
HAL Id: hal-01242517
https://hal.science/hal-01242517

Submitted on 15 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Game Theory for Signal Processing in Networks
Giacomo Bacci, Samson Lasaulce, Walid Saad, Luca Sanguinetti

To cite this version:
Giacomo Bacci, Samson Lasaulce, Walid Saad, Luca Sanguinetti. Game Theory for Signal Processing
in Networks. IEEE Signal Processing Magazine, 2016, 33 (1), pp.94 - 119. �10.1109/msp.2015.2451994�.
�hal-01242517�

https://hal.science/hal-01242517
https://hal.archives-ouvertes.fr


ar
X

iv
:1

50
6.

00
98

2v
2 

 [c
s.

G
T

]  
4 

Ju
n 

20
15

Game Theory for Signal Processing in Networks
Giacomo Bacci, Samson Lasaulce, Walid Saad, and Luca Sanguinetti

Abstract

In this tutorial, the basics of game theory are introduced along with an overview of its most recent and

emerging applications in signal processing. One of the mainfeatures of this contribution is to gather in a single

paper some fundamental game-theoretic notions and tools which, over the past few years, have become widely

spread over a large number of papers. In particular, both strategic-form and coalition-form games are described

in details while the key connections and differences between them are outlined. Moreover, a particular attention

is also devoted to clarify the connections between strategic-form games and distributed optimization and learning

algorithms. Beyond an introduction to the basic concepts and main solution approaches, several carefully designed

examples are provided to allow a better understanding of howto apply the described tools.

I. INTRODUCTION

Game theory is a branch of mathematics that enables the modeling and analysis of the interactions between

several decision-makers (called players) who can have conflicting or common objectives. Agameis a situation

in which the benefit or cost reaped by each player from an interactive situation does not only depend on its own

decisions but also on those taken by the other players. For example, the time a car driver needs to get back

home generally depends not only on the route he/she chooses but also on the decisions taken by the other drivers.

Therefore, in a game, the actions and objectives of the players are tightlycoupled. Until very recently, game

theory (GT) has been used only marginally in signal processing, with notable examples being some applications

in robust detection and estimation [1] as well as watermarking [2] (in which the watermarking problem is seen as

a game between the data embedder and the attacker). However,the real catalyzer of the application of GT to signal

processing (SP) has been the blooming of all issues related to networkingin general, and distributed networks, in

particular. The interactions that take place in a network can often be modeled as a game, in which the network

nodes are the players that compete or form coalitions to get some advantage and enhance their quality-of-service.

The main motivation behind formulating a game in a network isthe large interdependence between the actions of

the network nodes due to factors such as the use of common resources (e.g., computational, storage, or spectral

resources), with interference across wireless networks being an illustrative case study. Paradigmatic examples of

this approach can be found in the broad field of SP for communication networks in which GT is used to address

fundamental networking issues such as: controlling the power of radiated signals in wireless networks, with the
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line of research largely originated from the seminal work in[3]; beamforming for smart antennas [4]; precoding in

multi-antenna radio transmission systems [5]; data security [6]; spectrum sensing in cognitive radio [7]; spectrum

and interference management [8]; multimedia resource management [9]; and image segmentation [10], [11].

Spurred and motivated by the well-established applicationto the fields above, GT is also pervading many other

branches of SP, and has very recently been used for modeling and analyzing the following “classical” SP problems:

distributed estimation in sensor networks [12]; adaptive filtering [13]; waveform design for multiple-input multiple-

output (MIMO) radar estimation [14]; jamming of wireless communications [15] and MIMO radar applications

[16]; and finding the position of network nodes [17]. In addition to the examples above, we must eventually

point out the important connection that is building up between GT and SP through the fields of machine learning

algorithms [18] and distributed optimization [19]. As explained in Section III, there exists a tight relationship

between game-theoretic concepts andlearning algorithm aspects. In this respect, one of the key messages of this

contribution is that the solution of a game (often called an equilibrium, as discussed later) can often coincide with

the convergence point that results from the interaction among several automata that implement iterative or learning

algorithms. Therefore, there is an important synergy between GT and the broad field of multi-agent learning.

Despite the clear intersection between GT, learning, and optimization, as corroborated by a significant number

of SP papers which exploit GT, it is worth noting that games usually have some features that are not common

in classical optimization problems. In this respect, GT possesses its own tools, approaches, and notions. For

example, in contrast to a classical optimization problem inwhich a certain function must be optimized under

some constraints, the very meaning of optimal decision, or,equivalently, strategy, is generally unclear in interactive

situations involving several decision makers, since none of them controls all the variables of the problem and

these players can also have different objectives. To address such situations, GT is enriched with concepts coming

from different disciplines such as economics and biology. This leads to notions that one does not encounter

when studying, for instance, convex optimization. Examples of these notions are auctions, cooperative plans,

punishments, rationality, risk aversion, trembling hand,and unbeatable strategies, to name a few. Remarkably,

such concepts can actually be exploited to design algorithms. Although a player can be an automaton, a machine,

a program, a person, an animal, a living cell, a molecule, or more generally any decision-making entity, it is

essential to have in mind that a game is first and foremost a mathematical tool, which aims at modeling and

analyzing an interactive situation. Before delving into the specific details of the various game models, we first

provide a detailed overview on the different game models which are available in the GT literature.

There are three dominant mathematical representations fora game: (i) the strategic form; (ii ) the extensive

form; and (iii ) the coalition form. Other representations exist e.g., thestandard form which is used in the theory

of equilibrium selection [20], and the state-space representation [21] but their use is rather marginal. The extensive

form, which is typically used to investigate dynamical situations in computer science, will not be discussed in

this survey. The main reason is that the extensive form, although more general (see [22], [23] and references

therein for more details) than the strategic form, is often mathematically less tractable for typical SP problems.

Defining the corresponding model and providing important results related to the strategic form is the purpose of

Section II, whereas Section III shows how some solution concepts that are inherent to the strategic form can be

related to algorithmic aspects. Section IV discusses thecoalition form, which, unlike the strategic form, deals with
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Table I: List of acronyms

BR best response OCF overlapping coalition formation

BRD best-response dynamics PF partition function

CCE coarse correlated equilibrium PO Pareto optimality

CE correlated equilibrium PoA price of anarchy

CF characteristic function RL reinforcement learning

FP fictitious play RM regret matching

NBS Nash bargaining solution SE strong equilibrium

NE Nash equilibrium SO social optimality

NTU non-transferable utility TU transferable utility

options available to subsets of players (called cooperative groups or coalitions), what cooperative coalitions can

form, and how the coalition utility is divided among its members. The algorithms that can be used to implement

this approach are detailed in Section V. Note that, as described throughout the paper, for a given SP problem,

the structure of the problem at hand and the practical constraints associated with it will determine whether the

strategic or the coalition form is the most suitable representation. For example, it may occur that both forms are

acceptable in terms of information assumptions, while complexity issues will lead to selecting one over the other.

To sum up, the main objectives of this tutorial are as follows. The primary goal of this survey is to provide a

holistic reference on the use of GT in SP application domains. Some surveys have already been published in the

SP literature [24] and communications literature [25] and [26]. The authors’ motivation is not only to provide a

refined and updated view of GT with respect to these existing tutorials, but also to establish explicit connections

across the different tools of GT. In particular, the presenttutorial aims to:

• give the reader a global – although necessarily partial – overview of GT highlighting connections and

differences between strategic-form and coalition-form games in a single paper;

• delineate differences and connections between GT and optimization;

• explain the strong relationship between game-theoretic solution concepts, such as the Nash equilibrium, and

distributed SP algorithms;

• provide many application examples to help the reader understanding the way the described tools can be

applied to different contexts.

For the reader’s convenience, Fig. 1 provides a reference for the structure of this tutorial, adopting the typical

methodology used to address game-theoretic problems and listing the topics described in each section, whereas

Table I lists the acronyms for game-theoretic terms used throughout the tutorial.

II. STRATEGIC-FORM GAMES

A. Definition

A game in strategic (or normal) form is represented by a family of multi-variate functionsu1, ..., uK ; K ≥ 1.

The index set of this family, which is denoted here byK = {1, ...,K}, is called theset of playersand, for each

k ∈ K, uk is commonly called theutility (or payoff) functionof playerk. The strategic form assumes thatuk can
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Fig. 1: Logical structure of the tutorial.

be any function of the following form:

uk : S1 × ...× SK → R

(s1, ..., sK) 7→ uk(s)
(1)

whereSk is called theset of strategiesof playerk, sk is the strategy of playerk, s = (s1, . . . , sK) ∈ S is the

strategy profile, andS = S1 × ...× SK . We refer to a strategic-form game by using the compact triplet notation

G = (K, (Sk)k∈K, (uk)k∈K). The notations−k = (s1, . . . , sk−1, sk+1, . . . , sK) is used to denote the strategies

taken by all other players except playerk. With a slight abuse of notation, the whole strategy profile is denoted by

s = (sk, s−k). The strategic-form representation may encompass a large number of situations in SP. To mention

a few examples, players in a game can be: radars competing to improve their performance in terms of probability

of false alarm or miss detection; sensors in a sensor network, which coordinate to estimate a field in a distributed

way; base stations allocating the resources in a cellular network to optimize the system throughput; several digital

signal processors, which have to compete for or manage computing resources; a watermarking device or algorithm,

which has to find a good strategy against potential attackers.

Formally, it is worth noting that, in its general formulation, the strategic form is characterized by the simultaneous

presence of two key features:

• each playerk can have its own objective, which is captured by a per-playerspecific functionuk(s);

• each playerk has partial control over the optimization variables as it can control its strategysk ∈ Sk only.

Although the first feature is tied withmulti-objective optimization, a clear difference exists in the control of the

optimization variables, as in multi-objective optimization one has full control over all the variables1. Additionally,

quite often in multi-objective optimization problems (seefor example [27]), an aggregate objective must be

defined. The second feature is tightly related to the framework of distributed optimization, although a common

objective function is usually considered in this context, i.e.,∀k uk(s) = u(s). More importantly, the conventional

1In fact, one can also define a strategic-form game in which a player has multi-objectives.
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assumption in distributed optimization is that the decision-making process is basically driven by a single designer

(or controller), which provides a set of strategies that theplayers strictly follow. Although being a possible

scenario (which might be very relevant for some algorithmicaspects), in GT the players in general can also have

the freedom to choose their strategies by themselves.

A central question is how to “solve” a strategic-form game. The very notion of optimality in this context is

unclear since, as explained previously, we are in the presence of multiple objectives and the variables, which

impact the utility functions, cannot be controlled jointly. This is the reason why the problem needs to be defined

before being solved and why there exists the need for introducing game-theoreticsolution concepts.

B. Solution concepts

The Nash equilibrium (NE) is a fundamental solution conceptfor a strategic-form game on top of which many

other concepts are built. This section is mostly dedicated to the NE and discusses more briefly other solution

concepts, which might also be considered. In [28], Nash proposed a simple but powerful solution concept, which

is now known as anNE (or Nash point).

Definition 1 (NE). An NE of the gameG = (K, (Sk)k∈K, (uk)k∈K) is a strategy profilesNE = (sNE
1 , . . . , sNE

K ) =

(sNE
k , sNE

−k ) such that:

∀k ∈ K,∀sk ∈ Sk, uk
(
sNE
k , sNE

−k

)
≥ uk

(
sk, s

NE
−k

)
. (2)

A simple instance of an NE in everyday life would be to say thatif everyone drives on the right, no single

driver has an interest in driving on the left. As a more technical comment on the above definition, it can be seen

that sNE represents a strategy profile in the broad sense. For instance, it may be a vector of actions, a vector of

probability distributions, or a vector of functions. Probability distributions naturally appear when considering an

important extended version of the strategies ofG, namelymixed strategies. WhenSk is finite,2 they are defined

as follows.

Definition 2 (Mixed strategies). Let ∆(X ) be the set of distribution probabilities over the generic set X (that

is the unit simplex). Playerk’s mixed strategyπk ∈ ∆(Sk) is a distribution that assigns a probabilityπk(sk) to

each strategysk, such that
∑

sk∈Sk
πk(sk) = 1. For mixed strategies, the (joint) probability distribution over the

strategy profiles is by definition the product of the marginalsπk, k ∈ K.

A mixed strategy thus consists in choosing a lottery over theavailable actions. In the case where a player has

two possible choices, choosing a mixed strategy amounts to choosing a coin with a given probability of having

head (or tail): the player flips the coin to determine the action to be played. Using mixed strategies, each player

can play a certain strategysk with probability πk(sk). Note that the strategies considered so far, termedpure

strategies, are simply a particular case of mixed strategies, in which probability 1 is assigned to one strategy,

and0 to the others. The importance of mixed strategies, aside from being more general mathematically than pure

strategies, comes in part from the availability of existence results for mixed NE. The latter is defined as follows.

2The continuous case is obtained by using an integral insteadof a discrete sum in the definition.
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Definition 3 (Mixed NE). A mixed strategy NE of the gameG = (K, (Sk)k∈K, (uk)k∈K) is a mixed strategy profile

πNE = (πNE
1 , . . . , πNE

K ) = (πNE
k , πNE

−k ) such that

∀k ∈ K,∀πk ∈ ∆(Sk), ũk
(
πNE
k , πNE

−k

)
≥ ũk

(
πk, π

NE
−k

)
(3)

where

ũk (πk, π−k) = E(uk) =
∑

s∈S


∏

j∈K

πj(sj)


uk (s) (4)

is the expected utility of playerk when selecting the mixed strategyπk.

