and {ii) the coalition form. Other representations exist e.g.,dtaadard form which is used in the theory
of equilibrium selection [20], and the state-space repriedion [21] but their use is rather marginal. The extensive
form, which is typically used to investigate dynamical ations in computer science, will not be discussed in
this survey. The main reason is that the extensive formpagth more general (see [22], [23] and references
therein for more details) than the strategic form, is oftesthmamatically less tractable for typical SP problems.
Defining the corresponding model and providing importasuhs related to the strategic form is the purpose of
SectionI], whereas Sectidnllll shows how some solution eptsthat are inherent to the strategic form can be

related to algorithmic aspects. Sectiod 1V discussesttadition form which, unlike the strategic form, deals with



Table I: List of acronyms

BR best response OCF | overlapping coalition formation
BRD best-response dynamics PF partition function
CCE | coarse correlated equilibriun PO Pareto optimality

CE correlated equilibrium PoA price of anarchy

CF characteristic function RL reinforcement learning

FP fictitious play RM regret matching

NBS Nash bargaining solution SE strong equilibrium

NE Nash equilibrium SO social optimality
NTU non-transferable utility TU transferable utility

options available to subsets of players (called cooperatioups or coalitions), what cooperative coalitions can
form, and how the coalition utility is divided among its meenb. The algorithms that can be used to implement
this approach are detailed in Sectioh V. Note that, as demtrihroughout the paper, for a given SP problem,
the structure of the problem at hand and the practical caingsrassociated with it will determine whether the
strategic or the coalition form is the most suitable repnéstgon. For example, it may occur that both forms are
acceptable in terms of information assumptions, while derity issues will lead to selecting one over the other.
To sum up, the main objectives of this tutorial are as folloWse primary goal of this survey is to provide a
holistic reference on the use of GT in SP application domedwsne surveys have already been published in the
SP literature[[24] and communications literature| [25] aB6]] The authors’ motivation is not only to provide a
refined and updated view of GT with respect to these existitgritls, but also to establish explicit connections
across the different tools of GT. In particular, the predatdrial aims to:
« give the reader a global — although necessarily partial +~visd@ of GT highlighting connections and
differences between strategic-form and coalition-forrmga in a single paper;
« delineate differences and connections between GT and izption;
« explain the strong relationship between game-theoretigisa concepts, such as the Nash equilibrium, and
distributed SP algorithms;
« provide many application examples to help the reader utatedig the way the described tools can be
applied to different contexts.
For the reader’s convenience, Hig. 1 provides a referenceéhéostructure of this tutorial, adopting the typical
methodology used to address game-theoretic problems siimtlithe topics described in each section, whereas

Table[l lists the acronyms for game-theoretic terms useautittout the tutorial.
Il. STRATEGIC-FORM GAMES
A. Definition

A game in strategic (or normal) form is represented by a famflmulti-variate functionsuy, ..., ux; K > 1.
The index set of this family, which is denoted here By= {1, ..., K'}, is called theset of playersaand, for each

k € K, ug is commonly called thatility (or payoff) functionof playerk. The strategic form assumes thgt can
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Fig. 1. Logical structure of the tutorial.

be any function of the following form:

ug: S1X..xSg — R 1)
(81, 8K) = ug(s)

whereS;, is called theset of strategie®f playerk, s is the strategy of playek, s = (si1,...,sx) € S is the
strategy profile, and = S; x ... x Skg. We refer to a strategic-form game by using the compactetripbtation
G = (K, (Sk)kex, (ug)rex). The notations_, = (s1,...,Sk—1,Sk+1,---,SK) IS used to denote the strategies
taken by all other players except playerwith a slight abuse of notation, the whole strategy proldénoted by
s = (s, s_r). The strategic-form representation may encompass a lamyder of situations in SP. To mention
a few examples, players in a game can be: radars competingpiove their performance in terms of probability
of false alarm or miss detection; sensors in a sensor nefwdrich coordinate to estimate a field in a distributed
way; base stations allocating the resources in a cellulavark to optimize the system throughput; several digital
signal processors, which have to compete for or manage dimgpesources; a watermarking device or algorithm,
which has to find a good strategy against potential attackers

Formally, it is worth noting that, in its general formulatiadhe strategic form is characterized by the simultaneous
presence of two key features:

« each playert can have its own objective, which is captured by a per-plapecific functionug(s);

« each playelk has partial control over the optimization variables as it cantrol its strategy;, € Si only.
Although the first feature is tied withulti-objective optimizationa clear difference exists in the control of the
optimization variables, as in multi-objective optimizatione has full control over all the varialHes\dditionally,
guite often in multi-objective optimization problems (sk@ example [[27]), an aggregate objective must be
defined. The second feature is tightly related to the framkewb distributed optimizationalthough a common

objective function is usually considered in this contex,,ivk ux(s) = u(s). More importantly, the conventional

1In fact, one can also define a strategic-form game in whichageplhas multi-objectives.



assumption in distributed optimization is that the decisisaking process is basically driven by a single designer
(or controller), which provides a set of strategies that pieyers strictly follow. Although being a possible
scenario (which might be very relevant for some algorithaspects), in GT the players in general can also have
the freedom to choose their strategies by themselves.

A central question is how to “solve” a strategic-form gaméeTvery notion of optimality in this context is
unclear since, as explained previously, we are in the poeseh multiple objectives and the variables, which
impact the utility functions, cannot be controlled jointlyhis is the reason why the problem needs to be defined

before being solved and why there exists the need for intiogugame-theoretisolution concepts

B. Solution concepts

The Nash equilibrium (NE) is a fundamental solution condep@ strategic-form game on top of which many
other concepts are built. This section is mostly dedicatethe NE and discusses more briefly other solution
concepts, which might also be considered. In [28], Nashgseg@ a simple but powerful solution concept, which

is now known as amNE (or Nash poin}.

Definition 1 (NE). An NE of the gam€ = (K, (Sk)kek, (ur)rex) is a strategy profiles™E = (sTE ... sNE) =

(sNE, sNEY such that:
Vk € IC,Vsk S Sk, U, (SEE, Slj%) > Uk (Sk, Slj%) . (2)

A simple instance of an NE in everyday life would be to say ftifiaveryone drives on the right, no single
driver has an interest in driving on the left. As a more tecahcomment on the above definition, it can be seen
that sN* represents a strategy profile in the broad sense. For irestiénmay be a vector of actions, a vector of
probability distributions, or a vector of functions. Prbiday distributions naturally appear when considering an
important extended version of the strategiegGpihamelymixed strategieswhen S, is finiteH they are defined

as follows.

Definition 2 (Mixed strategies)Let A(X) be the set of distribution probabilities over the generit & (that
is the unit simplex). Playek’s mixed strategyr, € A(Sk) is a distribution that assigns a probability; (sx) to

each strategyy, such that) m(sk) = 1. For mixed strategies, the (joint) probability distribati over the

SKESK

strategy profiles is by definition the product of the marginatg, & € K.

A mixed strategy thus consists in choosing a lottery overatadlable actions. In the case where a player has
two possible choices, choosing a mixed strategy amounttidosing a coin with a given probability of having
head (or tail): the player flips the coin to determine theaacto be played. Using mixed strategies, each player
can play a certain strategy. with probability 7 (s;). Note that the strategies considered so far, termec
strategies are simply a particular case of mixed strategies, in whiabbability 1 is assigned to one strategy,
ando0 to the others. The importance of mixed strategies, asida fiseing more general mathematically than pure

strategies, comes in part from the availability of exisgenesults for mixed NE. The latter is defined as follows.

2The continuous case is obtained by using an integral instéaddiscrete sum in the definition.



Definition 3 (Mixed NE). A mixed strategy NE of the garge= (K, (Sk)rekc, (uk)kexc) iS @ mixed strategy profile

oNE = (7N wRE) = (7N 7NE) such that

Vk € K, Yy € A(Sy), @y, (mp B, mNE) > Gy (g, 7F) 3)
where
g (i) = B(ug) = Y | T mis5) | we (s) (4)
seS \jeK

is the expected utility of player when selecting the mixed strategy.

By definition, an NE ofG is a point such that for every indéxthe functionu; cannot be (strictly) increased
by just changing the value of the variabig at the equilibrium. For this reason, an NE is said to be giiesdly

stable to unilateral deviations. The NE has at least tworothey attractive features:

« In its mixed version, its existence is guaranteed for a bidads of games;

« It may result from the repeated interaction among playetsichvare only partially informed about the
problem. In particular, some well-known distributed amdéarning algorithms may converge to an NE (see
Section ).

Elaborating more on the first feature, it should be streskat éxistence is a fundamental issue in GT. In fact,
one might think of various solution concepts for a game. Kangple, one might consider a point which is stable
to K deviations rather than to a single one (withbeing the number of players). This solution concept is known
as astrong equilibrium (SEj)see e.qg.,[22],123]): an SE is a strategy profile from whichgnoup of players (of
any size) can deviate and improve the utility of every mendfe¢he group while the players outside the deviating
group maintain their strategy to that of the equilibriummioiThe SE is therefore stable to multiple deviations and
the number of them can be up 6. This is a strong requirement, which explains why it is quéteely satisfied

in a static game (seé_[22] for a static-game example whee ritét). In fact, the SE is particularly relevant in
infinitely repeated games. To better understand this, thdereis referred to Set. 1V where the notion of core is
described; indeed, it turns out that the-core (which is a version of the core) of a game coincides withSE
utilities in an infinite repetition of that game [29]. Coneiithg the SE as a solution concept in a context of purely
selfish players of a static game might be inappropriate ding#l typically not exist, instead, the NE offers more
positive results in terms of existence. Indeed, tacklirg eékistence issue of an NE for a strategic-form game
reduces to study a fixed-point problem for which quite pesitiesults can be obtained. To state the existence

problem as a fixed-point problem the notionh#st-response (BRdr a player must be first introduced.

Definition 4 (BR). Player k's best-respons8Ry(s_) to the vector of strategies j is the set-valued function

BRy(s_g) = arg max ug (Sg, S_x). (5)

SKESK
By introducing the auxiliary notion of composite (or, ecalently, global, or game’s) best-response

BR: § — S
S = BRl(S_l) X ..o X BRK(S_K),

(6)

we have the following characterization for an NE.



Fig. 2: The wireless sensor’s dilemma

Definition 5 (NE characterization)Let G = (K, (S;)iex, (u;)icxc) be a strategic-form game. A strategy profile
sNE is an NE if and only if:
sNE e BR(sNE). (7)

The characterization of an NE in terms of a fixed-point proble due to Nash [28] and explains why common
existence theorems are based on topological and geometgsamptions such as compactness for the sets of
strategies or continuity for the utility functions. Thelfmking two theorems explain why the NE is an attractive
solution concept from thexistencassue standpoint: they show that any finite game or compatiremus game

possesses at least one mixed NE.

Theorem 1 ([30]). In a strategic-form gam& = (K, (Sk)kerxc, (uk)kex), if K is finite andSy, is finite for every

k, then there exists at least one NE, possibly involving msteategies.

Theorem 2 ([30]). In a strategic-form gam& = (K, (Sk)kex, (uk)kex), if Sk is compact andy is continuous

in s € S for everyk € K, then there exists at least one NE, possibly involving méteategies.

To better picture out the meaning of the strategic-formesentation and the notion of NE, let us consider a

simple example, which is an instance of what is referred tthagprisoner’'s dilemma in the GT literature [31].

Example 1 (The wireless sensor’s dilemmafonsider the wireless sensor network sketched in[Fig. 2¢chwisi
populated by a number of wireless sensors sending their ogasuiements (e.g., target detection, temperature),
to their fusion centers, labeled &1 and FC2. For the sake of graphical representation, sensors comaatinig
with sensors, and the fusion centers (FCs) themselves epresented with blue and red colors, respectively. As
is known, gathering information at each FC from a larger plapion of nodes (in this case, those covered by
the other FC) helps improving its measurement accuracy. é¥ew sharing data among different population of
nodes implies additional transmission of information a&sdhe FCs, which is in general costly due to energy
expenditure. In this context, the two FCs can independeartly simultaneously decide whether to share (i.e.,
relay) the information or not. Depending on both decisiosach FC gets a (dimensionless) utility in the form
“accuracy minus spent energy”, given according to Hig. 3 diam as payoff matrix), in which, 0 < e < 1,

represents the cost incurred by an fusion center for relgytire measurements of the other.