By definition, an NE ofG is a point such that for every indexk the functionuk cannot be (strictly) increased

by just changing the value of the variablesk at the equilibrium. For this reason, an NE is said to be strategically

stable to unilateral deviations. The NE has at least two other very attractive features:

• In its mixed version, its existence is guaranteed for a broadclass of games;

• It may result from the repeated interaction among players, which are only partially informed about the

problem. In particular, some well-known distributed and/or learning algorithms may converge to an NE (see

Section III).

Elaborating more on the first feature, it should be stressed that existence is a fundamental issue in GT. In fact,

one might think of various solution concepts for a game. For example, one might consider a point which is stable

to K deviations rather than to a single one (withK being the number of players). This solution concept is known

as astrong equilibrium (SE)(see e.g., [22], [23]): an SE is a strategy profile from which no group of players (of

any size) can deviate and improve the utility of every memberof the group while the players outside the deviating

group maintain their strategy to that of the equilibrium point. The SE is therefore stable to multiple deviations and

the number of them can be up toK. This is a strong requirement, which explains why it is quiterarely satisfied

in a static game (see [22] for a static-game example where it is met). In fact, the SE is particularly relevant in

infinitely repeated games. To better understand this, the reader is referred to Sec. IV where the notion of core is

described; indeed, it turns out that theβ−core (which is a version of the core) of a game coincides with the SE

utilities in an infinite repetition of that game [29]. Considering the SE as a solution concept in a context of purely

selfish players of a static game might be inappropriate sinceit will typically not exist, instead, the NE offers more

positive results in terms of existence. Indeed, tackling the existence issue of an NE for a strategic-form gameG

reduces to study a fixed-point problem for which quite positive results can be obtained. To state the existence

problem as a fixed-point problem the notion ofbest-response (BR)for a player must be first introduced.

Definition 4 (BR). Player k’s best-responseBRk(s−k) to the vector of strategiess−k is the set-valued function

BRk(s−k) = arg max
sk∈Sk

uk (sk, s−k). (5)

By introducing the auxiliary notion of composite (or, equivalently, global, or game’s) best-response

BR : S → S

s 7→ BR1(s−1)× ...× BRK(s−K),
(6)

we have the following characterization for an NE.
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FC1 FC2

Fig. 2: The wireless sensor’s dilemma

Definition 5 (NE characterization). Let G = (K, (Si)i∈K, (ui)i∈K) be a strategic-form game. A strategy profile

sNE is an NE if and only if:

sNE ∈ BR(sNE). (7)

The characterization of an NE in terms of a fixed-point problem is due to Nash [28] and explains why common

existence theorems are based on topological and geometrical assumptions such as compactness for the sets of

strategies or continuity for the utility functions. The following two theorems explain why the NE is an attractive

solution concept from theexistenceissue standpoint: they show that any finite game or compact continuous game

possesses at least one mixed NE.

Theorem 1 ([30]). In a strategic-form gameG = (K, (Sk)k∈K, (uk)k∈K), if K is finite andSk is finite for every

k, then there exists at least one NE, possibly involving mixedstrategies.

Theorem 2 ([30]). In a strategic-form gameG = (K, (Sk)k∈K, (uk)k∈K), if Sk is compact anduk is continuous

in s ∈ S for everyk ∈ K, then there exists at least one NE, possibly involving mixedstrategies.

To better picture out the meaning of the strategic-form representation and the notion of NE, let us consider a

simple example, which is an instance of what is referred to asthe prisoner’s dilemma in the GT literature [31].

Example 1 (The wireless sensor’s dilemma). Consider the wireless sensor network sketched in Fig. 2, which is

populated by a number of wireless sensors sending their own measurements (e.g., target detection, temperature),

to their fusion centers, labeled asFC1 andFC2. For the sake of graphical representation, sensors communicating

with sensors, and the fusion centers (FCs) themselves, are represented with blue and red colors, respectively. As

is known, gathering information at each FC from a larger population of nodes (in this case, those covered by

the other FC) helps improving its measurement accuracy. However, sharing data among different population of

nodes implies additional transmission of information across the FCs, which is in general costly due to energy

expenditure. In this context, the two FCs can independentlyand simultaneously decide whether to share (i.e.,

relay) the information or not. Depending on both decisions,each FC gets a (dimensionless) utility in the form

“accuracy minus spent energy”, given according to Fig. 3 (known as payoff matrix), in whiche, 0 ≤ e ≤ 1,

represents the cost incurred by an fusion center for relaying the measurements of the other.

The communication problem corresponding to Example 1 can bemodeled by a strategic-form game where

the set of players isK = {FC1,FC2} and the action or strategy sets areSk = {sleep mode,active mode}
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F
C
1

FC2

active mode sleep mode

active mode

sleep mode

u1(s), u2(s)

1− e, 1− e −e, 1

1,−e 0, 0

Fig. 3: A wireless sensor’s dilemma game under matrix form.

k ∈ {1, 2}. The utility function forFC1 (the one forFC2 follows by symmetry) is given by:

u1(s1, s2) =

∣∣∣∣∣∣∣∣∣∣∣∣

−e if (s1, s2) = (active mode, sleep mode)

0 if (s1, s2) = (sleep mode, sleep mode)

1− e if (s1, s2) = (active mode,active mode)

1 if (s1, s2) = (sleep mode,active mode).

(8)

This game is said to be astatic or one-shot gamesince each player takes a single action once and for all.

Since this game is finite, it has at least one mixed NE (according to Theorem 1). To find these equilibria, denote

by ρ1 (resp.ρ2) the probability thatFC1 (resp.FC2) assigns to the actionactive mode. The mixed NE of the

considered game can be found by computing the expected utilities. For playerWSk with k ∈ {1, 2}, it writes

as ũk(ρ1, ρ2) = −eρk + ρ−k. The best-response of playerk is given by:∀ρ−k ∈ [0, 1], B̃Rk(ρ−k) = 0. Since,

by definition, Nash equilibria areintersection pointsof the best-responses, the unique mixed NE is(ρNE
1 , ρNE

2 ) =

(0, 0), which is a pure NE consisting of the action profile (sleep mode, sleep mode).

Example 2 (The cognitive radio’s dilemma). Observe that the example above is general enough to encompass

many different applications. For example, it can be used to model a cognitive network with two cognitive radios,

CR1 and CR2, which have to decide independently and simultaneously to transmit either over a narrow or a

wide frequency band. In this case, the two corresponding actions are respectively denoted bynarrowband and

wideband. Depending on the cognitive radio’s decisions, each cognitive radio transmits at a certain data rate

(say in Mbit/s or Mbps) accordingly to Fig. 4. The first (second) component of each pair corresponds to the the

transmission rate (i.e., utility) of cognitive radio1 (2). For instance, if both use a wide band, their transmission

rate is the same and equals1Mbit/s.

The action (sleep mode) in Example 1 (or,wideband in Example 2) is called astrictly dominant action(or,

equivalently, strategy) for playerk. For any given action chosen by the other player, it providesa utility, which is

strictly better than any other choice. At the equilibrium, the wireless sensors have a zero utility. It is seen that there

exists an action profile at which both players would gain a higher utility. The action profile (active mode, active

mode) is said toPareto-dominatethe action profile (sleep mode, sleep mode). More generally, in any game,

when there exists a strategy profile, which provides a utility for every player that is greater than the equilibrium

utility, the equilibrium is said to bePareto-inefficient. Inefficiencyis generally a drawback of considering the NE

as a solution concept. From an engineering point of view, it would be more desirable to find an equilibrium that

is Pareto-efficient, i.e., a Pareto-optimal (PO) point.
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C
R
1

CR 2

narrowband wideband

narrowband

wideband

u1(s), u2(s)

3, 3 0, 4

4, 0 1, 1

Fig. 4: A cognitive radio’s dilemma game under matrix form. Utilities may be expressed e.g., in Mbit/s.

Definition 6 (PO). A strategy profilesPO is a PO point if there exists no other strategy profiles such that

uk (s) ≥ uk
(
sPO

)
for all k ∈ K, anduk (s) > uk

(
sPO

)
for somek ∈ K.

In addition to Pareto optimality, an other related concept widely used is the weak PO point defined as follows:

Definition 7 (PO). A strategy profilesPO is a weakly PO point if there exists no other strategy profiles such that

uk (s) > uk
(
sPO

)
for all k ∈ K.

In other words, when operating at a PO strategy profile, it is not possible to increase the utility of one player

without decreasing that of at least one other. In many occasions, beyond the concept of Pareto optimality, the

performance (in terms of social efficiency) of an NE can be measured by comparing it to a socially optimal profile,

which is defined as a maximizer of thesocial welfare3 (or, more properly, sum-utility)
∑

k∈K uk(s). Formally

stated, a social-optimal (SO) point is defined as follows.

Definition 8. A strategy profilesSO is a social optimum point if it satisfies

sSO ∈ arg max
s∈S

∑

k∈K

uk(s) (9)

whereS = S1 × ...× SK .

A PO or a social optimum can be seen as a possible solution concept for a game. Often, implementing this

solution concept will require some coordination between the players and typically rely on the need for significant

information and knowledge assumptions. In the framework ofdistributed networks, such coordination degree or

knowledge might not be available or may be costly, and, thus,social optimality (or Pareto optimality) can only

be used to measure the performance loss induced by decentralization. There is a common and simple measure of

efficiency, which allows one to quantify the gap between the performance of centralized (in some sense, classical)

optimization and distributed optimization. Indeed, the efficiency of the Nash equilibria can be measured using the

concept ofprice of anarchy (PoA)[34], which is defined as follows.

3Other global measures can be used to have more fairness (see e.g., [32]). Through Def. 13, the Nash product is considered and can be

shown to be proportionally fair (see [33]).
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narrowband wideband

narrowband

wideband

u1(s), u2(s)

4, 4 1, 5

5, 1 0, 0

Fig. 5: A simple cognitive radio’s coordination game which exhibits non-trivial correlated equilibria. Utilities may

be expressed e.g., in Mbit/s.

Definition 9 (PoA). The PoA corresponds to

PoA =

max
s∈S

∑

k∈K

uk(s)

min
s∈SNE

∑

k∈K

uk(s)
(10)

whereSNE denotes the set of all NE in a game.

Otherwise stated,PoA provides a measure of the performance loss (in terms of social welfare) of the “worst”

NE compared to a socially optimal strategy. The closerPoA to 1, the higher the efficiency of the NE. One of the

features of PoA is that it can be upper bounded in some important cases e.g., in congestion games with monomial

costs [35]; acongestion gameis a special form of game in which the utility of cost of a player depends on its

own action and depends on others’ action only through the waythey distribute over the available actions (often

called edges or routes). For instance, if the cost (the opposite of the utility) is linear, the PoA is upper bounded

by 4
3 , showing that the price of decentralization is relatively small in this scenario.

To illustrate the notions of PoA, let us reconsider Example 2, where the four possible utility profiles are reported

in Fig. 4. The wireless sensors game has three Pareto optima:(1,−e), (−e, 1), and(1− e, 1− e). Geometrically,

a utility vector is PO if there is no point in the North-East orthant whose origin is located at the candidate point.

In the considered game, there is a unique NE. Here, the PoA equals 3+3
1+1 = 3. If there is no means of coordinating

the two cognitive radios, which may happen when both transmitters have been designed independently or are

owned by different economic players, the loss in terms of social efficiency has to be undergone. However, if there

is a common designer as in the framework of distributed optimization, it may be possible to decrease the PoA.

Remark 1. One way to improve efficiency is to keep on considering an NE asthe solution concept but to transform

the game. The corresponding general framework is referred to asmechanism design[36]. Affine pricing is a very

special instance of mechanism design: it consists in applying an affine transformation on the utility functions and

tune the introduced parameters to obtain an NE, which is moreefficient than the one considered in the original

game.

Another possibility to improve efficiency is to keep the gameunchanged but to modify the solution concept.

This may be acorrelated equilibrium (CE)or a Nash bargaining solution (NBS). A CE is a joint distribution

over the possible actions or pure strategy profiles of the game from which no player has interest in deviating

unilaterally. More formally, we have the following definition.
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Fig. 6: Set of correlated equilibria of the game given by Fig.5 in the expected utility plane. A public signal
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Definition 10 (CE). A CE is a joint probability distributionqCE ∈ △(S) which verifies:

∀k ∈ K,∀s′k ∈ Sk,
∑

s∈S

qCE(s)uk(s) ≥
∑

s∈S

qCE(s)uk(s
′
k, s−k). (11)

We know that a pure NE is a special case of mixed NE for which theindividual probability distributions used

by the players are on the vertices of the unit simplex. We see now that a mixed NE is a special case of a CE

for which joint probability distributions over the action profiles factorizes as the product of its marginals. One

important question is to know how to obtain a CE in practice. Aumann showed that the availability of a exogenous

public signal to players allow the game to reach new equilibria, which are in the convex hull of the set of mixed

NE of the game [22]. By “public signal”, it is implied that every player can observe it; the adjective “exogenous”

is added to explicitly indicate that the signal is not related to the player’s actions. A simple example would be

the realization of a Bernouilli random variable such as the outcome obtained by flipping a coin. Additionally, if

exogenous private signals are allowed, new equilibria outside this hull can be reached and lead to better outcomes;

by “private” it is meant that each player observes the realizations of his own lottery. Those equilibria are precisely

correlated equilibria. Having a CE therefore means that theplayers have no interest in ignoring (public or private)

signals, which would recommend them to play according to therealizations of a random lottery whose joint

distribution corresponds to a CEqCE. In the case of the wireless sensor’s dilemma, it can be checked that the

only CE boils down to the unique pure NE of the game, showing that sending a broadcast signal to the wireless

sensors would not allow them to reach another equilibrium, which might be more efficient. To better picture out

the meaning of CE, consider a modified version of Example 2, which has not the structure of a prisoner’s dilemma

anymore (no strictly dominant strategy for the players exists). Fig. 5 shows the corresponding game under matrix

form while Fig. 6 shows the set of CE of this game. In particular, it turns that a public signal allows the CR to

reach any CE in the convex hull of the points(5, 1), (1, 5).

Another notion of equilibrium derived from the notion of CE is thecoarse correlated equilibrium (CCE). It
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is mathematically more general than the CE. The set of CE is therefore included in the set of CCE. One of the

motivations for mentioning it here is that CCE can be learnedby implementing simple algorithms such as regret

matching based learning schemes [18] (see Section III for further details).

Definition 11 (Coarse correlated equilibrium). A CCE is a joint probability distributionqCCE ∈ △(S) which

verifies:

∀k ∈ K,∀s′k ∈ Sk,
∑

s∈S

qCCE(s)uk(s) ≥
∑

s∈S

qCCE
−k (s)uk(s

′
k, s−k) (12)

whereqCCE
−k (s−k) =

∑
sk∈Sk

qCCE(sk, s−k).

A possible interpretation of this definition is as follows. Following the notion of CCE, players are assumed to

decide, before receiving the recommendation associated with a public or private signal, whether to commit to it

or not. At a CCE, all players are willing to follow the recommendation given that all the others also choose to

commit. That is, if a single player decides not to follow the recommendations, it experiences a lower (expected)

utility. Based on this interpretation, the difference between the CCE and the CE is that in the latter, players

choose whether or not to follow a given recommendationafter it has been received. Therefore, there is no a priori

commitment.

Another effective approach that can be taken to further improve the efficiency of the game solution while also

addressing fairness issues is to seek alternative solutionconcepts. One example of such alternative solutions

is the concept of NBS [37], which has been originally defined for two-player games. The implementation

of the NBS typically requires some form of coordination or exchange of information among the players. As

explained in Section III, the NBS can be related to SP algorithms such asconsensus algorithms. The NBS has

been used in the networking literature about 20 years ago to obtain fair solutions to flow control problems in

communication networks [32]. More recently, it has been exploited in different contexts such as: in [33] for

solving bandwidth allocation problems; in [38] for achieving weighted proportional fairness in resource allocation

in wireless networks; or, in [4] to obtain cooperative beamforming strategies in interference networks where

transmitters are equipped with multiple antennas. Anotherexample can be found in [9] wherein the bargaining

methodology is employed to address the problem of rate allocation for collaborative video users (see also [39]).

Following [37], let us define the NBS for two-player games. For this, we denote byU the set of feasible utility

points of the strategic-form game of interest and assume that U is a closed and convex set. Let denote by(λ1, λ2)

a given point inU , which will be referred to as a status quo or disagreement point. The NBS is then defined as

follows.

Definition 12 (Nash bargaining solution). The NBS is the unique PO utility point or profile, which is a solution

of:

max
(u1,u2) ∈ U

(u1 − λ1)(u2 − λ2) (13)

subject to u1 ≥ λ1, u2 ≥ λ2.
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Fig. 7: Graphical interpretation of the NBS point (red circle) as the intersection between the Pareto boundary

of U and the hyperbola(u1 − λ1)(u2 − λ2) = κ, where the status quoλ = (λ1, λ2) is represented by the blue

rhombus.

The graphical interpretation of the NBS is shown in Fig. 7. The solution of (13) corresponds to the point of

tangency between the Pareto boundary ofU and the hyperbola(u1−λ1)(u2−λ2) = κ, whereκ is properly chosen

to ensure only one intersection between the two curves. The original definition of the NBS by Nash only concerns

two-player games but it can be extended by consideringK players. For this, the two-factor product above, which

is called theNash product, becomesΠK
k=1(uk − λk). However, when there are more than two parties involved

in the bargaining, coalition forming is always possible andthis definition may need to be replaced by modified

versions e.g., such as the coalition NBS [40]; the notion of acoalition is developed further in Sec. IV. We will

conclude the discussion on the NBS by providing an example which is drawn from [41] namely, a beamforming

game for communications in presence of interference.
Example 3 (Beamforming game [41]). Consider twoN−antenna transmitters. Transmitteri ∈ {1, 2} has to

choose a beamforming vectorwi ∈ CN such thatwH
i wi = 1 (where the superscriptH stands for Hermitian

transpose). The signal observed by the single-antenna receiver i is given byyi = hHii wixi + hHjiwjxj + zi,

j = −i, hji ∈ CN are fixed for all (i, j), xi ∈ C, and zi ∼ CN (0, 1) is a complex white Gaussian noise. By

choosing the utility function asui = log(1 + SINRi) with SINRi =
|hH

iiwi|2E|xi|2

1+|hH
jiwj |2E|xj|2

, it can be shown that any

point of the Pareto frontier can be reached by beamforming vectors which linearly combines the zero-forcing

(ZF) beamforming solution (wZF
i ) and maximum ratio transmission beamforming (MRT) solution (wMRT

i ) [41].

Therefore, finding the NBS amounts to finding the appropriatelinear combination coefficientαi which is defined

as wi = αiw
ZF
i + (1 − αi)w

MRT
i . The unique NE of the considered game corresponds to(αNE

1 , αNE
2 ) = (0, 0)

that is each transmitter uses ZF beamforming. By choosing the unique NE of the game under investigation to be

the status quo point the NBS is then given by:

(αNBS
1 , αNBS

2 ) = arg max
(α1,α2)∈[0,1]2

[u1(α1, α2)− u1(0, 0)] × [u2(α1, α2)− u2(0, 0)]. (14)

By construction, the obtained solution is necessarily morePareto-efficient than the NE. However, computing the

NBS typically requires more channel state information thanwhat is required by the NE [41].
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C. Special classes of strategic-form games

In this subsection, we review some special classes of strategic-form games, that show a relevant share of the

game-theoretic approaches available in the SP literature.For the sake of brevity, we list here only the distinguishing

features of each class but provide also a (non-exhaustive) list of relevant references that can be used to gather

more specific details on problem modeling and solution tools. For other interesting classes of games (not reported

here due to space constraints), the interested readers are referred to specific literature on the topic (e.g., [22], [23],

[30]).

Zero-sum games:One of the most common types of strategic-form games is the two-player zero-sum game. A

two-player zero-sum game is a game in which the sum of the utilities is zero or can be made zero by appropriate

positive scaling and translation which do not depend on the player’s actions or strategies. In other words, it is a

game such thatK = {1, 2}, u1(s1, s2) + u2(s1, s2) = 0. In such a game, one player is a maximizer, i.e., aims to

maximize its gain, while the other player is a minimizer, i.e., aims to minimize its losses (which are the gains

of the other player). In SP, zero-sum games are especially popular when modeling security games involving an

attacker and a defender. In such games, the attacker’s gainsare most often equal to the defender’s losses, yielding

a zero-sum situation. An example in this context can be foundin [16] in which the interaction between a target

and a MIMO radar – both smart – is modeled as a two-player zero-sum game since the target and the radar

are completely hostile. The mutual information criterion is used in formulating the utility functions. In [42], the

problem of polarimetric waveform design for distributed MIMO radar from a game-theoretic perspective is also

formulated as a two player zero-sum game played between an opponent and the radar design engineer. In [2],

the authors use a two-player zero-sum game to model a watermarking problem where a source sequence (the

covertext) needs to be copyright-protected before it is distributed to the public. Another example is given by a

two-user communication channel (such as the Gaussian multiple access channel) with a constraint on the total

sum-rate [43].

Despite being one of the most well studied and analyzed classof strategic-form games in GT (in part because

many results can be derived), zero-sum games are restrictive. In fact, the majority of the studied problems in SP

are better modeled as nonzero-sum games.

Continuous quasi-concave games:A game is said to be continuous if, for allk ∈ K, the utility functionuk is

continuous in the strategy profiles. It is said to be quasi-concave ifuk is quasi-concave w.r.t.sk for any fixed

s−k andSk is a compact and convex set. For such games, we can take advantage of Theorem 2, which ensures

the existence of at least one pure-strategy NE. A flurry of research activity on energy-efficient resource allocation

in wireless communications or sensor networks makes use of quasi-concave utility functions, that aim at trading

off the performance of network agents while saving as much energy as possible. Since usually the performance

is increasing with the amount of resources employed, a useful modeling provides

uk(s) =
fk

(
sk

1+
∑

j 6=k
sj

)

sk
(15)

under the hypothesis of a one-dimensional strategy setSk = [0, Pmax], with Pmax being the maximum transmit

power. As long asfk shows some desirable properties (such as sigmoidness) which are often verified in many
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SP and communications scenario, the ratiouk proves to be quasi-concave w.r.t.sk. This is the case for instance

whenf(x) = (1− e−x)M , M ≤ 1 or f(x) = e−
a

x , a > 0.

Continuous concave games:The same assumptions as for the previous special class of games are made except

thatuk is now a concave function ofsk. Theexistence of a pure NEis guaranteed in such games since individual

concavity implies individual quasi-concavity. Interestingly, if we make one more assumption, called the diagonally

strict condition (DSC),uniquenessof the NE can also be guaranteed. This is worth mentioning since sufficient

conditions for ensuring uniqueness are quite rare in the literature of GT. The DSC is as follows. The DSC is met

if there exists a vector of (strictly) positive componentsr = (r1, ..., rK) such that:

∀(s, s′) ∈ S2, s 6= s′ : (s− s′)
(
γr(s

′)− γr(s)
)T

> 0 (16)

whereγr(s) =
[
r1

∂u1

∂s1
(s), ..., rK

∂uK

∂sK
(s)
]
. An example of this game can be found in [44]. Therein, the scenario

investigated is a set of multi-antenna transmitters which have to choose a precoding matrix to optimize their

expected individual transmission rate between each of themand a common multi-antenna receiver.

Super-modular games:Super-modular games are thoroughly investigated in [45]. Astrategic-form game is

super-modular if, for allk ∈ K, Sk is a compact subset ofR; uk is upper semi-continuous ins; anduk (sk, s−k)−

uk
(
sk, s

′
−k

)
is non-decreasing insk for all k ∈ K, Sk and for all s−k ≥ s′−k, where the inequality is intended

to be component-wise. In the example of power control, this definition is very easy to understand. If all the

transmitters, exceptk, increase their power level, then transmitterk has interest in increasing its own power as

well. Two properties make super-modular games appealing inthe SP community:i) the set ofpure-strategy NEis

not empty; and ii ) iterative distributed algorithms such as the best-response dynamics (BRD) (see Section III for

more details) can be used to let the playersconvergeto the one of the NE of the game. As an example, perform

an affine transformation of the utility functions in (15) such that they become

Uk(s) =
fk

(
sk

1+
∑

j 6=k
sj

)

sk
− cksk (17)

with ck ≥ 0 being a parameter to be tuned. The latter parameter induces apenalty in terms of utility which

increases with the transmit power. The corresponding transformation is called affine or linear pricing and aims

at improving (social) efficiency at the equilibrium. The corresponding game can be shown to be super-modular

provided that the action space is reduced as detailed in [3].Other examples of super-modular games can be found

in the literature of SP. For instance, in [17] the problem of time of arrival-based positioning is formulated as a

super-modular game.

Potential games:A strategic-form game is said to be potential if, for allk ∈ K, sk, s′k ∈ Sk and alls−k ∈ S\Sk,

the differenceuk (sk, s−k)−uk (s
′
k, s−k) can be related to a globalpotential functionΦ(s) that does not depend on

the specific playerk. There exist at least four types of potential games: weighted, exact, ordinal, and generalized

ones, according to the relationship between the differences in utilities and potential functions [22]. For example, a

game is an exact potential game if there exists a functionΦ such thatuk (sk, s−k)−uk (s
′
k, s−k) = Φ (sk, s−k)−

Φ (s′k, s−k). Similarly to super-modular games, the interest in potential games stems from the guarantee of the

existence of pure-strategy NE, and from the study of a single function, which allows the application of theoretical

tools borrowed from other disciplines, such as convex optimization [46]. For instance, a maximum point forΦ is
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an NE forG. Similarly to super-modular games,convergenceof iterative distributed algorithms such as the BRD

algorithm is guaranteed in potential games. Examples of potential games can be found in [47] for a problem of

power allocation, in [48] for radar networks, or in [49] for aproblem of multi-portfolio optimization. In [50],

the authors make use of a potential game to study cooperativeconsensus problems for sensor deployment. Other

simple examples of potential games are games with a common utility function or games for which each utility

only depends on the individual action or strategy.

Repeated games:It is important to note that the definition of the strategic form does not require any particular

assumption on the sets of strategiesS1, ...,SK . In particular, as seen throughout this section, an exampleof Sk

can be a discrete alphabet (as in the wireless sensor’s dilemma), or an interval ofR (as in the example of energy-

efficient power control game). In the mentioned examples, the game is said to bestatic (or one-shot) because

each player takes a single action. It should be stressed however that the strategic form can also be used to model

some dynamic games in which players have to take an action in arepeated manner and even in a continuous-

time manner (e.g., in some differential games). In dynamic games the sets of strategies become more complex

objects. They can be sets of sequences of functions or sets ofsequences of probability distributions. Due to space

limitation, we will only mention the case of repeated games here, which will allow us to identify some differences

in terms of modeling and analysis between static and repeated games.

A repeated game belongs to a subclass of dynamic games, in which the players face the same single-stage game,

sayΓ = (K, (Ak)k∈K, (νk)k∈K), whereAk is the set of possible actions for playerk, andνk is its instantaneous

utility function. The game is played over several stages. The number of stages can be either finite or infinite. The

single-stage game is called theconstituent, component, or stage game. When introducing the notion of time or

stage, the strategiessk become complete plans of actions, that depend on the unfolding of the game through time.