The communication problem corresponding to Exaniple 1 cambdeled by a strategic-form game where

the set of players isK = {FC1,FC2} and the action or strategy sets a¥g = {sleep mode, active mode}



FC2

active mode sleep mode
active mode l-el—e —e, 1
A
O
e
sleep mode 1, —e 0,0

u1(s), uz(s)

Fig. 3: A wireless sensor’s dilemma game under matrix form.

k € {1,2}. The utility function forFC1 (the one forFC2 follows by symmetry) is given by:

—e if  (s1,s2) = (active mode,sleep mode)
0 if  (s1,s2) = (sleep mode,sleep mode)
u(s1,s2) = _ , (8)
1—e if (s1,s2) = (active mode,active mode)
1 if (s1,s2) = (sleep mode,active mode).

This game is said to be static or one-shot gamsince each player takes a single action once and for all.
Since this game is finite, it has at least one mixed NE (acngrth Theoreni]l). To find these equilibria, denote
by p1 (resp.p2) the probability that'C1 (resp.FC2) assigns to the actioactive mode. The mixed NE of the
considered game can be found by computing the expectetlegtiliFor playerWSk with k£ € {1,2}, it writes
as ug(p1,p2) = —epr + p—i- The best-response of playeris given by:Vp_j € [0, 1],BNRk(p_k) = 0. Since,
by definition, Nash equilibria artersection point®f the best-responses, the unique mixed NEpS"®, pi¥) =

(0,0), which is a pure NE consisting of the action profideep mode, sleep mode).

Example 2 (The cognitive radio’s dilemma)Observe that the example above is general enough to encempas
many different applications. For example, it can be used ¢al@ha cognitive network with two cognitive radios,
CR1 and CR2, which have to decide independently and sinadtesly to transmit either over a narrow or a
wide frequency band. In this case, the two correspondinpastare respectively denoted barrowband and
wideband. Depending on the cognitive radio’s decisions, each cognitadio transmits at a certain data rate
(say in Mbit/s or Mbps) accordingly to Fifl] 4. The first (sedpeomponent of each pair corresponds to the the
transmission rate (i.e., utility) of cognitive radib(2). For instance, if both use a wide band, their transmission

rate is the same and equaldMbit/s.

The action ¢§leep mode) in Example 1l (orwideband in Example[2) is called atrictly dominant actior(or,
equivalently, strategy) for playér. For any given action chosen by the other player, it provalesility, which is
strictly better than any other choice. At the equilibriuime wireless sensors have a zero utility. It is seen that there
exists an action profile at which both players would gain dérgutility. The action profilegctive mode, active
mode) is said toPareto-dominatdghe action profile gleep mode, sleep mode). More generally, in any game,
when there exists a strategy profile, which provides a ytibr every player that is greater than the equilibrium
utility, the equilibrium is said to b&areto-inefficientlnefficiencyis generally a drawback of considering the NE
as a solution concept. From an engineering point of view,otild be more desirable to find an equilibrium that

is Pareto-efficient, i.e., a Pareto-optimal (PO) point.



CR2

narrowband wideband
narrowband 3,3 0,4
—
S
wideband 4,0 L1

u1(s), ua(s)
Fig. 4: A cognitive radio’s dilemma game under matrix forntilitles may be expressed e.g., in Mbit/s.

Definition 6 (PO) A strategy profilest© is a PO point if there exists no other strategy profilesuch that

uy, (s) > uy, (sPO) for all k € K, anduy, (s) > uy (s7°) for somek € K.
In addition to Pareto optimality, an other related concejolely used is the weak PO point defined as follows:

Definition 7 (PO). A strategy profiles’© is a weakly PO point if there exists no other strategy profikch that

uy (s) > wy, (s79) for all k € K.

In other words, when operating at a PO strategy profile, itospossible to increase the utility of one player
without decreasing that of at least one other. In many oooasibeyond the concept of Pareto optimality, the
performance (in terms of social efficiency) of an NE can besuezd by comparing it to a socially optimal profile,
which is defined as a maximizer of tts®cial Welfarg (or, more properly, sum-utility) ~, - ux(s). Formally

stated, a social-optimal (SO) point is defined as follows.

Definition 8. A strategy profilesSC is a social optimum point if it satisfies

SO
s°Y € arg max Z u(s) (9)
kel

whereS = S; x ... X Sk.

A PO or a social optimum can be seen as a possible solutiorepbiiar a game. Often, implementing this
solution concept will require some coordination betweenplayers and typically rely on the need for significant
information and knowledge assumptions. In the frameworklisfributed networks, such coordination degree or
knowledge might not be available or may be costly, and, tbasial optimality (or Pareto optimality) can only
be used to measure the performance loss induced by dedzttcal. There is a common and simple measure of
efficiency, which allows one to quantify the gap between tedggmance of centralized (in some sense, classical)
optimization and distributed optimization. Indeed, thiicegncy of the Nash equilibria can be measured using the

concept ofprice of anarchy (PoAJ34], which is defined as follows.

30ther global measures can be used to have more fairness.¢seB82]). Through Def 113, the Nash product is considened ean be

shown to be proportionally fair (see [33]).
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narrowband wideband
narrowband 4 )9
wideband 1 ;0

u1(s), uz(s)

Fig. 5: A simple cognitive radio’s coordination game whiothibits non-trivial correlated equilibria. Utilities may

be expressed e.g., in Mbit/s.

Definition 9 (PoA). The PoA corresponds to

PoA — — ek 10)

whereSNF denotes the set of all NE in a game.

Otherwise statedP?oA provides a measure of the performance loss (in terms of Iseelfare) of the “worst”
NE compared to a socially optimal strategy. The cld3eA to 1, the higher the efficiency of the NE. One of the
features of PoA is that it can be upper bounded in some impioctses e.g., in congestion games with monomial
costs [[35]; acongestion gamé a special form of game in which the utility of cost of a playlepends on its
own action and depends on others’ action only through the tivay distribute over the available actions (often
called edges or routes). For instance, if the cost (the dgpoEthe utility) is linear, the PoA is upper bounded
by % showing that the price of decentralization is relativatyadl in this scenario.

To illustrate the notions of PoA, let us reconsider Exarhplet2ere the four possible utility profiles are reported
in Fig.[4. The wireless sensors game has three Pareto ogtlmae), (—e, 1), and(1 —e, 1 — ). Geometrically,
a utility vector is PO if there is no point in the North-Easthant whose origin is located at the candidate point.
In the considered game, there is a unique NE. Here, the PoAIse%H— = 3. If there is no means of coordinating
the two cognitive radios, which may happen when both tratismsi have been designed independently or are
owned by different economic players, the loss in terms ofad@dficiency has to be undergone. However, if there

is a common designer as in the framework of distributed dpéition, it may be possible to decrease the PoA.

Remark 1. One way to improve efficiency is to keep on considering an NBeasolution concept but to transform
the game. The corresponding general framework is refemwemsimechanism desigiB6]. Affine pricingis a very

special instance of mechanism design: it consists in apglgin affine transformation on the utility functions and
tune the introduced parameters to obtain an NE, which is nedfieient than the one considered in the original

game.

Another possibility to improve efficiency is to keep the gamrehanged but to modify the solution concept.
This may be acorrelated equilibrium (CE)r a Nash bargaining solution (NBSA CE is a joint distribution
over the possible actions or pure strategy profiles of theeghom which no player has interest in deviating

unilaterally. More formally, we have the following defirmti.
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Fig. 6: Set of correlated equilibria of the game given by Hgin the expected utility plane. A public signal
allows the cognitive radio (CR) to reach any CE in the convek bf the points(5,1), (1,5) (pure NE) and
(2,3) (strict mixed NE). Private signals allow one to extend tiggion. The set of CE becomes the convex hull

of the points(1,5), (5,1), (5,5), and (£, ).

Definition 10 (CE). A CE is a joint probability distribution;®® € A(S) which verifies:
Vk € K,Vs), € Sk, ZqCE(s)uk(s) > ZqCE(s)uk(s;, S_k). (11)
s€S s€S
We know that a pure NE is a special case of mixed NE for whichindeszidual probability distributions used
by the players are on the vertices of the unit simplex. We sme that a mixed NE is a special case of a CE
for which joint probability distributions over the actiomrdfiles factorizes as the product of its marginals. One
important question is to know how to obtain a CE in practicanann showed that the availability of a exogenous
public signal to players allow the game to reach new equéljbwhich are in the convex hull of the set of mixed
NE of the gamel[22]. By “public signal”, it is implied that eyeplayer can observe it; the adjective “exogenous”
is added to explicitly indicate that the signal is not relate the player's actions. A simple example would be
the realization of a Bernouilli random variable such as thecome obtained by flipping a coin. Additionally, if
exogenous private signals are allowed, new equilibriaidatthis hull can be reached and lead to better outcomes;
by “private” it is meant that each player observes the ratibns of his own lottery. Those equilibria are precisely
correlated equilibria. Having a CE therefore means thapthgers have no interest in ignoring (public or private)
signals, which would recommend them to play according to rdadizations of a random lottery whose joint
distribution corresponds to a CEF. In the case of the wireless sensor’s dilemma, it can be etkthat the
only CE boils down to the unique pure NE of the game, showirg sending a broadcast signal to the wireless
sensors would not allow them to reach another equilibriutmiciv might be more efficient. To better picture out
the meaning of CE, consider a modified version of Exarhple 2¢hvhas not the structure of a prisoner’s dilemma
anymore (no strictly dominant strategy for the playersts¥ig-ig.[% shows the corresponding game under matrix
form while Fig.[6 shows the set of CE of this game. In partigullaturns that a public signal allows the CR to
reach any CE in the convex hull of the poirits 1), (1,5).

Another notion of equilibrium derived from the notion of CE the coarse correlated equilibrium (CCE)t
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is mathematically more general than the CE. The set of CEeretare included in the set of CCE. One of the
motivations for mentioning it here is that CCE can be learbgdmplementing simple algorithms such as regret

matching based learning schemees [18] (see SeCtibn Il fidhdu details).

Definition 11 (Coarse correlated equilibriump CCE is a joint probability distribution;®“® € A(S) which

verifies:

Vk € K,Vs), € Sk, ZqCCE(s)uk(s) > qugE(s)uk(sz, S_k) (12)
s€S s€S

WherqugE(s,k) = ZSkESk q““F (sp, s_1).

A possible interpretation of this definition is as followsollBwing the notion of CCE, players are assumed to
decide, before receiving the recommendation associatddavpublic or private signal, whether to commit to it
or not. At a CCE, all players are willing to follow the recomnaiation given that all the others also choose to
commit. That is, if a single player decides not to follow tlee@mmendations, it experiences a lower (expected)
utility. Based on this interpretation, the difference beén the CCE and the CE is that in the latter, players
choose whether or not to follow a given recommendaditiar it has been received. Therefore, there is no a priori
commitment.

Another effective approach that can be taken to further awpithe efficiency of the game solution while also
addressing fairness issues is to seek alternative solgtimicepts. One example of such alternative solutions
is the concept of NBS[[37], which has been originally defined two-player games. The implementation
of the NBS typically requires some form of coordination orcleange of information among the players. As
explained in Sectiof 1ll, the NBS can be related to SP algori such agonsensus algorithmdhe NBS has
been used in the networking literature about 20 years agdtairofair solutions to flow control problems in
communication networks [32]. More recently, it has beenl@itgd in different contexts such as: in_|33] for
solving bandwidth allocation problems; in [38] for achiegiweighted proportional fairness in resource allocation
in wireless networks; or, in_[4] to obtain cooperative beamfing strategies in interference networks where
transmitters are equipped with multiple antennas. Anothx@mple can be found inl[9] wherein the bargaining
methodology is employed to address the problem of rate atilme for collaborative video users (see alsal [39]).
Following [37], let us define the NBS for two-player gamesr Bos, we denote by/ the set of feasible utility
points of the strategic-form game of interest and assuné£ha a closed and convex set. Let denote(Ry, A2)

a given point in{, which will be referred to as a status quo or disagreementtpdhe NBS is then defined as

follows.