More precisely, a strategy in a repeated game typically corresponds to a sequence of maps or functions, which

assign an action to a sequence of observations. Similarly, the utility functions of the repeated game are modified

and correspond now to average or long-term utilities. Often, average utilities are of the form

uk(s) =

+∞∑

t=1

θtνk(a(t)), (18)

where (θt)t≥1 represents a sequence of weights which can model different aspects depending on the scenario

under consideration (see e.g., [22]). Typical choices for(θt)t≥1 are:

• ∀t ∈ {1, ..., T}, θt =
1
T

and∀t ≥ T + 1, θt = 0; this type of game is referred to as a finitely repeated game;

• ∀t ≥ 1, θt = (1− δ)δt with 0 ≤ δ < 1; this type of game is referred to as a repeated game with discount;

• when the limit exists,∀t ≥ 1, θt =
1
T

; this type of game is called an infinitely repeated game.

The definition of the strategiess1, ..., sK strongly depends on the observation assumptions made. For instance,

in a repeated game withperfect monitoring and perfect recall, i.e., a game where every player observes all the

past actions and is able to store them, the strategy of playerk ∈ K is given by the following sequence of causal

functions:
∀t ≥ 1, sk,t : At−1 → Ak

(a(1), ..., a(t − 1)) 7→ ak(t)
(19)
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wherea(t) = (a1(t), ..., aK(t)) is the profile of actions played at staget andA0 = ∅ by convention. This strategy

is called a pure strategy.

Even in the special case of repeated games just described, wecan identify some important differences between

static and repeated games in terms of equilibrium analysis.The existence issue is fundamental for the NE to be

relevant as a solution concept for the problem of interest. Note that, while uniqueness is an important issue for

static games, e.g., to be able to predict the convergence point of a distributed algorithm, it is generally much less

relevant for a repeated game, since the number of equilibriacan be large and even infinite. This is the reason

why equilibria are not characterized in terms of equilibrium strategies, but rather in terms of equilibrium utilities.

This characterization corresponds to a theorem called theFolk theorem[30]. We have seen that efficiency is an

important issue for a static game. For a repeated game, due tothe fact that players can observe the history of the

actions played and therefore exchange information, there may exist efficient equilibria and those equilibria can

be attained. For example, in the case of the wireless sensor’s dilemma, the following strategies can be checked

to be equilibrium strategies of an infinite repeated game with perfect observation:

∀t ≥ 2, s⋆k,t =

∣∣∣∣∣∣
narrowband if aj(t− 1) = narrowband, j ∈ {1, ...,K}

wideband otherwise.
(20)

with a(1) = (narrowband, ...,narrowband). By implementing these strategies, each player gets a utility which

equals3 whereas it was1 in the static game version. Therefore, repeating the game and considering long-term

utilities allows one to reach more efficient points at every stage of the game. This can be interpreted as a form of

cooperation among the players. Thus far, we have mentioned two forms of cooperation namely, through bargaining

and cooperative plans in repeated games. In Section IV, we will see that the coalition form offers another way of

implementing cooperative solutions in games. From the above discussion, it follows that referring to strategic-form

games as non-cooperative games and coalition games as cooperative games is questionable. Indeed, cooperation

may exist in the former while players may still be selfish in the latter.

Remark 2. In general, extensive-form games group all situations in which the players are allowed to have a

sequential interaction, meaning that the move of each player is conditioned by the previous moves of all players

in the game. This class of games is termed dynamic games. Repeated games are a subclass of dynamic games, in

which the players face the same single-stage (static) game every period. Hence, while extensive-form games are

not treated due to the lack of space needed to address their general aspect, repeated games, which represent a

notable example, are included in this tutorial thanks to their broad field of application in the SP scenario.

Bayesian games:When one wants to perform the direct maximization of a function while some of its parameters

are unknown, a possible solution is to consider an expected version of the function of interest (e.g., think of the

famous expectation-maximization algorithm). When solving a game, a similar approach can be adopted. In the

presence of multiple decision makers, the problem is however more difficult. To understand this, assume that

each player chooses a prior distribution over the parameters it does not know (e.g., the overall channel state):

this is its belief. But, a player also has to assume what it knows about the belief of the other players. Going

further, a player needs to have a belief about the belief on the other players on its own belief. This leads to the

quite complex notion of hierarchy of beliefs. This approachseems to be inapplicable in practice. Why should an
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automaton or a computer implement such an elaborate level ofreasoning? An important result of practical interest

is that a simpler model might capture the whole hierarchy of beliefs. This model is known as Harsanyi’s model

[51] and it is very close in spirit to what is done in estimation problems in the presence of uncertain parameters.

Once the game is formulated as a strategic-form (Bayesian) game, standard tools can be exploited. Although it

is exactly an NE in the presence of expected utilities, an NE is called in this context a Bayesian equilibrium.

Application examples of Bayesian games in the literature ofSP for communications can be found in [52]. Therein,

the unknown parameter is typically the communication channel state. In [53], the authors illustrate how Bayesian

games are natural settings for analyzing multiagent adaptive sensing systems.

III. L EARNING EQUILIBRIA IN STRATEGIC-FORM GAMES

To better understand the relationship between the solutionconcepts described in Section II and algorithmic

aspects, we will first consider some experiments, which wereconducted by the biologist David Harper [54]. These

experiments are of interest to better understand how equilibria can be achieved (learnt) by repeated interactions

driven by simple decision-making rules. In winter 1979, Harper conducted experiments on a flock of33 ducks

on a lake in the botanic garden of Cambridge University, UK. Two observers who were acting as bread tossers

were located at two fixed points on the lake surface20 meters apart. The pieces of bread were thrown at regular

intervals. For instance, one of the experiments assumes that the frequency of supply for one observer (called the

least profitable site) is12 items per minute whereas it was equal to24 items per minute for the other observer.

Fig. 8 represents the number of ducks at the least profitable site against time; the dots indicate the mean points

while the vertical segments represent the dispersion of themeasures. It is seen that after about a minute, the

number of ducks at the least profitable site stabilizes around 11, which means that22 ducks are at the most

profitable site. The corresponding point is an NE: every duckwhich would switch to the other site in a unilateral

manner would get less food. Fig. 8 shows that, at the beginning of the trial, each duck behaves like a conventional

optimizer: most of the ducks goes to the most profitable site.This choice does not take into account that the site

selection problem a duck faces with is not a conventional optimization problem but a game: what a duck gets does

not only depend on its choice but also on others’ choice. During the transient period, the ducks, which switch to

the other site, realize they get more food at the least profitable site. Other ducks do so as long as an equilibrium

is reached. Quite likely ducks do not know their utility functions and, more generally, the parameters of the game

they play. They may hardly be qualified as rational players aswell. Nonetheless, some sort of iterative “auction”

process (known as tâtonnement) has led them to an NE showingthat an NE can emerge as the result of repeated

interactions between entities, which have only partial information on the problem and only implement primitive

decision-making or learning rules. The main purpose of thissection is precisely that of providing some learning

rules (or SP algorithms) among many others from the vast literature of multi-agent learning, learning in games,

or distributed optimization, which may lead to equilibria.

Remark. Although in the remainder we only focus on distributed optimization and multi-agent learning algo-

rithms as solution concepts for certain static game, it is worth observing that it may also be possible to interpret a

multi-agent learning rule as a strategy of a certain dynamicgame [22], showing also the existence of a relationship

between learning and dynamic games.
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David Harper’s experiment

Fig. 8: When ducks are given the choice between two bread tossers for which the frequency of supply of the

most profitable site is twice the least profitable, after switching a few times between the two sites, ducks stick to

a given choice. The corresponding point is an NE.

A. Best-response dynamics

BRD are a popular and simple learning rule, which may lead to equilibria. The BRD has been used in various

disciplines but, as its use is specialized, the different instances of it are not always recognized as the same

algorithm. Two instances of it are the Gauss-Seidel method [55] and the Lloyd-Max algorithm [56]. The Gauss-

Seidel method is an iterative algorithm that allows to numerically solve a linear system of equations. Let us review

this method in the special case of two unknownsx1, x2 and two observationsy1, y2. The goal is to solve the

system 
 a11 a12

a21 a22




 x1

x2


 =


 y1

y2


 (21)

where the entriesakj are assumed to be known and meet some classical conditions, which can be found in [55]. By

denoting(x1(t), x2(t)) the value for the pair(x1, x2) at iterationt, x1 is updated asx1(t+1) which is obtained by

solvinga11x1(t+1)+a12x2(t)−y1 = 0. Then,x2(t+1) is obtained by solvinga21x1(t+1)+a22x2(t+1)−y2 = 0.

This can be interpreted as a game with two players in whichxk is the action of playerk and setting (or making

close) to zeroakkxk+ak,−kx−k−yk is its objective or cost function. The Gauss-Seidel method precisely implements

the sequential BRD of the latter game. As observed in [57], another special instance of the BRD is the Lloyd-Max

algorithm originally used for scalar quantization and extensively used nowadays in data compression techniques in

information theory and SP. Designing a signal quantizer means choosing how to partition the source signal space

into cells or regions and choosing a representative for eachof them. It turns out that finding in a joint manner the

set of regions and the set of representatives which minimizethe distortion (namely, the quantization noise level)

is a difficult problem in general. The Lloyd-Max algorithm isan iterative algorithm. Each iteration comprises two

steps. First, one fixes a set of regions and computes the best representatives in the sense of the distortion. Second,

for these representatives, one updates the regions so that distortion is minimized. This procedure is repeated until

convergence and corresponds to a special instance of the sequential BRD of a game with two players which have

a common cost function. As seen in Section II-C, since the cost function is common, the game is potential; as
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Fig. 9: Illustration of the Cournot tâtonnement. As seen this process, which is a special case of the sequential

BRD algorithm, converges to the unique intersection point between the players’ best-responses (i.e., the unique

pure NE of the game). As well illustrated by the Cournot duopoly, convergence of sequential BRD is typically

fast.

explained a little further, convergence of the sequential BRD is guaranteed in such games.

Example 4 (Cournot tâtonnement). Another well-known instance of the BRD is the Cournot tâtonnement. It was

originally introduced by Cournot in 1838 for studying an economic competition between two firms where each

one has to decide the quantity of goods to produce. In particular, Cournot showed that the following dynamical

procedure converges: firm1 chooses a certain quantity of goodsq1(1), firm 2 observes the quantity produced by

firm 1 and plays its best responseq2(2) that is, the quantity maximizing its profit, firm1 re-adjusts its quantity

to this reaction toq1(3) in order for its benefit to be maximal and so forth. Cournot proved that after “a while”

this process converges to the so-called Cournot equilibrium, which can be shown to be the NE of the associated

strategic-form game. This is what Fig. 9 illustrates. A possible application of the dynamical procedure above

can be found in [58] in which the authors consider a competitive spectrum sharing scheme based on GT for a

cognitive radio network consisting of a primary user and multiple secondary users sharing the same frequency

spectrum. The spectrum sharing problem is modeled as an oligopoly market and a static game has been used to

obtain the Nash equilibrium for the optimal allocated spectrum size for the secondary users.

The BRD can be formulated for a game with an arbitrary number of players. In its most used form, the BRD

operates in a sequential manner (sequential BRD) such that players update their actions in a round-robin manner.

Within round t+ 1 (with t ≥ 1) the action chosen by playerk ∈ K is computed as:4

ak(t+ 1) ∈ BRk [a1(t+ 1), ..., ak−1(t+ 1), ak+1(t), . . . , aK(t)] . (22)

An alternative version of the BRD operates in a simultaneousway meaning that all players update their actions

4If there are more than one best actions, then one of them is chosen at random from the uniform probability distribution.
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Algorithm 1 BRD.
set t = 0

initialize ak(0) ∈ Sk for all playersk ∈ K (e.g., using a random initialization)

repeat

for k = 1 to K do

update ak(t+ 1) using (22) or (23)

end for

update t = t+ 1

until |ak(t)− ak(t− 1)| ≤ ε for all k ∈ K

simultaneously:

ak(t+ 1) ∈ BRk [a−k(t)] . (23)

The pseudo of BRD for both instances is sketched in Algorithm1. Observe that both can be applied to games in

which the action sets are either continuous or discrete. If continuous, convergence means that the distance between

two successive action profiles remains below a certain threshold ǫ > 0. If discrete, convergence means that the

action profile does not change at all (i.e.,ǫ = 0). When it converges, convergence points are typically pureNE

(e.g., see [22]). There are no convergence results for general games using BRD. Most of the existing results rely

on application-specific proofs. For example, [5] considersan application example of the BRD in SP for which an

ad hoc proof for convergence is provided. However, if some special classes of games are considered, then there

exist sufficient conditions under which the convergence of the sequential BRD to a pure NE is always guaranteed.

For example, it is ensured when exact potential games or supermodular games are considered (see Section II and

[22] for more details on this). In addition to this, the convergence of the sequential BRD is ensured when the

best-responses are standard functions [59]. These resultsare summarized next.

Theorem 3 ( [22]). In potential and supermodular games, the sequential BRD converges to a pure NE with

probability one.

Theorem 4 ([59]). If the best-responses of a strategic-form game are standardfunctions, then the BRD converges

to the unique pure NE with probability one.