Definition 12 (Nash bargaining solution)The NBS is the unique PO utility point or profile, which is ausioin

of:

- A - 13
(uff;ij; cu (u1 — A1) (u2 — A2) (13)

SUbjeCt to w1 > A, ug > Ao
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utility us

utility

Fig. 7. Graphical interpretation of the NBS point (red aichs the intersection between the Pareto boundary
of U and the hyperboléu; — A\1)(us — A2) = k, where the status qud = (A1, \2) is represented by the blue

rhombus.

The graphical interpretation of the NBS is shown in Fij. 7e®olution of [(1B) corresponds to the point of
tangency between the Pareto boundary/afnd the hyperbol&u; — A1) (u2 — A2) = &, wherex is properly chosen
to ensure only one intersection between the two curves. Tigmal definition of the NBS by Nash only concerns
two-player games but it can be extended by considekinglayers. For this, the two-factor product above, which
is called theNash productbecomedIX | (u; — \;). However, when there are more than two parties involved
in the bargaining, coalition forming is always possible dhid definition may need to be replaced by modified
versions e.g., such as the coalition NBSI|[40]; the notion abalition is developed further in Sdc.]IV. We will
conclude the discussion on the NBS by providing an examplelwis drawn from [[41] namely, a beamforming

game for communications in presence of interference. _ _
Example 3 (Beamforming gamel_[41])Consider two N —antenna transmitters. Transmittérc {1,2} has to

choose a beamforming vectar; € CV such thatw/w; = 1 (where the superscript’ stands for Hermitian
transpose). The signal observed by the single-antennaivece is given byy, = hfwz; + hgwja:j + z;,

j = —i, hj; € CV are fixed for all(i, j), z; € C, and z; ~ CN(0,1) is a complex white Gaussian noise. By

choosing the utility function as; = log(1 + SINR;) with SINR; = % it can be shown that any
point of the Pareto frontier can be reached by beamformingtars which linearly combines the zero-forcing
(ZF) beamforming solutionu?") and maximum ratio transmission beamforming (MRT) solutio}®T) [41].
Therefore, finding the NBS amounts to finding the approptiagar combination coefficient; which is defined
asw; = oqw? + (1 — a;)wMBL. The unique NE of the considered game correspondaid’, o)) = (0,0)

that is each transmitter uses ZF beamforming. By choosiagutiique NE of the game under investigation to be

the status quo point the NBS is then given by:

(7™, ay%) = arg (o X 1}2[711(041,042) —u1(0,0)] X [ug(a1, az) — u2(0,0)]. (14)

By construction, the obtained solution is necessarily nfeaseto-efficient than the NE. However, computing the

NBS typically requires more channel state information thdrat is required by the NE_[41].
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C. Special classes of strategic-form games

In this subsection, we review some special classes of gicaterm games, that show a relevant share of the
game-theoretic approaches available in the SP literdtomrethe sake of brevity, we list here only the distinguishing
features of each class but provide also a (non-exhaustitedfl relevant references that can be used to gather
more specific details on problem modeling and solution tdeds other interesting classes of games (not reported
here due to space constraints), the interested readersfareed to specific literature on the topic (e.g., [22], [23]
[30]).

Zero-sum gamesOne of the most common types of strategic-form games is theptayer zero-sum game. A
two-player zero-sum game is a game in which the sum of thitiegilis zero or can be made zero by appropriate
positive scaling and translation which do not depend on thgep’s actions or strategies. In other words, it is a
game such thatl = {1, 2}, ui(s1,s2) + ua(s1,s2) = 0. In such a game, one player is a maximizer, i.e., aims to
maximize its gain, while the other player is a minimizer,,i&ms to minimize its losses (which are the gains
of the other player). In SP, zero-sum games are especiafiylpowhen modeling security games involving an
attacker and a defender. In such games, the attacker’s gaamaost often equal to the defender’s losses, yielding
a zero-sum situation. An example in this context can be fannd 6] in which the interaction between a target
and a MIMO radar — both smart — is modeled as a two-player geno-game since the target and the radar
are completely hostile. The mutual information criterienuised in formulating the utility functions. Ih_[42], the
problem of polarimetric waveform design for distributed NMD radar from a game-theoretic perspective is also
formulated as a two player zero-sum game played between ponept and the radar design engineer.[1n [2],
the authors use a two-player zero-sum game to model a watdénggproblem where a source sequence (the
covertex} needs to be copyright-protected before it is distributedhte public. Another example is given by a
two-user communication channel (such as the Gaussianpleuliccess channel) with a constraint on the total
sum-rate[[43].

Despite being one of the most well studied and analyzed dassategic-form games in GT (in part because
many results can be derived), zero-sum games are regrittivfact, the majority of the studied problems in SP
are better modeled as nonzero-sum games.

Continuous guasi-concave games:game is said to be continuous if, for &le I, the utility functionwy, is
continuous in the strategy profile It is said to be quasi-concaveif, is quasi-concave w.r.ts;, for any fixed
s_; andS;, is a compact and convex set. For such games, we can take ageaosft Theoreri]2, which ensures
the existence of at least one pure-strategy. MElurry of research activity on energy-efficient resourdlecation
in wireless communications or sensor networks makes useadigoncave utility functions, that aim at trading
off the performance of network agents while saving as muargnas possible. Since usually the performance
is increasing with the amount of resources employed, a usafdeling provides
| de ()

Sk

(15)

ug(s

under the hypothesis of a one-dimensional strategySset [0, P™#*], with P™#* peing the maximum transmit

power. As long asf;, shows some desirable properties (such as sigmoidnesshahécoften verified in many
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SP and communications scenario, the ratjoproves to be quasi-concave w.kf,. This is the case for instance
whenf(z)=(1—e )M, M <1or f(z)=e"=,a>0.

Continuous concave game$he same assumptions as for the previous special class dsgara made except
thatu; is now a concave function of,. Theexistence of a pure NE guaranteed in such games since individual
concavity implies individual quasi-concavity. Interegfiy, if we make one more assumption, called the diagonally
strict condition (DSC)uniquenes®f the NE can also be guaranteed. This is worth mentioningesgufficient
conditions for ensuring uniqueness are quite rare in teealitire of GT. The DSC is as follows. The DSC is met

if there exists a vector of (strictly) positive components: (74, ...,rx ) such that:

V(s,s) €S%s#£8: (s—8) (w(s) — ’yr(s))T >0 (16)

where~,.(s) = | 37;11 (s), ...,rngjj (s)] An example of this game can be found in/[44]. Therein, thenade
investigated is a set of multi-antenna transmitters whiakiehto choose a precoding matrix to optimize their
expected individual transmission rate between each of thetha common multi-antenna receiver.
Super-modular gamesSuper-modular games are thoroughly investigated_in [45Fktiategic-form game is
super-modular if, for alk € IC, Sy is a compact subset &; u; is upper semi-continuous i1 anduy, (s, s_) —
U, (sk,s’_k) is non-decreasing iy, for all k € K, S, and for alls_;, > s’ ,, where the inequality is intended
to be component-wise. In the example of power control, tidfinition is very easy to understand. If all the
transmitters, excepk, increase their power level, then transmitiehas interest in increasing its own power as
well. Two properties make super-modular games appealitigegrfSP communityi) the set ofpure-strategy NEs
not empty andii) iterative distributed algorithms such as the best-respatynamics (BRD) (see Sectibnl Ill for
more details) can be used to let the playepsvergeto the one of the NE of the game. As an example, perform
an affine transformation of the utility functions in_{15) suthat they become

Uk (s
Sk

— chSk (17)

with ¢, > 0 being a parameter to be tuned. The latter parameter indugeshalty in terms of utility which
increases with the transmit power. The corresponding fioamsition is called affine or linear pricing and aims
at improving (social) efficiency at the equilibrium. The msponding game can be shown to be super-modular
provided that the action space is reduced as detailed ifOBler examples of super-modular games can be found
in the literature of SP. For instance, in_[17] the problemiofet of arrival-based positioning is formulated as a
super-modular game.

Potential gamesA strategic-form game is said to be potential if, forfale IC, s, s), € S and alls_j, € S\ Sy,
the differenceuy, (si, s_x) —ux (s}, s—x) can be related to a globpbtential function®(s) that does not depend on
the specific playek. There exist at least four types of potential games: wetjtg®act, ordinal, and generalized
ones, according to the relationship between the differeircatilities and potential functions [22]. For example, a
game is an exact potential game if there exists a funchiauch thatuy, (s, s—x) — ug (54, 5-k) = P (g, S—) —
P (s}, s_x). Similarly to super-modular games, the interest in potérgames stems from the guarantee of the
existence of pure-strategy N&Bnd from the study of a single function, which allows theleygpion of theoretical

tools borrowed from other disciplines, such as convex aptition [46]. For instance, a maximum point f@ris
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an NE forgG. Similarly to super-modular gamespnvergenc®f iterative distributed algorithms such as the BRD
algorithm is guaranteed in potential games. Examples aéniiat games can be found in_[47] for a problem of
power allocation, in[[48] for radar networks, or in_[49] forpaoblem of multi-portfolio optimization. In[[50],
the authors make use of a potential game to study coopeiveensus problems for sensor deployment. Other
simple examples of potential games are games with a comnilitly finction or games for which each utility
only depends on the individual action or strategy.

Repeated gamedt is important to note that the definition of the strategicmfiodoes not require any particular
assumption on the sets of strategi&s..., Si. In particular, as seen throughout this section, an examiple,
can be a discrete alphabet (as in the wireless sensor'srd#ggnor an interval oR (as in the example of energy-
efficient power control game). In the mentioned examples,ghme is said to betatic (or one-sho} because
each player takes a single action. It should be stressedveoulat the strategic form can also be used to model
some dynamic games in which players have to take an actionré@peated manner and even in a continuous-
time manner (e.g., in some differential games). In dynanaimes the sets of strategies become more complex
objects. They can be sets of sequences of functions or seexjoknces of probability distributions. Due to space
limitation, we will only mention the case of repeated gamesehwhich will allow us to identify some differences
in terms of modeling and analysis between static and repammes.

A repeated game belongs to a subclass of dynamic games, ¢h wig players face the same single-stage game,
sayIl' = (K, (Ax)kex, (Vk)kex), Where Ay is the set of possible actions for playerandv is its instantaneous
utility function. The game is played over several stage® maimber of stages can be either finite or infinite. The
single-stage game is called tleenstituent componentor stage gameWhen introducing the notion of time or
stage, the strategies become complete plans of actions, that depend on the unéptafithe game through time.
More precisely, a strategy in a repeated game typicallyesponds to a sequence of maps or functions, which
assign an action to a sequence of observations. Similagyutility functions of the repeated game are modified

and correspond now to average or long-term utilities. Oftarerage utilities are of the form

+oo
ug(s) = Zﬁtuk(a(z‘,)), (18)
t=1

where (6;):>1 represents a sequence of weights which can model diffesgrgctés depending on the scenario
under consideration (see e.d.,/[22]). Typical choices(fp);>; are:
o Vte{l,....,T}, 0, = % andVvt > T + 1,6, = 0; this type of game is referred to as a finitely repeated game;
o Vt>1,0, = (1—6)5 with 0 < § < 1; this type of game is referred to as a repeated game with aligro

« when the limit existsyt > 1,6; = =, this type of game is called an infinitely repeated game.

o
The definition of the strategies, ..., s strongly depends on the observation assumptions made nEtance,

in a repeated game witperfect monitoring and perfect recalle., a game where every player observes all the
past actions and is able to store them, the strategy of pfayeiC is given by the following sequence of causal

functions:
Vt>1, spy A1 - A

(a(1),...,a(t —1)) — ag(t)

(19)
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wherea(t) = (ay(t),...,ax(t)) is the profile of actions played at stagand.A° = () by convention. This strategy
is called a pure strategy.