Unlike the sequential BRD, there does not seem to exist general results that guarantee the convergence of the

simultaneous BRD. As shown in [60], a possible way out to ensure convergence is to let playerk update its action

asak(t+ 1) ∈ BRk [a−k(t)] whereBRk [a−k(t)] is defined as

BRk [a−k(t)] = arg max
ak∈Ak

uk(ak, a−k(t)) + κ‖ak − ak(t)‖
2 (24)

with κ ≥ 0. The term‖ak − ak(t)‖
2 acts as a stabilizing term, which has a conservative effect.If κ is large, this

term is minimized by keeping the same action. By choosingκ in an appropriate manner, in [60] it is shown that

the simultaneous BRD associated with the modified utility converges.

Now we consider an application example that will be developed throughout this section to illustrate the different

algorithms and notions under consideration. In particular, it allows us to extract sufficient conditions under which
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the sequential BRD converges.

Example 5(Power allocation games in multi-band interference channels). Consider a wireless communication sys-

tem, which comprisesK transmitter-receiver pairs. Each transmitter wants to communicate with its own receiver.

More precisely, transmitterk ∈ {1, ...,K} (player k) has to allocate its available power (denoted byP ) among

N orthogonal channels or frequency bands to maximize its own transmission rateuk =
∑N

n=1 log2 (1 + γk,n)

whereγk,n is the signal-to-interference-plus-noise ratio (SINR) atreceiverk over bandn, which is defined as

γk,n =
hkk,npk,n

σ2 +
∑

ℓ 6=k
hℓk,npℓ,n

(25)

wherepk,n is the power transmitterk allocates to bandn, hℓk,n ≥ 0 is the channel gain associated with the link

from transmitterℓ to receiverk over bandn, andσ2 accounts for the thermal noise. Denote bypk = (pk,1, ..., pk,N )

the power allocation vector of transmitterk. Two scenarios in terms of action space are considered:

APA
k =

{
pk ∈ R

N
+ :
∑N

n=1
pk,n ≤ P

}
andABS

k = {Pe1, ..., P eN} (26)

where PA stands for power allocation and BS for band selection, ande1, ..., eN represents the canonical basis

of RN (i.e., e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0) and so on). The two corresponding strategic-form game will be

denoted byGPA andGBS.

A sufficient condition for the sequential BRD to converge forthe gameGPA has been provided in [61]. The

condition is that the spectral radiusρ of certain matricesH(j) are strictly less than one:

∀j ∈ K, ρ(H(j)) < 1 with Hkℓ(j) =

∣∣∣∣∣∣
0 if k = ℓ

hℓj

hkj
if k 6= ℓ.

(27)

Condition (27) is useful for the general case of the multi-band interference channel and roughly means that the

interference level on every band should not be too high. However, as shown in [47], the sufficient condition holds

with probability zero (randomness stems from the fact that the channel gainshkℓ,n are assumed to be realizations

of a continuousrandom variable) in the special case of the multi-band multiple access channel, which corresponds

to have only one receiver of interest for all the transmitters. In the latter case, the SINR takes a more particular

form, which is

γk,n =
hk,npk,n

σ2 +
∑

ℓ 6=k
hℓ,npℓ,n

(28)

wherehk,n is the channel gain of the link between transmitterk and the receiver for bandn. Remarkably, in this

particular settingGPA andGBS can be shown to be exact potential games [47] with potential function:

Φ =

N∑

n=1

log2

(
σ2 +

K∑

k=1

hk,npk,n

)
. (29)

Exact potentiality of games allows convergence of the sequential BRD to a pure NE to be always guaranteed. In

gameGPA, the sequential BRD consists in updating the power level according to a water-filling formula:

pk,n(t+ 1) =

[
1

ωk

−
pk,n(t)

γk,n(t)

]+
(30)
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where[x]+ = max(0, x), ωk is the Lagrangian multiplier associated with the inequality constraint
∑N

n=1 pk,n ≤ P ,

andγk,n(t) is the SINR at receiverk over bandn at timet. The solution is known as iterative water-filling algorithm

(IWFA) and was introduced for the multi-band interference channel in [62]. In its most general form, the sequential

BRD algorithm in (22) is quite demanding in terms ofobservationsince each player has to observe the actions

played by the others. In the case of the IWFA, it is seen that that only knowledge of the SINRγk,n(t) is required

to implement the BRD, which is basically an aggregate version of the played actions: this information can easily

be estimated at the receiver and fed back to playerk for updating its transmit power. When converging, the IWFA,

and more generally the sequential BRD, does it quitefast: convergence is typically observed after a few iterations

[63]. Intuitively, the feature of fast convergence stems from the fact that the BRD relies on a detailed knowledge

of the problem at hand. Typically, the utility functions areassumed to be known. When this knowledge is not

available, instead of consideringhighly structureddistributed optimization algorithms such as the BRD, one may

consider multi-agent learning algorithms, which are typically much less demanding in terms of modeling the

problem, as discussed in the next subsections. However, before moving to such techniques, an alternative version

of the BRD is considered, which operates on probability distributions over actions (instead of pure actions) and

is referred to as the fictitious play (FP) algorithm. Considering the FP algorithm allows us to better understand

the iterative structure of many learning algorithms, particularly the one considered in Section III-B.

The original version of the FP algorithm assumes discrete action sets, which is what is also assumed next. It

should be stressed that the BRD is generally not well suited to the discrete case. For example, when applied toGBS

it converges in the scenario of multi-band multiple access channels while it does not converge in the multi-band

interference channel case as cycles appear [64]. This is quite frequent in games with discrete actions. Therefore,

learning algorithms such as the one described in Section III-B are not only useful to assume less structure on the

problem but also to deal with thediscretecase. From now on, we thus assume that

Ak = {ak,1, ..., ak,Nk
} (31)

where|Ak| < +∞. The FP algorithm, introduced by Brown in 1951 [65], is a BRD algorithm in which empirical

frequencies are used. Working with probability distributions is very convenient mathematically. Although mixed

strategies are exploited, this does not mean that mixed NE are sought. In fact, pure NE can be shown to be attracting

points for all the dynamics, which are considered in this survey. This means that, under appropriate conditions,

mixed strategies tends to pure strategies as the number of iterations grows large. The empirical frequency of use

of actionak ∈ Ak for playerk ∈ K at time t+ 1 is defined by:

πk,ak
(t+ 1) =

1

t+ 1

t+1∑

t′=1

1{ak,t′=ak} (32)

where1 is the indicator function. If playerk knowsπ−k,a−k
(t) (i.e., the empirical frequency of use of the action

profile a−k at time t), then it can compute its own expected utility and eventually choose the action maximizing

it. Observe that the computation ofπ−k,a−k
(t) requires to observe the actions played by the others. As for BRD,

this knowledge can be acquired only through an exchange of information among the players.5

5For example, in the two-player cognitive radio’s dilemma, if CR1 has knowledge of the number of times that CR2 has pickednarrowband

or wideband up to timet, then CR1 can easily computeπ2,a2
(t) through (32).
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In its simultaneous form, the FP algorithm operates as follows:

ak(t+ 1) ∈ arg max
ak∈Ak

K∑

k=1

π−k,a−k
(t)uk(ak, a−k). (33)

The important point we want to make about the FP algorithm is about the structure of the empirical frequencies.

As a matter of fact, they can be computed in a recursive fashion as:

πk,ak
(t+ 1) =

1

t+ 1

t+1∑

t′=1

1{ak,t′=ak} =
1

t+ 1

t∑

t′=1

1{ak,t′=ak} +
1

t+ 1
1{ak,t+1=ak}

= πk,ak
(t) + λFP

k (t)
[
1{ak,t+1=ak} − πk,ak

(t)
]

(34)

with λFP
k (t) = 1/(t+1) The last line translates the fact that the empirical frequency at timet+1 can be computed

from its value at timet and the knowledge of the current action. More interestingly, it emphasizes a quite general

structure which is encountered with many iterative and reinforcement learning (RL) algorithms, as seen in the

remainder of this section.

B. Reinforcement learning

Originally, RL was studied in the context of single-player (or single-automaton) environments with afinite set

of actions. A player receives a numerical utility signal andupdates its strategy. The environment provides this

signal as a feedback for the sequence of actions that has be taken by the player. Typically, the latter relates the

utility signal to actions previously taken in order to learna mixed strategy which performs well in terms of average

utility. In a multi-player setting, RL is inherently more complex since the learning process itself changes the thing

to be learned. The main objective of this subsection is to show that feeding back to the players only the realizations

of their utilities is enough to drive seemingly complex interactions to a steady state or, at least, to a predictable

evolution of the state. In RL algorithms, players use their experience to choose or avoid certain actions based

on their consequences. Actions that led to satisfactory outcomes will tend to be repeated in the future, whereas

actions that led to unsatisfactory experiences will be avoided. One of the first RL algorithms was proposed by

Bush and Mosteller in [66] wherein each player’s strategy isdefined by the probability of undertaking each of the

available actions. After every player has selected an action according to its probability, every player receives the

corresponding utility and revises the probability of undertaking that action according to a reinforcement policy.

More formally, letuk(t) be the value of the utility function of playerk at time t, and denote byπk,ak,n
(t) the

probability playerk assigns to actionak,n at time t. Then, the Bush and Mosteller RL algorithm operates as

follows:

πk,ak,n
(t+ 1) = πk,ak,n

(t) + λRL
k (t)uk(t)

[
1{ak(t)=ak,n} − πk,ak,n

(t)
]

(35)

where0 < λRL
k (t) < 1 is a known function that regulates the learning rate of player k (it plays the same role as

the step-size in the gradient method). As seen, the updatingrule given by (35) has the same form as (34) but one

of the strengths of the algorithm corresponding to (35) is that each player only needs to observe therealization

of its utility function and nothing else. It can therefore beapplied to any finite game. Convergence is ensured for

classes of games such as potential games and supermodular games6. As for the BRD, convergence points are pure

6The convergence of RL algorithms is also ensured for dominance solvable games [22], which are not treated in this survey due to space

limitations
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Algorithm 2 Regret matching learning algorithm
set t = 0

initialize πk(0) s.t.
∑Nk

n=1
πk,n(0) = 1 for all playersk ∈ K (e.g., using a random initialization)

repeat

for k = 1 to K do

for n = 1 to Nk do

update rk,n(t+ 1) using (36)

end for

for n = 1 to Nk do

update πk,n(t+ 1) using (37)

end for

chooseak(t+ 1) according to the distributionπk(t+ 1)

end for

update t = t+ 1

until |ak(t)− ak(t− 1)| ≤ ε for all k ∈ K

NE or boundary points. The price to be paid for the high flexibility regarding the environment and the absence of

strong assumptions on its structure is that the RL algorithmin (35) usually requires alarge number of iterations

to converge compared to the BRD algorithm.

All the above distributed algorithms (namely, the BRD algorithm, the FP algorithm, and the considered RL

algorithm) are attractive since they only rely on partial knowledge of the problem. On the other hand, convergence

points are typically pure NE, which in most cases are inefficient. Often, points which Pareto-dominate the NE

points can be shown to exist. A nontrivial problem is how to reach one of them in a distributed manner. We will

not address this challenging task in this survey. Rather, wewill provide one learning algorithm that allows players

to reach a CCE. This may be more efficient than a pure or mixed NE, since the latter is a special instance of it.

C. Regret matching (RM) learning algorithm

The key auxiliary notion, which is exploited for regret matching (RM) learning algorithms is the notion of

regret [67], which is eventually exploited to assign a certain probability to a given action. The regret playerk

associates with actionak,n is the difference between the average utility the player would have obtained by always

playing the same actionak,n and the average utility actually achieved with the current strategy. Mathematically,

the regret at timet for playerk is computed as

∀n ∈ {1, ..., Nk}, rk,ak,n
(t+ 1) =

1

t

t∑

t′=1

uk(ak,n, a−k(t
′))− uk(ak(t

′), a−k(t
′)). (36)

RM relies on the assumptions that at every iterationt, playerk is able to evaluate its own utility – i.e., to calculate

uk(ak(t), a−k(t)) – and to compute the utility it would have obtained if it had played another actiona′k (i.e.,

uk(a
′
k, a−k(t))). In [67], the rule for updating the probability playerk assigns to actionak,n is as follows:

πk,ak,n
(t+ 1) =

[
rk,ak,n

(t+ 1)
]+

Nk∑

n′=1

[
rk,ak,n′ (t+ 1)

]+
. (37)
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Table II: Main features for the BRD, RL, and RM algorithms.

BRD RL RM

Action sets continuous or discrete discrete discrete

Convergence sufficient conditions sufficient conditions always guaranteed

Convergence points pure NE or boundary points pure NE or boundary points CCE

Convergence speed fast slow medium

Efficiency of convergence points typically low typically low typically medium

Observation typically required actions of the others value of the utility function actions of the others

Knowledge typically required utility functions and action sets action sets utility functions and action sets
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Fig. 10: RM has always the potential to perform better than BRD since pure NE are special cases of CCE.

The figure shows that this is effectively the case for the sum-rate of the considered distributed power allocation

problem under the given simulation setup [64].

If, at time t+ 1, playerk has a positive regret for every action, it implies that he would have obtained a higher

utility by playing the same action during the whole game up toiteration t + 1, instead of playing according to

the distributionπk(t) = (πk,ak,1
, ..., πk,ak,Nk

). The updating rule (37) has a very attractive property: it iswith no

regret [67]. The consequence of this property is expressed throughthe following result.

Theorem 5 (Convergence of the RM algorithm). In any finite game, when updated as (37), the empirical

frequencies of the action profile always converges almost surely to the set of CCE.

Observe that in those games wherein CCE, CE, mixed NE, and pure NE coincide (such as for example in the

simple cognitive radio’s dilemma introduced in Section II), then a unique CCE exists, which is a pure NE. In

this particular setting, RM does not provide any performance gain over the BRD. However, in most cases the

RM algorithm has the potential to perform better than distributed algorithms such as the BRD. This is what is

illustrated in Section III-D. In the cognitive radio context, an application example supporting this statement can

be found in [68].
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Fig. 11: Average system spectral efficiency as a function of the number of iterations at a fixed SINR of10dB.