Even in the special case of repeated games just describechmiglentify some important differences between
static and repeated games in terms of equilibrium analy$is. existence issue is fundamental for the NE to be
relevant as a solution concept for the problem of interesteNhat, while uniqueness is an important issue for
static games, e.g., to be able to predict the convergence pba distributed algorithm, it is generally much less
relevant for a repeated game, since the number of equildaiabe large and even infinite. This is the reason
why equilibria are not characterized in terms of equilibrigtrategies, but rather in terms of equilibrium utilities.
This characterization corresponds to a theorem called~tile theorem[30]. We have seen that efficiency is an
important issue for a static game. For a repeated game, dihe fiact that players can observe the history of the
actions played and therefore exchange information, theag exist efficient equilibria and those equilibria can
be attained. For example, in the case of the wireless sandilemma, the following strategies can be checked

to be equilibrium strategies of an infinite repeated gamé wérfect observation:

Vis 2, st = narrowband if a;(t — 1) = narrowband, j € {1, ..., K'} 20)
’ wideband  otherwise

with a(1) = (narrowband, ..., narrowband). By implementing these strategies, each player gets ayutich
equals3 whereas it wad in the static game version. Therefore, repeating the gardecansidering long-term
utilities allows one to reach more efficient points at evaage of the game. This can be interpreted as a form of
cooperation among the players. Thus far, we have mentiamedorms of cooperation namely, through bargaining
and cooperative plans in repeated games. In Selcfibn 1V, Wes@a that the coalition form offers another way of
implementing cooperative solutions in games. From the ald@scussion, it follows that referring to strategic-form
games as non-cooperative games and coalition games asratiapgames is questionable. Indeed, cooperation

may exist in the former while players may still be selfish ie thtter.

Remark 2. In general, extensive-form games group all situations irictviihe players are allowed to have a

sequential interaction, meaning that the move of each playeonditioned by the previous moves of all players
in the game. This class of games is termed dynamic gamesatedgmmes are a subclass of dynamic games, in
which the players face the same single-stage (static) gamegy e@eriod. Hence, while extensive-form games are
not treated due to the lack of space needed to address theargkeaspect, repeated games, which represent a

notable example, are included in this tutorial thanks toirtheoad field of application in the SP scenario.

Bayesian gamesiWWhen one wants to perform the direct maximization of a fuorctivhile some of its parameters
are unknown, a possible solution is to consider an expectesion of the function of interest (e.g., think of the
famous expectation-maximization algorithm). When sajvan game, a similar approach can be adopted. In the
presence of multiple decision makers, the problem is howeware difficult. To understand this, assume that
each player chooses a prior distribution over the parametetoes not know (e.g., the overall channel state):
this is its belief But, a player also has to assume what it knows about thefl#lithe other players. Going
further, a player needs to have a belief about the belief erother players on its own belief. This leads to the

guite complex notion of hierarchy of beliefs. This approaelems to be inapplicable in practice. Why should an
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automaton or a computer implement such an elaborate levebsbning? An important result of practical interest
is that a simpler model might capture the whole hierarchyeadielfs. This model is known as Harsanyi’s model
[51] and it is very close in spirit to what is done in estimatiproblems in the presence of uncertain parameters.
Once the game is formulated as a strategic-form (Bayesiameg standard tools can be exploited. Although it
is exactly an NE in the presence of expected utilities, an 8lEallled in this context a Bayesian equilibrium.
Application examples of Bayesian games in the literatur8for communications can be foundlin|[52]. Therein,
the unknown parameter is typically the communication cleastate. In[[53], the authors illustrate how Bayesian

games are natural settings for analyzing multiagent agagensing systems.

1. L EARNING EQUILIBRIA IN STRATEGIC-FORM GAMES

To better understand the relationship between the solwmitepts described in Sectign Il and algorithmic
aspects, we will first consider some experiments, which werglucted by the biologist David Harpér [54]. These
experiments are of interest to better understand how égailcan be achieved (learnt) by repeated interactions
driven by simple decision-making rules. In winter 1979, ptarconducted experiments on a flock 33 ducks
on a lake in the botanic garden of Cambridge University, UKo Tobservers who were acting as bread tossers
were located at two fixed points on the lake surfaéameters apart. The pieces of bread were thrown at regular
intervals. For instance, one of the experiments assumeshihdrequency of supply for one observer (called the
least profitable site) i42 items per minute whereas it was equal2tbitems per minute for the other observer.
Fig.[8 represents the number of ducks at the least profitaf@leagainst time; the dots indicate the mean points
while the vertical segments represent the dispersion ofribasures. It is seen that after about a minute, the
number of ducks at the least profitable site stabilizes afalin which means tha22 ducks are at the most
profitable site. The corresponding point is an NE: every dubich would switch to the other site in a unilateral
manner would get less food. FI[g. 8 shows that, at the beginufithe trial, each duck behaves like a conventional
optimizer: most of the ducks goes to the most profitable 3ités choice does not take into account that the site
selection problem a duck faces with is not a conventionahupation problem but a game: what a duck gets does
not only depend on its choice but also on others’ choice. autine transient period, the ducks, which switch to
the other site, realize they get more food at the least pbdditasite. Other ducks do so as long as an equilibrium
is reached. Quite likely ducks do not know their utility feions and, more generally, the parameters of the game
they play. They may hardly be qualified as rational playera/@ls Nonetheless, some sort of iterative “auction”
process (known as tatonnement) has led them to an NE shdangn NE can emerge as the result of repeated
interactions between entities, which have only partiabinfation on the problem and only implement primitive
decision-making or learning rules. The main purpose of $leistion is precisely that of providing some learning
rules (or SP algorithms) among many others from the vasttitee of multi-agent learning, learning in games,
or distributed optimization, which may lead to equilibria.

Remark Although in the remainder we only focus on distributed mitation and multi-agent learning algo-
rithms as solution concepts for certain static game, it igthvobserving that it may also be possible to interpret a
multi-agent learning rule as a strategy of a certain dynayaioe [22], showing also the existence of a relationship

between learning and dynamic games.
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David Harper’s experiment

R
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Fig. 8: When ducks are given the choice between two brea@r®dsr which the frequency of supply of the
most profitable site is twice the least profitable, after slitg a few times between the two sites, ducks stick to

a given choice. The corresponding point is an NE.

A. Best-response dynamics

BRD are a popular and simple learning rule, which may leadjualiéria. The BRD has been used in various
disciplines but, as its use is specialized, the differestances of it are not always recognized as the same
algorithm. Two instances of it are the Gauss-Seidel meth&il 4nd the Lloyd-Max algorithm [56]. The Gauss-
Seidel method is an iterative algorithm that allows to nuoadlly solve a linear system of equations. Let us review
this method in the special case of two unknownszs and two observationg;,y». The goal is to solve the

system

ail a2 T _ Y1 21)

azr a2 T2 Y2
where the entries;,; are assumed to be known and meet some classical conditibitd) van be found ir [S5]. By
denoting(x1(t), z2(t)) the value for the paifz1, z2) at iterationt, x; is updated as(¢+ 1) which is obtained by
solvingayiz1(t+1)+ajexa(t)—y1 = 0. Then,zy(t+1) is obtained by solvings; 1 (t+1)+agexa(t+1)—y2 = 0.
This can be interpreted as a game with two players in whiclis the action of playek and setting (or making
close) to zeray,, w1 +ay, —r—L—Yyy IS its objective or cost function. The Gauss-Seidel mettredipely implements
the sequential BRD of the latter game. As observed. in [5@tlar special instance of the BRD is the Lloyd-Max
algorithm originally used for scalar quantization and egteely used nowadays in data compression techniques in
information theory and SP. Designing a signal quantizermaedoosing how to partition the source signal space
into cells or regions and choosing a representative for eatitiem. It turns out that finding in a joint manner the
set of regions and the set of representatives which minitthieedistortion (namely, the quantization noise level)
is a difficult problem in general. The Lloyd-Max algorithmas iterative algorithm. Each iteration comprises two
steps. First, one fixes a set of regions and computes thedmssentatives in the sense of the distortion. Second,
for these representatives, one updates the regions soist@attidn is minimized. This procedure is repeated until

convergence and corresponds to a special instance of thers#] BRD of a game with two players which have

a common cost function. As seen in Section JI-C, since the ftoxtion is common, the game is potential; as
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Cournot duopoly
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Fig. 9: lllustration of the Cournot tatonnement. As seeis firocess, which is a special case of the sequential
BRD algorithm, converges to the unique intersection pogtiMeen the players’ best-responses (i.e., the unique
pure NE of the game). As well illustrated by the Cournot dugpoonvergence of sequential BRD is typically

fast.

explained a little further, convergence of the sequentRDBs guaranteed in such games.
Example 4 (Cournot tatonnement)Another well-known instance of the BRD is the Cour@bbrinement. It was

originally introduced by Cournot in 1838 for studying an eomic competition between two firms where each
one has to decide the quantity of goods to produce. In pdaicCournot showed that the following dynamical
procedure converges: firrh chooses a certain quantity of goodg1), firm 2 observes the quantity produced by
firm 1 and plays its best respongg(2) that is, the quantity maximizing its profit, firinre-adjusts its quantity

to this reaction tog; (3) in order for its benefit to be maximal and so forth. Cournotyend that after “a while”

this process converges to the so-called Cournot equilibriwhich can be shown to be the NE of the associated
strategic-form game. This is what Figl 9 illustrates. A pbkesapplication of the dynamical procedure above
can be found in[[58] in which the authors consider a compeitspectrum sharing scheme based on GT for a
cognitive radio network consisting of a primary user and tiplé secondary users sharing the same frequency
spectrum. The spectrum sharing problem is modeled as anpuig market and a static game has been used to

obtain the Nash equilibrium for the optimal allocated spenat size for the secondary users.

The BRD can be formulated for a game with an arbitrary numibgrayers. In its most used form, the BRD
operates in a sequential manner (sequential BRD) such ldngtns update their actions in a round-robin manner.

Within roundt + 1 (with ¢ > 1) the action chosen by playére K is computed aS:
ap(t+1) € BRg[ar(t +1),..,ap-1(t + 1), ap41(2), ... ax (1)] - (22)

An alternative version of the BRD operates in a simultanesag meaning that all players update their actions

“If there are more than one best actions, then one of them sechat random from the uniform probability distribution.
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Algorithm 1 BRD.
sett =0

initialize ax(0) € Sy, for all playersk € K (e.g., using a random initialization)
repeat
for k=1to K do
update ay (¢t + 1) using [22) or[(2B)
end for
updatet =t +1
until |ag(t) —ar(t—1)| <eforall ke K

simultaneously:

ak(t + 1) € BRy, [a,k(t)] . (23)

The pseudo of BRD for both instances is sketched in Algoriir®bserve that both can be applied to games in
which the action sets are either continuous or discreterifinuous, convergence means that the distance between
two successive action profiles remains below a certain lotds: > 0. If discrete, convergence means that the
action profile does not change at all (i.e.= 0). When it converges, convergence points are typically puiEe
(e.q., see [22]). There are no convergence results for gegames using BRD. Most of the existing results rely
on application-specific proofs. For examplg, [5] considarapplication example of the BRD in SP for which an
ad hoc proof for convergence is provided. However, if somecisp classes of games are considered, then there
exist sufficient conditions under which the convergencéhefdequential BRD to a pure NE is always guaranteed.
For example, it is ensured when exact potential games omswgukilar games are considered (see Seéfion Il and
[22] for more details on this). In addition to this, the corgence of the sequential BRD is ensured when the

best-responses are standard function$ [59]. These reseltsummarized next.

Theorem 3 ([22]]). In potential and supermodular games, the sequential BRDverges to a pure NE with

probability one.

Theorem 4 ([59]). If the best-responses of a strategic-form game are stanfienctions, then the BRD converges

to the unique pure NE with probability one.

Unlike the sequential BRD, there does not seem to exist génesults that guarantee the convergence of the
simultaneous BRD. As shown in [60], a possible way out to emsonvergence is to let playgrupdate its action

asa(t+1) € BRy [a_x(t)] whereBRy, [a_,(t)] is defined as

BRy [a_i(t)] = arg max uy(ay, a_g(t)) + &l|ar — ap(t)|? (24)

ar €A
with x > 0. The term||a, — ay(¢)||* acts as a stabilizing term, which has a conservative effeet.is large, this
term is minimized by keeping the same action. By choosirig an appropriate manner, in_[60] it is shown that
the simultaneous BRD associated with the modified utilitpvarges.