D. Illustration and comparison analysis

Table II summarizes the different features of the three classes of distributed algorithms, which have been

discussed throughout this section. Here, we consider a special instance of gameGBS in which only two transmitters

and two receivers are operating and two bands are assumed, and each transmitter has to select one single band

[69]. Fig. 10 depicts the performance in terms of sum-utility (i.e., the transmission sum-rate) as a function of

the SINR for both BRD and RM algorithms. As shown in Fig. 10, the RM learning algorithm is more efficient

in terms of sum-rate than the BRD algorithm. In fact, here theperformance of the CCE, which is obtained by

implementing the RM learning algorithm, is very close to theperformance of the best pure NE of the game.

On the other hand, the BRD is observed to converge to a pure NE,which does not coincide with the best NE.

Although this is not what is observed generically, there mayexist some initial points for which the BRD performs

better than the RM algorithm. This raises a challenging problem that is to characterize the relation between the

initial and convergence points, which is a challenging and open issue. Note that if the RL algorithm is considered,

the same issue would appear. The performance of the RL algorithm for the special case of interest would also

strongly depend on the initial point. The main drawback of using the RL algorithm would be the number of

iterations needed for convergence (when the algorithm effectively converges), as shown in Fig. 11.

E. Consensus algorithms

One last type of algorithms described in this section accounts for consensus algorithms. These algorithms rely on

a strong coordinationbetween the players. This is achieved at the price of a quite strong observation assumption:

the corresponding updating rule requires explicit knowledge of the actions chosen by the other agents or players.

As a result of this assumption, anefficientsolution can be attained at convergence. For instance, assume that the

players’ actions are real numbers,∀k ∈ K, ak ∈ R, and assume that the network should be designed to operate

at a given pointa⋆ = (a⋆1, ..., a
⋆
K) ∈ RK referred to asconsensus. This point must be attained by each player

through a certain iterative and distributed procedure involving exchanges among the agents; of course reaching a

point which is globally efficient may not be possible. A simple instance of a consensus algorithm (see e.g., [70])

is as follows:

ak(t+ 1) = ak(t) +
∑

j∈Ak

βk,j (aj(t)− ak(t)) (38)
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where t is the iteration index,Ak represents the neighbors of agentk, andβk,j is some weight that playerk

places on the action or state of playerj. Simple sufficient conditions can be stated under which suchan algorithm

converges [70]. Indeed, the convergence analysis amounts to studying the dynamical systema(t + 1) = Ca(t)

where the matrixC follows from (38). The convergence properties of consensusalgorithms have been studied

under several interaction models (delays in information exchange, connectivity issues, varying topologies and

noisy measurements) and can be usually ensured by construction of the algorithm itself. However, this requires a

well determined topology for the network and also a quite large amount of information to be exchanged, especially

in comparison with the other learning algorithms describedabove. Surprisingly, there has been relatively little

research that explicitly links consensus problems or, moregenerally cooperative control problems, to the very

relevant branches of learning in game literature or multi-agent system literature that address coordination problems.

Most of the attempts in this context aim at establishing a connection between coordination problems and potential

games [50], [71]. To conclude this section, a simple application of consensus is given below.

Example 6 (Detection with sensor networks). Consider a wireless sensor network in which each sensor can only

communicate with the sensors within its transmitted signalrange. Each sensor has to decide whether a tectonic

plate is active or not (e.g., to detect earthquakes). The action to be taken by each sensor is assumed to be binary

active or not active. To decide whether a plate is active or not by using all the measurements and associated

decisions, a consensus algorithm as that in (38) can be implemented [70].

IV. COALITION -FORM GAMES

As discussed in Section II, strategic-form games mainly focus on the strategic choices of individual players and

on what strategies each player would choose to reach its goal. More importantly, strategic-form representations

often deal with noncooperative cases in which players are assumed to act selfishly, individually, and without any

side payment, cooperation, or exchange of communication. In contrast, many SP applications require some sort

of cooperation between the players. For example, it is more and more common to form virtual arrays of antennas,

sensors, or telescopes to improve estimation or detection accuracy; this type of operations requires communication

and partial-to-full cooperation between the players. Cooperative networking, in which devices can, for example,

cooperatively route their packets at the network layer, is also a typical application where cooperation is needed.

In such cases, given the cooperative nature of the system, players may form groups among one another, in an

effort to improve their state and position in the game. Thus,we now deal with groups of players orcoalitionsthat

act in a coordinated manner. Inside each such coalition, theplayers may still be choosing strategies, similar to a

strategic-form game, but overall, the goal in here is to analyze the formation of the coalitions given the possibility

of communication between the players.

Coalition-form gamesprovide an appropriate representation for such situationsin which groups or coalitions

(subsets) of players can work together in a game. In such games, one is typically concerned about the options

available to coalitions, the possible coalitions that willform, and how the utility received by the coalition as a

whole can be divided among its members in a way to sustain cooperation. This amounts to assuming the existence

of a mechanism which imposes a particular action or series ofactions on each player. This mechanism can for

example result from a binding agreement among the players orfrom a rule imposed by a designer.
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The coalition form is suitable to model a number of problems.On the one hand, it is the only game-theoretic

tool available to predict and characterize how groups of players can weight and evaluate the mutual benefits and

cost from cooperation and, then, decide on whether or not to work together and form binding agreements. On the

other hand, when the coalition form is found to be suitable tomodel the problem at hand, one of the strengths

of it is that it may lead to a solution, which is more efficient than in the case in which no coordination occurs.

Moreover, the coalition form provides a suite of tools that allow to evaluate fairness, stability, and efficiency,

when players in a game are able to coordinate and communicatewith each other, prior to making decisions.

A. Coalition-form games and bargaining theory

One important distinction to make is that between NBS (more generally, the bargaining theory) and coalition-

form games. In the game-theoretic literature [23], both Nash bargaining and coalition-form games are often grouped

under the umbrella of cooperative games. This classification mainly stems from the fact that in both cases, the

players may coordinate their strategies and are, in general, cooperative. However, the NBS is restricted to the

scenario in which two or more players want to share a resource, and they are, a priori, willing to cooperate in

this resource sharing, provided that the “terms” of cooperation are fair. Then, the question becomes the following:

given the players’ initial positions (which is generally the max-min or NE solution using their individual utility

functions), which have to be feasible, how should they splitthe rest of the resource being shared. Subsequently,

as detailed in Section II-B, the NBS follows an axiomatic approach. In this regard, the NBS provides aunique

allocation that answers this question.

Now, although the original solution proposed by Nash was restricted to two players, the idea of Nash bargaining

has then been extended to the general multiple-player game.This extension has been particularly popular in the

SP community, where the analogies between Nash bargaining and the famous proportional fair resource allocation

mechanisms have been drawn and exploited. Important examples include consensus algorithms, resource allocation,

and optimal beamforming [4], [9], [38]. Nonetheless, even with this extension, the overall Nash bargaining problem

remains the same – how to share a resource betweenall players, so as to:i) satisfy the Nash bargaining axiom

and ii ) improve the players’ overall utility.

In contrast, coalition-form games address a different problem: how cooperative coalitions among different

players can be formed given the mutual benefits and costs for cooperation. Therefore, coalition-form games are

not restricted to a fair resource-sharing problem such as inthe NBS. In contrast, they investigate a much more

generic problem. Coalition-form games study how to stabilize and maintain cooperative coalitions between groups

of players, in any situation, not just resource allocation.In contrast, for a bargaining problem, it is assumed that:

i) all players are willing to cooperate,ii ) there is no cost for cooperation, andiii ) the cooperation is reduced to

share a resource.

Therefore, in terms of objectives, the two approaches are different. However, the NBS can be used as an

axiomatic solution for distributing the utility inside a “formed” coalition, in a fair manner (in the Nash bargaining

sense). However, even though the bargaining solution will satisfy the NBS fairness axioms, it will not necessarily

stabilize the coalition, in the sense that some players may still want to leave this coalition and form other

coalitions, if the NBS is used to distribute the utilities. Thus, to study large-scale cooperation and coalition
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NTU: noTU: yes

PF: noCF: yes

Distribution of utility:
Can the value of any coalition be 
divided arbitrarily among its members?

Coalition value type:
Does the value function of a coalition 
depend on its own members only? not addressed 

in this paper

Fig. 12: Classification of coalition-form games.

formation processes, one must use solution concepts and algorithms that are much more general than the NBS.

This motivates the need for coalition-form games.

B. Coalition-form game models

In this section, we use the notationC to refer to a given subset of the set of playersK = {1, ...,K}. The notation

2K is used to denote the power set associated withK. For example, ifK = {1, 2}, then2K =
{
∅, {1}, {2}, {1, 2}

}
.

A coalition game is defined by the pair(K, v), wherev is the value of a coalition that is a function or mapping

that provides a characterization of the utility (or utilities) achieved by the players that belong to a certain coalition.

In essence, for classical models of coalition games, depending on the definition ofv, we can distinguish between

non-transferable-utility (NTU) games and transferable utility transferable-utility (TU) games:

• NTU games: coalition actions result in utilities to individual coalition members;

• TU games: utilities are given to the coalition and then divided among its members.

In an NTU game, the formation of a coalitionC ⊆ K leads to changes of the individual utilities of the players

within C; however, there is no single value that can be used to describe the overall coalition utility. In contrast,

in a TU setting, a single-valued function can be used to determine the overall utility of a coalition. Subsequently,

the individual utilities can be viewed as a sharing of this single-valued gain.

NTU and TU games can be further categorized into characteristic-function (CF) games or partition-function

(PF) games:

• PF games: the utility of a coalitionC ⊆ K depends on the actions chosen by the other coalitions inK \ C;

• CF games: the utility of a coalitionC only depends on the action chosen by the members ofC.

Both CF and PF games admit many applications in SP. The latteris particularly useful for cases in which

externalities, such as interference or delay in communication networks, are present and depend on the coalition

actions of the players. For simplicity, our focus will be on CF games. This classification of coalition-form games

is shown in Fig. 12, emphasizing the fact the TU and CF game arespecial classes of NTU and PF games,

respectively.

1) NTU games:The formal definition of a coalition-form NTU game with characteristic function often follows

the form introduced by Aumann and Peleg in [72], which statesthat:

Definition 13 (NTU coalitional games with CF). An NTU game with CF is given by a pair(K, v): K = {1, ...,K}
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is called the set of players andv is the characteristic function. The latter is a set-valued function

v : 2K → RK

C 7→ v(C)
(39)

such that for every coalitionC ⊆ K, v(C) is a closed convex subset ofRK that contains the utility vectors that

players inC can achieve.

In other words, in an NTU game, the value is a set of payoff vectors that can be achieved by the players in

the game. A coalition game is therefore said to be NTU if the value or utility of a coalition cannot be arbitrarily

apportioned between the coalition’s members. For an NTU model, the players do not value a given coalition

in the same way. Instead, for every coalition, one or more vectors of individual payoffs will be achieved. For

example, when investigating a bargaining situation in which players cannot share their utilities, one can view the

NBS vector as an example of an NTU allocation. In SP problems,casting a problem as an NTU coalition game

strongly depends on the metrics being optimized. Some metrics such as energy are individual and thus NTU by

design, while others (such as for example the sum-rate) are not necessarily NTU.

2) TU games:A special case of NTU games is given by TU games. In TU games,v(C) is a real value that

represents the total utility obtained by the coalitionC. This is what the following model translates.

Definition 14 (TU coalitional games with CF). An TU game with CF is given by a pair(K, v): K = {1, ...,K}

is called the set of players andv is the characteristic function. The latter is given by:

v : 2K → R

C 7→ v(C).
(40)

The TU property means that this worth can be divided in any manner among the coalition members. The values

in TU games are thought of as monetary values that the membersin a coalition can distribute among themselves

using an appropriate rule (one such rule being an equal distribution of the utility). In SP problems, one typical

example in which the TU property is applicable is the case in which groups of devices aim to optimize a certain

sum-rate. Given that a sum-rate can virtually be divided between the devices via a proper choice of transmit signal

(or, more specifically, a power allocation), one can view thesum-rate as a TU metric.

Remark 3. It is worth mentioning that, in practice, we can convert an NTU game to a TU game for the purpose

of analysis. One way to do so is to define the TU value function as being the sum of the individual payoffs of

the players. Even though the actual division of this sum cannot be done in this case in an arbitrary manner, we

can still use the TU model to understand how the system would behave under cooperation. In this case, we can

consider this single-valued TU utility as being a total revenue achieved by the entire utility, with the individual

divisions being the virtual monetary gain that is provided to each player, if those players are to act within a

coalition.

3) Canonical game:For any type of coalition-form game, the primary goal is to develop strategic algorithms

and mechanisms that allow to characterize and predict whichcoalitions will form, when, and how. Given this

goal, we often refer to coalition games ascoalition formation games. However, one special case occurs when
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the value of a coalition is non-decreasing with respect to the size of the coalition. Here, cooperation is always

beneficial and the costs of cooperation are negligible. In this specific case, the game is said to besuperadditive,

which is formally defined as follows for the TU case:

v(C1 ∪ C2) ≥ v(C1) + v(C2). (41)

In this setting, it is trivial to see that the grand coalitionof all players will yield the maximum utility. However,

this does not mean that this grand coalition will always form. In fact, unless the total gains are properly distributed

to the grand coalition’s members, some of those members may deviate and form their own coalitions. In such

scenarios, the coalition formation game is simply reduced to the so-calledcanonical game model, in which the

goal is no longer to form coalitions, but rather to study waysin which the grand coalition of all players can be

sustained. This will lead to many solutions that look at fairness and stability, as detailed in the next subsection.

Remark 4. This basic definition of the various coalition-form game types can be used as a basis to develop more

advanced model. For example, if a player may belong simultaneously to multiple coalitions, one can define the

frameworkoverlapping coalition-formation (OCF) games. In SP, this could be used to model applications such

as sharing of sensor data between multiple cooperating groups. In OCF scenarios, one must redefine the way a

coalition-form game is presented. One approach is to represent a coalition by a1×K vectorr whose elementri

represents the amount of resources that playeri has shared with this coalition. For such OCF scenarios, notions

of stability or fairness must now be extended to the new representation and definition of a coalition.

Given this overview on how to represent a coalition-form game, our next step is to discuss the solution concepts

and main results.

C. Solution concepts

For coalition-form games, one can distinguish two featuresfor the solution:stability and fairness. On the

one hand, the solution of coalition-formation game must ensure that the formed coalitions are not susceptible to

deviations by individual members or even sub-groups of members. On the other hand, given that coalition formation

entails a division of utility, a suitable coalition-form solution must ensure fairness when dividing or allocating

the various utilities. Balancing the two goals of fairness and stability is challenging and strongly dependent on

factors such as the structure of the value function, the goals of the players, and the application being studied.

The solution of a coalition-form game can further be classified into two additional types:set-valued solutions

andsingle-valued solutions. Set-valued solutions refer to solutions that can guarantee stability or fairness via more

than one cooperative strategy. How to choose the most appropriate point within a set-valued solution becomes an

important problem. This is reminiscent of the multiplicityof Nash equilibria in strategic-form games. In contrast,

single-valued solutions provide a unique strategy which achieves a given fairness or stability criteria. Practically,

although both set-valued and single-valued solutions can be used for both fairness and stability, most existing

set-valued solutions are focused on stability while single-valued solutions are tailored towards fairness.

While both solutions can apply to any type of coalition-formgame, for ease of exposition, in this section we

restrict our attention to CF games that are superadditive and TU. By doing so, the overall solution can be viewed
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as a distribution of utilities that can maintain the stability and fairness within the grand coalition. Nonetheless,

throughout our discussions, we will point out the key aspects needed to extend the solutions to the more general

coalition-formation cases. Moreover, in Section V, we willdiscuss algorithmic implementations that can provide

more insights on solving coalition-formation games.

1) The core:The most popular set-valued solution of a coalition-form game is thecore [73]. The core is the

set of payoff allocations which guarantees that no group of players has an incentive to leave the grand coalition

K to form any other coalitionC ⊂ K. For a TU game, we letx be the1×K vector of individual user utilities.

Here, we must have group rationality, i.e.,
∑

i∈K xi = v(K). In other words, the total allocation must sum to the

entire value of the grand coalition. In addition, we define a payoff vectorx to be individually rational if every

xi ≥ v({i}),∀ i. This implies that an individually rational payoff vector ensures that no player will obtain a

lower payoff by joining the grand coalition. Consequently,the coreof a coalition game is defined as the setS of

individually rational and group rational payoff vectors asfollows:

S =

{
x :
∑

i∈K

xi = v(K) and
∑

i∈C

xi ≥ v(C) ∀ C ⊆ K

}
. (42)

In simple terms, the core of a coalition game is the set of payoff allocations that ensure that no group of players

would have an incentive to leave the grand coalition and formtheir own individual coalition. The core guarantees

stability with respect to any deviation by any group of players. However, even though the core guarantees stability

and, for the superadditive case, one can easily see that the grand coalition is the most efficient, the core in this

game may not be fair to the players. Examples of unfair allocations that lie in the core abound both in the GT

and SP literature [74], [75]. Moreover, drawing yet anotheranalogy with the NE, there is no guarantee that a

coalition game will have a core solution. Indeed, the core, as a set-valued solution, may be empty.

Nonetheless, the core is one of the most popular set-valued solution concepts in a coalition-form game which

has led to many extensions. For instance, when dealing with anon-superadditive coalition-formation game with

TU, we can redefine the core, based on the partition ofK that maximizes the total utility, as follows:

O =

{
x :
∑

i∈K

xi = max
π∈P

∑

C∈π

v(C) and
∑

i∈C

xi ≥ v(C) ∀ C ⊆ K

}
, (43)

whereP is the set of all possible partitions ofK andπ is one such partition or coalition structure. Recall that

the partition of the setK is a collection of disjoint subsets whose union would span the entire setK. Thus, the

partition constitutes the coalitions that are expected to form in the system. Essentially, the difference between

(42) and (43) is that in (42) the first core condition assumes that the sum of the individual payoffs is equal to

the value of the grand coalition, which is guaranteed to formdue to superadditivity. In contrast, in (43), due to

the non-superadditive nature of the game, the grand coalition is not guaranteed to form. Consequently, the first

condition of the core must now ensure that the sum of the individual payoffs must be equal to the sum of the

values of all coalitions in the partitionπ that maximizes the total system value. Thus, this coalitionformation

core notion implies that, instead of investigating a stablegrand coalition, one would seek an allocation that will

stabilize the partitionπ that maximizes the total social welfare of the system. This is particularly useful when

coalition formation entails a cost, and, thus, the game is non-superadditive.
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2) The ǫ-core: One extension to the core is theǫ-core. This notion bears an analogy with the notion of

approximate orǫ-equilibria in strategic-form games [64]. The basic idea isthat the stability is not achieved

exactly, but rather within anǫ approximation neighborhood as follows:

Sǫ =

{
x :
∑

i∈K

xi = v(K) and
∑

i∈C

xi ≥ v(C)− ǫ ∀ C ⊆ K, ǫ ≥ 0

}
. (44)

Interestingly enough, the value ofǫ can be viewed as a quantification of the “overhead” for deviating from the

core. This overhead is incurred on the deviation of every possible coalition. This bears a very interesting analogy

to SP – what is the overhead required by a group of devices to deviate from the stability concept and will they

be willing to incur this overhead. The above concept is also known as the weakǫ-core, which is used to then

define the so-called strongǫ-core where, essentially,ǫ is divided between the members of a coalition, i.e.,ǫ is

substituted by|C| · ǫ. In this case, the overheadǫ is implicitly assumed to be equally divided between coalition

members. The advantage of theǫ-core is that it may be easier to establish its existence as well as to develop

algorithms that can reach it. This simply mimics the advantages of any approximate solution concept in GT. In

SP, there have been some recent works (e.g., [76]) that explored theǫ-core as a suitable concept for investigating

problems related to beamforming where the overhead of deviating from a certain beamforming strategy might be

high enough to reach anǫ-core and, thus, avoiding the need to reach the more stringent core definition.

3) The Shapley value:The core and its variants constitute set-valued stability notions. In contrast, we can solve

a coalition-form game using single-valued fairness notions. Single-valued solution concepts mainly associate with

every coalition game(K, v) a uniquepayoff vector known as the solution or value of the game (which is different

from the value of a coalition). One example of such notion is the NBS that was previously discussed. In fact, most

single-valued notions follow an axiomatic approach: a set of pre-set properties that are imposed on the sought

after payoff allocation in order to find a desirable solution. One popular such solutions is theShapley value[23].

For a TU coalition formation game, the Shapley value assignsto every player the payoffxi given by

xi =
∑

C⊆K\{i}

|C|!(|K| − |C| − 1)!

|K|!
[v(C ∪ {i}) − v(C)]. (45)

This allocation is interpreted as follows. In the event where the players join the grand coalition in an arbitrary

order, the payoff allotted by the Shapley value to a playeri ∈ K is the expected marginal contribution of player

i when it joins the grand coalition. In other words, the contribution of a player is given by an expected value,

assuming a random order of joining of the players to the grandcoalition which, in a superadditive game, is known

to be the most efficient solution. Shapley showed that this solution is unique and it satisfies the following four

axioms:

1) efficiency axiom:
∑

i∈K xi = v(K).

2) symmetry axiom: if player i and playerj are such thatv(C ∪ {i}) = v(C ∪ {j}) for every coalitionC not

containing playeri and playerj, thenxi = xj.

3) dummy axiom: if player i is such thatv(C) = v(C ∪ {i}) for every coalitionC not containingi, thenxi = 0.

4) additivity axiom: If u and v are characteristic functions, then the Shapley value allotted to the game over

(u+ v) is the sum of the values allotted tou andv, separately.
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The Shapley value provides some form of fairness for allocating the payoffs of a grand coalition. Similar to

the core, the Shapley value has led to many extended notions such as the envy-free fairness defined in [75], the

Banzhaf index [23], or the Harsanyi index [23]. All of these notions follow the steps of the Shapley value in

that they utilize certain axioms and attempt to find a coalition-form solution that satisfies these axioms. However,

none of these solutions is guaranteed to be stable. For example, often, the Shapley value will not lie in the core,

if that core exists. Therefore, one important challenge forcoalition-form games is to balance fairness and stability

by combining notions of core and Shapley value.

Remark 5. In summary, for solving coalition-form games, a myriad of solution concepts exists. These are split

into two categories: single-valued and set-valued. The focus is mainly on stability and fairness. The exact notion

of stability or fairness depends largely on the type of the game and the scenario being considered.

Next, we will discuss some principle results from coalition-form games and, then, we will delve more into

algorithmic implementation and practical applications inthe SP domain.

D. Main theorems

Unlike strategic-form games in which existence, efficiency, and uniqueness theorems are abundant, for coalition-

form games, such results are sparse and often model-dependent. However, when dealing with the core, we can

discuss two seminal results that relate to the existence of the core and its fairness.

The first main result in this regard is given through the Bondareva-Shapley theorem [23]. This theorem is

concerned with coalition-form games that arebalanced:

Definition 15. (Balanced game) A coalition TU game is said to bebalancedif and only if we have

∑

C⊆K

µ(C)v(C) ≤ v(K), (46)

for all non-negative weight collectionsµ = (µ(C))C⊆K.

Here,µ is simply a group of weights in[0, 1] that are assigned to each coalitionC ⊆ K such that
∑

C∋i µ(C) =

1, ∀i ∈ K. The main idea behind a balanced game can be explained as follows. Assuming that every playeri

has a unit of time that can be divided between all possible coalitions that i can form. Every coalitionC is active

for a time periodµ(C) if all players in C are active during that time. The payoff of this active coalition would

then beµ(C)v(C). Here,
∑

C∋i µ(C) = 1, ∀i ∈ K, would then be a feasibility constraint on the players’ time

allocation. Consequently, a coalition-form game is balanced if there is no feasible allocation of time which can

yield an overall utility that exceeds the valuev(K) of the grand coalition. Thus, for a TU balanced game, the

following result holds.

Theorem 6 ([73]). (Bondareva-Shapley) The core of a game is non-empty if and only if the game is balanced.

Although the Bondareva-Shapley theorem is a popular resultfor showing the non-existence of the core, its

applicability in SP may be very limited, as the required balancedness is quite restrictive on the coalition value.
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In this respect, yet another interesting result is given forconvexcoalition-form games. A coalition game with TU

is said to be convex if its value function satisfies:

v(C1) + v(C2) ≤ v(C1 ∪ C2) + v(C1 ∩ C2) ∀C1, C2 ⊆ K (47)

By observing (47), we can view directly its similarity with supermodular games, introduced in Section II-C.

Now, supermodularity is defined with respect to subsets, rather than vectors in the Euclidean space. We note that

the convexity conditions can also be written as follows:

v(C1 ∪ {i})− v(C1) ≤ v(C2 ∪ {i}) − v(C2) (48)

wheneverC1 ⊆ C2 ⊆ K \ {i}. This can be explained as follows. A game is convex if and onlyif the marginal

contribution of each player to a coalition is nondecreasingwith respect to set inclusion. For a convex game, one

can state the following theorem:

Theorem 7 ([73]). For a convex coalition-form game, the core is non-empty and the Shapley value lies in the

core.

This theorem provides a strong result that combines both stability and fairness. Indeed, for a convex game, the

Shapley value is in the core and thus provides both stabilityand fairness. Although we stated the theorem here

for TU games, it can also be extended to NTU games.

V. A LGORITHMS FOR COALITION-FORM GAMES

One key design challenge in coalition-form games is that of developing algorithms for characterizing and finding

a suitable stable or fair solution. This is in general analogous with the algorithmic aspects of non-cooperative games

where learning is needed to reach a certain Nash equilibrium. In this respect, here, we discuss two algorithmic

aspects:i) finding a stable or fair distribution for canonical games and ii ) characterizing stable partitions for

coalition-formation games.

A. Canonical games

For canonical games, the most important solution concept isthe core and its variants. Alas, despite being a

strongly stable solution concept, computing the core can berelatively complex. In particular, in order to compute

the core directly from the definition, one has to solve the following linear program:

minimizex
∑

i∈K

xi s.t.
∑

i∈C

xi ≥ v(C), ∀C ⊆ K. (49)

Solving (49) enables one to find all the solutions that lie in the core, as ensured by the constraint. Clearly,

solving the linear program in (49) will require handling2K constraints, which will grow exponentially as the

number of players increases. While no generic rule exists for overcoming this complexity, we can exploit some

properties of the game or application being sought. On one hand, we can use theorems such as the Bondareva-

Shapley theorem or the convexity of the game to establishingthe existence and non-emptiness of the core. On the

other hand, for a given coalition-form game structure, we can evaluate the membership of known payoff division
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rules, such as the bargaining solution or a proportional fair division, in the core. Here, checking whether a certain

allocation belongs in the core essentially becomes simplerthan deriving all the solutions that are in the core.