Now we consider an application example that will be devetofeoughout this section to illustrate the different

algorithms and notions under consideration. In particuiallows us to extract sufficient conditions under which
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the sequential BRD converges.

Example 5(Power allocation games in multi-band interference chiEn€onsider a wireless communication sys-
tem, which compriseK transmitter-receiver pairs. Each transmitter wants to coamicate with its own receiver.
More precisely, transmittek € {1,..., K} (player k) has to allocate its available power (denoted By among
N orthogonal channels or frequency bands to maximize its gansmission rateu; = ZnN:llog2 (1 +v%n)

where~;, ,, is the signal-to-interference-plus-noise ratio (SINRyeteiverk over bandn, which is defined as

Pk nDk,n (25)
o2+ Zz;ékhfk,npé,n

wherepy, ,, is the power transmittek allocates to bandh, ke, > 0 is the channel gain associated with the link

Yen =

from transmitter to receiverk over bandr, ands? accounts for the thermal noise. Denotey= (Pk1s s PEN)

the power allocation vector of transmittér Two scenarios in terms of action space are considered:

N
APA — {pk eRY: anlpk,n < P} and APS = {Pe,, ..., Pex} (26)

where PA stands for power allocation and BS for band selactémdes, ..., ey represents the canonical basis
of RY (i.e.,e; = (1,0,...,0),e2 = (0,1,0,...,0) and so on). The two corresponding strategic-form game veill b
denoted byg"™ and GBS,

A sufficient condition for the sequential BRD to converge foe gameG™ has been provided in [61]. The

condition is that the spectral radiysof certain matriced (j) are strictly less than one:

0 fk=/¢
Vi€ K, p(H(j)) <1 with Hge(j) = W (27)
b £ L.

Condition [2T) is useful for the general case of the multidanterference channel and roughly means that the
interference level on every band should not be too high. Wewes shown in_[47], the sufficient condition holds
with probability zero (randomness stems from the fact thatahannel gaing;, ,, are assumed to be realizations
of a continuousandom variable) in the special case of the multi-band mleltaccess channel, which corresponds
to have only one receiver of interest for all the transnittén the latter case, the SINR takes a more particular

form, which is

hk,npk,n (28)
2
o+ Zéikhf,npé,n

wherehy, ,, is the channel gain of the link between transmittesind the receiver for bane. Remarkably, in this

Ykn =

particular settingg™ andG®S can be shown to be exact potential games [47] with poteniiattion:

N K
¢ = Z log, (02 + Z hk,nPk,n) - (29)
n=1 k=1

Exact potentiality of games allows convergence of the setipleBRD to a pure NE to be always guaranteed. In

gameG™, the sequential BRD consists in updating the power levebmticg to a water-filling formula:

o 1 pk,n(t) *
pk,n(t + 1) - |:W_k - 'Yk,n(t):| (30)
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where[z]t = max(0, x), wy, is the Lagrangian multiplier associated with the ineqyajilnstraintzivzlpk,n <P,
and~; ,(t) is the SINR at receivek over band: at timet. The solution is known as iterative water-filling algorithm
(IWFA) and was introduced for the multi-band interferenbarmnel in [62]. In its most general form, the sequential
BRD algorithm in [22) is quite demanding in terms afservationsince each player has to observe the actions
played by the others. In the case of the IWFA, it is seen thaitdhly knowledge of the SINRy ,,(t) is required
to implement the BRD, which is basically an aggregate versibthe played actions: this information can easily
be estimated at the receiver and fed back to player updating its transmit power. When converging, the IWFA,
and more generally the sequential BRD, does it gfsitt convergence is typically observed after a few iterations
[63]. Intuitively, the feature of fast convergence stenmfrthe fact that the BRD relies on a detailed knowledge
of the problem at hand. Typically, the utility functions aassumed to be known. When this knowledge is not
available, instead of consideridmghly structureddistributed optimization algorithms such as the BRD, ong ma
consider multi-agent learning algorithms, which are tghic much less demanding in terms of modeling the
problem, as discussed in the next subsections. Howevertebafoving to such techniques, an alternative version
of the BRD is considered, which operates on probabilityriistions over actions (instead of pure actions) and
is referred to as the fictitious play (FP) algorithm. Consiug the FP algorithm allows us to better understand
the iterative structure of many learning algorithms, paiftirly the one considered in Section 11-B.

The original version of the FP algorithm assumes discreterasets, which is what is also assumed next. It
should be stressed that the BRD is generally not well suiebe discrete case. For example, when appliegftd
it converges in the scenario of multi-band multiple accdsmaoels while it does not converge in the multi-band
interference channel case as cycles appear [64]. This e ffequent in games with discrete actions. Therefore,
learning algorithms such as the one described in SeCiidfl dfe not only useful to assume less structure on the

problem but also to deal with thdiscretecase. From now on, we thus assume that

A ={ar1,...,apn } (31)

where|A;| < +o0. The FP algorithm, introduced by Brown in 1951][65], is a BRBoaithm in which empirical

frequencies are used. Working with probability distribns is very convenient mathematically. Although mixed
strategies are exploited, this does not mean that mixed BEarght. In fact, pure NE can be shown to be attracting
points for all the dynamics, which are considered in thisrewur This means that, under appropriate conditions,
mixed strategies tends to pure strategies as the numbegrafiitns grows large. The empirical frequency of use

of actiona, € A, for playerk € K at timet + 1 is defined by:

a2
Tha(t 1) = 7577 D Hovw=a) (32)
t'=1
wherel is the indicator function. If playek knowsnw_; , ,(t) (i.e., the empirical frequency of use of the action
profile a_; at timet), then it can compute its own expected utility and evenyuelioose the action maximizing
it. Observe that the computation of ;, , , (¢) requires to observe the actions played by the others. As RiD,B

this knowledge can be acquired only through an exchangefoimiation among the playefs.

SFor example, in the two-player cognitive radio’s dilemni&SR1 has knowledge of the number of times that CR2 has pinkebwband

or wideband up to timet, then CR1 can easily compute ., (t) through [32).
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In its simultaneous form, the FP algorithm operates as\adlo
K

ag(t + 1) € arg max Zﬂ,k,afk(t)uk(ak,a,k). (33)
ar€AL 1
The important point we want to make about the FP algorithmbisuathe structure of the empirical frequencies.

As a matter of fact, they can be computed in a recursive fasag
t+1 1 1

t
1
Tk, (t + 1) = H—lzl{am/:ak} = t—l——lzl{ak"/:ak} + t_i_—l]]'{ak,t+1:ak}
t'=1 t'=1

= Wk,ak (t) + )\EP (t) []]'{ak,t+1 :ak} - Wk,ak (t)] (34)

with A\FP(¢) = 1/(t+1) The last line translates the fact that the empirical fregyeat timet + 1 can be computed
from its value at timeg and the knowledge of the current action. More interestinjlgmphasizes a quite general
structure which is encountered with many iterative andfoeaement learning (RL) algorithms, as seen in the

remainder of this section.

B. Reinforcement learning

Originally, RL was studied in the context of single-player 6ingle-automaton) environments witlfiaite set
of actions. A player receives a numerical utility signal amblates its strategy. The environment provides this
signal as a feedback for the sequence of actions that hakébe by the player. Typically, the latter relates the
utility signal to actions previously taken in order to le@armixed strategy which performs well in terms of average
utility. In a multi-player setting, RL is inherently more mplex since the learning process itself changes the thing
to be learned. The main objective of this subsection is tevghat feeding back to the players only the realizations
of their utilities is enough to drive seemingly complex natetions to a steady state or, at least, to a predictable
evolution of the state. In RL algorithms, players use thepezience to choose or avoid certain actions based
on their consequences. Actions that led to satisfactorgamies will tend to be repeated in the future, whereas
actions that led to unsatisfactory experiences will be @awi One of the first RL algorithms was proposed by
Bush and Mosteller in_[66] wherein each player’s strategyefined by the probability of undertaking each of the
available actions. After every player has selected an m&arording to its probability, every player receives the
corresponding utility and revises the probability of uridking that action according to a reinforcement policy.
More formally, letu,(t) be the value of the utility function of playér at time ¢, and denote byr; ,, . (t) the
probability playerk assigns to actiomy, ,, at time¢. Then, the Bush and Mosteller RL algorithm operates as

follows:
Tharn (t+1) = Tha, (8) F A0 ue®) Ly ) =ap.} — Thiapn (£)] (35)

where( < )\EL(t) < 1 is a known function that regulates the learning rate of playét plays the same role as
the step-size in the gradient method). As seen, the updatiegyiven by [(3b) has the same form &s](34) but one
of the strengths of the algorithm corresponding[id (35) & #ach player only needs to observe taalization

of its utility function and nothing else. It can therefore dygplied to any finite game. Convergence is ensured for

classes of games such as potential games and supermodmleggas for the BRD, convergence points are pure

®The convergence of RL algorithms is also ensured for doncmaolvable game5 [22], which are not treated in this surueytd space

limitations
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Algorithm 2 Regret matching learning algorithm
sett =0

initialize 7 (0) s.t. Z;Vil 7,n(0) =1 for all playersk € K (e.g., using a random initialization)
repeat
for k=1to K do
for n=11to N, do
update ry (¢t + 1) using (36)
end for
for n=1to N, do
update 7, ,, (¢ + 1) using (37)
end for
chooseay(t + 1) according to the distribution (¢ + 1)
end for
updatet =t +1
until |ag(t) —ar(t—1)| <eforall ke K

NE or boundary points. The price to be paid for the high flditibregarding the environment and the absence of
strong assumptions on its structure is that the RL algorithi85) usually requires &rge number of iterations
to converge compared to the BRD algorithm.

All the above distributed algorithms (namely, the BRD aition, the FP algorithm, and the considered RL
algorithm) are attractive since they only rely on partiablhedge of the problem. On the other hand, convergence
points are typically pure NE, which in most cases are ingffiti Often, points which Pareto-dominate the NE
points can be shown to exist. A nontrivial problem is how taafe one of them in a distributed manner. We will
not address this challenging task in this survey. Rathemvilgrovide one learning algorithm that allows players

to reach a CCE. This may be more efficient than a pure or mixedsitiee the latter is a special instance of it.

C. Regret matching (RM) learning algorithm

The key auxiliary notion, which is exploited for regret nmfattg (RM) learning algorithms is the notion of
regret [67], which is eventually exploited to assign a certain bty to a given action. The regret playér
associates with actiow ,, is the difference between the average utility the playerld/tiave obtained by always
playing the same actiony ,, and the average utility actually achieved with the currerdtegy. Mathematically,
the regret at time for playerk is computed as

t
Vn € {1, ... Ne}, Tha, (t+1) = % > k(g m, a-k(t) — ur(ax(t), a_r(t')). (36)

t'=1
RM relies on the assumptions that at every iteratioplayerk is able to evaluate its own utility — i.e., to calculate

ug(ax(t), a—x(t)) — and to compute the utility it would have obtained if it hacdy®d another action), (i.e.,
ug(ay, a—x(t))). In [67], the rule for updating the probability playgrassigns to actiomy, ,, is as follows:

[Pk, (E+1)] T
Nj,

> [Fkay, t+ D))"

n’'=1

Tk ann (t + 1) = (37)
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Table II: Main features for the BRD, RL, and RM algorithms.

BRD RL RM
Action sets continuous or discrete discrete discrete
Convergence sufficient conditions sufficient conditions always guaranteed
Convergence points pure NE or boundary points | pure NE or boundary point$ CCE
Convergence speed fast slow medium
Efficiency of convergence points typically low typically low typically medium
Observation typically required actions of the others value of the utility function actions of the others
Knowledge typically required || utility functions and action sets action sets utility functions and action sets
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Fig. 10: RM has always the potential to perform better tharDBfnce pure NE are special cases of CCE.

The figure shows that this is effectively the case for the sate-of the considered distributed power allocation

problem under the given simulation setupl[64].

If, at time ¢t + 1, playerk has a positive regret for every action, it implies that he Mdwave obtained a higher
utility by playing the same action during the whole game uptéoationt + 1, instead of playing according to
the distributiony,(t) = (7k,a.,, - Tkae v, )- The updating rulel(37) has a very attractive property: ivigh no

regret[67]. The consequence of this property is expressed thrdgliollowing result.

Theorem 5 (Convergence of the RM algorithm)n any finite game, when updated ds](37), the empirical

frequencies of the action profile always converges almasthsto the set of CCE.

Observe that in those games wherein CCE, CE, mixed NE, aralpHrcoincide (such as for example in the
simple cognitive radio’s dilemma introduced in Sectioh then a unique CCE exists, which is a pure NE. In
this particular setting, RM does not provide any perforneagain over the BRD. However, in most cases the
RM algorithm has the potential to perform better than disiied algorithms such as the BRD. This is what is
illustrated in Sectiof III-D. In the cognitive radio contgxan application example supporting this statement can
be found in [68].
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Fig. 11: Average system spectral efficiency as a functiorhefriumber of iterations at a fixed SINR i dB.

D. lllustration and comparison analysis

Table[dl summarizes the different features of the threeselasof distributed algorithms, which have been
discussed throughout this section. Here, we consider aafestance of gamg&®® in which only two transmitters
and two receivers are operating and two bands are assumgaaah transmitter has to select one single band
[69]. Fig.[10 depicts the performance in terms of sum-utifite., the transmission sum-rate) as a function of
the SINR for both BRD and RM algorithms. As shown in Higl 16 RM learning algorithm is more efficient
in terms of sum-rate than the BRD algorithm. In fact, here geformance of the CCE, which is obtained by
implementing the RM learning algorithm, is very close to fierformance of the best pure NE of the game.
On the other hand, the BRD is observed to converge to a purenkiEh does not coincide with the best NE.
Although this is not what is observed generically, there ragigt some initial points for which the BRD performs
better than the RM algorithm. This raises a challenging l@mbthat is to characterize the relation between the
initial and convergence points, which is a challenging apemissue. Note that if the RL algorithm is considered,
the same issue would appear. The performance of the RL tidgofior the special case of interest would also
strongly depend on the initial point. The main drawback ahgshe RL algorithm would be the number of

iterations needed for convergence (when the algorithntffedly converges), as shown in Flg.]11.

E. Consensus algorithms

One last type of algorithms described in this section action consensus algorithms. These algorithms rely on
a strong coordinatiorbetween the players. This is achieved at the price of a gtridag observation assumption:
the corresponding updating rule requires explicit knogkedf the actions chosen by the other agents or players.
As a result of this assumption, afficientsolution can be attained at convergence. For instancemasthat the
players’ actions are real numbekg; € K, a; € R, and assume that the network should be designed to operate
at a given pointa* = (a},...,a%) € RE referred to asonsensusThis point must be attained by each player
through a certain iterative and distributed procedurelinig exchanges among the agents; of course reaching a
point which is globally efficient may not be possible. A simphstance of a consensus algorithm (see e.gl, [70])

is as follows:

ap(t+1) = ar(t) + Y B (a;(t) — ar(t)) (38)

JEAL
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wheret is the iteration index,A;, represents the neighbors of agéntand 3, ; is some weight that playek
places on the action or state of playeiSimple sufficient conditions can be stated under which suchlgorithm
converges[[70]. Indeed, the convergence analysis amoargtutlying the dynamical systeait + 1) = Caf(t)
where the matrixC follows from (38). The convergence properties of conseradgsrithms have been studied
under several interaction models (delays in informatioochexge, connectivity issues, varying topologies and
noisy measurements) and can be usually ensured by constraétthe algorithm itself. However, this requires a
well determined topology for the network and also a quitgdaamount of information to be exchanged, especially
in comparison with the other learning algorithms describbdve. Surprisingly, there has been relatively little
research that explicitly links consensus problems or, nymeerally cooperative control problems, to the very
relevant branches of learning in game literature or mugjéra system literature that address coordination problems
Most of the attempts in this context aim at establishing aneation between coordination problems and potential

games|[50],[[71]. To conclude this section, a simple appboaof consensus is given below.

Example 6 (Detection with sensor networksonsider a wireless sensor network in which each sensor on o
communicate with the sensors within its transmitted sigaabe. Each sensor has to decide whether a tectonic
plate is active or not (e.g., to detect earthquakes). Thimadb be taken by each sensor is assumed to be binary
active or not active. To decide whether a plate is active or not by using all the snemments and associated

decisions, a consensus algorithm as thatlinl (38) can be imgieed [70].

IV. COALITION-FORM GAMES

As discussed in Sectidn Il, strategic-form games mainly$oan the strategic choices of individual players and
on what strategies each player would choose to reach its Yk importantly, strategic-form representations
often deal with noncooperative cases in which players asamasd to act selfishly, individually, and without any
side payment, cooperation, or exchange of communicatiorohtrast, many SP applications require some sort
of cooperation between the players. For example, it is modenaore common to form virtual arrays of antennas,
sensors, or telescopes to improve estimation or detectiomracy; this type of operations requires communication
and partial-to-full cooperation between the players. @vagive networking, in which devices can, for example,
cooperatively route their packets at the network layer|$s a typical application where cooperation is needed.
In such cases, given the cooperative nature of the systayens may form groups among one another, in an
effort to improve their state and position in the game. Thes now deal with groups of players ooalitionsthat
act in a coordinated manner. Inside each such coalitionpldngers may still be choosing strategies, similar to a
strategic-form game, but overall, the goal in here is toyreathe formation of the coalitions given the possibility
of communication between the players.

Coalition-form gamegprovide an appropriate representation for such situationshich groups or coalitions
(subsets) of players can work together in a game. In such gjaome is typically concerned about the options
available to coalitions, the possible coalitions that vdglfm, and how the utility received by the coalition as a
whole can be divided among its members in a way to sustainezatipn. This amounts to assuming the existence
of a mechanism which imposes a particular action or seriemctitbns on each player. This mechanism can for

example result from a binding agreement among the playefoor a rule imposed by a designer.
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The coalition form is suitable to model a number of proble@s.the one hand, it is the only game-theoretic
tool available to predict and characterize how groups ofgas can weight and evaluate the mutual benefits and
cost from cooperation and, then, decide on whether or notott wogether and form binding agreements. On the
other hand, when the coalition form is found to be suitablentwdel the problem at hand, one of the strengths
of it is that it may lead to a solution, which is more efficiehah in the case in which no coordination occurs.
Moreover, the coalition form provides a suite of tools thibva to evaluate fairness, stability, and efficiency,

when players in a game are able to coordinate and communigtitecsach other, prior to making decisions.

A. Coalition-form games and bargaining theory

One important distinction to make is that between NBS (maneegally, the bargaining theory) and coalition-
form games. In the game-theoretic literaturel [23], bothiNaergaining and coalition-form games are often grouped
under the umbrella of cooperative games. This classificatiainly stems from the fact that in both cases, the
players may coordinate their strategies and are, in genewaperative. However, the NBS is restricted to the
scenario in which two or more players want to share a respame they are, a priori, willing to cooperate in
this resource sharing, provided that the “terms” of cooti@naare fair. Then, the question becomes the following:
given the players’ initial positions (which is generallyetinax-min or NE solution using their individual utility
functions), which have to be feasible, how should they gh#t rest of the resource being shared. Subsequently,
as detailed in Section 1iB, the NBS follows an axiomatic @@eh. In this regard, the NBS providesunique
allocation that answers this question.

Now, although the original solution proposed by Nash wasioésd to two players, the idea of Nash bargaining
has then been extended to the general multiple-player g@hig.extension has been particularly popular in the
SP community, where the analogies between Nash bargainth¢ha famous proportional fair resource allocation
mechanisms have been drawn and exploited. Important exarmullude consensus algorithms, resource allocation,
and optimal beamforming [4], 9], [38]. Nonetheless, evathwhis extension, the overall Nash bargaining problem
remains the same — how to share a resource betakgrayers, so as ta) satisfy the Nash bargaining axiom
andii) improve the players’ overall utility.

In contrast, coalition-form games address a different lemob how cooperative coalitions among different
players can be formed given the mutual benefits and costsofgperation. Therefore, coalition-form games are
not restricted to a fair resource-sharing problem such aBénNBS. In contrast, they investigate a much more
generic problem. Coalition-form games study how to stabiind maintain cooperative coalitions between groups
of players, in any situation, not just resource allocationcontrast, for a bargaining problem, it is assumed that:
i) all players are willing to cooperaté) there is no cost for cooperation, aiig the cooperation is reduced to
share a resource.

Therefore, in terms of objectives, the two approaches dffereint. However, the NBS can be used as an
axiomatic solution for distributing the utility inside adifmed” coalition, in a fair manner (in the Nash bargaining
sense). However, even though the bargaining solution &ilsf/ the NBS fairness axioms, it will not necessarily
stabilize the coalition, in the sense that some players nilywsant to leave this coalition and form other

coalitions, if the NBS is used to distribute the utilitieshus, to study large-scale cooperation and coalition
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Distribution of utility:

Can the value of any coalition be NTU: no

divided arbitrarily among its members?

Coalition value type:

Does the value function of a coalition PF: no

depend on its own members only? not addressed

in this paper

Fig. 12: Classification of coalition-form games.

formation processes, one must use solution concepts andthigs that are much more general than the NBS.

This motivates the need for coalition-form games.

B. Coalition-form game models

In this section, we use the notati@rto refer to a given subset of the set of playkrs- {1, ..., K'}. The notation
2K is used to denote the power set associated WitRor example, ifC = {1,2}, then2® = {0, {1}, {2},{1,2}}.
A coalition game is defined by the pdik, v), wherev is the value of a coalition that is a function or mapping
that provides a characterization of the utility (or utdi) achieved by the players that belong to a certain caalitio
In essence, for classical models of coalition games, depgrh the definition of), we can distinguish between

non-transferable-utility (NTU) games and transferabitytransferable-utility (TU) games:

« NTU games: coalition actions result in utilities to indiuia coalition members;

o TU games: utilities are given to the coalition and then didcamong its members.

In an NTU game, the formation of a coalitidhC K leads to changes of the individual utilities of the players
within C; however, there is no single value that can be used to destiréb overall coalition utility. In contrast,
in a TU setting, a single-valued function can be used to deter the overall utility of a coalition. Subsequently,
the individual utilities can be viewed as a sharing of thisg&-valued gain.

NTU and TU games can be further categorized into charatitefisiction (CF) games or partition-function
(PF) games:

« PF games: the utility of a coalitiof C X depends on the actions chosen by the other coalitiorS \rT;

« CF games: the utility of a coalitiof only depends on the action chosen by the member& of

Both CF and PF games admit many applications in SP. The lattparticularly useful for cases in which
externalities, such as interference or delay in commuioicatetworks, are present and depend on the coalition
actions of the players. For simplicity, our focus will be o Games. This classification of coalition-form games
is shown in Fig[ IR, emphasizing the fact the TU and CF gamespeeial classes of NTU and PF games,
respectively.

1) NTU games:The formal definition of a coalition-form NTU game with cheteristic function often follows

the form introduced by Aumann and Peleg(inl[72], which st#hes:

Definition 13 (NTU coalitional games with CF)An NTU game with CF is given by a pdik, v): £ = {1, ..., K}
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is called the set of players andis the characteristic function. The latter is a set-valuaddtion
v: 28 5 RK

C — v(C)

(39)

such that for every coalitiod® C /C, v(C) is a closed convex subset B that contains the utility vectors that

players inC can achieve.

In other words, in an NTU game, the value is a set of payoffascthat can be achieved by the players in
the game. A coalition game is therefore said to be NTU if theievar utility of a coalition cannot be arbitrarily
apportioned between the coalition’s members. For an NTU ahadtie players do not value a given coalition
in the same way. Instead, for every coalition, one or morgorecof individual payoffs will be achieved. For
example, when investigating a bargaining situation in Wiptayers cannot share their utilities, one can view the
NBS vector as an example of an NTU allocation. In SP problarasting a problem as an NTU coalition game
strongly depends on the metrics being optimized. Some eosedtich as energy are individual and thus NTU by
design, while others (such as for example the sum-rate) @reecessarily NTU.

2) TU games:A special case of NTU games is given by TU games. In TU gam@s), is a real value that

represents the total utility obtained by the coalit®nThis is what the following model translates.