Regarding the Shapley value, one can also observe a similar complexity limitation: computing the Shapley

value via (45) calls for going again through all the possiblecoalitions. However, we note that, recently, some

approximations for the Shapley value have been developed that allows us to compute it with reduced complexity.

A popular approach in this context relies on the use of themulti-linear extensionmethod proposed by Owen [77]

for a special class of games known as voting games. The basic idea is to observe that in (45) the term inside the

summation is the Beta function, which can then be used to convert the Shapley value computation into a probability

computation which is then approximated by exploiting some properties of voting games. Other approaches for

approximating or improving the computational time of the Shapley value are surveyed in [78].

B. Coalition-formation games

Deriving suitable solutions for coalition-formation games is more challenging than the canonical case as it

requires to jointly compute the payoff and the coalitional structure or network partition that will form. For

example, computing coalitional structure that lie in the core, as per the definition in (43), can be highly complex,

as it requires to look over all partitions of a set – which growexponentially. However, some approaches using

Markov chains or other related ideas have been proposed in [79], [80], which were proven to work well for

reasonably large games.

However, in practical SP applications, we must trade off thestrength of the core stability for the complexity

of finding this solution. One baseline approach for a genericcoalition-formation algorithm would consist of two

key steps:i) define a rule using which a player may decide to join or leave acoalition andii ) for the TU case,

adopt a proper payoff allocation rule (e.g., the Shapley value, proportional fair, etc.) that is to be applied at the

level of any formed coalition.

Regarding the coalition formation rule, a number of approaches have been proposed within the SP commu-

nity [12], [74], [76], [81]. Among them, the most popular ones are the merge and split rules, defined as follows

(⊲ is a preference relation, discussed below):

• Merge rule: A group of coalitions{C1, . . . , Cp} would merge into a single coalition∪p
k=1Ck if and only if

∪p
k=1Ck ⊲ {C1, . . . , Cp},

• Split rule: A coalition ∪p
k=1Ck will split into a smaller group of coalitions{C1, . . . , Cp} if and only if

{C1, . . . , Cp} ⊲ ∪
p
k=1Ck.

Here, the preference relation⊲ can be defined based on the application being studied. A popular preference

relations is the so-calledPareto order; whereby the merge or split rule would apply if at least one player improves

its payoff via merge or split, without hurting the payoff of any other player. In other words, given the current

payoff vectory of all players involved in a merge or split rule, the merge or split occurs when the vectorx of the

payoffs of all involved players is such thatx ≥ y with at least one elementxi of x such thatxi > yi. Essentially,

this is reminiscent of the Pareto dominance rule used in non-cooperative games.

The advantages of using merge-and-split based algorithms include: 1) guaranteed convergence to a stable,

merge-and-split proof coalition structure after a finite number of iterations, 2) convergence is ensured irrespective
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target

: coalition head

: monitoring station

Fig. 13: Distributed collaborative target detection as a coalition game.

of the starting point of the network, and 3) the order of mergeor split will not impact convergence. One other

major advantage of using merge-and-split based algorithmsincludes the fact that, irrespective of implementation,

such algorithms will reach the so-calledDc-stable partition, when such a partition exists. TheDc-stable partition

is a partition that:i) is strongly stable in the sense that no group of coalitions can do better by breaking away

from this partition andii ) when using the Pareto order as a preference relation, is PO.Therefore, merge-and-split

can reach such an optimal and strongly stable partition if itexists.7

C. A case study: Coalition formation for collaborative target detection

One SP application in which the coalition-form can be applied is that of collaborative target detection. For

example, in radar systems, a number of monitoring stations (MSs) can collaborate to detect a certain target of

interest at a given location. Such stations can be located atdifferent points in the network and, thus, their view

on the target will be different. Here, it is assumed that the target is a wireless device that is transmitting a certain

signal which must be detected. One major challenge in such a scenario is the hidden terminal problem – due

to fading and path loss some MSs may receive a weaker signal from the target, thus hindering their detection

performance.

To avoid this problem, collaborative target detection (CTD) can be used. The basic idea being that MSs can

share their individual detection results and, then, make a collective decision on the absence or presence of a

target at a given location. By collaborating, the MSs can exploit the diversity of their observations to improve

detection decisions. However, although CTD can improve theprobability of detecting the target as the number of

collaborating MSs increases, collaboration can lead to an increasing probability of false alarm – the probability

that a target is detected while it is not there. The tradeoff between probability of detection and probability of false

alarm, as a function of the number of collaborating MSs, motivates the development of a coalition-form games

in which the MSs can dynamically decide on how to collaboratewhile improving probability of detection and

maintaining a tolerable false alarm level.

As shown in Fig. 13, we consider a coalition game between a setK of MSs that are seeking to cooperate in

order to improve CTD performance. Since cooperation here entails a cost – in terms of increased false alarm

7The existence of aDc-stable partition is highly application-dependent and thecondition for existence will depend on the domain being

studied.
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– the game, in general, cannot be superadditive and, thus, itis classified as a coalition formation game. In this

game, each coalitionC of secondary users (SUs) will be optimizing the following value function:

v(C) = Qd,C − C(Qf,C, αC) (50)

whereQd,C is the collaborative probability of detection andC(·) is a cost function of the collaborative false alarm

levelQf,C and the target false alarm constraintαC . In this model, each coalitionC will have a coalition head that

will collect the detection results and fuse them in order to make a collective coalition decision.8 Here, we notice

that (50) is a probabilistic utility and, thus, it cannot be transferred between the members ofC. As a result, the

CTD coalition-formation game is an NTU game with a special property: the payoffxi of each memberi of C is

simply equal tov(C), since this value is a collective result, i.e., we assume that all players in a coalition abide

by the entire coalition decision.

Given the utility and involved tradeoffs, a merge-and-split algorithm based on the Pareto order can be proposed,

as shown in [81] to find and characterize stable partitions. In Fig. 14, we show a snapshot of the network structure

resulting from a merge-and-split collaborative spectrum sensing (CSS) algorithm (dashed line) as well as from a

centralized approach (solid line) for7 randomly deployed MSs. We notice that the partitions resulting from both

approaches are comparable, with neighboring MSs cooperating for improving spectrum sensing. However, this

figure allows us to highlight the difference between a distributed, coalition-formation game approach, in which

each MSs makes its own CTD decision, and a centralized optimization approach, in which the MSs have no say

in the coalition formation process. In particular, from Fig. 14, we can see that for the game solution, MS 4 is part

of coalition {1, 2, 4, 6}, while for the centralized approach MS 4 is member of{3, 4, 5}. This difference stems

from the fact that, in the distributed case, MS 4 acts selfishly while aiming at improving its own utility. In fact,

by merging with{3, 5} MS 4 achieves a utility of0.9859 with a probability of detection of0.9976 whereas by

merging with{1, 2, 6} its utility will be 0.9957 with a probability of detection of0.99901. Thus, in a coalition-

based solution, MS 4 prefers to merge with{1, 2, 6} rather than with{3, 5} regardless of the socially optimal

partition.

In summary, the use of a coalition-formation game for CTD canalso yield significant gains in terms of the

probability of detection, while maintaining a required false alarm level and without the need for a centralized

optimization solution. Building on these results, one can develop a broad range of applications that adopt the

coalition-form games for SP problems. For example, the aforementioned model for CSS was extended in [82] to

the case in which an MS can belong, simultaneously, to multiple coalitions. In this regard, we have shown that

the merge-and-split algorithm can be extended to handle thecases of OCF games. Our results show that OCF can

improve over standard coalition-formation games for the case of CTD.

VI. CONCLUSIONS

In this tutorial, we have provided a holistic view on the use of game-theoretic techniques in signal processing for

networks. Particular emphasis has been given to games in strategic- and coalitional forms. The key components

8The fusion rule used will impact the way in whichQd,C and Qf,C are computed. However, it will not affect the way the game is

formulated.
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Fig. 14: Final coalition structure from both distributed (dashed line) and centralized (solid line) collaborative target

detection forK = 7 MSs.

Table III: Strategic form vs Coalition form.

Strategic form Coalition form

Components players, actions, per-player utility players, coalition value, per-player utility

Primary player strategy choose a parameter to optimize choose a coalition membership

Primary player objective optimize individual utility optimize individual utility (while part of a coalition)

Game objectives find an equilibrium find stable coalitions and fair allocations

Main types static, dynamic TU, NTU, canonical, coalition formation, CF, PF

Communication no communication between players players can form agreements and communicate

Main solution concept NE – no player can unilaterally deviate stable partition – no coalition can deviate

Baseline algorithms learning based merge-and-split based

Primary application distributed optimization optimized cooperation, resource distribution

of such games have been introduced and discussed while providing a signal-processing-oriented view on the

various types of games. Some of the primary differences and properties of strategy-form and coalition-form

games are summarized in Table III. Then, we have developed the main solution concepts and discussed the

various advantages and drawbacks within signal processingdomains. More importantly, this tutorial has attempted

to provide an in-depth discussion on the connections between game theory and algorithmic aspects of signal

processing techniques. The applications discussed range from traditional communication problems to modern-day

signal processing problems such as cognitive radio and wireless sensor networks. Overall, this tutorial is expected

to provide a comprehensive, self-contained reference on the challenges and opportunities for adopting game theory

in signal processing, as well as to locate specific references either in applications or theory.

REFERENCES

[1] S. Kassam and H. Poor, “Robust signal processing for communication systems,”IEEE Commun. Mag., vol. 21, no. 1, pp. 20–28,

Jan. 1983.

[2] A. Cohen and A. Lapidoth, “The Gaussian watermarking game,” IEEE Trans. Information Theory, vol. 48, no. 6, pp. 1639–1667,

Jun. 2002.

[3] C. Saraydar, N. B. Mandayam, and D. Goodman, “Efficient power control via pricing in wireless data networks,”IEEE Trans.

Commun., vol. 50, no. 2, pp. 291–303, Feb. 2002.



40

[4] E. Larsson and E. Jorswieck, “Competition versus cooperation on the MISO interference channel,”IEEE J. Sel. Areas Commun.,

vol. 26, no. 7, pp. 1059–1069, Sep. 2008.

[5] G. Scutari, D. Palomar, and S. Barbarossa, “The MIMO iterative waterfilling algorithm,”IEEE Trans. Signal Process., vol. 57, no. 5,

pp. 1917–1935, May 2009.

[6] Y. Wu and K. Liu, “An information secrecy game in cognitive radio networks,”IEEE Trans. Information Forensics and Security,

vol. 6, no. 3, pp. 831–842, Sep. 2011.

[7] B. Wang, K. Liu, and T. Clancy, “Evolutionary cooperative spectrum sensing game: how to collaborate?”IEEE Trans. Commun.,

vol. 58, no. 3, pp. 890–900, Mar. 2010.

[8] F. Wang, M. Krunz, and S. Cui, “Price-based spectrum management in cognitive radio networks,”IEEE J. Sel. Topics Signal Process.,

vol. 2, no. 1, pp. 74–87, Feb. 2008.

[9] H. Park and M. van der Schaar, “Bargaining strategies fornetworked multimedia resource management,”IEEE Trans. Signal Process.,

vol. 55, no. 7, pp. 3496–3511, Jul. 2007.

[10] A. Chakraborty and J. Duncan, “Game-theoretic integration for image segmentation,”IEEE Trans. Pattern Analysis Machine

Intelligence, vol. 21, no. 1, pp. 12 – 30, Jan 1999.

[11] B. Ibragimov, B. Likar, F. Pernus, and T. Vrtovec, “A game-theoretic framework for landmark-based image segmentation,” IEEE

Trans. Medical Imaging, vol. 31, no. 9, pp. 1761 – 1776, Sept 2012.

[12] H. He, A. Subramanian, X. Shen, and P. Varshney, “A coalitional game for distributed estimation in wireless sensor networks,” in

Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, May 2013.

[13] C. Jiang, Y. Chen, and K. Liu, “Distributed adaptive networks: A graphical evolutionary game-theoretic view,”IEEE Trans. Signal

Process., vol. 61, no. 22, pp. 5675–5688, Nov. 2013.

[14] K. Han and A. Nehorai, “Joint frequency-hopping waveform design for MIMO radar estimation using game theory,” inProc. IEEE

Radar Conf., Ottawa, Canada, Apr. 2013.

[15] A. Mukherjee and A. Swindlehurst, “Jamming games in theMIMO wiretap channel with an active eavesdropper,”IEEE Trans. Signal

Process., vol. 61, no. 1, pp. 82–91, Jan 2013.

[16] X. Song, P. Willett, S. Zhou, and P. Luh, “The MIMO radar and jammer games,”IEEE Trans. Signal Process., vol. 60, no. 2, pp.

687 – 699, Feb 2012.

[17] A. Moragrega, P. Closas, and C. Ibars, “Supermodular game for power control in TOA-based positioning,”IEEE Trans. Signal

Process., vol. 61, no. 12, pp. 3246–3259, Dec. 2013.

[18] K. S. Narendra and M. A. L. Thathachar,Learning Automata: An Introduction. Harlow, UK: Prentice Hall, 1989.

[19] G. Scutari, D. Palomar, F. Facchinei, and J.-S. Pang, “Convex optimization, game theory, and variational inequality theory,” IEEE

Signal Process. Mag., vol. 27, no. 3, pp. 35–49, 2010.

[20] J. C. Harsanyi and R. Selten,A General Theory of Equilibrium Selection in Games. MIT Press, March 2003.

[21] J. Y. Halpern, “A computer scientist looks at game theory,” Games and Economic Behavior, 2003.

[22] S. Lasaulce and H. Tembine,Game Theory and Learning for Wireless Networks: Fundamentals and Applications. Waltham, MA,

USA: Academic Press, 2011.
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