Definition 14 (TU coalitional games with CF)An TU game with CF is given by a pafiC,v): £ ={1,..., K}
is called the set of players andis the characteristic function. The latter is given by:
v: 28 o R

C — ().

(40)

The TU property means that this worth can be divided in anyrmaaamong the coalition members. The values
in TU games are thought of as monetary values that the mentbarsoalition can distribute among themselves
using an appropriate rule (one such rule being an equalhilistin of the utility). In SP problems, one typical
example in which the TU property is applicable is the case liictv groups of devices aim to optimize a certain
sum-rate. Given that a sum-rate can virtually be dividedvbeh the devices via a proper choice of transmit signal

(or, more specifically, a power allocation), one can view shen-rate as a TU metric.

Remark 3. It is worth mentioning that, in practice, we can convert anlNgame to a TU game for the purpose
of analysis. One way to do so is to define the TU value funct®being the sum of the individual payoffs of
the players. Even though the actual division of this sum oabe done in this case in an arbitrary manner, we
can still use the TU model to understand how the system waldue under cooperation. In this case, we can
consider this single-valued TU utility as being a total reue achieved by the entire utility, with the individual
divisions being the virtual monetary gain that is provideddach player, if those players are to act within a

coalition.

3) Canonical game:For any type of coalition-form game, the primary goal is twvalep strategic algorithms
and mechanisms that allow to characterize and predict wbagiitions will form, when, and how. Given this

goal, we often refer to coalition games egsalition formation gamesHowever, one special case occurs when
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the value of a coalition is non-decreasing with respect todize of the coalition. Here, cooperation is always
beneficial and the costs of cooperation are negligible. i® ghecific case, the game is said toduperadditive

which is formally defined as follows for the TU case:
U(Cl @] Cz) > U(Cl) + U(Cg). (41

In this setting, it is trivial to see that the grand coalitioinall players will yield the maximum utility. However,
this does not mean that this grand coalition will always fomfact, unless the total gains are properly distributed
to the grand coalition’s members, some of those members raaiatéd and form their own coalitions. In such
scenarios, the coalition formation game is simply reduaethé so-calleccanonical game modeln which the
goal is no longer to form coalitions, but rather to study waysvhich the grand coalition of all players can be

sustained. This will lead to many solutions that look atrfags and stability, as detailed in the next subsection.

Remark 4. This basic definition of the various coalition-form gamedygan be used as a basis to develop more
advanced model. For example, if a player may belong simetiasly to multiple coalitions, one can define the
frameworkoverlapping coalition-formation (OCF) gamda SP, this could be used to model applications such
as sharing of sensor data between multiple cooperating gsoin OCF scenarios, one must redefine the way a
coalition-form game is presented. One approach is to regmea coalition by al x K vectorr whose element;
represents the amount of resources that playkas shared with this coalition. For such OCF scenarios, i

of stability or fairness must now be extended to the new sgr@tion and definition of a coalition.

Given this overview on how to represent a coalition-form gaour next step is to discuss the solution concepts

and main results.

C. Solution concepts

For coalition-form games, one can distinguish two featdmrsthe solution:stability and fairness On the
one hand, the solution of coalition-formation game musuenshat the formed coalitions are not susceptible to
deviations by individual members or even sub-groups of nemtOn the other hand, given that coalition formation
entails a division of utility, a suitable coalition-form lstion must ensure fairness when dividing or allocating
the various utilities. Balancing the two goals of fairnessl atability is challenging and strongly dependent on
factors such as the structure of the value function, thesgofathe players, and the application being studied.

The solution of a coalition-form game can further be clagdifinto two additional typesset-valued solutions
andsingle-valued solutionsSet-valued solutions refer to solutions that can guaeastigbility or fairness via more
than one cooperative strategy. How to choose the most apat®point within a set-valued solution becomes an
important problem. This is reminiscent of the multiplicty Nash equilibria in strategic-form games. In contrast,
single-valued solutions provide a unique strategy whidhiex@s a given fairness or stability criteria. Practically
although both set-valued and single-valued solutions aamded for both fairness and stability, most existing
set-valued solutions are focused on stability while singlied solutions are tailored towards fairness.

While both solutions can apply to any type of coalition-fogame, for ease of exposition, in this section we

restrict our attention to CF games that are superadditideTah By doing so, the overall solution can be viewed
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as a distribution of utilities that can maintain the stapilind fairness within the grand coalition. Nonetheless,
throughout our discussions, we will point out the key aspeeteded to extend the solutions to the more general
coalition-formation cases. Moreover, in Sectioh V, we wlibcuss algorithmic implementations that can provide
more insights on solving coalition-formation games.

1) The core: The most popular set-valued solution of a coalition-fornmgais thecore [73]. The core is the
set of payoff allocations which guarantees that no groupl@jgrs has an incentive to leave the grand coalition
K to form any other coalitiol C K. For a TU game, we let be thel x K vector of individual user utilities.
Here, we must have group rationality, i.8.,,. ; = v(K). In other words, the total allocation must sum to the
entire value of the grand coalition. In addition, we defineagqidf vectorx to beindividually rational if every
x; > v({i}),V i. This implies that an individually rational payoff vectonsires that no player will obtain a
lower payoff by joining the grand coalition. Consequentihg coreof a coalition game is defined as the seof
individually rational and group rational payoff vectorsfaiows:

S:{x:in:v(lC) andeizv(C)VCQIC}. (42)
ek icC

In simple terms, the core of a coalition game is the set of fi@flocations that ensure that no group of players
would have an incentive to leave the grand coalition and fireir own individual coalition. The core guarantees
stability with respect to any deviation by any group of pleydiowever, even though the core guarantees stability
and, for the superadditive case, one can easily see thatrémel goalition is the most efficient, the core in this
game may not be fair to the players. Examples of unfair allona that lie in the core abound both in the GT
and SP literature [74]/ [75]. Moreover, drawing yet anothaalogy with the NE, there is no guarantee that a
coalition game will have a core solution. Indeed, the cosea @et-valued solution, may be empty.

Nonetheless, the core is one of the most popular set-vabletia concepts in a coalition-form game which
has led to many extensions. For instance, when dealing witbrasuperadditive coalition-formation game with
TU, we can redefine the core, based on the partitio/C dhat maximizes the total utility, as follows:

0= {x.gcxz—glea%(;rvw) and ;xZZU(C)VCQK}, (43)
whereP is the set of all possible partitions & and = is one such partition or coalition structure. Recall that
the partition of the sek is a collection of disjoint subsets whose union would spanehtire setC. Thus, the
partition constitutes the coalitions that are expectedotnfin the system. Essentially, the difference between
(42) and [(4B) is that in[(42) the first core condition assunmes the sum of the individual payoffs is equal to
the value of the grand coalition, which is guaranteed to fdue to superadditivity. In contrast, ih_(43), due to
the non-superadditive nature of the game, the grand amalii not guaranteed to form. Consequently, the first
condition of the core must now ensure that the sum of the iddal payoffs must be equal to the sum of the
values of all coalitions in the partitiom that maximizes the total system value. Thus, this coalifmmation
core notion implies that, instead of investigating a stajyend coalition, one would seek an allocation that will
stabilize the partitionr that maximizes the total social welfare of the system. Thiparticularly useful when

coalition formation entails a cost, and, thus, the game issuperadditive.
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2) Thee-core: One extension to the core is thecore. This notion bears an analogy with the notion of
approximate ore-equilibria in strategic-form game$ _[64]. The basic ideathat the stability is not achieved
exactly, but rather within am approximation neighborhood as follows:

SE:{x:in:U(IC)andeizv(C)—eVCQIC,620}. (44)

ek icC

Interestingly enough, the value efcan be viewed as a quantification of the “overhead” for dewgafrom the
core. This overhead is incurred on the deviation of evensibes coalition. This bears a very interesting analogy
to SP — what is the overhead required by a group of devicesviatdefrom the stability concept and will they
be willing to incur this overhead. The above concept is alsowkn as the weak-core, which is used to then
define the so-called strongcore where, essentially, is divided between the members of a coalition, ieis
substituted by|C| - €. In this case, the overheadis implicitly assumed to be equally divided between caoatiti
members. The advantage of theore is that it may be easier to establish its existence dsaseto develop
algorithms that can reach it. This simply mimics the advgesaof any approximate solution concept in GT. In
SP, there have been some recent works (e.d., [76]) that expthee-core as a suitable concept for investigating
problems related to beamforming where the overhead of tlegifrom a certain beamforming strategy might be
high enough to reach anicore and, thus, avoiding the need to reach the more strirgea definition.

3) The Shapley valueThe core and its variants constitute set-valued stabitityons. In contrast, we can solve
a coalition-form game using single-valued fairness nai@ingle-valued solution concepts mainly associate with
every coalition gamé/C, v) a uniquepayoff vector known as the solution or value of the game (Wliscdifferent
from the value of a coalition). One example of such notiomes MBS that was previously discussed. In fact, most
single-valued notions follow an axiomatic approach: a gepre-set properties that are imposed on the sought
after payoff allocation in order to find a desirable soluti@me popular such solutions is t&hapley valug23].

For a TU coalition formation game, the Shapley value assigravery player the payoft; given by

= ¥ EE A= cuy - e 45)
CCR\{i}

This allocation is interpreted as follows. In the event vehtire players join the grand coalition in an arbitrary
order, the payoff allotted by the Shapley value to a playerk is the expected marginal contribution of player
i when it joins the grand coalition. In other words, the cdnition of a player is given by an expected value,
assuming a random order of joining of the players to the gaadition which, in a superadditive game, is known
to be the most efficient solution. Shapley showed that thistism is unique and it satisfies the following four
axioms:

1) efficiency axiom} . z; = v(K).

2) symmetry axiomif player : and playerj are such thav(C U {i}) = v(C U {;j}) for every coalitionC not

containing player and playerj, thenz; = z;.
3) dummy axiomif player i is such that(C) = v(C U {i}) for every coalitionC not containing;, thenxz; = 0.
4) additivity axiom If » andwv are characteristic functions, then the Shapley valuetatloto the game over

(u+ v) is the sum of the values allotted toandv, separately.
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The Shapley value provides some form of fairness for allngathe payoffs of a grand coalition. Similar to
the core, the Shapley value has led to many extended notimisas the envy-free fairness definedlin! [75], the
Banzhaf index[[23], or the Harsanyi index [23]. All of thesetions follow the steps of the Shapley value in
that they utilize certain axioms and attempt to find a camlifiorm solution that satisfies these axioms. However,
none of these solutions is guaranteed to be stable. For d&aoffen, the Shapley value will not lie in the core,
if that core exists. Therefore, one important challengectmlition-form games is to balance fairness and stability

by combining notions of core and Shapley value.

Remark 5. In summary, for solving coalition-form games, a myriad duton concepts exists. These are split
into two categories: single-valued and set-valued. Thegds mainly on stability and fairness. The exact notion

of stability or fairness depends largely on the type of thengaand the scenario being considered.

Next, we will discuss some principle results from coalitfonm games and, then, we will delve more into

algorithmic implementation and practical applicationghe SP domain.

D. Main theorems

Unlike strategic-form games in which existence, efficiermad uniqueness theorems are abundant, for coalition-
form games, such results are sparse and often model-dagehttevever, when dealing with the core, we can
discuss two seminal results that relate to the existencheotore and its fairness.

The first main result in this regard is given through the Baada-Shapley theorem [23]. This theorem is

concerned with coalition-form games that dr@anced

Definition 15. (Balanced game) A coalition TU game is said tolisancedf and only if we have
> uCw(C) < w(K), (46)
ccK

for all non-negative weight collections = (1(C))cck.

Here, 11 is simply a group of weights if0, 1] that are assigned to each coalitiérc C such thaty ... u(C) =
1, Vi € K. The main idea behind a balanced game can be explained awdolAssuming that every playéer
has a unit of time that can be divided between all possibléitmyes thati can form. Every coalitiorf is active
for a time periodu(C) if all players inC are active during that time. The payoff of this active caéatitwould
then bey(C)v(C). Here,> .5, n(C) = 1, Vi € K, would then be a feasibility constraint on the players’ time
allocation. Consequently, a coalition-form game is badahif there is no feasible allocation of time which can
yield an overall utility that exceeds the valuélC) of the grand coalition. Thus, for a TU balanced game, the

following result holds.
Theorem 6 ([73]). (Bondareva-Shapley) The core of a game is non-empty if afydibthe game is balanced.

Although the Bondareva-Shapley theorem is a popular résulshowing the non-existence of the core, its

applicability in SP may be very limited, as the required bakdness is quite restrictive on the coalition value.
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In this respect, yet another interesting result is givencfumvexcoalition-form games. A coalition game with TU

is said to be convex if its value function satisfies:
?)(Cl) + ?)(Cg) < U(C1 U CQ) + U(Cl N CQ) VC1,Co C K 47

By observing [(4l7), we can view directly its similarity witugermodular games, introduced in Section JIl-C.
Now, supermodularity is defined with respect to subsethgrahan vectors in the Euclidean space. We note that

the convexity conditions can also be written as follows:
U(Cl U {Z}) — U(Cl) < U(CQ U {Z}) — U(Cg) (48)

wheneverC; C C, C K\ {i}. This can be explained as follows. A game is convex if and dinthe marginal
contribution of each player to a coalition is nondecreasiiith respect to set inclusion. For a convex game, one

can state the following theorem:

Theorem 7 ([[73]). For a convex coalition-form game, the core is non-empty dved Shapley value lies in the

core.

This theorem provides a strong result that combines botilisfaand fairness. Indeed, for a convex game, the
Shapley value is in the core and thus provides both staldlity fairness. Although we stated the theorem here

for TU games, it can also be extended to NTU games.

V. ALGORITHMS FOR COALITION-FORM GAMES

One key design challenge in coalition-form games is thaewktbping algorithms for characterizing and finding
a suitable stable or fair solution. This is in general analewith the algorithmic aspects of non-cooperative games
where learning is needed to reach a certain Nash equilibrinrthis respect, here, we discuss two algorithmic
aspectsi) finding a stable or fair distribution for canonical gamedl ai) characterizing stable partitions for

coalition-formation games.

A. Canonical games

For canonical games, the most important solution concepitdscore and its variants. Alas, despite being a
strongly stable solution concept, computing the core carelzively complex. In particular, in order to compute
the core directly from the definition, one has to solve théofwing linear program:

minimize,, in s.t. in >v(C), YVC C K. (49)
ek icC

Solving [49) enables one to find all the solutions that liehie tore, as ensured by the constraint. Clearly,
solving the linear program ir_{#9) will require handliR§ constraints, which will grow exponentially as the
number of players increases. While no generic rule existo¥ercoming this complexity, we can exploit some
properties of the game or application being sought. On omel,hae can use theorems such as the Bondareva-
Shapley theorem or the convexity of the game to establistmagxistence and non-emptiness of the core. On the

other hand, for a given coalition-form game structure, we eaaluate the membership of known payoff division



36

rules, such as the bargaining solution or a proportionald&ision, in the core. Here, checking whether a certain
allocation belongs in the core essentially becomes sintpban deriving all the solutions that are in the core.
Regarding the Shapley value, one can also observe a singilaplexity limitation: computing the Shapley
value via [(45) calls for going again through all the possitbalitions. However, we note that, recently, some
approximations for the Shapley value have been develomdtlows us to compute it with reduced complexity.
A popular approach in this context relies on the use ofrtiudti-linear extensiormethod proposed by Owen [77]
for a special class of games known as voting games. The lmsacis to observe that in_(45) the term inside the
summation is the Beta function, which can then be used toasbtive Shapley value computation into a probability
computation which is then approximated by exploiting somapprties of voting games. Other approaches for

approximating or improving the computational time of theaBley value are surveyed in [78].
B. Coalition-formation games

Deriving suitable solutions for coalition-formation gasnis more challenging than the canonical case as it
requires to jointly compute the payoff and the coalitionalisture or network partition that will form. For
example, computing coalitional structure that lie in theec@s per the definition in_(43), can be highly complex,
as it requires to look over all partitions of a set — which grexponentially. However, some approaches using
Markov chains or other related ideas have been proposed9i [80], which were proven to work well for
reasonably large games.

However, in practical SP applications, we must trade off dtvength of the core stability for the complexity
of finding this solution. One baseline approach for a genesalition-formation algorithm would consist of two
key stepsi) define a rule using which a player may decide to join or leaw®alition andii) for the TU case,
adopt a proper payoff allocation rule (e.g., the Shapleye/aproportional fair, etc.) that is to be applied at the
level of any formed coalition.

Regarding the coalition formation rule, a number of appheachave been proposed within the SP commu-
nity [12], [74], [76€], [81]. Among them, the most popular anare the merge and split rules, defined as follows

(> is a preference relation, discussed below):

« Merge rule: A group of coalitions{Ci,...,C,} would merge into a single coalitiod,_,C;, if and only if
nglck > {Cl, - ,Cp},
o Split rule: A coalition U}_,C; will split into a smaller group of coalition§C,...,C,} if and only if

{Ci,....Cp} b U _ Cy.

Here, the preference relationcan be defined based on the application being studied. A popueference
relations is the so-calleBareto order whereby the merge or split rule would apply if at least oreypl improves
its payoff via merge or split, without hurting the payoff ofiyaother player. In other words, given the current
payoff vectory of all players involved in a merge or split rule, the merge mlit©ccurs when the vectar of the
payoffs of all involved players is such that> y with at least one elemeny; of z such thatr; > y;. Essentially,
this is reminiscent of the Pareto dominance rule used incumperative games.

The advantages of using merge-and-split based algoritimecisde: 1) guaranteed convergence to a stable,

merge-and-split proof coalition structure after a finitenier of iterations, 2) convergence is ensured irrespective
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target

@ : coalition head

& @ : monitoring station

Fig. 13: Distributed collaborative target detection as aliion game.

of the starting point of the network, and 3) the order of mevgesplit will not impact convergence. One other
major advantage of using merge-and-split based algoriihoigdes the fact that, irrespective of implementation,
such algorithms will reach the so-call@q-stable partition, when such a partition exists. Thestable partition

is a partition thati) is strongly stable in the sense that no group of coaliticens do better by breaking away

from this partition andi) when using the Pareto order as a preference relation, iSTR€efore, merge-and-split

can reach such an optimal and strongly stable partition akist

C. A case study: Coalition formation for collaborative tatgdetection

One SP application in which the coalition-form can be apbiie that of collaborative target detection. For
example, in radar systems, a number of monitoring statiM8s] can collaborate to detect a certain target of
interest at a given location. Such stations can be locataliffatent points in the network and, thus, their view
on the target will be different. Here, it is assumed that Hrget is a wireless device that is transmitting a certain
signal which must be detected. One major challenge in suatemasio is the hidden terminal problem — due
to fading and path loss some MSs may receive a weaker sigmal fine target, thus hindering their detection
performance.

To avoid this problem, collaborative target detection (§Tdan be used. The basic idea being that MSs can
share their individual detection results and, then, makelkative decision on the absence or presence of a
target at a given location. By collaborating, the MSs canlaikphe diversity of their observations to improve
detection decisions. However, although CTD can improveptiobdability of detecting the target as the number of
collaborating MSs increases, collaboration can lead tonareasing probability of false alarm — the probability
that a target is detected while it is not there. The tradeefiveen probability of detection and probability of false
alarm, as a function of the number of collaborating MSs, watéis the development of a coalition-form games
in which the MSs can dynamically decide on how to collaboratdle improving probability of detection and
maintaining a tolerable false alarm level.

As shown in Fig['IB, we consider a coalition game between & set MSs that are seeking to cooperate in

order to improve CTD performance. Since cooperation hetailsera cost — in terms of increased false alarm

"The existence of @.-stable partition is highly application-dependent anddbedition for existence will depend on the domain being
studied.
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— the game, in general, cannot be superadditive and, thissciassified as a coalition formation game. In this

game, each coalitiod of secondary users (SUs) will be optimizing the followingueafunction:

v(C) = Qac — C(Qye,ac) (50)

whereQ, ¢ is the collaborative probability of detection ant-) is a cost function of the collaborative false alarm
level Q¢ and the target false alarm constraint. In this model, each coalitioG will have a coalition head that
will collect the detection results and fuse them in order @kena collective coalition decisigﬁere, we notice
that (50) is a probabilistic utility and, thus, it cannot bansferred between the membersCofAs a result, the
CTD coalition-formation game is an NTU game with a specialpgrty: the payoffr; of each membef of C is
simply equal tou(C), since this value is a collective result, i.e., we assume dligolayers in a coalition abide
by the entire coalition decision.

Given the utility and involved tradeoffs, a merge-andisgljorithm based on the Pareto order can be proposed,
as shown in[[81] to find and characterize stable partitioms:i¢).[14, we show a snapshot of the network structure
resulting from a merge-and-split collaborative spectremsing (CSS) algorithm (dashed line) as well as from a
centralized approach (solid line) f@rrandomly deployed MSs. We notice that the partitions resylirom both
approaches are comparable, with neighboring MSs coopgrédir improving spectrum sensing. However, this
figure allows us to highlight the difference between a distiéd, coalition-formation game approach, in which
each MSs makes its own CTD decision, and a centralized gmtion approach, in which the MSs have no say
in the coalition formation process. In particular, from Higl, we can see that for the game solution, MS 4 is part
of coalition {1,2,4,6}, while for the centralized approach MS 4 is member{8f4,5}. This difference stems
from the fact that, in the distributed case, MS 4 acts selfigilile aiming at improving its own utility. In fact,
by merging with{3,5} MS 4 achieves a utility 0f).9859 with a probability of detection 00.9976 whereas by
merging with{1,2,6} its utility will be 0.9957 with a probability of detection 06.99901. Thus, in a coalition-
based solution, MS 4 prefers to merge with, 2,6} rather than with{3,5} regardless of the socially optimal
partition.

In summary, the use of a coalition-formation game for CTD a#so yield significant gains in terms of the
probability of detection, while maintaining a requiredskalalarm level and without the need for a centralized
optimization solution. Building on these results, one cawelop a broad range of applications that adopt the
coalition-form games for SP problems. For example, theemf@ntioned model for CSS was extended_in [82] to
the case in which an MS can belong, simultaneously, to meltpalitions. In this regard, we have shown that
the merge-and-split algorithm can be extended to handledbes of OCF games. Our results show that OCF can

improve over standard coalition-formation games for theecaf CTD.
VI. CONCLUSIONS

In this tutorial, we have provided a holistic view on the ugame-theoretic techniques in signal processing for

networks. Particular emphasis has been given to gamesaitegit- and coalitional forms. The key components

8The fusion rule used will impact the way in whiadhlyc and Q; are computed. However, it will not affect the way the game is

formulated.
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Fig. 14: Final coalition structure from both distributechfthed line) and centralized (solid line) collaborativgedr
detection forK = 7 MSs.

Table IlI: Strategic form vs Coalition form.

Strategic form Coalition form
Components players, actions, per-player utility players, coalition value, per-player utility
Primary player strategy choose a parameter to optimize choose a coalition membership
Primary player objective optimize individual utility optimize individual utility (while part of a coalition
Game objectives find an equilibrium find stable coalitions and fair allocations
Main types static, dynamic TU, NTU, canonical, coalition formation, CF, PF
Communication no communication between players players can form agreements and communicate
Main solution concept || NE — no player can unilaterally deviate stable partition — no coalition can deviate
Baseline algorithms learning based merge-and-split based
Primary application distributed optimization optimized cooperation, resource distribution

of such games have been introduced and discussed whiledprgva signal-processing-oriented view on the
various types of games. Some of the primary differences angepties of strategy-form and coalition-form

games are summarized in Talblel Ill. Then, we have developedrthin solution concepts and discussed the
various advantages and drawbacks within signal procesiingins. More importantly, this tutorial has attempted
to provide an in-depth discussion on the connections betvgzane theory and algorithmic aspects of signal
processing techniques. The applications discussed raogetfaditional communication problems to modern-day
signal processing problems such as cognitive radio andaesgesensor networks. Overall, this tutorial is expected
to provide a comprehensive, self-contained reference @glhhllenges and opportunities for adopting game theory

in signal processing, as well as to locate specific refereriber in applications or theory.
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